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Abstract

Microgrid with hybrid renewable energy sources is a promising solution where the distribution network expansion
is unfeasible or not economical. Integration of renewable energy sources provides energy security, substantial cost
savings and reduction in greenhouse gas emissions, enabling nation to meet emission targets. Microgrid energy
management is a challenging task for microgrid operator (MGO) for optimal energy utilization in microgrid with
penetration of renewable energy sources, energy storage devices and demand response. In this paper, optimal
energy dispatch strategy is established for grid connected and standalone microgrids integrated with photovoltaic
(PV), wind turbine (WT), fuel cell (FC), micro turbine (MT), diesel generator (DG) and battery energy storage system
(ESS). Techno-economic benefits are demonstrated for the hybrid power system. So far, microgrid energy
management problem has been addressed with the aim of minimizing operating cost only. However, the issues of
power losses and environment i.e., emission-related objectives need to be addressed for effective energy
management of microgrid system. In this paper, microgrid energy management (MGEM) is formulated as mixed-
integer linear programming and a new multi-objective solution is proposed for MGEM along with demand
response program. Demand response is included in the optimization problem to demonstrate it’s impact on
optimal energy dispatch and techno-commercial benefits. Fuzzy interface has been developed for optimal
scheduling of ESS. Simulation results are obtained for the optimal capacity of PV, WT, DG, MT, FC, converter, BES,
charging/discharging scheduling, state of charge of battery, power exchange with grid, annual net present cost,
cost of energy, initial cost, operational cost, fuel cost and penalty of greenhouse gases emissions. The results show
that CO2 emissions in standalone hybrid microgrid system is reduced by 51.60% compared to traditional system
with grid only. Simulation results obtained with the proposed method is compared with various evolutionary
algorithms to verify it’s effectiveness.
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1 Introduction
For several decades, the conventional power generation
was transferred to the load centers over long distances.
There was huge cost involved for infrastructure develop-
ment of longer transmission lines. The longer lines have
the issues of stability and voltage profile management
for it’s reliable and flexible operation. Renewable sources
based distribution generation penetration into the grid
has the advantages of deferring the construction of new
transmission lines and there by the reduction in cost of
infrastructure and reduced network losses. With the

smart grid technology, the microgrid (MG) model was
suggested to coordinate distributed generators with
conventional power grid. Establishment of MGs by inte-
grating local renewable energy sources, conventional
generators and loads, is a significant step towards Smart
Grids [1]. Despite significant benefits, there are some
challenges in terms of system configuration, adequate
energy storage capacity requirement, energy manage-
ment, reserve power allocation, and control. One of the
critical issues is optimal coordination of hybrid energy
sources in MG with the main grid. The economic dis-
patching of microgrids will affect the operating efficiency
[1]. Energy management module of the central controller
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is responsible for ensuring an optimal energy generation
in a MG. A novel power scheduling methodology is pre-
sented in [2] for economic dispatch in microgrid with
integration of renewable energy sources to operation
cost of microgrid. The problem of MGEM encompasses
both supply and demand side management, unit com-
mitment (UC), while satisfying system constraints, to
realize an economical, sustainable, and reliable operation
of microgrid. MGEM provides many benefits from gen-
eration dispatch to energy savings, support to frequency
regulation, reliability to loss cost-reduction, energy bal-
ance to reduced greenhouse gas emissions, and customer
participation to customer privacy. Generally, the object-
ive is to minimize total microgrid operating cost, but
other important objectives such as minimizing gaseous
emissions and line losses can be taken into account.
Figures 1 and 2 illustrate the architecture of the MGEM
system. Usually in such system, some information such
as the DG parameters, availability of ESS, the forecasted
load demand, RES generations and market electricity
price for all hours of day ahead should be known in ad-
vance. These data are sent as input parameters to the
MGEM optimization algorithm, and the outputs show
the best generation schedule for all hours of day ahead.
A comprehensive review of energy management and
control with hybrid energy sources have been discussed
in [3]. A typical framework of microgrid with its key
components is shown in Fig. 2. The microgrid is con-
nected to main utility grid through the point of common
coupling (PCC) which is under control of MGO. Micro-
grid agents are assigned the responsibility of energy
management of individual microgrid units. Bi-directional
communication link is mandatory for optimal energy
management in microgrid. Each microgrid unit compris-
ing of battery energy storage device, diesel generator set,
PV and wind turbines etc. Each microgrid agent com-
municates to MGO in real time for optimal energy
dispatch. In microgrids, battery energy storage systems
are mandatory for: deliver power instantaneously, store
surplus energy from RES, load curve smoothing, reserve
support and optimal energy dispatch etc. with adequate
battery ESS, the microgrid network become strong and

stable grid. It is recommended to run PV and WT units
at maximum operating points to maximize objective
function. Capacity of BES shall be selected suitable to
maintain energy balance in the microgrid and to store
excessive surplus energy of renewable energy sources.
Diesel generator set in microgrid serves as reserve. DG
sets shall be sized adequately to fed emergency loads i.e.,
critical loads during emergency situation i.e., main grid
and renewable energy sources are not available. Micro-
grid operator needs to compute load and generation un-
certainties accurately for optimal dispatch of energy in
microgrids. In the MGEM model, the ESS state of
charge (SOC) in each hour depends on the SOC in the
previous hour. Therefore, the ESS SOC in each two con-
secutive hours is correlated and the optimization prob-
lem is subjected by a dynamic constraint. Up to now,
two main methods, namely, centralized energy manage-
ment (CEM) and decentralized energy management
(DEM) have been proposed in various literatures to solve
MGEM problem. The structure of a CEM system in-
cludes a central controller which solves a global
optimization problem with regard to selected objectives
and constraints, but DEM system is based on multi-
agent systems. Various optimization formulations have
been proposed for CEM of MG [4]. These formulations
are often aimed at minimizing operating costs [5–13] or
at minimizing both the operating cost and emissions
[14–18]. Sometimes objectives such as load curtailment
index [19], voltage deviation [20], power losses [21], fuel
consumption [22], and grid power profile fluctuations
[23] are also considered as the objective function of
MGEM problem. Although the objective function of the
energy management problem in [24] includes several
objectives, such as minimizing grid voltage deviations,
power losses, security margins and energy imported
from the main grid; and the objective function presented
in [25], includes four objectives of minimizing cus-
tomer’s costs, emissions, load peak and load curve
fluctuations, but the proposed MG configuration only
consist of renewable sources and electrical vehicles, and
controllable DGs or ESS are not considered. Further-
more, the main objective function is formulated in the

Fig. 1 Microgrid energy management system
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simplest form, i.e., in the form of a weighted sum of ob-
jectives, as well as the MG configuration is also ignored.
The inadequacy of objective functions and constraints in
most existing models affects the accuracy and effective-
ness of the MGEM results, and, despite the computa-
tional effort, the results are not efficient [1].
Additionally, these models do not specify how to deal
with the ESS and the dynamic mode of MGEM problem;
as well as the unit commitment of controllable DGs have
not been identified in them and only addressed the eco-
nomic dispatch problem. Therefore, a more comprehen-
sive model for MGEM is needed [1, 12]. Different
optimization techniques have been used to solve the CEM
problem in MGs [4]. These techniques include classical
methods (linear programming [5, 18, 22, 26, 27], nonlinear
programming [20, 24, 25], dynamic programming [3] and
stochastic programming [16, 28, 29], Heuristic approach
[17, 30], evolutionary approach [6, 7, 14, 19, 31], model
predictive control approach [9, 12, 29], and robust
optimization [10, 11, 15]. A generalized architecture pro-
posed for energy management in microgrids [6] based on
multi agent system. Multi period imperialist competition
method used in [8] for energy management in microgrids
to minimize cost of generation. Optimal power dispatch
in islanded microgrid presented in [32] considering dis-
tributed energy sources and storage systems. In hybrid
power system with PV and wind based energy sources,
ESS used to smoothing the load and generation curve. In
[33], smoothing control approach proposed to regulate
power fluctuations in hybrid power system. Economic
dispatch problem among multiple microgrid clusters was
presented in [34]. In each microgrid, energy management
problem solved and simultaneously co-operate with adja-
cent microgrid clusters. The problem of economic sched-
uling on multi-time scale with PV and wind based

