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ABSTRACT Currently, to meet the requirements of modern power systems as fully and efficiently as
possible, the electricity markets have diversified greatly. Under these conditions, it becomes difficult for a
producer to determine the structure of transactions that is financially optimal. Starting from the operational
rules of the power systems that have shaped the electricity markets structure, the objective of this paper is to
develop an electricity market simulator model that includes the basics of a best practice guide for producers
that compete on various electricity markets to carry out the trading activities and enhance their financial
results. The market simulator model considers both the bilateral long- or mid-term agreements and short-
term offers on day-ahead, ancillary services and balancing markets providing the entire trading scenario
and associated cash-flow and risks. Its significance consists in assisting the producer to plan its resources
and create projections by performing multiple trading scenarios and selecting the best one. Thus, this paper
proposes to uncover constraints and business rules for a simulator model assisting the market players to
access the electricity markets and select the best option using Multiple-Criterial Decision-Making (MCDM)
methods (Electre, Topsis, Analytical Hierarchy Process) or the weighted Euclidean distance. The simulations
comprise four trading scenarios for different types of producers (gas or fossil-powered generators) generating
100MW, that are ordered by independent criteria. The results obtainedwithMCDMand the proposedmethod
showed that they indicated the same scenario as the best trading option based on the type of the producer.

INDEX TERMS Electricity market trading simulator, cost/revenue allocation, transaction risk.

I. INTRODUCTION AND LITERATURE REVIEW
The goal of the whole-sale electricity market with its compo-
nents (i.e. for long-term contracts – Bilateral Contract Market
(BCM), mid-term contracts – Day Ahead Market (DAM)
and Intra-Day Market (IDM), and short-term transactions –
Balancing Market (BM)) is to provide a temporal balance
between load and generation, ensuring a high quality of sup-
ply and financial efficiency of the market players.

A different market for the Ancillary Services (ASM) is also
taking place to enhance the security of the electricity supply.
Providing the primary reserve (frequency reserve) is manda-
tory for all electricity generators in accordancewith the provi-
sions of the European technical regulations. Thus, usually 3%
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of the installed power is reserved for maintaining the safety
and quality operation of the power systems.

Considering a daily typical load curve, the BCM transac-
tions are located at the bottom of the curve, while the other
markets follow the variability of the load ensuring a fine
balance at the power system level. The transactions on BCM
are generally characterized by firm bilateral contracts with
medium to long durations: from few months up to few years
and by fixed hourly quantities during the day. Usually, the
transactions of BCM are secure, the prices are the lowest and
the products that can be sold on this market are quite rigid
and are not able to follow the variability of the load.

The scheduled transactions of electricity with delivery on
the day following the day of trading are carried out on DAM.
The transactions performed on this market are covering the
area between BCM and the load curve itself. DAM provides
the market players with a functional market to set a better
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FIGURE 1. Temporal sequence for electricity market trading for an electricity producer.

balance between the bilateral contracts, short-term consump-
tion forecast and the availability of the generating units for
the next delivery day. Hence, the surplus or shortage can
be balanced by selling or buying on DAM. Participation in
this market is voluntary. DAM consists in firm electricity
transactions based on the bids submitted by the DAM players
who receive the marginal price of an auction mechanism.

IDM is also a component of the wholesale electricity mar-
ket. The hourly transactions are concluded for each day of
delivery, after the transactions on the DAM are finalized with
some time before the start of delivery. Usually, 4 IDM take
place at each 6 hours. IDM as well as DAM are voluntary
markets.

The Transmission and System Operator (TSO) handles
transactions on the BM from or to the generators to compen-
sate the deviations from the electricity consumption or gen-
eration schedules. All dispatchable units are obliged to
offer on BM - for power increase, the entire quantity of
available power considering previous markets (BCM, DAM,
IDM) engagements, and all power for power decrease up to
the technical minimum power. As for the ASM, ensuring
enough ancillary services is usually performed through non-
discriminatory market mechanisms using fixed-term auc-
tions. Thus, the generating units are obliged to offer on the
BM at least the quantities corresponding to the contracted
ancillary services. The temporal sequence of the trading pos-
sibilities for an electricity producer and the main characteris-
tics of various markets are depicted in Figure 1.

The use cases technique is chosen to model the first stages
of the proposed simulator development cycle: identification
of requirements and system analysis. This technique is com-
monly used in software design and is often associated with
the well-known UnifiedModelling Language (UML) [1], [2],
a standard commonly used for object-oriented modelling.
The UML diagrams are used to document the simulator’s
functionalities.

In this paper, we have two main objectives: drafting
the basics of a best practice guide for generators types to
participate on different electricity markets (wholesale and
day-ahead) in order to enhance their financial results and
ensure a sustainable operation; and proposing a methodol-
ogy for market trading simulations considering the business

rules, the weighted Euclidean distance and MCDM methods
suitable for each type of generator. Furthermore, we will
design a market simulator showing the gain that could be
obtained from electricity markets considering their partic-
ularities. The simulation is performed for a gas or a fos-
sil powered generating unit of 100 MW with four trading
scenarios.

To the best of the authors knowledge, similar approaches
that consider a single user at a time (that could be an elec-
tricity producer or a supplier or a trader or a dispatchable
consumer) that simulates the trading activities on various
market, have not been yet implemented. Most of the imple-
mentations regarding the electricity transactions have a single
market (on the long or short-term) focus with multiple users,
whereas our approach considers a single user that focuses on
trading on multiple markets (bilateral contract, day-ahead,
ancillary services and balancing markets). Hence, the mar-
ket simulator becomes a valuable decision-making tool for
trading. The user can assess various trading scenarios on
each market, setting the quantities and choosing the risks of
no trading, obtaining the associated cash-flow. By means of
the proposed weighted Euclidean distance, the user chooses
the best trading option. The results of the selection method
were sustained by similar results obtained with well-known
MCDM methods, such as: Electre, Topsis and AHP.

Hence, the paper is structured in five sections. The cur-
rent section briefly describes the electricity markets on long
and short-run horizon. In this regard, we considered a broad
vision that is not concentrated only on one wholesale market
structure, but a structure that is currently in operation in the
European countries. Hence, any producer from any European
Union country can use the market simulator as a decision-
making tool for trading activities. Also, in this section, a cou-
ple of related scientific researches are discussed emphasiz-
ing on similar electricity market simulators. Section 2 is
providing insights of the usage of electricity markets for
different power generators and synthetic recommendations
for approaching various electricity markets, while section 3
is dedicated to the methodology for designing and imple-
mentation of the market simulator, including business rules
that consist in defining the weights for generator type and
scenario selection, whereas section 4 underlines the findings
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of our research. In the fifth section, conclusion is draw and
future works are shortly presented.

The literature review is classified in the following
subsection:

A. ELECTRICITY MARKET MODELING
With the liberalization of electricity markets and the increas-
ing share of Renewable Energy Sources (RES), energy mar-
kets must adapt to ensure economic efficiency and reliability.
Since the early 2000s, there has been numerous researches for
modeling electricity markets, and their number has increased
in recent years. At European level, one of the priorities is the
formation of a pan-European energy market, which, however,
encounters difficulties related to the operational constraints
of the electricity grids. In this direction there are numerous
projects that focus on market mechanisms, market operation
and validation, which led to the emergence of a significant
number of market simulators. But the resulting tools focus
less on supporting market participants in the negotiation
decision-making process [3].

Modeling and simulating the market and electricity is
important because it provides answers to many questions
about complex scenarios and what-if situations. These sce-
narios can be modeled and simulated before they are imple-
mented in the real market.

