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a b s t r a c t

This paper presents an accurate method for estimating the thermal lifetime of solid insulation in a power
transformer. The method estimates the ambient temperature using the monthly average ambient tem-
perature and the monthly solar clearness index. The average daily load curve and the standard deviation
for each hour in the daily load curve are used to model the transformer load. The uncertainties associated
with the transformer load and the ambient temperature are used to simulate the transformer artificial
history using Monte Carlo technique. This artificial history is used to estimate the average lifetime of
the transformer solid insulation. The method is tested on a real field transformer data taken from a local
utility. The outcome of the test showed that the proposed method provides reliable results.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting the end of life of a transformer is an essential param-
eter in transformer asset management activities because accurate
decisions with respect to the end of life save considerable money
in the long run and protect the power system against expensive
transformer outages. The degradation of solid insulation (paper)
can be considered the primary reason for a transformer to reach
the end of its life [1–8].

Most of the methods that are used to determine the lifetime of a
transformer are based on measuring the solid insulation failure un-
der controlled experiment [1,3–5,8]. The outcome of this con-
trolled experiment is to only decide if the transformer has
reached its end of life or not, the remaining lifetime of the trans-
former cannot be estimated. Furthermore, the effect of the stochas-
tic nature of the load and the ambient temperature on the
insulation failure was not addressed adequately before. This paper
is an attempt to determine the transformer remaining lifetime
based on studying the transformer solid insulation breakdown
and the effect of variability of load and ambient temperature on
the insulation deterioration using Monte Carlo simulation.

For oil-immersed power transformers, the main factor affecting
the life of well-dried solid insulation is thermal stress, and the pri-
mary reason that the end of life is accelerated or decelerated under
different loading conditions is an increase or decrease in the hot
spot temperature (HST) of the insulation [6,10–12]. Details about
ll rights reserved.
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calculating the HST can be found in [11]. The relationship between
the HST and transformer life consumption is governed by the
Arrhenius reaction rate theory [9–11,13,14], which states that:

per unit life ¼ Ae
B

HSTþ273 ð1Þ

where A and B are empirical constants, with values of (9.8 � 10�18)
and (15,000), respectively [9–11,13,14]; HST is the transformer hot
spot temperature in degrees Celsius.

The value of per unit life is unity for HST of 110 �C. The recipro-
cal of (1) is the aging acceleration factor (FAA), which can be used to
calculate the equivalent aging factor of a transformer as follows
[9,11,14]:

Feq ¼
PN

n¼1FAAn DtnPN
n¼1Dtn

ð2Þ

where Feq is the equivalent aging factor for the total time period; n
is the index of the time interval (t); N is the total number of time
intervals (usually 24 h for one day or 8760 h for one year); FAAn is
the aging acceleration factor for the temperature that exists during
the time interval Dtn; Dtn is the time interval (h).

The hours of life lost in the total time period is determined by
multiplying the equivalent aging factor by the total time period
in hours. This gives equivalent hours of life at the reference tem-
perature (110 �C), which are consumed in the time period.

The real problem in applying this insulation end-of-life model
lies in determining the correct treatment of the transformer load
and the ambient temperature, including the associated uncertain-
ties. In [15], measured or estimated daily load profiles and a one-
day average ambient temperature are used to determine the equiv-
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alent aging factor and the expected end of life of the insulation.
Eleven curves were used to represent the daily temperature and
load as well as their standard deviations. The main drawback of
this method is that it requires a large amount of data. Furthermore,
the loading of the transformer during its entire lifetime was as-
sumed to follow eleven similar load curves with no changes in
peak time or in the shape of the curve, which does not represent
the actual case. In addition, the same pattern of temperature vari-
ation was assumed over the entire lifetime of the transformer.