renewable energy sources considering deferrable loads
were discussed in [35] for energy exchange and reserve al-
location. Scheduling of energy among wind, nuclear, gas
based DG, and hydro sources along with reserve manage-
ment problem is solved using MATPOWER tool [36].
Energy management among multiple microgrids having
heat and electricity energy systems was discussed in [37]
using distributed optimization algorithm. Demand re-
sponse program also included in the optimization prob-
lem. Economic strategy for power dispatch to reduce
operating cost in AC-DC hybrid microgrid presented in
[38] considering uncertainty of load demand and renew-
able energy sources. Uncertainties were modeled using
Hong’s two- point estimate approach. The economic
dispatch problem was solved using combination of PSO
and fuzzy logic system. Energy management in commu-
nity microgrids was presented in [39] considering distribu-
tion generation and electrical load demand to minimize
total cost. Photovoltaic and battery storage system inte-
grated to grid connected microgrid [40]. Authors have for-
mulated the dispatch problem as MILP with an objective
of maximization of PV production. Genetic algorithm
used in [41], for power dispatching in grid connected
microgrid for minimizing operating cost of PV, WT, FC,
MT and grid. Economic dispatch problem was formulated
as a quadratic programming problem in grid connected
microgrid [42] with an objective of minimization of cost
of grid, DG and battery storage system. Dynamic pro-
gramming based economic dispatch in grid connected
microgrid was presented in [43] for minimization total
operation cost. Economic schedule of grid connected
microgrid with hybrid energy sources was carried out
based on distributed model predictive control algorithm
and solved using mixed integer linear programming [44].
In [45], power dispatch in grid connected microgrid with

Fig. 2 Typical framework of microgrid
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PV/BES was obtained using quadratic programming to
minimize grid cost. Power dispatch strategy of island
microgrid consists of diesel generator, PV and battery
energy storage system presented in [46] to minimize oper-
ation cost and optimization problem was formulated as
MINLP. Capacity of PV/WT/DG/FC/BES in island hybrid
system was determined using particle swarm optimisation
to minimise net present cost [47]. Dispatch of PV/DG/
BES in isolated microgrid was presented in [48] to minim-
ise annual system cost. Two-stage min-max-min robust
optimal dispatch model presented in [49] for island hybrid
microgrid considering uncertainties of renewable energy
generation and customer loads. The first stage of the
model determines the startup/shutdown state of the diesel
engine generator and the operating state of the bidirec-
tional converter of the microgrid. Then, the second stage
optimizes the power dispatch of individual units in the
microgrid. The column-and-constraint generation algo-
rithm was implemented to obtain dispatching plan for the
microgrid, which minimizes the daily operating cost. A
decomposition-based approach was proposed to solve the
problem of stochastic planning of battery energy storage
system under uncertainty to minimize net present value
[50]. Cutting-plane algorithm used to solve unit commit-
ment problem in isolated microgrid [51]. Simulation re-
sults were compared with deterministic and stochastic
formulations. In [52], chaotic group search optimizer with
multiple producer used to solve dispatch problem in is-
land microgrid to minimise energy cost and voltage devi-
ation. Authors have considered uncertain power output of
wind turbine and photovoltaic cell in the optimization
problem as interval variables. Two stage methodology pro-
posed in [53] for dynamic power dispatch in isolated
microgrids with micro turbines and energy storage devices
considering demand side management. In first stage, dom-
inance based evolutionary algorithm used to find pareto-
optimal solutions of the problem. The best solution was
obtained using decision analysis in the second stage. Prob-
abilistic nature of load demand and renewable energy
sources were taken care in energy scheduling problem of
isolated microgrid [54], which was solved using mixed in-
teger linear programming. Authors have considered ob-
jective function as minimization of fuel cost of micro
turbines, spinning reserve cost, and BES.
Application of robust optimization methods to energy

management in microgrids have been addressed on grid
connected systems. The critical issues in this type of
microgrid: power balance and reserve power allocation.
Further, many researchers have solved energy manage-
ment problem considering objective function of total
operation cost minimization. It can be deduced from
the comprehensive review on the most recent litera-
ture that a great deal of studies have mainly focused on
energy scheduling implementation and operation cost

minimization for the purpose of improving microgrid
performance.
In summary of above research gaps, intent of this

paper is development of optimal energy dispatch model
for microgrid in grid connected and off-grid modes with
hybrid energy sources and energy storage devices. In
order to investigate the impact of the flexible loads on
system operation, the collaboration of demand response
strategies are evaluated in detail. In this paper, a multi-
objective solution is formulated as mixed-integer linear
programming for optimal energy management of micro-
grid. The multi-objective function consists of minimizing
the total operating cost, cost of emissions and cost of
power loss. The large number of decision variables
and the dynamic mode of the MGEM problem dra-
matically increase the execution time of multi-objective
optimization algorithms. Therefore, in this work a global
criterion method is proposed and new single objective
problem obtained from this method. The main contribu-
tion of this paper work is given as below:
The main contributions of this paper are as follows:

i) A multi-objective optimization solution is
proposed for microgrid energy management
problem with hybrid energy sources and battery
storage system.

ii) Hybrid energy sources such as photovoltaic (PV),
wind turbine (WT), diesel generator (DG), micro
turbine (MT), fuel cell (FC) and energy storage
system (ESS) are integrated into to the microgrid.

iii) The multi-objective function proposed in this paper
for determining the best optimal capacity of energy
sources and storage system.

iv) Two modes of microgrids i.e., grid connected and
standalone microgrid are studied in this work.

v) Proposed a fuzzy inference system for optimal
scheduling of charging/discharging of ESS.

vi) Techno-economic benefits of microgrid operation
is further enhanced through demand response
program.

vii) The proposed method is scalable and can be
implemented in real systems interconnected with
distribution network.

viii)The proposed scheme provides end user flexibility.
ix) Optimization algorithms: PSO, GA, DE, TS, TLBO,

ICA, BBO and ABC have not been reported in the
literature for energy dispatch in microgrids. A
comprehensive comparison among these algorithms
has been reported in this work. Further, performance
of the proposed methodology is compared with
evolutionary optimization algorithms.

x) Simulation results are obtained for optimal capacity
of PV, WT, DG, MT, FC, BES, converter, state of
charge of BES, grid power exchange, levelized COE,

Murty and Kumar Protection and Control of Modern Power Systems             (2020) 5:2 Page 4 of 20



NPC, capital cost, replacement cost, O&M cost,
fuel cost, power loss cost and emission penalty.

2 Modeling of hybrid energy sources in microgrid
Hybrid power system comprise of PV/WT/DG/MT/FC/
BES could be an economic solution to produce clean
energy to match with time varying realistic load demand
and therefore unmet energy demand shall be zero at any
instant of time. Modelling of each component is ex-
plained in this section.