Electricity systems can be considered as Complex Adap-
tive Systems (CAS) [4]. By definition, CAS are heteroge-
neous, interacting and adaptive units with adaptive behavior
that can range from simply reacting to environmental condi-
tions, to directing actions [5]. Individual behaviors and inter-
actions between entities lead to effects on the aggregated level
of the total system. Pricing mechanisms in any electricity
market are a critical foundation on which the entire electricity
market is built [6].

Operators and regulators need to anticipate market devel-
opments and test new market rules and mechanisms.
Crampton [7] identifies two elements needed to design a
market model: finding a market target and understanding the
preferences and restrictions of market participants. Several
modeling methods can be used, but each of them has its own
shortcomings [8]:

a. Equilibrium models [9], [10] - such models offer a high
level of formalization, but do not incorporate the strategic
behavior of market participants and do not take into account
the knowledge that a participant accumulates through daily
market operations;

b. Game theory [11], [12] - these models are limited to
specific situations, in which the market and the behavior of
the participants depend on only a few factors. The level of
formalization is also high, but the ability to capture details
of reality is quite low;

c. Research on human subjects [13], [14] - these models
require a very high level of expertise to describe the behavior
of market participants in a realistic way. Formalization is low,
but an advantage would be a better ability to describe the
results;

d. Agent-based models [15]–[19] - these models are pro-
posed to remove the shortcomings listed above. Systems
are based on the interaction between autonomous intelli-
gent agents, each with its own goal and behavior. Following
these interactions, the complex behavior of the market and
the flexibility in modeling the dynamic conditions result in
which the transactions take place. Agent-based modeling and
simulation were proposed by many researchers as a suitable
modeling approach for complex, socio-technical problems.

B. SIMULATORS FOR THE ELECTRICITY MARKET
In order to foresee the results, identify and limit the risks
of electricity markets, it is necessary to provide a simula-
tion environment. In the 2000s, there were many scientific
researches proposing simulators for the electricity markets.
In addition, numerous prestigious papers reviewed those sim-
ulators [20]–[23]. However, the electricity market simulators
that have been or are still being continuously developed have
very different characteristics and objectives. Some focus on
the study of market mechanisms, others focus on physical
implications, such as network stability, and a third category
is concerned with complex interactions between partners
and comparing different scenarios to predict future market
developments. In the following paragraphs, we will briefly
present some of those simulators, taking into account their
characteristics, the proposed models, markets on which they
operate, but also the number of subsequent references to these
works.

A DEcision-support Simulator for POwer Trading,
DESPOT [24] is a short-term wholesale electricity market
simulation tool providing unit commitment, system hourly
prices, profit and expected bid. Hourly supply curves are the
final output of an operation planning decision support model.
PowerWeb [25] is aweb platform that allows users to simulate
a large number of market scenarios, with different rules and
restrictions. It is controlled by a central agent, which acts
as an independent system operator, which guarantees system
reliability.

Many of the simulators are based on software agents. Thus,
EMCAS [16] is a simulator that describes the behavior of
consumers and producers, and calculates the price of elec-
tricity for each hour and each location in the network. The
price depends on the demand, the production cost, the con-
gestion of the transmission grid and external factors (delays
in production, distributors’ strategies). In this market simu-
lator, the players’ strategies are based on adaptive learning
algorithms.

NEMSIM [17] was the first large-scale agent-based sim-
ulation model to represent the Australia’s electricity market.
The simulator uses a huge amount of historical data to sim-
ulate the structure of the market. Agents can be manufac-
turers, network service providers, retailers and the national
electricity market management authority. The models used
are bidding and bilateral contracts. Unfortunately, the model
is far too specific to be adapted to other markets.
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MASCEM [18] is a learning simulator based on a rein-
forcement learning algorithm providing participants with
strategic skills. It implements the day ahead market, forward
market, bilateral market and bilateral contracting market.
Agents apply a predefined set of behaviors and strategies.
This simulator can be used to evaluate the efficiency of
trading mechanisms on the electricity market. More recent
results are presented in [26], that also explores the impact
of trading mechanism market players behavior on electricity
markets. Agent-based modeling and simulation methods are
applied for symmetric electricity market considering price-
based demand response.

Aspects regarding decision making in the context of
electricity market were presented by [19]. In this case,
the approach is based on artificial intelligence and data min-
ing algorithms and provides a simulation tool that processes
data from real electricity markets. The main goal was to
create realistic scenarios that consider the modeling of elec-
tricity market players’ behavior and characteristics. Further-
more, one objective was to gain insight about the interactions
between involved parties.

An object-oriented implementation of electricity market
mechanisms is presented in [27]. Day ahead market and intra-
day market mechanisms were modeled for the German elec-
tricity power system. Hybrid simulation and mathematical
optimization were used to study different exchange mecha-
nisms and behavior patterns.

Nevertheless, it can be noticed that although the partici-
pation of players on several types of market intensifies the
need for decision support, few of the existing simulators can
provide support in deciding whether or not to participate in a
certain type of market.

C. KEY PERFORMANCE INDICATORS (KPIS), BUSINESS
RULES AND MCDM METHODS FOR SIMULATORS
The KPIs are directly correlated with the efficient operation
of the electricity markets from the technical and financial
point of view. In [28], a list of qualitative assessment criteria
of electricity markets are proposed: efficiency, effectiveness,
robustness, applicability and fairness. Then, a set of KPIs is
proposed to evaluate quantitatively the impact of different
market design options, considering both long-time and short-
time design options. All the quantitative KPIs are associated
with the qualitative ones. Thus, in the context of integration
of a large volume of RES, the main purpose is to define KPIs
for the electricity markets operation.

In the context of the future pan-European electricity sys-
tem, different possible future balancing market mechanisms
are evaluated in [29]. Both traditional power plans and
renewable energy sources are considered, and the main
outcomes of the electricity markets are analyzed: average
price levels of balancing products, marginal costs, costs
of electricity dispatch, costs for procuring the balancing
capacity, etc. The focus is on the procurement of balancing
capacity.

Based on these indicators, complex decisions can be made.
However, well-founded decisions depend, to a large extent,
on the proper understanding of the business rules underlying
the system processes. Since the scope of the business rules
is to describe the operations, definitions and constraints that
apply to an organization [30], it can be stated that the cor-
rect identification and the appropriate specification of busi-
ness rules will significantly influence the decision-making
process.

Knowledge embedded in business rules comes from many
years of successes, failures, test and simulation results, opti-
mizations, maintenance operations and so on. In many eco-
nomic fields, business rules could become part of an efficient
information system. Also, several issues related to business
rules management can been found in the literature, such
as: knowledge elicitation, rule modeling and formalization,
completeness and consistency of a business rules set and
automated rule checking [31].

Participants in various electricity markets are faced with
complex decisions, with long- andmedium-term implications
that cannot be anticipated, both due to the complex business
rules, as well as due to the large number of participants and
transactions. Aspects regarding the formalization of busi-
ness rules related to day-ahead markets, which encourage
momentary balance between supply and demand, can be
found in [32]. Also, a realistic simulator of the DAMof Spain,
where all the rules that govern this market are modeled, was
proposed by [33].

Whereas the coupling of the European electricity mar-
kets has been fully achieved for DAM, a joint integrated
IDM based on the continuous trading mechanism is under
implementation, formalizing the market rules needed for the
harmonization of two distinct trading mechanisms used by
European countries [34].

Reference [35] presents several decision-support models
suitable for managing the bidding and scheduling processes
for aggregators that supply electricity to prosumers with
flexible generating units. Considering the penalization due to
imbalance volume, these models focus on specifying the bid-
ding process and bidding rules and handling the interrelations
at hourly level.