In [9], the estimation of loss of life for a generator step-up trans-
former was calculated using simulated load values and daily ambi-
ent temperatures. Ref. [9] assumed that the variation in the daily
ambient temperature is sinusoidal. However, a sine curve cannot
represent a typical temperature range over the course of a day.
Assuming a sinusoidal temperature variation that starts at 12 AM
implies the minimum temperature occurs at 6 AM and the maxi-
mum temperature in the same day should occur at 6 PM (the dif-
ference is 12 h), which is not always the real case. The maximum
daily temperature can occur at any hour in the afternoon, while
the minimum temperature can occur at any time in the morning.
Furthermore, the hourly load values used in [9] were selected ran-
domly without conformance to any load curve pattern. According
to [9], the simulation would need about 2450 simulation years in
order to determine the lifetime of the transformer. This number
of simulations is very large compared to the 76 years required with
the method presented in this paper.

With the new method presented here, the model from [11] is
used in order to estimate the lifetime of transformer insulation;
however, the uncertainty with respect to the transformer load is
modeled more accurately. The ambient temperature is more accu-
rately estimated using the solar clearness index, and the uncer-
tainty with respect to the ambient temperature is considered in
the treatment of the end of life model input. The thermal lifetime
of the transformer insulation is estimated using a Monte Carlo sim-
ulation technique. A transformer lifetime is simulated through the
generation of two artificial histories that represent the uncertainty:
one for the ambient temperature and the other for the load. These
artificial histories are used to calculate the lifetime of the trans-
former insulation.
2. Proposed end-of-life estimation technique

The proposed approach for estimating the lifetime of trans-
former insulation is based on the simulation of transformer loss
of life using a Monte Carlo technique. The Monte Carlo simulation
is used in order to account for the uncertainty inherent in both the
daily temperature and the transformer loading. The approach con-
sists of three steps: building an artificial history of the ambient
temperature using Monte Carlo technique, building an artificial
history of the transformer loading using Monte Carlo technique,
and simulating the transformer loss of life based on the model pre-
sented in [10,11].
2.1. Building the artificial history of the ambient temperature

The HST value depends on the ambient temperature, the rise in
the top oil temperature over the ambient temperature, and the rise
in the winding HST over the top oil temperature [11]. The latter
two terms can be calculated using the top oil temperature rise over
the ambient at the rated load, the winding HST rise over the top oil
at the rated load, and the load value. The first term is found using
the historical ambient temperature data to calculate the equivalent
past loss in transformer life. The ambient temperature should,
however, also be estimated in order to project the future equiva-
lent loss of life of the transformer. The correct estimation of the
ambient temperature can be used to obtain a correct estimation
of the transformer HST, from which a correct estimation of the
equivalent future transformer loss of life and the remaining life-
time can be determined.

For the purposes of this research, the estimation of the ambient
temperature is based on the monthly average ambient tempera-
ture and the monthly solar clearness index (KTm). It was found that
monthly average temperatures have lower standard deviations
than average temperatures for the same day over several years
[16,17].

The average daily ambient temperature for a specific hour (h)
for a month (m) can be calculated using the mean value of the aver-
age ambient temperature and the diurnal temperature swing (peak
to peak) for this month as follows [17]:

Tm;h ¼ Tm þ Am

0:4632 cosðt � 3:805Þþ
0:0984 cosð2t � 0:36Þþ
0:0168 cosð3t � 0:822Þþ
0:0138 cosð4t � 3:513Þ

2
6664

3
7775 ð3Þ

where Tm,h is the average daily ambient temperature for a specific
hour (h) for a month (m); Tm is the mean value of the average ambi-
ent temperature for a month (m) in �C; Am is the diurnal tempera-
ture swing (peak to peak) for a month (m) in �C; t is a
dimensionless expression for the hour of the day.

From (3), an average daily ambient temperature curve for each
month of a year can be calculated. This curve represents the aver-
age temperature along this month.

Am and t can be calculated as follows [17]:

Am ¼ 25:8KTm � 5:21: ð4Þ

t ¼ 2pðh� 1Þ
24

ð5Þ

where KTm is the average solar index for month (m); h is an index for
the hour of the day, starting from zero at 12:00 midnight.