2.1 Modelling of PV system
Output power of PV array can be calculated as follows:

Ppv ¼ Pr
pv f pv

GT

GT ; STC

� �
1þ αp Tc−Tc;STC

� �� � ð1Þ

Tc ¼ Taþ Tc;NOCT−Ta;NOCT
� � GT

GT ;NOCT

� �

� 1−
ηmp

0:9

� 	
ð2Þ

2.2 Modelling of wind power
Power output from wind turbine is calculated using
following equations:

Pw ¼ Pr

0; v≤vci
Pn vð Þ; vci < v < vr
1; vr < v < vco

0; v > vco

8>><
>>:

ð3Þ

Pwt ¼ ηwtPw ð4Þ

2.3 Modelling of BES
Integration of renewable generation and electric vehicles
to the grid makes it more difficult to maintain energy
balance and can result in large frequency deviations on a
microgrid. Ancillary services provide the supplementary
resources required to maintain the instantaneous and
ongoing balance between sources and load. ESS can pro-
vide regulating reserve, a type of ancillary service, by
modulating active power for frequency control, to re-
duce frequency deviations caused by sudden changes in
renewable generation. The rating of ESS is affected by
battery configuration, back-up period, temperature,
battery life time, depth of discharge, reserve power re-
quirement and renewable energy sources etc. Char-
ging and discharging schedule of battery is expressed
in eqs. (5–6).

PBES tð Þ ¼ Pch tð Þ if PPV tð Þ þ PWT tð Þ
þ PDG tð Þ þ PFC tð Þ þ PMT tð Þ
þ Pg tð Þ−Pd tð Þ≥0 ð5Þ

PBES tð Þ ¼ Pdch tð Þ if PPV tð Þ þ PWT tð Þ
þ PDG tð Þ þ PFC tð Þ þ PMT tð Þ
þ Pg tð Þ−Pd tð Þ<0 ð6Þ

At particular instant BES can be operate in one mode
only i.e. charging or discharging state. Charging and dis-
charging power of battery is calculated as below:
Charging mode:

Ech tð Þ ¼ PDG tð Þ þ PWT tð Þ þ PFC tð Þ þ PMT tð Þ−Pd tð Þ
ηConv

þ Ppv tð Þ
� �

�Δt�ηch

ð7Þ
SOC tð Þ ¼ SOC t−1ð Þ 1−σð Þ þ Ech tð Þ ð8Þ

Discharging mode:

Edch tð Þ ¼ −PDG tð Þ−PWT tð Þ−PFC tð Þ−PMT tð Þ þ Pd tð Þ
ηConv

−Ppv tð Þ
� �

�Δt�ηdch

ð9Þ
SOC tð Þ ¼ SOC t−1ð Þ 1−σð Þ−Ech tð Þ ð10Þ

SOC(t): battery state of charge at time “t”.
SOC(t − 1): battery state of charge at time “t-1”.
Two independent factors may limit the lifetime of the

storage bank: the lifetime throughput (Qlifetime) and the
storage float life (Rbatt, f). While selecting storage system,
operator can choose whether the storage lifetime is
limited by time, throughput, or both. If the storage prop-
erties indicate that the storage life is limited by through-
put, operator need to replace storage bank when its total
throughput equals to it’s lifetime throughput. The stor-
age bank life is determined using the following equation:

Rbatt ¼

NbattQlifetime

Qthrpt
if limited by throughput

Rbatt; f if limited by time

min
NbattQlifetime

Qthrpt
;Rbatt; f

" #
iflimited by throughput and time

8>>>>><
>>>>>:

ð11Þ
The float life of the storage system is the length of

time it will last before it needs replacement. When you
create a storage system you can choose whether to limit
its life by time, by throughput, or by both. The float life
does not apply if you have chosen to limit the storage
lifetime by throughput only. The battery wear cost can
be determined using the following equation:

Cbw ¼ Crep;batt

NbattQlifetime
ffiffiffiffiffiffiffi
ηrt

p ð12Þ

2.4 Modelling of power converter
Converter is required in hybrid systems contains AC
and DC elements. Rating of inverter is determined using
eq. (13) [30].
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INV cap ¼ 3Lindð Þ þ L0 ð13Þ

2.5 Generator capacity
The output power of each controllable unit must satisfy
its upper and lower limits as follows.

Pmin
DG ≤PDG tð Þ≤Pmax

DG ð14Þ
Pmin
MT ≤PMT tð Þ≤Pmax

MT ð15Þ
Pmin
FC ≤PFC tð Þ≤Pmax

FC ð16Þ

2.6 Demand response
Microgrid operator offers incentive to consumers against
participation in demand response program. Incentive
cost for demand response is given below:

ICDR
t ¼

X
b∈nb

kDRP
DR
b;t ð17Þ

3 MGEM problem modeling
Optimization model for microgrid energy management
problem is presented in this section with multi-objective
as defined in eq. (18) and constraints as follows.

3.1 Objective function
Decision problems with several conflicting objectives or
multi-objective optimization, unlike standard optimization
problems, do not have a single solution; rather, all the opti-
mal possible points that satisfy the constraints can be ac-
cepted as an optimal. The choice of a single point from
these optimal points (the Pareto Front) is the responsibility
of the so-called decision-maker. For the proposed MGEM,
the solution of the MO process comes to find the unit
commitment and output power generation of each control-
lable DGs, the power exchanged with the main grid, and
the charging and discharging power of the ESS for all
hours of day ahead to ensure that the certain objectives are
achieved while satisfying the constraints [55]. Although,
due to the presence of RES, the environmental issue of the
micro-grid is less than traditional power generation sys-
tems, it cannot be ignored in the definition of the objective
function. Also, due to low voltage and high resistance of
MG lines, power losses cannot be ignored. This work aims
to define, implement and validate energy management in
microgrids with hybrid energy sources. The power dispatch
strategy is formulated as mixed integer linear programing
problem and implemented in GAMS using CPLEXS solver.
The proposed multi-objective function of the MGEM
problem is given in eq. (18).

min F1 Pg
� �

; F2 PDGð Þ; F3 CRES;i PRES;i tð Þ
� �� �

; F4 CEð Þ; F5 DRð Þ; F6 Plossð Þ� �
ð18Þ

F1 Pg
� � ¼ Xn

t¼1
Cg tð ÞPg tð Þ� � ð19Þ

F2 Pið Þ ¼
Xn

t¼1

XNDG

i¼1
FCi Pi tð Þð Þ þ Si tð Þ

n o
ð20Þ

F3 CRES;i PRES;i tð Þ
� �� � ¼ aRES;iPRES;i tð Þ2 þ bRES;iPRES;i tð Þ þ CRES;i

� �
ð21Þ

F4 CEið Þ ¼
Xn

t¼1

XN

i¼1

XM

j¼1
EFij:Pi tð Þ
� �

cedg

þ
XM
j¼1

EFgj:Pg tð Þ� �
ceg

�

ð22Þ

F5 DRð Þ ¼ ICDR
t ð23Þ

F6 Plossð Þ ¼ KeTPL ð24Þ

FCi Pi tð Þð Þ ¼ aiPi tð Þ2 þ biPi tð Þ þ Ci
� � ð25Þ

Si tð Þ ¼ SCi if θi tð Þ−θi t−1ð Þ ¼ 1 ð26Þ
Where, F1(Pg) is cost of main grid, F2(Pi) is fuel cost

and start-up cost of controllable generators, F3(CRES, i) is
cost of renewable based distribution generation, F4(CEi)
is cost of green house gas emissions, F5(DR) is incentive
cost of demand response and F6(Ploss) is cost of real
power loss in microgrid. Pg(t) = 0, if the MG operates in
island mode, Pg(t) > 0 if the power is purchased from the
main grid, and Pg(t) < 0 if the power is sold to the main
grid. θi(t) = 1, if the ith unit is on and θi(t) = 0, if it is off
at time t.

3.2 Constraints
The microgrid energy management system is affected by
a number of constraints as follows.
Power balance constraint: The balance between gener-

ation and demand is maintained as mentioned in eq.
(27). Net power generation shall be equal to total load
demand and losses. Therefore, unmet energy at any time
shall be zero.

PD tð Þ þ PDR tð Þ þ Ploss tð Þ þ Pch tð Þ
¼ Pgrid tð Þ þ PDG tð Þ þ PWT tð Þ þ PPV tð Þ

þ PMT tð Þ þ PFC tð Þ þ Pdc tð Þ ð27Þ

Generation capacity constraint: The output power of
each controllable generator unit must satisfy its upper
and lower limits as specified in eqs. (14)–(16).
Consumer Loads: Based on process/operation require-

ments loads are categorized as critical loads, non-critical
loads, transferrable, sheddable and non-sheddable loads
etc.