MCDM have been successfully applied in a wide range
of applications related to energy and sustainability prob-
lems [36], [37]. Methods such as: technique for the order
of preference by similarity to the ideal solution (TOPSIS);
analytical hierarchy process (AHP); preference ranking orga-
nization method for enrichment evaluation (PROMETHEE);
elimination and choice translating into reality (ELECTRE),
can be used to support stakeholders and decision makers in
making decisions in real situations, in which they must take
into account many quantitative and qualitative criteria, often
contradictory. They can use more of these methods or use
their extension to consider stochastic inputs and assign confi-
dence levels in the resulting outputs [38]. MCDM methods
are frequently used lately on numerous renewable energy
applications [39].
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II. USAGE OF ELECTRICITY MARKETS FOR
A POWER GENERATOR
One of the objectives of this paper is to draft the basics of
a best practice guide for generators for usage of the dif-
ferent electricity markets in order to improve their finan-
cial results and efficiency. Considering that starting from
their primary energy source, there are significant differences
between power generators both from technical and efficiency
point of view, the following power generators categories are
analysed: fossil and nuclear fuels powered; hydro powered;
photovoltaic and wind powered; storage facilities.

A. GENERATORS POWERED BY FOSSIL
AND NUCLEAR FUELS
They have similar characteristics in what it concerns the elec-
tricity market participation. The main characteristic from this
perspective is the strong correlation between the generation
efficiency level and the variation of the electricity genera-
tion volumes. In order to achieve high levels of efficiency,
this type of electricity generators requires a very constant
generation volume and a high level (80% or even more for
the nuclear generators) of capacity usage. An aspect that
significantly influence the generation costs for this type of
units is the necessity to create fuel stocks. Hence, this type of
units usually requires large amounts of fuel to allow a long-
term operation at close to full capacity. Large amounts of fuel
stocks require specific financial resources and thus if not used
in due time they may significantly increase the generation
costs.

Taking into account the above-mentioned aspects, this type
of generators must focus on the transactions performed on the
BCM to achieve sustainable financial results. Transactions
performed on this market provide both long-term and con-
stant values for each time interval, but it must be mentioned
that prices levels are relatively low as compared with the
other markets, so an optimization must be made regarding the
volume of generation.

The DAM and IDM are usually not providing good oppor-
tunities for these types of generators and therefore they should
be used only for small amounts from the available capac-
ity or in emergency conditions. The prices on these markets
are extremely volatile and, if there is available capacity,
the generators owners should take advantage of the opportu-
nities that may show up and increase the financial outcomes.

According to the European regulations, all the generator
units must participate in the BM. The volume of transac-
tions performed on this market are determined by the TSO’s
requirements and they are performed practically in real time.
In these conditions, there is practically no room for optimiza-
tion, but the electricity prices on this market are very high and
so even if the volumes and durations are low, the financial
revenue may be significant if the operational schedule of the
units is optimised accordingly.

Another electricity market that provides transactions with
appropriate conditions for this type of generators is the ASM.

From the technical point of view, this market has suitable but
not ideal conditions because the transactions are long-term
and constant values, but there is no guarantee that fuel stocks
will be used in due time. From the financial point of view, this
market usually provides a long-term and reliable revenue, but
not at the same level as the BM.

Among the electricity generators in this category, there
is one that requires a special attention: gas turbine powered
generators. From the technological point of view, these gen-
erators are very similar with the other ones included in this
category except they have one particular feature: extremely
fast start from black start. For a nuclear-powered generator
takes days to reach the nominal power following a black start.
A thermal powered generator needs more than 10 hours to
reach the nominal power following a black start, while the
generators powered by gas turbines can reach the nominal
power in less than 3 minutes. Hence, the fast start they can
performmake them extremely suitable for providing ancillary
services like Frequency Containment Reserve (FCR) and Fre-
quency Restoration Reserve (FRR) and thus they are usually
amajor player onASM.Obviously, BM is also amajor source
of revenue for this type of generators because the level of
electricity prices on this market is usually higher than the
generation costs of this generators.

B. HYDRO POWERED GENERATORS
Based on their constructive characteristics, hydro power
plants may be grouped into two main categories:

- On the Run of River (RoR). This type of power plants
is built on the big rivers and takes advantage of the
big volume of water flows while the accumulation lake
capacity is normally rather low.

- With dam and accumulation lake. These power plants
are built usually on mountain rivers where the volume
of water is not so big, but by building a high dam,
a large accumulation lake is created and the power plant
takes advantage of the big difference of level between
the top and the bottom of the lake. As there is a large
volume of the lake, this type of power plants usually has
a significant water storage capacity.

Although both types of power plants are equipped with
similar hydro generating units, their behaviour on the elec-
tricity market considerably varies. The electricity generation
efficiency is not so much related to the level of capacity
as it is the case with thermal generators (nuclear or fossil
fuel). Also, the hydro power plants are much more flexible
in what it concerns the variation of the generation amount.
In these conditions, their area of interest is limited in BCM
area (especially for the RoR power plants) and much more
in the DAM/IDM (for both types of power plants). Another
important aspect that makes hydro power plants more suitable
for DAM/IDM and less suitable for BCM is the dependency
on the hydraulic conditions which cannot be estimated accu-
rately enough to safely sign long-term contracts.

Together with the gas turbines, the hydro generators are
playing amajor role on BMdue to their capacity to change the
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generation volume very fast and without significant changes
in the efficiency.

C. GENERATORS POWERED BY RES
The transition from present situation when generation pow-
ered by fossil fuels, nuclear and large hydro is covering
more than 80% of the generation needs to the future power
systems in which generation powered by RESwill cover even
more than 80% of the requirements obviously implies the
replacement of the first category with the second one, at a
very large level.

From the technical point of view, wind generators and solar
panels have the following main characteristics:

- they are using convertors for connection to the grid. The
photovoltaic or solar panels are generating the electricity
in direct current while the wind power plants generate
electricity at low level and variable frequency so both
require a convertor to be able to inject the electricity
into the power systems. However, the existence of the
convertors induces a set of technical and financial char-
acteristics that will be addressed in more detail in the
following.

- their generation volume is strictly related to the weather
conditions: brightness for photovoltaic panels and wind
speed for wind generators. This aspect makes the gen-
eration volume highly unpredictable on medium and
long-term in accordance with the accuracy level of the
weather forecast.

Considering the above-mentioned aspect, the generators
powered by RES are not suitable for contracts on BCM.
In order to access long-term transactions, this type of elec-
tricity generators must find a solution for compensating
the imbalances either by a supplementary contract with an
electricity storage facility or by accepting a lower price for
electricity, offsetting this way the financial loss due to the
imbalances.

Hence, DAM/IDM are generally the most suitable markets
for this type of generators. It must be mentioned that weather
forecast, respectively generation forecast has to be accurate:
the error it may go less than 3% per time interval if the
forecast is performed with around 2 or 3 hours in advance.
The main problem under these conditions is the risk of no
finding the consumers for the available generation, in due
time. In case this problem is properly mitigated, DAM/IDM
may provide significant revenue.

Similar with other generators, RES powered generators are
obliged to participate in BM, but only for the reduction of
generation, for obvious reasons.

The high level of unpredictability induced by the weather
forecast dependency makes ASM not very suitable. Trans-
actions performed on this market require a very high level
of certainty because they are meant to support the power
systems operation in case of emergency situations like large
outages. Usually, this type of generators will not access the
ASM. Nevertheless, this conclusion is based on the existing
structure of the ASM. The use of renewable energy sources

has created new challenges in planning systems to track grid
loading. The integration of different energy sources requires
a plus of flexibility, new structures and new methods in order
to maximize its benefit considering uncertainties related to
renewable resources. Recent studies have substantiated the
conclusion that increasing the level of RES powered in future,
up tomore than 50% of the total generation of the system, will
require new ancillary services and therefore a new structure
of ASM. Adding this information with the existing trend to
design new types of converters: smarter, faster, more reliable,
etc. the ASM may provide interesting opportunities in the
future.