KTm is the ratio of the monthly average daily radiation on a hor-
izontal surface (Hm) to the monthly average daily extraterrestrial
radiation (Ho,m). Solar radiation data are commonly available in
the form of hourly total radiation on a horizontal surface (I) for
each hour for extended periods of one or more years [18]. The term
(I) is used to calculate (Hm).

The average solar index for month (m), KTmÞ, is calculated by

KTm ¼
Hm

Ho;m
ð6Þ

where ðHmÞ is the mean value of the monthly average daily global
solar radiation on a horizontal surface for the data years.

The monthly average daily extraterrestrial radiation for month
(m), (Ho,m), in J/m2 is calculated as follows [16,18]:

Ho;m ¼
24� 3600

p
� 1þ 0:033 cos

360�middaym

365

� �
� Gsc

� cosðuÞ cosðdÞ sinðxsÞ þ
p

180
xs sinð/Þ sinðdÞ

� �
ð7Þ

where Gsc is the solar constant (=1367 W/m2); u is the latitude of
the site (weather station); d is the solar declination; xs is the main
sunshine hour angle for the month; middaym is the middle day of
month (m).

The solar declination and main sunshine hour angle in degrees
for the calculation month are as follows [18]:

d ¼ 23:45 sin
360
365
ð284þmiddaymÞ

� �
ð8Þ

xs ¼ cos�1ð� tanðuÞ tanðdÞÞ ð9Þ



A.E.B. Abu-Elanien, M.M.A. Salama / Electrical Power and Energy Systems 43 (2012) 481–487 483
The monthly average daily global solar radiation on a horizontal
surface for any year (i), (Hm,i), can be calculated as follows:

Hm;i ¼
Pe

d¼1

P24
h¼1Id;h � 3600

e
ð10Þ

where Hm,i is the monthly average daily global solar radiation on a
horizontal surface for month (m) in year (i) in J/m2; Id,h is the hourly
radiation on a horizontal service for day (d) at hour (h) for month
(m) in W/m2; d is an index for the day of the month; h is an index
for the hour of the day; e is an index for the end day of the month,
e.g., e = 31 for Jan.

After (Hm,i) is calculated for each month of the year, the mean
value of the monthly average daily global solar radiation on a hor-
izontal surface ðHmÞ for multiple data years can be calculated as
follows:

Hm ¼
Pn

i¼1Hm;i

n
ð11Þ

where (n) is the total number of data years.
The average ambient temperature for hour (h) in month (m) can

be calculated using (3). However, (3) calculates the mean average
daily ambient temperature for a month. The average daily global
solar radiation on a horizontal surface (Hm) for any month (m) is
not constant for every year. The value of (Hm) has a mean value
ðHmÞ and a standard deviation (SDHm).

To account for the uncertainty in the average daily global solar
radiation on a horizontal surface for any month and for the uncer-
tainty in the average daily temperature for any month, a Monte
Carlo simulation is performed in order to generate an artificial his-
tory of the ambient temperature. To generate the artificial history
of the ambient temperature, the value of (Hm) is assumed in this
research to be a normally distributed random variable with a mean
value equal to ðHmÞ and a standard deviation equal to (SDHm). A set
of random numbers between zero and one (0,1) is generated for
each month, with the size of each set being equal to the number
of days in each month (e.g., 31 random numbers for January, 28
random numbers for February, and so on). Using the random num-
bers generated for each month, a normally distributed random var-
iable is generated with an average equal to ðHmÞ and a standard
deviation equal to (SDHm). The result is 12 normally distributed
random variables that represent the whole year. The mean and
standard deviation values of these random variables are the mean
and standard deviation values of the monthly average daily global
solar radiation on a horizontal surface for each respective month.