0≤Pshed
L;t ≤Pshed; max

L;t ð28Þ
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0≤Ptrans
L;t ≤Ptrans; max

L;t ð29Þ

0≤PDR
b;t ≤∝PD b;t ð30Þ

Charging-discharging constraints:
Charging and discharge power of BES shall be less

than nominal capacity of BES.

0≤Pch tð Þ≤Pr
BES ð31Þ

0≤Pdch tð Þ≤Pr
BES ð32Þ

The output power of each energy storage unit must
satisfy charge-discharge limits as follows.

ESmin
i ≤ESi tð Þ≤ESmax

i ð33Þ
Where, ESmin

i and ESmax
i represent the minimum and

maximum exchanged power of energy storage unit i,
respectively.

ESi tð Þ > 0 energy storage unit is discharging mode

ESi tð Þ < 0 energy storage unit is charging mode

Dynamic performance of the energy storage units:

SOCi t þ 1ð Þ ¼ SOCi tð Þ− ηiESi tð Þ
Ci

ð34Þ

SOCmin
i ≤SOCi tð Þ≤SOCmax

i ð35Þ
Where, SOCi, ηi and Ci represent the state of charge,

charging or discharging efficiency and capacity of the
energy storage unit i, respectively. Battery life time shall
be limited as given in eq. (11).

4 Scheduling of ESS
Energy storage is needed to overcome the intermittent
nature of RES power output, enhance the power quality
and improve the controllability of power flow. Since in a
MG, the coordination of the energy storage system with
the generating units can improve the energy efficiency
and the voltage and frequency stability of the system, the
attention to these systems is significantly increasing. A
fact appears in MGEM problem that the SOC of battery
in each hour depends on the SOC in the previous hour.
Hence, this problem is constrained by a dynamic pro-
gramming [3]. Therefore, if we can determine the
amount of charging and discharging power of the ESS
before optimizing the MGEM problem, the computa-
tional burden of problem solving will be greatly reduced.
Smart decision about the amount of charge and dis-
charge of the energy storage units should be such that
they are allowed to discharge only when there is no very
big load predicted within the future periods. In order to
minimize energy costs and improve MG operation indi-
ces, the central controller must find the best pattern for

charging and discharging the ESS using some informa-
tion about the forecasted main grid power prices, load
demand and RES generation levels. Fuzzy logic is used
for optimal scheduling of BES.

4.1 Fuzzy logic based ESS scheduling
In fact, ESS scheduling as a part of MGEM problem is a
decision-making process in which, due to the combin-
ation of many scenarios, it seems inevitable to use a
fuzzy inference system that is able to decide whether the
ESS should be charged or discharged and at which rates.

4.2 Fuzzification process
The fuzzy inference system used in ESS scheduling is
based on the following parameters as inputs.

– ESS State of Charge (SOC)
– Normalized Electricity Prices (NEP)
– Normalized Remaining Load (NRL) - As the

difference between load demand and RES
generations

The following membership functions specify the de-
gree of membership for the input and output patterns
sent to the fuzzy inference engine. The terms VL, L, M
and H in input membership functions are very low, low,
medium and high, respectively. Furthermore, the terms
HC, MC and LC, in output membership function re-
spectively mean high, medium and low charging; the
terms HD, MD and LD, respectively mean high, medium
and low discharging and the term ZR indicates that the
BES is neither charged nor discharged.

4.3 Inference engine
After determining the fuzzy rules, inference engine using
these rules converts the fuzzy input to the fuzzy output.
The fuzzy rules applied in the inference engine are
shown in Table 1 of the appendix. In the fuzzy rule set,
charging priority relates to the low NRL and NEP pe-
riods and discharging priority relates to the high NRL
and NEP periods to avoid expensive energy purchases
from main grid.

4.4 Defuzzification
After calculating the fuzzy output by the inference en-
gine, the next step is the defuzzification into an output
signal of charging or discharging of the ESS and its rate.
Here, the defuzzification is done by the center of mass
of the fuzzy outputs.

5 Implementation of demand response
Demand side participation is an important tool for
scheduling generation and consumption at lower cost
and higher security [28]. Demand response (DR) is one
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of the most popular methods of demand side participa-
tion that encourages the customers to adjust their elastic
loads in accordance with the operator’s request or price
signals. Usually, the elastic loads are classified into shift-
able and curtailable loads. The benefits of DR for cus-
tomers are the financial benefits and the continuity of
electricity. It also has benefits for MG operator such as
cost savings, optimal operation, reducing the use of
costly generators, reduced purchases of expensive power
from the main grid and load curve flattening. In general,
DR programs are classified into two main categories of
time-based rate (TBR) and incentive-based (IB) pro-
grams. In TBR programs, the motivation to change cus-
tomer demand is related to the difference in electricity
prices at different times, but in IB programs, incentive
and penalty options are the motivation behind the
change in customer demand.

5.1 Load control in the time-based rate DR programs
In this DR program, customer load demands change
with respect to the electricity price signals. The modified
load demand at ith and jth hours due to the implementa-
tion of time-based rate DR program can be obtained
using the following equation.

d ið Þ ¼ do ið Þ 1þ E ið Þ ρ ið Þ−ρo ið Þ� �
ρo ið Þ þ

X24

j¼1; j≠i
E i; jð Þ ρ jð Þ−ρo jð Þ� �

ρo jð Þ
 �

ð36Þ

5.2 Load control in the incentive-based DR programs
In this DR program, the changes in electric usage are
based on incentive and penalty options in certain

periods, such as peak load times. The modified load
demand due to the implementation of incentive-based
DR programs is obtained as follows.

d ið Þ ¼ do ið Þ

1þ E ið Þ ρ ið Þ−ρo ið Þ−A ið Þ þ pen ið Þ� �

ρo ið Þ

þ
X24

j¼1; j≠i
E i; jð Þ ρ jð Þ−ρo jð Þ−A jð Þ þ pen jð Þ� �

ρo jð Þ
�

ð37Þ

6 General framework for MGEM problem solving
Figure 3 illustrates the implementation flowchart of the
proposed multi-objective MGEM problem in two cases
without using the fuzzy scheduling system of BES and
with the presence of this system. According to this
flowchart, the forecasted values of load demand and
electricity prices, along with the self and cross elasticity
parameters and incentive and penalty tariffs for control-
lable loads, are sent to the load control system to pro-
vide the modified load demand values resulting from the
implementation of DR programs.
Then, in the case of the presence of the fuzzy schedul-

ing system of ESS, the values of the modified load de-
mand, along with the forecasted RES generations and
electricity prices and the characteristics of ESS and its
SOC are sent to the fuzzy scheduling system, and the
output of this system and the load control system along
with the characteristics of the MG system and its con-
trollable DGs are forwarded to the optimization algo-
rithm to calculate the set points of the resources and the
amount of power exchange with the main grid for each
hour of day ahead. In the case of the absence of schedul-
ing system of BES, the MGEM problem has a dynamic
nature, and the optimization algorithm should calculate
the set points of the controllable DGs, power exchange
with the main grid and the charging and discharging
power of the BES, for all hours of day ahead altogether.

6.1 Solution methods
Since in the MGEM problem, several objectives have to
be optimized simultaneously, this is called a multi-
objective optimization, which does not have a single an-
swer, but all the non-dominate points that meet the con-
straints can be considered as optimal. This set of points
is called the Pareto front. There are various methods to
select the final optimal point, the most common of
which is the replacement of objective functions with a
weighted combination of all objectives, but these
methods are highly dependent on the information the
analyst receives from the decision maker. Therefore, in
the following, two methods of fuzzy membership rule
and global criterion have been proposed that require the
least information from the decision-maker and their per-
formance will also be compared.