D. STORAGE FACILITIES
Storage facilities have a long history in the power systems.
They have developed in parallel with the nuclear-powered
generators as a support for their requirement for a constant
electricity generation level. At that moment only one tech-
nology was sustainable from economic point of view: pump
storage and the situation stayed like that until recently when
the new developments in the battery industry have provided a
new sustainable technology.Moreover, the tremendous devel-
opment of the battery technology may lead to the conclusion
that in the next future this type of technology will become
more significant than hydro pump storage, from both points
of view: installed volume and technical capabilities.

Irrespective the technology used for storage, the behaviour
on the electricity market is obviously different for the two
operational modes that characterize this type of facilities:
consumptionmode and generationmode. The business model
of this type of facility is basically the following: when the
price of electricity is low, for example during night time,
consumption mode will be activated and the electricity will
be stored in water or battery, if possible up to full capacity,
whereas when the price of electricity is high, for exam-
ple during the evening peak, the generation mode will be
activated and the electricity will be sold on the market as
much as possible. The difference of prices multiplied with
the volume of traded electricity must ensure the financial
sustainability of the facilities also considering the efficiency
of the storage process itself. Considering the volatility of the
prices on the electricity market, the storage facilities have to
relentlessly monitor the market and react very promptly when
an opportunity shows up maintaining the financial efficiency
at an appropriate level for a long-term sustainability.

Under these circumstances, the most suitable transactional
platforms are DAM and IDM because they offer the best
conditions for maximizing the price difference and thus the
revenue. In the same context, because of the dual character of
the storage facilities, according to the regulatory framework,
they not allowed to participate in the BM. Participation to
ASM is very often an interesting opportunity because the
storage facilities can provide a very fast reaction in both oper-
ational modes. Accessing the ASM transactions requires an
optimization mechanism from the financial point of view. For
example, to provide frequency reserves, the storage facility
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TABLE 1. Opportunities of accessing different electricity markets for producers and other facilities.

must store a certain electricity volume without using it in
transactions on other electricity markets no matter the price
level opportunities. In the same context, a certain storage
capability must be kept available, again no matter the price
level opportunities on other markets are, for the same reason.

Considering the above-mentioned aspects regarding the
particularities of power generators and other facilities in
relation with various electricity markets, the conclusions on
evaluating the opportunities of accessing these markets are
briefly presented in the Table 1.

The abbreviations used in Table1 have the following
signification:

• VA – Very Appropriate;
• A – Appropriate;
• OU – Occasionally Used;
• RO – Requiring Optimization;
• NA – Not Appropriate.

The proposed market simulator is built considering
the qualitative conclusions and assessments presented
in Table 1 that are correlated with the existing electricity
market structure. Its operation is based on several steps as
in Figure 2.

As a first step, we need to define the market constraints
for BCM, DAM, IDM, ASM, BM as in section 4.1. Then, the
user will be identified as producer (that can be fossil, nuclear,
hydro, gas, storage) or supplier. As we mentioned, some mar-
kets can be accessed only by producers (e.g. ASM, BM). The
third step consists in defining the trading scenarios setting the
quantities, prices and risk levels for trading on each market.
The number of scenarios is not limited. However, they should
take into account the flexibility and capacity particularities
of the user. Performing of scenarios leads to a set of results
that consists in specific financial and technical indicators.
The fifth step consists in defining the criteria and weights for
selecting the best scenario (risk, revenue, mean price, etc.).
After the simulations are finalized, the best scenario can be
selected using the weighted Euclidean distance.

III. METHODOLOGY AND MATHEMATICAL MODEL FOR
DESIGNING THE MARKET SIMULATOR
A. MARKET RULES
An electricity producer, at present, has the possibility and
even the obligation, for some of them, to participate in various
electricity markets. In these conditions, it is obvious that his
revenue for a certain period, will be composed of the sum of

FIGURE 2. Steps to perform market trading simulations.

the revenues, as follows:

Itotal = IBCM (QBCM ,PBCM )+ IDAM (QDAM ,PDAM )

+ IASM (QASM ,PASM )+ IBM (QBM ,PBM ) (1)

where:

Itotal – total revenue for a period of time t;
I (Q,P) – the revenue obtained from an electricity

market as a function of two variables;
Q – power quantity hourly traded on various

markets;
P – hourly price on various markets.

The electricity transactions consider the following con-
straints:

Qtotal = QBCM + QDAM + QASM + QBM (2)

where:
Qtotal – total available power of a producer.
The Qtotal is an input data depending on the availability of

the fuel, stocks, forecast, installed power Pi, maintenance and
other obligations (such as to contribute to the primary reserve,
that is around 3% of Pi).
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The structure of functions from eq. (1) varies from market
to market. Hence, in order to define IBCM , the trading rules
for BCM will be considered. Although these rules may differ
from country to country, the principals are common, thus the
mathematical approach has a high level of generality. Trading
on the BCM is heavily constrained by standardized bids in
terms of delivery intervals. For a certain period, several com-
plementary bids can be used to cover both peak and off-peak
hours. The rigid structure of these bids leads to financial loss
due to imbalances. The assessment of the loss is difficult and
requires a large volume of historical data (hourly prices) that
should be periodically updated. Hence, it is recommended to
estimate the loss as a percentage of the revenue from BCM.
Thus, the revenue function can be defined as:

IBCM (QBCM ,PBCM )=
(
1−

D
100

)
×

∑N

i=1
Qi×Pi (3)

where:

D – coefficient of imbalance that leads to revenue
reduction, [%];

N – number of bids;
Qi – power traded for a bid i.
Pi – price for a bid i.

The price is an average from historical datasets or it is
negotiated by the user.

Considering the following constraint:∑N

i=1
Qi = QBCM (4)

Although, the prices on BCM are lower compared with
other markets, usually the transactions are carried on
medium- and long-term, with no risks of price variation or
non-payment, offering a stable and predictable revenue.

In order to define IDAM , the power bids differ on hourly
basis. This specific characteristic of DAM imposes setting
the generation or load curve in advance to the trading period.
It should take into account: hourly prices and the available
power for trading excluding the contracts concluded on BCM
and the capacity allocated for primary reserve.

DAM operates as a stock market; the generation bids and
suppliers’ requests are setting the hourly marginal price. This
characteristic could not guarantee the transactions before
closing the bidding session. Hence, we define a level of risk
of the partial or total failure of the transactions, estimated for
each time interval or groups of time intervals. The revenue
function for DAM is the following:

IDAM =
(
1−

RDAM
100

)
×

∑Z

i=1

∑24

j=1
Qji × P

j
i (5)

where:

RDAM – risk of trading failure on DAM, [%];
Z – a period (i.e. number of days);
Qji – power for hour i, day j;
Pji – DAM marginal price for hour i, day j.

The price can be hourly forecasted and should take into
account seasonal influence and information regarding other

market participants’ bidding strategies using large datasets
with historical prices.

Considering the following constraint:

QDAM = Max
{
Qji; i = 1÷ 24; j = 1÷ Z

}
(6)

The risk value may be defined by the user based on the
information regarding the power system operation and trad-
ing experience or a standard risk value could be considered.