Using these random variables for each month provides as many
values of (Hm) as the number of days for each month. As a result, as
many values of (KTm) as the number of days in each month can be
calculated, and accordingly, as many values of the diurnal temper-
ature swing (peak to peak) for each month as the number of days in
the month can also be determined. Using (3), the number of daily
temperatures equal to the number of the days in the respective
month is generated. In this way, the changes in the diurnal temper-
ature swing (peak to peak) during the month are accounted for. To
account for the changes in the average monthly temperature, 12
normally distributed random variables (T1–T12) are generated Each
random variable represents the respective mean value and stan-
dard deviation for the average monthly temperatures for each
month in the available data years. The length of each of these ran-
dom variables equals the number of days in its respective month.
Thus, using the elements of (KTm) generated from the random vari-
ables of (Hm) and the monthly temperature random variables, dif-
ferent daily temperatures for each month can be generated.

Typical data show that the daily temperature increases from
February 15th to July 15th and decreases from August 15th to Jan-
uary 15th. Moreover, the average temperatures seem nearly con-
stant in the periods from January 15th to February 15th and
from July 15th to August 15th. In the developed temperature mod-
el, the elements of the 12 random variables (T1–T12) are therefore
sorted in ascending order from element 16 of T2 (February) to ele-
ment 15 of T7, (July) and in descending order from element 16 of T8

(August) to element 31 of T12 (December) and from element 1 of T1

(January) to element 15 of T1. The other elements, from 16 of T1 to
15 of T2 and from 16 of T7 to 15 of T8, are kept without sorting. This
sorting algorithm prevents unrealistic jumps in temperature from
month to month.

The values of the random variables (T1–T12) are then merged
with the generated values for the diurnal temperature swings,
which permit temperatures for the entire 365 days of the year to
be generated, taking into consideration the uncertainty present
in the temperatures.
2.2. Building the artificial history of the transformer loading

Typical daily load data for the whole lifetime of a transformer
are not easy to find. No utility collects load data for 24 h, 365 days
for the whole lifetime of the transformer. Even if this data were
available, they would be past data, and a method for projecting
the future load of the transformer would still be required. The
developed approach for calculating the thermal lifetime of trans-
former insulation can be used for transformers either with or with-
out a complete loading history. It can also be used for transformers
that have recently been put into service.

An alternative solution for modeling transformer load is to sim-
ulate the load or to build what is called an artificial history of the
transformer load. To model the artificial history of the transformer
load, the average transformer daily load curve is used. The average
load curve may differ from one transformer to another. The uncer-
tainty with respect to the hourly load is used to generate multiple
daily load curves (artificial history) for the transformer.

A normal distributed random variable is constructed so that its
mean value is the loading at a specific hour on the average daily
load curve, as shown in Fig. 1. A set of these normally distributed
random variables is generated thereafter for every hour on the
average daily load curve using the above approach. The standard
deviations of these generated random variables are SDl% of the
rated transformer load. This technique allows the generation of dif-
ferent daily load curves with different shapes. In this approach, the
uncertainty of the average daily load curve is utilized in order to
represent different modes of transformer operation, such as nor-
mal loading, planned loading beyond nameplate, and short-time
emergency loading [11].

The next step is to construct the daily load curves for every day
of the year. For any daily load curve, the load for each hour is se-
lected randomly from the corresponding normally distributed ran-
dom variable constructed for that hour. This process is repeated
thereafter for the remaining days and years. Fig. 1 shows three ran-
domly selected daily load curves generated according to this ap-
proach. It is clear that the three curves are different in shape. As
shown in Fig. 1, three hours have been selected (hours 4, 11, and
21) in order to show the generation of the hourly load for the daily
load curves that represent the artificial history. From the mean
load curve, the probability distributions of the hourly loads are
used to generate each hourly load for the artificial history daily
load curves. The loads during these hours may be larger than, less
than or equal to the mean load at these hours. The artificial history
of the loading is then generated as follows:

(1) Find the average daily load curve for the transformer.
(2) Generate 24 vectors of random numbers between zero and

one (corresponding to the 24 h in a day). The length of the
vector equals the number of days in a year.



Fig. 1. Generation of daily load curves.
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(3) Generate 24 normally distributed random variables with
mean values equal to their hourly mean values and with
standard deviations equal to SDl% of the normal load.