Table 1 Fuzzy rules for ESS scheduling

I/P-1 SOC VL VL VL VL VL VL VL VL VL

I/P-2 NRL L L L M M M H H H

I/P-3 NEP L M H L M H L M H

O/P C&D HC HC HC HC MC MC HC MC LC

I/P-1 SOC L L L L L L L L L

I/P-2 NRL L L L M M M H H H

I/P-3 NEP L M H L M H L M H

O/P C&D HC MC MC MC LC ZR MC LC ZR

I/P-1 SOC M M M M M M M M M

I/P-2 NRL L L L M M M H H H

I/P-3 NEP L M H L M H L M H

O/P C&D LC LC LD LC ZR LD ZR LD MD

I/P-1 SOC H H H H H H H H H

I/P-2 NRL L L L M M M H H H

I/P-3 NEP L M H L M H L M H

O/P C&D ZR LD MD MD MD HD MD HD HD
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6.1.1 Fuzzy membership rule
In this method, after determining the points of the
Pareto front by the multi-objective optimization algo-
rithms, since each point k has a specified value for the
objective function i, its fuzzy membership value is
determined as follows.

μki ¼
Fmax
i −Fi

Fmax
i −Fmin

i

ð38Þ

Where, μki is the fuzzy membership value of the point
k for the objective function i, and Fmin

i and Fmax
i are re-

spectively the lowest and highest value of the objective
function i in all points of the Pareto front. After calculat-
ing the fuzzy membership values μki for all points of the
Pareto front, the overall fuzzy membership value of each
point k for all objective functions are defined as follows.

μk ¼
Pnobj

i¼1 μ
k
iPNp

k¼1

Pnobj
i¼1 μ

k
i

ð39Þ

Where, μk is the overall fuzzy membership value for
point k, nobj is the total number of objectives, and Np is
the total number of Pareto front points. Finally, the
point with the highest fuzzy membership value μk is se-
lected as the final optimal point. Since the Pareto front

must first be determined in this method and this is very
time-consuming, it is reasonable to use other methods,
such as methods for converting a multi-objective problem
into a single objective.

6.1.1.1 Global criterion method
In this method, the sum of the relative deviations of ob-
jectives from their global optimum is minimized. There-
fore, a single objective optimization problem is defined
as follows.

minZ ¼
Xn

k¼1

Fk−F�
k

F�
k

� �p

ð40Þ

Where, Fk and F�
k are the kth objective function and its

unique optimum value, respectively. Different metrics
can be used, e.g. Lp metric where 1 ≤ p ≤ ∞, but here p is
assumed to be equal to 1. Global criterion method has
attracted much attention because of the ease of use and
the little need for information from the decision maker.
In this paper, population-based evolutionary algorithms
are also used to optimize the MGEM problem; but since
the evolutionary algorithms do not guarantee a global
optimal solution. MGEM problem is formulated as
MILP and implemented in GAMS 23.4 environment and
solved using CPLEX solver.

Fig. 3 Flow chart for microgrid energy management system
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7 Results and discussions
Figure 4 shows microgrid network considered for the
simulation study [56]. The cost and emissions informa-
tion of the controllable DGs and the flat rate price and
the average emissions of the main grid are shown in
Table 2. The penalty rate for CO2, SO2 and NOx emis-
sion is set at 0.03, 2.18 and 9.26 $/kg, respectively. Max-
imum capacity of diesel generator is 60 kW and
minimum output is 20 kW. Micro turbine and fuel cell
have max and minimum capacity of 30 kW and 10 kW
respectively. Limit on power import and export to main
grid is 100 kW. The total energy storage devices have a
maximum charging and discharging power of 50 kW
and a capacity of 100 kWh. In order to increase the life
of the ESS, the minimum and maximum SOC is set to
20% and 95%, respectively.

7.1 MGEM without using the fuzzy scheduling of ESS
In this case, it is assumed that the fuzzy scheduling sys-
tem of BES is not available and the energy management
problem has a dynamic nature. Initially, total loads are
considered uncontrollable, and then different demand
response programs are implemented in the MG, and in
each case, the optimization results of MGEM problem
are presented and compared.

7.2 Use the global criterion method to find the final optimum
7.2.1 MGEM without demand response program
Simulation results are shown in Fig. 5 using global cri-
terion approach. The optimal value of the general single
objective function (Eq. 40) is equal to 0.567. The total
operating costs, emission penalties, and power losses for

all hours of day ahead are 280.48 $, 81.51 $, and 62.88
kWh, respectively. Although the cost and emission of a
microturbine unit is lower than a diesel unit, due to the
high impedance of the microturbine feeder, this unit is
given priority to shutdown when the load is low. The
performance of various evolutionary optimization
algorithms in solving the energy management problem
(Eq. 40) has been compared in Table 3. In all evolution-
ary algorithms, the population is considered as 500 and
max iteration as 1000. Due to the large number of deci-
sion variables, in spite of changing the parameters of
crossover and mutation, algorithms such as GA and DE
failed to converge to the optimum. Despite the initial
fast convergence of the ISA algorithm, the optimum was
not achieved at maximum allowed iteration. Among all
the evolutionary algorithms, the PSO algorithm and then
the TLBO algorithm provided the best performance.

7.2.2 MGEM with demand response program
In this paper, from time-based rate programs, real time
pricing (RTP) and from incentive-based programs, direct
load control (DLC) has been implemented. Figure 6
illustrates the change in load demand after implementa-
tion of demand response programs. It is assumed that
20% of total load demand would participate in DR pro-
grams. The self and cross elasticity and flat rate price are
considered to be 0.2, 0.01 and 12.5 $/kWh, respectively.
The incentive rate to reduce load in peak hours is set at
2 $/kWh and the peak period is from 12:00 to 18:00.
Optimization results of the objective function of the en-
ergy management problem (Eq. 40) with DR programs
are illustrated in Fig. 7 and Fig. 8, respectively. The

Fig. 4 Typical microgrid system
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amount of operating costs, emission penalties, and
power losses after the implementation of RTP program
throughout the scheduling period are 271.19 $, 79.38 $,
and 62.49 kWh, respectively; which represents a 3.31%
reduction in operating costs, 2.61% reduction in emis-
sion penalties and 0.62% reduction in power losses com-
pared to MGEM without DR implementation. On the
other hand, the operating costs, emission penalties, and
power losses after the implementation of DLC program
are 274.18 $, 79.80 $, and 60.64 kWh, respectively; which
represents a 2.25% reduction in operating costs, 2.1%

reduction in emission penalties and 3.56% reduction in
power losses compared to MGEM without DR imple-
mentation. Obviously, the impact of demand response
programs will increase with increasing the participation
percentage and the incentive rate.

7.3 MGEM using fuzzy scheduling of ESS
Figures 9 and 10 illustrates the output results of the
fuzzy storage scheduling system for the initial load
demand, which includes charging and discharging deci-
sions, and the SOC of the ESS. With the availability of such

Table 2 Power cost and emission rate

DG type Si
($)

Operating cost Emission rate (g/kwh)

ai bi Ci CO2 SO2 NOx

Diesel Generator 3 0.00104 0.0304 1.3 697 0.22 0.5

Micro
turbine

2 0.00051 0.0397 0.4 670 0.0036 0.186

Fuel cell 1.5 0.00024 0.0267 0.38 441 0.0022 0.0136

Main grid – – – – 889 1.8 1.6

Fig. 5 Simulation results for MGEM in using global criterion
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information prior to optimization, the energy management
problem goes out of dynamic mode and can be optimized
for each hour of the scheduling period separately. Fig. 11 il-
lustrate the optimization results of the MGEM problem
using the fuzzy inference system for ESS scheduling. The
operating costs, emission penalties, and power losses
throughout the scheduling period are 283.05 $, 81.93 $, and
64.06 kWh, respectively; which compared with the results
of dynamic MGEM problem, represents an increase of
0.92%, 0.52% and 1.88%, respectively; however, due to re-
duced decision variables and consequently the significant
reduction in the runtime of optimization algorithms, the
effectiveness of the use of fuzzy storage scheduling system
in the MG energy management is confirmed.