In order to define the IBM , some characteristics of BM
should be mentioned. The BM is mandatory for dispatchable
producers and consumers. The suppliers and traders are not
eligible to trade on BM. The trading on BM is highly improb-
able because the trading requests are coming from the TSO
due to the real-time power system operation that is influenced
by the forecasts. Hence, the power and the price are variable
for each interval. TSOmay request to increase or decrease the
power, thus the pairs (quantity, price) vary for the two cases.
The revenue function for BM can be defined as following:

IBM = I+BM + I
−

BM (7)

I+/−BM =

(
1−

RBM
100

)
×

∑Z

i=1

∑24

j=1
Qji × p

+/−
avg (8)

where:

RBM – risk of trading failure on BM, [%];
Z – number of days for a period;
Qji – power traded on BM for hour i of day j;
p+/−avg – average price for analyzed period Z for

increasing or decreasing the power.

Due to the high uncertainty regarding the hourly prices
on BM, it is recommended to calculate the average price
separately for the analyzed period for transactions that sup-
pose increasing or decreasing the power. The risk is rela-
tively high to obtain a too optimistic forecast of the revenue
considering that the prices on BM (set by the pay-as-bid
pricing mechanism) are usually higher compared to the other
markets.

The participation in the ASM that actually takes place
before BM is similar to it, open only to electricity producers
and dispatchable consumers. Unlike the BM, their participa-
tion in the ASM is not compulsory, except for the provision
of the primary adjustment reserve (hereinafter referred to as
FCR), which is mandatory only for dispatchable producers
and not for dispatchable consumers.

A very important feature of ASM is the fact that there are
two components that are traded, respectively are paid: hourly
power capacity available for ASM and electricity resulting
from activation of the power capacity available for ASM, for
a given period of time.

The transactions that can be carried out at present on ASM
are the following: FCR, secondary reserve for frequency
adjustment (hereinafter referred to as FRR), rapid tertiary
backup for frequency adjustment (hereinafter referred to as
Replacement Reserve Fast - RRF), slow tertiary backup for
frequency adjustment (hereinafter referred to as Replacement
Reserve Slow - RRS).
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The revenue function obtained from transactions with sys-
tem services has two components and is as follows:

IASM = I capacityASM + I energyASM (9)

The mathematical formula for the revenue function
obtained from the ancillary services, by trading the availabil-
ity of power capacity, is the following:

I capacityASM = QZFCR × PFCR + Q
Z
FRR × PFRR + Q

Z
RRF × PRRF

+QZRRS × PRRS (10)

where:

QZFCR/FRR/RRF/RRS – available power capacity for
FCR, FRR, RRF and RRS, for a
period Z .

PFCR/FRR/RRF/RRS – prices for the available power
capacity for FCR, FRR, RRF and
RRS.

Until not so long ago, these prices were regulated by
the national authority, but recently they are set by market
mechanism. It should be noted that the revenue obtained from
trading system services are completely determined (there is
no uncertainty or risk factor) making this market stable and
attractive for reserves providers. The quantities of the avail-
able power capacity for the ancillary services must satisfy the
condition:

QASM = QZFCR + Q
Z
FRR + Q

Z
RRF + Q

Z
RRS (11)

These quantities are correlated with the quantities from the
previous markets: BCM and DAM (as in eq. 2).

The mathematical equation for the second component of
eq. (9), the function of revenue obtained from the ancillary
services by trading the electricity resulting from a reserve
activation order, is the following:

I energyASM = I energyASM ,FCR + I
energy
ASM ,FRR + I

energy
ASM ,RRF + I

energy
ASM ,RRS

(12)

I energyASM ,FCR=

(
1−

RFCRASM

100

)
×

∑Z

i=1

∑DFCRZ

j=1
QFCRi,j × P

en
FCR

(13)

I energyASM ,FRR=

(
1−

RFRRASM

100

)
×

∑Z

i=1

∑DFRRZ

j=1
QFRRi,j × P

en
FRR

(14)

I energyASM ,RRF =

(
1−

RRRFASM

100

)
×

∑Z

i=1

∑DRRFZ

j=1
QRRFi,j × P

en
RRF

(15)

I energyASM ,RRS =

(
1−

RRRSASM

100

)
×

∑Z

i=1

∑DRRSZ

j=1
QRRSi,j × P

en
RRS

(16)

where:

RFCR/FRR/RRF/RRSASM – risk of no activation of each
reserve for a period Z , [%];

Z – period, [days];
DFCRZ , DFRRZ , – time interval for activating
DRRFZ , DRRSZ the reserve [hours].
QFCR/FRR/RRF/RRSi,j – power for each reserve that is

activated for day i and interval j;
PenFCR/FRR/RRF/RRS – energy price as a result of

activating the power reserve.

It should be noted that the values of the risks of non-
fulfillment of the transactions are estimated values, evaluated
on the basis of information from previous operating periods.
If no such information is available, it is recommended to use
high values that reflect the high degree of uncertainty.

The function represents the forecast of a financial revenue.
Under these conditions, it is desirable that the resulting values
are rather lower (positive forecast errors are favored).

Finally, for a better appreciation of the level of confidence
that the user can have in the predicted value, the level of
general risk that is achieved by corroborating the levels of
risk assumed for each of the components related to elec-
tricity markets must be evaluated. Based on the experience,
it is recommended that the amount of power available for
the extremely low-risk components (bilateral contracts and
power reserves) be at least 50% for nuclear and fossil-based
generators to ensure an adequate level of confidence in the
medium- and long-term revenue.

B. MCDM METHODS
Several scenarios Si of trading on the electricity market can be
simulated for a certain period, lasting for at least one month
to one year. Given that the user, that can be an electricity
producer or supplier, has full control only on the amount
of power traded on each market, and that, for simulations,
historical prices are provided, as indication of past markets
behavior, it can be concluded that the structure of quantities
offered on each market represent the defining element of a
market scenario.

To select one of the scenarios, we propose a simple, but
efficient approach: the weighted Euclidean distance and the
results are compared with a MCDM, such as Electre or Ana-
lytical Hierarchy Process. The selection of the scenario could
be at a first sight a linear optimization problem, in which the
trading quantities for each market are optimal when maxi-
mizing the revenue that can be easily solved with a Mixed
Integer Linear Programming (MILP) approach. However, this
is not the case of the electricity market as not only revenue is
essential, but also the other criteria are significant.

As concluded in Table 1, producers have different oppor-
tunities of trading on various electricity markets. Thus, for
nuclear and fossil-based generators, BCM is more appropri-
ate than other markets, whereas for gas and hydro generators
trading on DAM or BM is better than BCM. Hence, an

184218 VOLUME 8, 2020



S.-V. Oprea et al.: Trading Simulator Model for the Wholesale Electricity Market

important criterion is the electricity volume traded on BCM,
that securely ensures a sustainable revenue level for certain
producers, that is:

vSiBCM =
W Si
BCM

Wtotal
× 100 (17)

where:
Wtotal – total traded electricity volume for a scenario.

As has been previously mentioned, a revenue level will be
able to encompass an aggregated level of uncertainty associ-
ated with a simulated offer. The revenue level for each sce-
nario iSi is determined according to the following equation:

iSi =
(
1−

ISi

IRF

)
× 100 (18)

where:

ISi – revenue for a certain scenario;
IRF – revenue free of trading risks associated

with a scenario.

The revenue level estimates the influence of trading risks
over the total revenue. IRFtotal can be determined based on
Itotal equation, by removing the influence of risk coefficients
from all electricity markets. Therefore, when calculating
the IRFtotal , the following coefficients will be equal to zero:
D coefficient on BCM, RDAM on DAM, RBM on BM and

RFCR/FRR/RRF/RRSASM on ASM.

The risk associatedwith each scenario is calculated accord-
ing to the following equation. Based on its values, several
categories for revenue level can be defined, as follows: low
(0-10%); medium (10-20%); high (20-30%) and very high
(>30%). Values that are greater than 30% for this coefficient
denote an indication for rejecting the scenario due to a high
risk of transactions failure, (19), as shown at the bottom of
the page.