(4) Use these 24 random variables to generate different daily
load curves as previously explained.

2.3. Simulating the transformer lifetime

The artificial histories of the loading and the ambient tempera-
ture are used in the Monte Carlo simulation in order to find the an-
nual equivalent aging factors. To complete the artificial histories,
the steps explained in Subsections 2.1 and 2.2 are repeated in order
to generate more annual data for the load and ambient tempera-
ture. The loading and ambient temperature artificial histories are
used year over year in order to calculate the hourly HST, from
which the hourly acceleration factor (FAA) can then be determined.
The annual equivalent aging factor is thus calculated using (2). The
expected lifetime is then

ELj ¼
NIL
Feqj

ð12Þ

where ELj is the expected lifetime using the equivalent aging factor
for simulation year (j); NIL is the normal solid insulation lifetime
based on 50% retained tensile strength and a continuous HST of
110 �C according to [11] (7.42 years); Feqj is the equivalent aging
factor for the simulation year (j).

It should be noted that the equivalent aging factor is calculated
every year and that the expected lifetime is calculated using (12),
assuming that the equivalent aging factors for the whole trans-
former lifetime are the same as the equivalent aging factor for
the simulation year (j).

The average expected lifetime is calculated for every year of the
simulation using the following equation:

ELc ¼
Pc

j¼1ELj

c
ð13Þ

where ELc is the average expected lifetime until year (c) of the sim-
ulation; j is the index for the simulation year; c is the number of
simulation years until year (c).
The simulation continues until the stopping criterion is reached.
The stopping criterion used in the Monte Carlo simulation depends
on the variation of the estimate function (ELc here). The simulation
stops when the variation of the estimate function goes below
0.08 year (around one moth) for five successive simulation years.
3. Case study

Data for 8 MVA, 22 kV/6.6 kV transformer is assumed for the
case study. These data are taken from a local utility. This trans-
former is installed in 1983, and is manufactured in France. The
thermal characteristics for this transformer are as follows:

(1) rise in top oil temperature over ambient at the rated load:
DHTO,R = 47 �C;

(2) rise in hot spot conductor temperature over top oil temper-
ature, at the rated load: DHHS,R = 36 �C;

(3) ratio of load loss at the rated load to no-load loss: R = 8.46;
(4) thermal time constant of the oil for the rated load:

sTO,R = 4.6 h.

The average daily load served by the transformer which is
shown in Fig. 2 is used to build the loading artificial history. A
10% standard deviation is assumed for the hourly load. Ten years
of data about the hourly ambient temperature and hourly incident
radiation on a horizontal surface (I) were collected from the weath-
er station at the University of Waterloo (latitude: 43.4738 N; lon-
gitude: 80.5576 W; elevation: 334.4 m above sea level). The
monthly mean values for the temperature and their standard devi-
ations for the 10 recorded data years are shown in Table 1. The
hourly total radiation on a horizontal surface (I) for each hour in
W/m2 is used in order to find the monthly average daily global so-
lar radiation on a horizontal surface (Hm,i) for month (m) in year (i)
using (10). The mean values of the monthly average global daily
radiation ðHmÞ for the available data years are calculated using
(11). ðHmÞ values with their standard deviations for the 10 recorded
data years are shown in Table 1. When (8) and (9) are applied, the
solar declination (d) and the main sunshine hour angle for the
month (xs) can be calculated for each month of the year. Because



Fig. 2. Average daily load curve for the transformer used in case study.

Table 1
Monthly average temperature and monthly average daily global solar radiation data.

Month (�C) Tm SDtem Hm (MJ/m2 day) SDHm

January �5.73 3.09 5.18 0.53
February �5.49 2.32 8.65 0.62
March �0.92 1.95 12.6 1.76
April 6.55 1.16 16.0 1.70
May 12.8 1.7 18.8 1.79
June 18.7 1.3 20.8 1.60
July 20.6 1.33 20.8 1.46
August 19.6 1.2 18.5 1.24
September 16.0 1.28 14.7 1.54
October 9.15 1.67 8.7 0.80
November 3.41 1.55 5.05 0.49
December �3.15 2.58 4.12 0.48
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(d) and (xs) have been determined, the monthly average daily
extraterrestrial radiation (Ho,m) can then be calculated using (7).
The values of (Ho,m) are shown in Fig. 3.