7.4 Optimal power dispatch in standalone microgrid with
hybrid energy sources
Peak load demand on the system is 195 kW, daily aver-
age consumption is 4001kWh/day and annual load

consumption is 1,459,899 kWh/year. Hourly optimal
power dispatch of the hybrid system is illustrated in
Fig. 12 and noted that there is no unmet energy at any
point of time. Annual power production in the hybrid
power system is as follows: PV power is 740,873 kWh/
year, WT power is 87,951 kWh/year, DG power is 153,
302 kWh/year, MT power is 486,857 kWh/year and FC
power is 57,333 kWh/year to cater the load demand.
Optimal hybrid system consists of 25 kW fuel cell, 70
kW micro turbine, 180 kW PV, 50 kW diesel generator
set, 200 kW wind turbine, 142 battery strings and 200
kW converter. Levelized COE and NPC of hybrid system
is 0.2347$/kWh and 4,429,333$ respectively. Scheduling
of hybrid energy sources for a typical day is shown in
Fig. 13. Figure 14 shows state of charge of battery
throughout the year. Detailed cost summary of standalone
hybrid microgrid system is given in Fig. 15. As specified in
Table 4, capital cost is low for FC and high for PV. Also,
greenhouse gas emissions in standalone hybrid system and

Table 3 Comparison of evolutionary algorithms for MGEM

Optimization method Objective function
value

Total cost
($)

Total emission
penalty ($)

Total power loss
(kwh)

Convergence
(Iterations)

Execution
time

PSO (Particle Swarm Optimization) 0.5944 284.28 78.23 65.75 930 6 min

GA (Genetic Algorithm) 1.1324 – – – 1000 7 min

DE (Differential Evaluation) 1.752 – – – 1000 6 min

TS (Tabu Search) 0.6069 289.35 83.08 61.86 810 12 min

TLBO (Reaching Learning Based
Optimization)

0.5937 283.84 81.90 63.38 970 10 min

ICA (Imperialist Competitive
Algorithm)

1.769 – – – 1000 6 min

BBO (Biogeography) 5.89 – – – 1000 15 min

ABC (Artificial Bee Colony) 0.7926 290.60 84.07 65.08 760 13 min

GAMS 0.567 280.48 81.51 62.88 – 12 s

Fig. 6 Impact of demand response on load demand

Murty and Kumar Protection and Control of Modern Power Systems             (2020) 5:2 Page 12 of 20



with grid only is given in Table 5. Greenhouse gases emis-
sions in microgrid with hybrid energy sources is lower than
conventional grid.

8 Conclusion
In this paper, a new multi-objective optimization prob-
lem for microgrid energy management is formulated as
MILP in GAMS environment. Energy dispatch and
techno-economic analysis has been presented for standa-
lone and grid connected microgrids with hybrid energy
sources and storage devices. Capital cost, operational
cost, fuel cost, cost of energy, emission penalty and total
cost are determined for the test system. From the simu-
lation results it is observed that fuel cost of diesel gener-
ator and micro turbines has significant impact on cost of
energy. The presence of the energy storage system in the
microgrid, raises the complexity of solving the energy

management problem, and increases the time and com-
putational burden of optimization algorithms. Therefore,
in this paper, the fuzzy inference system is used to de-
cide on the amount of charging and discharging power
of the storage system in MGEM problem solving. The
results confirm the effectiveness of using such a system
in the MGEM optimizing. Simulation results obtained
with the proposed method is compared with various
evolutionary algorithms to verify it’s effectiveness. In this
study, demand response programs were integrated into
the energy management system for better operation of
microgrids. Accordingly, the impact of different demand
response programs on optimal energy dispatch, techno-
economic and environment benefit has been investi-
gated. Capital, replacement and O&M cost of the system
is low after implementation of demand response. After
implementation of RTP based DR program, operating
cost, emission penalty and power losses reduced by

Fig. 7 Energy management considering DR real time pricing
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Fig. 8 Energy management considering DR direct load control

Fig. 9 State of charge of ESS
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3.31%, 2.61% and 0.62% respectively. On the other
hand, after implementation of DLC based DR pro-
gram, operating cost, emission penalty and power
losses reduced by 2.25%, 2.1% and 3.56% respectively.
In standalone microgrid with hybrid energy sources,
CO2 emissions reduced by 51.60% per year as compared
to conventional grid.
This paper can be useful to microgrid operator

for decision making, solid investment towards rural
electrification, design a competitive hybrid micro-
grid and optimal energy dispatch strategy. Further,
this study facilitates microgrid system engineers
during preliminary design phase and project cost
estimation.

9 Nomenclature
GT ;STC Solar radiation at standard test condi-
tions(1 kW/m^2)
GTSolar radiation on PV array (kW/m^2)
CbwBattery wear cost ($/kWh)
Cg(t)Main grid power price
CiCapacity of energy storage system
Crep, battReplacement cost of storage bank ($)
EFgjAverage emission factor of the main grid related to
emission type j (SO2, CO2, NOx)
EFijEmission factor of unit i related to emission type j
(SO2, CO2, NOx)
Ech(t)Battery charging energy
Edch(t)Battery discharging energy

Fig. 10 Charging and discharging of ESS

Fig. 11 Results for energy management using fuzzy interface
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FCiFuel cost of unit i
Fmax
i Highest value of the objective function

Fmin
i Lowest value of the objective function

GT, NOCTSolar radiation at which NOCT defined (0.8
kW/m^2)
INVcapRating of inverter (kVA)
L0Total non-inductive load (kW)
LindTotal inductive load (kW)
NbattNumber of batteries
Pr
BESNominal capacity of BES

PD b, tLoad at bus ‘b’ and time ‘t’
PDLoad demand
PDGRated capacity of diesel generator (kW)

Pmax
DG Maximum capacity of diesel generator (kW)

Pmin
DGMinimum capacity of diesel generator (kW)

PFCFuel cell power output
PFCRated capacity of fuel cell (kW)
Pmax
FC Maximum capacity of fuel cell (kW)

Pmin
FC Minimum capacity of fuel cell (kW)

Pshed; max
L;t Maximum sheddable load (kW)

Pshed
L;t Sheddable load (kW)

Ptrans; max
L;t Maximum transferrable load (kW)

Ptrans
L;t Transferrable load (kW)

PMTMicro turbine power output
PMTRated capacity of micro turbine (kW)

Fig. 12 Optimal power dispatch in standalone microgrid

Fig. 13 Scheduling of hybrid energy in standalone microgrid
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Fig. 14 Annual state of charge of BES

Fig. 15 Cost summary of standalone microgrid

Table 4 Detailed cost summary of standalone microgrid

Capital Replacement O&M Fuel Salvage

FC 12,500.0 12,259.1 22,377.5 226,955.1 − 344.3

WT 300,000.0 95,642.2 19,391.2 0.00 −53,900.5

BES 56,800.0 24,098.7 18,357.0 0.00 − 4535.6

DG 25,000.0 85,073.0 83,130.4 632,478.3 − 5120.5

MT 70,000.0 131,694.3 63,028.1 547,565.1 −10,847.4

PV 1,746,237.9 0.0 250,828.0 0.00 0.00

Converter 60,000.0 25,456.4 0.0 0.00 − 4791.1
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Pmax
MT Maximum capacity of micro turbine (kW)

Pmin
MTMinimum capacity of micro turbine (kW)

PPVPhoto voltaic system power output
PWTWind turbine power output
PDR
b;t Load shifted at bus ‘b’ and time ‘t’