Also, a relevant indicator for evaluating the overall finan-
cial efficiency of the simulated transactions is the mean price
associated with a scenario MPSi , that can be determined by
the following equation:

MPSi =
Itotal
Wtotal

(20)

Also, the revenue ISi is a significant criterion that can be
assessed at the scenario level.

When assessing a trading scenario on the electricity mar-
ket, there are two types of aspects that must be considered.
First, there are aspects related to the type of user. As pre-
sented in Table 1, the characteristics of power generators may
impose trading restrictions in relation with various electricity
markets. Also, depending on characteristics such as availabil-
ity of the primary source, time to reach the nominal power

after a black start, generation costs, fuel costs and so on,
producers may exploit the opportunities of accessing these
markets by focusing on those that are more suitable. Second,
there are aspects related to efficiency, such as to maximize
the financial results, that usually are associated with higher
risks of trading failures.

Based on these observations, five business rule proce-
dures weight_type (wtype) where type can be FOSS_NUCL,
HYDRO, RES, STORAGE or GAS are proposed to evaluate
the simulation scenarios on the electricity markets. Written
in the ‘‘IF conditions THEN actions’’ format, each procedure
applies to a category of power generators and implies four
independent criteria that refer to: 1) electricity volume traded
on BCM (vSiBCM ); 2) risk (RSi ); 3) mean price (MPSi ); 4)
revenue (ISi ).
Analytic Hierarchy Process (AHP) is a MCDM that can

help the decision process by breaking down a complicated
problem into a hierarchical structure with several levels of
objectives, criteria and alternatives. AHP performs compar-
isons between pairs to obtain a relative importance of the
variable (criteria) at each level of the hierarchy and/or eval-
uates the alternatives at the lowest level of the hierarchy
to choose the best alternative. AHP is an effective method,
especially when there is subjectivity, and is very suitable for
solving problems in which decision criteria can be organized
hierarchically in sub-criteria.

The prioritization mechanism, developed by Saaty (1980),
is achieved by assigning a number from a comparison scale
(as in Table 2) to represent the relative importance of the
criteria. The parallel comparative matrices of these factors
provide the means of calculating the importance.

For instance, for a gas-powered producer, the following
matrix for pairwise comparisons of the four criteria (the
criteria were ordered according to their importance) is con-
sidered. For example, Revenue has a moderate importance in
relation toMean price and BCM traded volume (score 2 and,
respectively, 3), but has very strong importance in relation to
Risk (score 6). The diagonal elements will always be equal to
1 as in Table 3.

The decision maker takes into account m attributes of
alternatives to reach a selection decision (m = 4 in this case).
That is, the decision maker’s underlying utility function is
multiple-attribute and non-linear, but additive, as following:
U(x) =

∑m
i=1 ai × Ui(xi), ai > 0, where Ui(xi) is the utility

of attribute i of alternative x, and ai is the weight related to
attribute i. For the considered example, the multiple-criteria
utility function resulted is: U = 0.5 × [Revenue] + 0.25 ×
[Mean price]+ 0.15× [BCM]− 0.1× [Risk].
However, if we repeat the analysis for the case of a fos-

sil/nuclear producer, the matrix for pairwise comparisons of
the four criteria will look different (as in Table 4).

RSi =
IBCM × RBCM + IDAM × RDAM + IBM × RBM + I

capacity
ASM + I energyASM × RASM

Itotal
(19)
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TABLE 2. The fundamental scale for pairwise comparisons (Source: Saaty,
T. L. (1996), Decision Making with Dependence and Feedback: The
Analytic Network Process, RWS Publications, Pittsburgh).

TABLE 3. Pairwise comparison matrix for a gas-powered producer.

TABLE 4. Pairwise comparison matrix for a fossil/nuclear-powered
producer.

As a result, the multiple-criteria utility function has
changed: U = 0.5 × [BCM] + 0.15 × [Mean price] +
0.15x[Revenue] − 0.2 × [Risk]. Therefore, rules regarding
the criteria weight stipulate that, for instance, for fossil and
nuclear fuel-based producers, 50% of the energy must be
traded on BCM, whereas for gas turbine powered genera-
tors, more important is the revenue as in Table 5. Therefore,
a business rule procedure will be applied based on the user
type of the simulator to determine the weights: IF producer=
‘‘FOSS_NUCL’’ THEN wFOSS_NUCL .

TABLE 5. Weights for each producer type and criteria.

With these sets of weights, in the next section, Euclidean
distance and several MCDM approaches such as Electre,
AHP, and TOPSIS are applied to select the best scenario.

IV. FINDINGS AND RESULTS WITH THE
MARKET SIMULATOR
A. FIRST TRADING SCENARIO S0
For simulations, we considered a generating unit of 100 MW
simulating four trading scenarios. It contracted, in the first
scenario, for an entire year, four standard products (peak1,
peak2, peak3 and off-peak that are characterized by fixed
trading hours and quantities) on BCM as in Table 24 for
weekdays and Table 25 for weekend days from Annex.

TABLE 6. Total annual revenue from BCM - S0.

After introducing the available power, automatically
decreased in case of producers by 3% for frequency regula-
tion, it represents the maximum power that can be traded on
the electricity markets. Also, for some producers, the mini-
mum power can be different from zero. For BCM, if the price
is known it can be considered in the simulation, otherwise
the average price from historical datasets will be considered
as estimation. The imbalances costs may vary between 5 and
10% of the revenue from BCM. Considering the price esti-
mations, financial loss due to imbalances, the total estimated
annual revenue from BCM can be predicted as in Table 6.

Participation in DAM is also voluntary, being a component
of the wholesale electricity market that offers a functional
tool to establish the balance between bilateral contracts,
the consumption forecast and the technical availability of
the producers on the day of delivery. The hourly average
prices for a certain period are considered in simulations.
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Also, a more complex estimation of the price can be consid-
ered with respect to the seasonal influence and other criteria.

Based on power allocation set in Table 26 for weekdays
and Table 27 for weekend days, and average hourly price
estimations for each month as in Table 28, the total estimated
annual revenue from DAM is calculated as in Table 7.

TABLE 7. Monthly and total revenue from DAM - S0.

After converting the revenue from Table 7 from RON to
Euro (that is 14,813,121 Euro), we can estimate the revenue
considering the risk of transaction failure associated with this
market as in Table 8.

TABLE 8. Total DAM results for a generating unit of 100 MW - S0.

As for the ASM participation, in case a reserve capacity
is activated, the producer receives an extra revenue for the
energy produced, only for the activation period, in addition to
the revenue obtained for the availability of the power reserve
capacity. The risk of not being activated can be taken from
experience of the producer or is 60-70% by default. Also,
the activation period can be estimated as 40 or 50% of the
simulation period.

The participation in BM is mandatory for all dispatchable
generating units; the power increase offered to balance the
system being is calculated at hourly level as a difference
between the available power and quantities contracted by par-
ticipating in the other markets; the power decrease offered to
balance the system represents the difference between already

allocated power for BCM, DAM, ASM andminimum technic
power. The historical hourly average prices for deficit and
surplus will be taken from the electricity market operator
web-site. The user will choose a level of risk, which by default
has a value of 30% and can be modified. Thus, a percentage
correction (α) is applied to the estimated revenue or expenses
for the simulation period. The total revenue is calculated by
weighting with 50% the price for the increase and the price
for the decrease of power, the probability of occurrence of the
surplus or the deficit being equal.