The 12 monthly average global daily radiation values (H1–H12)
are assumed to be normally distributed random variables with
the mean values and standard deviations shown in Table 1. The
normally distributed random variables can be built by generating
12 uniformly distributed vectors of random numbers (U1–U12) be-
tween zero and one that correspond to the 12 months of the year.
The length of each vector equals the number of days in the respec-
tive month. The 12 normally distributed random variables can be
generated using the Box–Muller method [19]. When each element
of the 12 random variables (H1–H12) is divided by its respective
Fig. 3. Monthly average daily extraterrestrial radiation (MJ/m2 day).
monthly average daily extraterrestrial radiation value (Ho,1–Ho,12),
a number of solar indices are produced for each month. The num-
ber of solar indices equals the number of days in the respective
month. The values of the solar indices for each month are substi-
tuted for KTm in (4) in order to generate a number of diurnal tem-
perature swings (peak to peak) for each month equal to the
number of days in the month. To account for the changes in the
average daily temperature for each month, the average monthly
temperatures are assumed to be normally distributed random vari-
ables with the means and standard deviations shown in Table 1.
The mean value of the average ambient temperatures ðTmÞ for
month (m) in (3) is replaced with (Tm) in order to account for the
daily changes in the average temperature, where (Tm) represents
(T1–T12). The simulated ambient temperature for one month
(30 days) is shown in Fig. 4, while the simulated ambient temper-
atures for one complete year are shown in Fig. 5.

The artificial history of the transformer loading is modeled as
discussed in Section 2.2. Twenty-four random variables are gener-
ated. The mean values and the standard deviations of each random
variable are the mean values and the standard deviations of the
24 h of the daily load curve. The mean values are shown in Fig. 2,
and the standard deviation is taken as 10% of the normal load
[9]. The length of each random variable is the number of hours
in one year (8760 h) multiplied by the number of simulation years
(s). The simulated load for one month is shown in Fig. 6.

A Monte Carlo simulation is then performed for the transformer
using the artificial histories of the loading and ambient tempera-
ture. The HST is calculated for every hour according to [11], using
the thermal data given in this study and the artificial load and
ambient temperature data generated. The aging acceleration factor
(FAA) is calculated for every hour, from which the equivalent aging
factor (Feq) for the total year is calculated. The simulation continues
year over year. (Feq) is calculated for each year of the simulation,
and (ELc) is calculated accordingly.

The simulation continues until the stopping criterion is reached.
When the criterion was applied, the simulation stopped after
76 years. The mean expected age at the end of the simulation
was found to be 45.7 years. The fluctuation in the expected average
age of the transformer along the simulation time is shown in Fig. 7.
Fig. 8 shows the histogram of the expected age according to the an-
nual aging acceleration factor and beta distribution to represent
the best fit. The boundary parameters for the beta distribution
are a minimum value a = 22.584 and a maximum value
b = 76.636. The shaping parameters are a = 151.95 and b = 203.36.
The distribution mean is 45.707 years, and the mode of the distri-
bution is 45.785 years. The mode represents the most probable
event, and it is very close in value to the mean. The most probable
value of the transformer life as calculated by the proposed analysis
Fig. 4. Simulated ambient temperature for one month (30 days).



Fig. 5. Simulated ambient temperature for one year.

Fig. 6. Simulated load for one month (30 days).

Fig. 7. Convergence of the expected lifetime.

Fig. 8. Fitted beta distribution for the expected lifetime.