PchBattery charging power
PdcBattery discharging power
Pg(t)Power import from main grid at time t
Pi(t)Output power of the controllable unit i at time t,
PpvPower output of PV array (kW)
Pr
pvRated capacity of PV array (kW)

PwRated power output of wind turbine (kW)
PwtPower output of wind turbine (kW)
QlifetimeBattery lifetime throughput (kWh)
QthrptAnnual storage throughput (kWh/yr)
Rbatt, fBattery float life (years)
RbattBattery storage system life (years)
SiStart-up cost of unit i
Ta, NOCTAmbient temperature at which NOCT defined
TaAmbient temperature (°C)
Tc, NOCTNominal operating PV cell temperature (°C)
Tc, STCPV cell temperature at STC (250 C)
TcPV cell temperature (°C)
do(i)Initial load demand (kW)
fpvPV derating factor (%)
kDRIncentive rate ($/kW)
αpTemperature coefficient of power (%/°C)
ηConvEfficiency of converter
ηiCharging and discharging efficiency
ηmpEfficiency of PV array at MPP (%)
ηwtEfficiency of wind turbine (%)
μki Fuzzy membership value of the point k for the
objective function i
μkOverall fuzzy membership value
ρo(i)Initial electricity price
∝Reduction factor of load
NTotal number of controllable units
nTotal number of scheduling time intervals
A(i)Incentive amount at ith hour
E(i, j)Cross-elasticity
E(i)Self-elasticity
NpTotal number of Pareto front points
TPLTotal real power loss

d(i)Modified load demand due to demand response (kW)
ngTotal number of PV buses in the micro-grid network
in addition to the slack bus
nobjTotal number of objectives
pen(i)Penalty amount at ith hour
ηrtStorage roundtrip efficiency
ρ(i)Spot electricity price
σBattery self-discharge rate

Abbreviations
DG: Diesel generator; DLC: Direct load control; DR: Demand response;
ESS: Energy storage system; MGEM: Microgrid energy management;
MGO: Micro grid operator; RTP: Real time pricing

Acknowledgements
Not applicable.

Authors’ contributions
VVSNM carried out basic design, simulation work and prepared draft paper.
AK participated in checking simulation work, results & discussions, sequence
of paper and helped to prepare the manuscript. All authors read and
approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Received: 21 August 2019 Accepted: 2 December 2019

References
1. Zhou, K., Yang, S., Chen, Z., et al. (2014). Optimal load distribution model of

microgrid in the smart grid environment. Renewable and Sustainable Energy
Reviews, 35, 304–310. https://doi.org/10.1016/j.rser.2014.04.028.

2. Yu, Z., Gatsis, S. N., & Giannakis, G. B. (2013). Robust energy Management for
Microgrids with High-Penetration Renewables. IEEE Transactions on
Sustainable Energy, 4(4), 944–953. https://doi.org/10.1109/TSTE.2013.2255135.

3. Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., &
Salameh, Z. (2011). A review of hybrid renewable/alternative energy
Systems for Electric Power Generation: Configurations, control, and
applications. IEEE Transactions on Sustainable Energy, 2(4), 392–403. https://
doi.org/10.1109/TSTE.2011.2157540.

4. Ahmad Khan, A., Naeem, M., Iqbal, M., et al. (2016). A compendium of
optimization objectives, constraints, tools and algorithms for energy
management in microgrids. Renewable and Sustainable Energy Reviews, 58,
1664–1683. https://doi.org/10.1016/j.rser.2015.12.259.

5. Jiang, Q., Xue, M., & Geng, G. (2013). Energy management of microgrid in
grid-connected and stand-alone modes. IEEE Transactions on Power
Apparatus and Systems, 28(3), 3380–3389. https://doi.org/10.1109/TPWRS.
2013.2244104.

6. Joseba Jimeno, Y., Anduaga, J., Oyarzabal, J., & de Muro, A. G. (2011). Architecture
of a microgrid energy management system. European Transactions on Electrical
Power, 21, 1142–1158. https://doi.org/10.1002/etep.443.

7. De Santis, E., Rizzi, A., & Sadeghian, A. (2017). Hierarchical genetic
optimization of a fuzzy logic system for energy flows management in
microgrids. Applied Soft Computing, 60, 135–149. https://doi.org/10.1016/j.
asoc.2017.05.059.

8. Marzband, M., Parhizi, N., & Adabi, J. (2016). Optimal energy management for
stand-alone microgrids based on multi-period imperialist competition algorithm
considering uncertainties: Experimental validation. International Transactions
Electric Energy Systems, 26, 1358–1372. https://doi.org/10.1002/etep.2154.

9. Cominesi, S. R., Farina, M., Giulioni, L., et al. (2018). A two-layer stochastic
model predictive control scheme for microgrids. IEEE Transactions on

Table 5 Greenhouse gases emissions summary

Emission (kg/yr) Off-grid system Grid only

Carbon Dioxide 446,628 922,950

Carbon Monoxide 1993 –

Unburned Hydrocarbons 47.9 –

Particulate Matter 32.1 –

Sulfur Dioxide 426 4001

Nitrogen Oxides 2923 1957

Murty and Kumar Protection and Control of Modern Power Systems             (2020) 5:2 Page 18 of 20

https://doi.org/10.1016/j.rser.2014.04.028
https://doi.org/10.1109/TSTE.2013.2255135
https://doi.org/10.1109/TSTE.2011.2157540
https://doi.org/10.1109/TSTE.2011.2157540
https://doi.org/10.1016/j.rser.2015.12.259
https://doi.org/10.1109/TPWRS.2013.2244104
https://doi.org/10.1109/TPWRS.2013.2244104
https://doi.org/10.1002/etep.443
https://doi.org/10.1016/j.asoc.2017.05.059
https://doi.org/10.1016/j.asoc.2017.05.059
https://doi.org/10.1002/etep.2154


Control Systems Technology, 26(1), 1–13. https://doi.org/10.1109/TCST.2017.
2657606.

10. Guo, Y., & Zhao, C. (2018). Islanding-aware robust energy management for
microgrids. IEEE Transactions on Smart Grid, 9(2), 1301–1309. https://doi.org/
10.1109/TSG.2016.2585092.

11. Hu, W., Wang, P., & Gooi, H. B. (2018). Toward optimal energy management
of microgrids via robust two-stage optimization. IEEE Transactions on Smart
Grid, 9(2), 1161–1174. https://doi.org/10.1109/TSG.2016.2580575.

12. Liu, T., Tan, X., Sun, B., et al. (2018). Energy management of cooperative
microgrids: A distributed optimization approach. International Journal of
Electrical Power & Energy Systems, 96, 335–346. https://doi.org/10.1016/j.
ijepes.2017.10.021.

13. Oliveira, D. Q., Zambroni de Souza, A. C., Santos, M. V., et al. (2017). A fuzzy-
based approach for microgrids islanded operation. Electric Power Systems
Research, 149, 178–189. https://doi.org/10.1016/j.epsr.2017.04.019.

14. Sarshar, J., Moosapour, S. S., & Joorabian, M. (2017). Multi-objective energy
management of a micro-grid considering uncertainty in wind power
forecasting. Energy, 139, 680–693. https://doi.org/10.1016/j.energy.2017.07.138.

15. Wang, L., Li, Q., Ding, R., et al. (2017). Integrated scheduling of energy
supply and demand in microgrids under uncertainty: A robust multi-
objective optimization approach. Energy, 130, 1–14. https://doi.org/10.1016/j.
energy.2017.04.115.

16. Jirdehi, M. A., Tabar, V. S., Hemmati, R., et al. (2017). Multi objective
stochastic microgrid scheduling incorporating dynamic voltage restorer.
International Journal of Electrical Power & Energy Systems, 93, 316–327.
https://doi.org/10.1016/j.ijepes.2017.06.010.