The revenue from BM can be calculated as following:

P+BM = Pavailable − (PBCM + PDAM + PASM ) (21)

P−BM = (PBCM + PDAM + PASM )− Pmin (22)

IBM =
(
P+BM × p

+
× n× 0.5+ P−BM × p

−
× n× 0.5

)
× α

(23)

where:

P+BM ,P
−

BM – power for increase/decrease;
p+, p− – price for increase/decrease;
n – number of days per month or per year

depending on the simulation period;
α – revenue probability.

The estimated annual revenue from BM and ASM is cal-
culated as in Table 9.

TABLE 9. BM including ASM results for a generating unit of 100 MW - S0.

The revenue from all markets as resulted from simulation
and the total traded electricity volume are calculated for the
first trading scenario as in Table 10.

Table 10. Overall results for market trading simulation in
the first trading scenario – S0

The breakdown in terms of the traded electricity volume
and revenue at the market level are calculated for the first
trading scenario as in Table 11.

The hourly loading of gas generating unit for the first
trading scenario is depicted in Figure 3 for weekdays and
weekend days.

The revenue estimation and the electricity volume traded
in each market for the first scenario are depicted in Figure 4.
Although, most of the electricity volume is traded on DAM
and IDM, the revenue level is 27% of the total revenue,
whereas in case of BM and ASM, the electricity volume is
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TABLE 10. Overall results for market trading simulation in the first
trading scenario - S0.

TABLE 11. Breakdown results at the market level in the first trading
scenario - S0.

FIGURE 3. Loading of generating unit for the first trading scenario - S0.

about 3% but the revenue level is up to 29%. Thus, similar
revenues could be obtained with significant different electric-
ity volume.

B. SECOND TRADING SCENARIO – S1
In the second trading scenario, for the same gas generat-
ing unit of 100 MW, the contracted power for BCM was
halved and the reserve capacity for ASM was doubled, per-
forming required changes at the DAM level to engage the

FIGURE 4. Revenue estimation and electricity volume traded for the first
scenario – S0.

TABLE 12. Overall results for market trading simulation in the second
trading scenario – S1.

entire available power of the generating unit. In this scenario,
the results are given in Table 12, showing an increase of the
revenue by 10%.

The breakdown in terms of the traded electricity volume
and revenue at the market level are calculated for the second
trading scenario as in Table 13.

TABLE 13. Breakdown results at the market level in the second trading
scenario – S1.

The hourly loading of gas generating unit for the second
trading scenario is depicted in Figure 5 for weekdays and
weekend days.

The revenue estimation and the electricity volume traded in
each market for the second scenario are depicted in Figure 6.
Although, most of the electricity volume is traded on DAM
and IDM, the revenue level is 28% of the total revenue,
whereas in case of BM and ASM, the electricity volume is
about 8% but the revenue level is up to 52%.

C. THIRD TRADING SCENARIO – S2
In the third trading scenario, for the same gas generating unit
of 100 MW, the contracted power for BCM was increased by
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FIGURE 5. Loading of gas generating unit for the second trading
scenario – S1.

FIGURE 6. Revenue estimation and electricity volume traded for the
second scenario – S1.

50% and the reserve capacity for ASMwas kept as in the sec-
ond scenario, performing required changes at the DAM level
to engage the entire available power of the generating unit.
In this scenario, the results are given in Table 14, showing
an increase of the revenue by 13% compared with the first
scenario and 3% compared with the second scenario.

The breakdown in terms of the traded electricity volume
and revenue at the market level are calculated for the third
trading scenario as in Table 15.

TABLE 14. Overall results for market trading simulation in the third
trading scenario – S2.

TABLE 15. Breakdown results at the market level in the third trading
scenario – S2.

FIGURE 7. Loading of gas generating unit for the third trading
scenario – S2.

The hourly loading of gas generating unit for the third
trading scenario is depicted in Figure 7 for weekdays and
weekend days.

The revenue estimation and the electricity volume traded
in each market for the third scenario are depicted in Figure 8.
Although, most of the electricity volume is traded on BCM,
DAM and IDM, the revenue level is 75% of the total revenue,
whereas in case of BM and ASM, the electricity volume is
about 4% but the revenue level is up to 25%.
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FIGURE 8. Revenue estimation and electricity volume traded for the third
scenario – S2.

D. FOURTH TRADING SCENARIO – S3
In the fourth trading scenario, for the same gas generating
unit of 100 MW, the contracted power for DAM+IDM and
BM represent 86% of the total generation. In this scenario,
the results are given in Table 16, showing an increase of
the revenue by 34% compared with the first scenario, 27%
compared with the second scenario and 25% compared with
the third scenario.

TABLE 16. Overall results for market trading simulation in the fourth
trading scenario – S3.

TABLE 17. Breakdown results at the market level in the fourth trading
scenario – S3.

The breakdown in terms of the traded electricity volume
and revenue at the market level are calculated for the third
trading scenario as in Table 17.

The hourly loading of gas generating unit for the fourth
trading scenario is depicted in Figure 9 for weekdays and
weekend days.

The revenue estimation and the electricity volume traded in
eachmarket for the second scenario are depicted in Figure 10.
Although, most of the electricity volume is traded on DAM
and IDM, the revenue level is 16% of the total revenue,
whereas in case of BM and ASM, the electricity volume is
about 18% but the revenue level is up to 76%. Thus, similar

FIGURE 9. Loading of gas generating unit for the fourth trading
scenario – S3.

FIGURE 10. Revenue estimation and electricity volume traded for the
fourth scenario – S3.

revenues could be obtained with significant different electric-
ity volume.

After simulating several scenarios, the market simulator
offers variants of approaching various electricity markets
estimating potential results for trading. Therefore, the owner
of the gas generating unit of 100 MWmay choose to allocate
the generation capacity based on the simulation results.

The simulation results for the four scenarios are sum-
marised in Table 18, in order to allow a comparative analysis.
Elements regarding efficiency and risk were also included.
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TABLE 18. Summarised results for the simulated scenarios.

FIGURE 11. Two interfaces of the market simulator application:
simulation options (a), synthetic results of simulation (b).

The proposed model has been implemented and tested
as a market simulator application into a software prototype
with several modules developed in the SMARTRADE
project [41]. Two interfaces of the market simulator applica-
tion are presented in Figure 11. Thus, the simulator model
that we propose is implemented and represents a practical
decision-making tool for market participants.

E. SELECTING THE BEST SCENARIO
Taking into account the weights in Table 5 and the sum-
marized results in Table 18 for a gas generator, we propose
to compare the scenarios by using a Euclidean type metric
on R4, where the weights correspond to a gas generating
producer type, that is, the values from the last line in Table 5.
Therefore, we consider on R4 the metric d , where for any
x, y ∈ R4, x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), we have,
(24), as shown at the bottom of the page.

Next, for each scenario Si in part we will associate a vector
inR4 denoted S i, having as components the values in table 16.
Hence, we obtain:

S0 = (38.75, 41106921, 54.90, 29.08)

S1 = (21.19, 45162882, 65.95, 44, 50)

S2 = (57.41, 46800027, 61.73, 24.69)

S3 = (14.10, 62116914, 108.63, 57.59)

In order to compare the scenarios by using metric d ,
we will normalize the components in the vectors S i. Let us
start with the traded volume on BCM. In our case, the min-
imum traded volume can be 0% and the maximum traded
volume can be 100%. So, we assign to 0% the value 0 and
to 100% the value 1. Thinking by direct proportions, it is
immediate that we assign to the first component in S0 the
value 0.3875. Let us continue with the discussion on the rev-
enue. Suppose that in the worst case the revenue is 20000000
and in the best possible scenario it is 70, 000, 000. It means
that we assign to 20, 000, 000 the value 0 and to 70, 000, 000
the value 1. Now, keeping the proportions, we assign to the
second component in S0 the value

41, 106, 921− 20, 000, 000
70, 000, 000− 20, 000, 000

= 0.42214

The next characteristic under discussion is the mean price.
The lowest mean price is 30 Euro/MWh and the highest mean
price is 150 Euro/MWh. Thus, we assign to 30 the value 0 and
to 150 the value 1. It means that for the third component of
S0 is:

54.90− 30
150− 30

= 0.2075

Finally, we discuss the risk characteristic. In our case the
risk is between 0% and 70%. Reasoning as before, for the
fourth component of S0 we assign the value

29.08
70
= 0.41543.