486 A.E.B. Abu-Elanien, M.M.A. Salama / Electrical Power and Energy Systems 43 (2012) 481–487
is close to the most recorded retirement ages of power transform-
ers [20–22]. According to the operation engineers in the trans-
former site, the diagnostic tests of the transformer show that it is
working in order and it is expected to continue working without
problems in the near future. When the authors proposed that the
transformer, which is installed 29 years ago, will fail most probably
after around 16.7 years, the response of the operation engineers
was positive and the estimated remaining lifetime sounds good
to them.
Fig. 9. The resultant life consumption simulation curves for the technique
presented in [9].
4. Comparison with previous work

In [9], an attempt was made to establish the time to failure for
the insulation of a transformer. The method relies on the use of an
equivalent aging factor in order to find the lifetime of the insula-
tion. An artificial model based on probability is used to model
the load. More information about the method can found in [9].
The practical transformer data from Section 3 were used to test this
technique.

Fig. 9 shows the life consumption simulation curves that result
after the transformer insulation lifetime is simulated 50 times, as
stated in [9]. The Weibull distribution is used to fit the 50 average
actual usage times (probable lifetimes) of the insulation. The aver-
age actual usage time in days to reach the insulation end of life
(7500 days as stated in [9]), is 37780 days, or 103.5 years, which
is not a practical insulation lifetime. All recorded transformer life-
times, which depend mainly on the lifetime of the insulation, are
very much shorter [20–22].

In [15], load and temperature are represented by a set of curves
that give, for each instant, load and temperature values associated
with a probability value. The particular load value at any time (t)
can be calculated as follows [15]:

LðtÞ ¼ mðtÞ þ z� sdðtÞ ð14Þ

where L(t) is the load at time (t); m(t) is the mean of the load; z is a
standard normal random variable.

The ambient temperature value at any time can be calculated
using similar approach to (14). To find the value of the standard
normal random variable (z), the probability of the event should
be known. For example, for a probability of 90%, the value of (z)
is 1.28. If (z) is used as a parameter, a set of 11 daily load curves
and 11 daily ambient temperatures can be obtained. These curves
correspond to probabilities from 2.5% to 97.5%. If all combinations
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of the daily load and ambient temperature are applied, 121 possi-
ble combinations can be found for every day. Because the daily
load is assumed to be constant, 121 possible combinations can thus
be found for each year. For each combination, the HST and the cor-
responding loss of life are calculated. The average loss of life is cal-
culated as follows [15]:

LOLave ¼
X

i;j

Feqi;j
� Q i � Q j ð15Þ

where LOLave is the average loss of life; Feqi;j
is the equivalent loss of

life for load curve (i) and temperature curve (j); Qi, Qj are the corre-
sponding probability values.

When this technique is implemented and the transformer
parameters from the case study in Section 3 are used, the average
annual loss of life is found to be 0.307. Applying the benchmark va-
lue for insulation life according to [10,11], which is 65,000 h, the
transformer would be expected to last 24.17 years. This result is
not reliable, since the transformer under study is already working
for 29 years and still in service.

5. Conclusion

This paper presents a method of estimating the lifetime of
transformer insulation based on the specific loading and location
of the transformer. The drawbacks of the previous methods for
estimating insulation lifetime are highlighted. The new approach
incorporates the generation of two artificial histories for a trans-
former: one for the ambient temperature and the other one is for
the load. The solar clearness index and average monthly tempera-
tures are used to generate the artificial history of the ambient tem-
perature. The uncertainties inherent in both the solar clearness
index and the average monthly temperatures are considered when
the ambient temperature is determined. The variations in the load
are taken into account when the artificial history of the load is
modeled. Both artificial histories are used as inputs to a Monte Car-
lo simulation technique in order to find the thermal lifetime of the
insulation of a given transformer. A real field transformer data are
used to verify the accuracy of the proposed method. The proposed
method is compared with previous methods used to determine the
thermal lifetime of transformer insulation using the same field
transformer data. The lifetime estimated by the proposed method
for the field transformer shows more accuracy than the previous
lifetime estimation methods. The lifetime estimated by the pro-
posed method is also significantly closer to the recorded statistical
end of life data for power transformers compared to the results
produced by the previous methods.
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