Consequently, the vector S0 is transformed into a nor-
malized vector S̃0 = (0.3875, 0.42214, 0.2075, 0.41543).
Repeating this reasoning, we will transform the vectors S̃1,
S̃2, S̃3, respectively, into the vectors:

S̃1 = (0.2119, 0.50326, 0.29958, 0.63571)

S̃2 = (0.5741, 0.536, 0.26442, 0.35271)

S̃3 = (0.1410, 0.84234, 0.65525, 0.82714)

Now, we need a so-called ideal vector, for which all charac-
teristics take the best value. It is obvious that the normalized
ideal vector is v = (1, 1, 1, 0). The best scenario is the one
which is the solution of:

mind
(
S i, v

)
, i = 0, 1, 2, 3 (25)

d (x, y) =
√
0.15 (x1 − y1)2 + 0.5 (x2 − y2)2 + 0.25 (x3 − y3)2 + 0.1 (x4 − y4)2 (24)
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By calculation, we get:

d2
(
S̃1, v

)
= 0.37960

d2
(
S̃2, v

)
= 0.28257

d2
(
S̃3, v

)
= 0.22124

By using the weighted Euclidean distance, we conclude
that the best scenario is S3. Let us conduct the same study
for a fossil or nuclear type producer. Taking into account the
weights for each characteristic in Table 5, this time the metric
is given by (26), as shown at the bottom of the page.

For the mean price and revenue, we approximate the same
minimal and maximal values. Considering the traded vol-
ume on BCM, the minimum is 30% and the maximum is
100%. Therefore, scenarios S1 and S3 do not qualify for
this evaluation. Next, associate the value 0 to 30% and the
value 1 to 100%. It means that for the first component in S0,
we assign the value:

38.75− 30
100− 30

= 0.125

Considering the risk characteristic, in our case this param-
eter varies between 0% and 35%. Therefore, for the fourth
component in S0, we assign the value:

29.08
35
= 0.83086

Consequently, the melanized vector S̃0 associated to S0
is S̃0 = (0.125, 0.42214, 0.2075, 0.83086). Repeating this
reasoning for the components of scenario S2, we obtain the
associated vector S̃2 = (0.39157, 0.536, 0.26442, 0.70543).
In order to select the best scenario, we need to compute
d2
(
S̃0, v

)
and d2

(
S̃2, v

)
. The smaller value will give us the

best scenario. By calculation, we obtain:

d2
(
S̃0, v

)
= 0.5 (0.125− 1)2 + 0.15 (0.42214− 1)2

+ 0.15 (0.2075− 1)2 + 0.2 (0.83086− 0)2

= 0.6617

and

d2
(
S̃2, v

)
= 0.39808

Thus, in the case of a fossil or nuclear power producer,
the best scenario is S2.
Using Electre method, implemented in Python, the best

scenario is selected. In case the producer is fossil and nuclear
type, the best scenario is S2 whereas the gas-powered pro-
ducer the best scenario is S3 as in Figure 12. Figure 12 (a)
shows that S2 is better than S0, S1 and S3 are not viable

FIGURE 12. Best scenario selection for different types of producers using
Electre.

options, whereas Figure 12 (b) shows that S3 is better than
S0, S1 and S2, S1 is better than S0 and so on, helping the
producer to choose the best alternative.

For a gas-powered producer, the application of the TOPSIS
method on the decision matrix shown in Table 19 recom-
mended the same decision: the choice of scenario S3.

TABLE 19. Best scenario for a gas-powered producer using TOPSIS
analysis.

With AHP, considering a gas power producer, for each
of the four criteria, an analysis of local priorities will be
performed for the four scenarios. The following priorities
have been assigned for the criteria as in Tables 20-23.

The result indicates the scenario 3 as recommended (as
in Figure 13(a)). For a nuclear/coal producer, the result indi-
cates the scenario 2 as recommended (as in Figure 13(b)).

d (x, y) =
√
0.5 (x1 − y1)2 + 0.15 (x2 − y2)2 + 0.15 (x3 − y3)2 + 0.2 (x4 − y4)2 (26)
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TABLE 20. Priorities for the Revenue criterion using AHP.

TABLE 21. Priorities for the Mean price criterion using AHP.

TABLE 22. Priorities for the BCM traded volume criterion using AHP.

TABLE 23. Priorities for the Risk criterion using AHP.

It is also important to perform sensitivity analysis (a ’What-
if’ analysis) to get an idea of how the results would have
changed if the weights of the criteria would have been dif-
ferent. Sensitivity analysis (Figure 14) allows us to under-
stand how robust our decision is. The more is the sensitivity
index, the more is the variable’s contribution to making the
decision. In the example below, the decision will switch

FIGURE 13. Maximum utility for: (a) gas-power producer; (b) fossil/
nuclear producer.

FIGURE 14. Sensitivity analysis for decision making in the case of a gas
producer.

between S3 and S2 if the value for Revenue changes by
(1-48.98%) = 51.02%.

The use of a Euclidean type metric recommends the third
scenario as being the best choice for a gas generating producer
and the second scenario for a fossil/nuclear producer. Also,
theMCDM: Electre, TOPSIS andAHP selected the same best
trading scenarios.

V. CONCLUSION
Since any market player (electricity generator, consumer,
trader, supplier, etc.) aims to optimize his participation both
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TABLE 24. Gas generating unit loading for BCM for weekdays.

TABLE 25. Gas generating unit loading for BCM for weekend days.

TABLE 26. Gas generating unit loading for DAM for weekdays.

TABLE 27. Gas generating unit loading for DAM for weekend days.

TABLE 28. Hourly prices for DA.

from technical and financial point of view, according to
its technical characteristics and cost, this paper proposes a
hybrid approach based on business rules and constraints for

modelling the main functionalities of an electricity market
simulator, and then focuses on further assisting the user to
choose the best of the simulated alternatives.
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The main objective of the simulator is to evaluate the
expected cash-flow and traded energy for each market, help-
ing the user to make decisions in regards with fuel stocks,
trading activities, approaching different electricity markets.

Thus, we have used the European electricity market struc-
ture to substantiate and exemplify the analyses, statements
and conclusions. Four trading scenarios were simulated for
a gas unit and fossil/nuclear unit of 100 MW using updated
large data sets of the financial results of the existing electricity
markets, scenarios that offer the best trading option. The esti-
mated results of these simulations are analyzed, calculating
the total revenue, the traded energy, the financial efficiency
and the general risk per scenario. The four scenarios ana-
lyzed variants of the producer’s participation on four markets:
BCM, DAM, ASM and BM, varying the energy quantity
contracted on each market.

To select one of the trading scenarios, a MCDM method
has to be applied. Four independent criteria were considered
the most important for assessing a scenario: the electricity
volume traded on BCM, revenue level, risk and also mean
price associated with a scenario. Five business rules pro-
cedures were proposed to assess the simulation scenarios,
considering the criteria weights depending on the user type.

The article proposes the selection of the scenarios by using
a Euclidean type metric. The results are validated by applying
three other well-known MCDM methods: Electre, AHP and
Topsis which indicated similar results.

ANNEX
See Tables 24–28.
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