17. Li, X., Deb, K., & Fang, Y. (2017). A derived heuristics based multi-objective
optimization procedure for micro-grid scheduling. Engineering Optimization,
49(6), 1078–1096. https://doi.org/10.1080/0305215X.2016.1218864.

18. Tabar, V. S., Jirdehi, M. A., & Hemmati, R. (2017). Energy management in
microgrid based on the multi objective stochastic programming
incorporating portable renewable energy resource as demand response
option. Energy, 118, 827–839. https://doi.org/10.1016/j.energy.2016.10.113.

19. Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2017). A stochastic
multi-objective framework for optimal scheduling of energy storage
systems in microgrids. IEEE Transactions on Smart Grid, 8(1), 117–127. https://
doi.org/10.1109/TSG.2016.2598678.

20. Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2018). Multiobjective
scheduling of microgrids to harvest higher photovoltaic energy. IEEE
Transactions on Industrial Informatics, 14(1), 47–57. https://doi.org/10.1109/
TII.2017.2717906.

21. Riva Sanseverino, E., Buono, L., Di Silvestre, M. L., et al. (2017). A distributed
minimum losses optimal power flow for islanded microgrids. Electric Power
Systems Research, 152, 271–283. https://doi.org/10.1016/j.epsr.2017.07.014.

22. Anglani, N., Oriti, G., & Colombini, M. (2017). Optimized energy management
system to reduce fuel consumption in remote military microgrids. IEEE
Transactions on Industry Applications, 53(6), 5777–5785. https://doi.org/10.
1109/TIA.2017.2734045.

23. Arcos-Aviles, D., Pascual, J., Marroyo, L., et al. (2018). Fuzzy logic-based
energy management system design for residential grid-connected
microgrids. IEEE Transactions on Smart Grid, 9(2), 530–543. https://doi.org/10.
1109/TSG.2016.2555245.

24. Carpinelli, G., Mottola, F., Proto, D., et al. (2017). A multi-objective approach
for microgrid scheduling. IEEE Transactions on Smart Grid, 8(5), 2109–2118.
https://doi.org/10.1109/TSG.2016.2516256.

25. Zheng, Y., Li, S., & Tan, R. (2018). Distributed model predictive control for on-
connected microgrid power management. IEEE Transactions on Control Systems
Technology, 26(3), 1028–1039. https://doi.org/10.1109/TCST.2017.2692739.

26. Li, J., Liu, Y., & Wu, L. (2018). Optimal operation for community-based multi-
party microgrid in grid-connected and islanded modes. IEEE Transactions on
Smart Grid, 9(2), 756–765. https://doi.org/10.1109/TSG.2016.2564645.

27. Parisio, A., Wiezorek, C., Kyntäjä, T., et al. (2017). Cooperative MPC-based
energy management for networked microgrids. IEEE Transactions on Smart
Grid, 8(6), 3066–3074. https://doi.org/10.1109/TSG.2017.2726941.

28. Zakariazadeh, A., Jadid, S., & Siano, P. (2014). Smart microgrid energy and
reserve scheduling with demand response using stochastic optimization.
International Journal of Electrical Power & Energy Systems, 63, 523–533.
https://doi.org/10.1016/j.ijepes.2014.06.037.

29. Kou, P., Liang, D., & Gao, L. (2018). Stochastic energy scheduling in microgrids
considering the uncertainties in both supply and demand. IEEE Systems
Journal, 12(3), 2589–2600. https://doi.org/10.1109/JSYST.2016.2614723.

30. Almada, J. B., Leão, R. P. S., Sampaio, R. F., et al. (2016). A centralized and
heuristic approach for energy management of an AC microgrid. Renewable
and Sustainable Energy Reviews, 60, 1396–1404. https://doi.org/10.1016/j.rser.
2016.03.002.

31. Liu, J., Chen, H., Zhang, W., et al. (2017). Energy management problems
under uncertainties for grid-connected microgrids: A chance constrained
programming approach. IEEE Transactions on Smart Grid, 8(6), 2585–2596.
https://doi.org/10.1109/TSG.2016.2531004.

32. Dou, C., An, X., Dong, Y., & Li, F. (2017). Two-level decentralized optimization
power dispatch control strategies for an islanded microgrid without
communication network. International Transactions Electric Energy Systems,
27(1), 1–12. https://doi.org/10.1002/etep.2244.

33. Li, X., Dong, H., & Lai, X. (2013). Battery energy Storage Station (BESS)-based
smoothing control of photovoltaic (PV) and wind power generation
fluctuations. IEEE Transactions on Sustainable Energy, 4(2), 464–473. https://
doi.org/10.1109/TSTE.2013.2247428.

34. Zhou, X., Ai, Q., & Wang, H. (2018). A distributed dispatch method for
microgrid cluster considering demand response. International Transactions
on Electrical Energy Systems, 28(12), 1–24. https://doi.org/10.1002/etep.2634.

35. Yi, Z., Xu, Y., Gu, W., & Wu, W. (2019). A multi-time-scale economic
scheduling strategy for virtual power plant based on deferrable loads
aggregation and disaggregation. IEEE Transactions on Sustainable Energy.
https://doi.org/10.1109/TSTE.2019.2924936.

36. Lamadrid, A. J., Muñoz-Alvarez, D., Murillo-Sánchez, C. E., Zimmerman, R. D.,
Shin, H., & Thomas, R. J. (2019). Using the MATPOWER optimal scheduling
tool to test power system operation methodologies under uncertainty. IEEE
Transactions on Sustainable Energy, 10(3), 1280–1289. https://doi.org/10.
1109/TSTE.2018.2865454.

37. Liu, N., Wang, J., & Wang, L. (2019). Hybrid energy sharing for multiple
microgrids in an integrated heat–electricity energy system. IEEE Transactions
on Sustainable Energy, 10(3), 1139–1151. https://doi.org/10.1109/TSTE.2018.
2861986.

38. Maulik, A., & Das, D. (2019). Optimal power dispatch considering load and
renewable generation uncertainties in an AC-DC hybrid microgrid. IET
Generation Transmission and Distribution, 13(7), 1164–1176. https://doi.org/
10.1049/iet-gtd.2018.6502.

39. Abniki, H. (2018). Seyed Masoud Taghvaei, Seyed Mohsen Mohammadi
Hosseininejad. Optimal energy management of community microgrids: A
risk -based multi - criteria approach. International Transactions on Electrical
Energy Systems, 28(12), 1–16. https://doi.org/10.1002/etep.2641.

40. Conte, F., D’Agostino, F., Pongiglione, P., Saviozzi, M., & Silvestro, F. (2019).
Mixed-integer algorithm for optimal dispatch of integrated PV-storage
systems. IEEE Transactions on Industry Applications, 55(1), 238–247. https://
doi.org/10.1109/TIA.2018.2870072.

41. Yang, L., Fan, X., Cai, Z., & Bing, Y. (2018). Optimal active power dispatching
of microgrid and DistributionNetwork based on model predictive control.
Tsinghua Science and Technology, 23(3), 266–276. https://doi.org/10.26599/
TST.2018.9010083.

42. Yang, F., Feng, X., & Li, Z. (2019). Advanced microgrid energy management
system for future sustainable and resilient power grid. IEEE Transactions on
Industry Applications, 55(6), 7251–7260. https://doi.org/10.1109/TIA.2019.2912133.

43. Shuai, H., Fang, J., Ai, X., Tang, Y., Wen, J., & He, H. (2019). Stochastic
optimization of economic dispatch for microgrid based on approximate
dynamic programming. IEEE Transactions on Smart Grid, 10(3), 2440–2452.
https://doi.org/10.1109/TSG.2018.2798039.

44. Garcia-Torres, F., Bordons, C., & Ridao, M. A. (2019). Optimal economic
schedule for a network of microgrids with hybrid energy storage system
using distributed model predictive control. IEEE Transactions on Industrial
Electronics, 66(3), 1919–1929. https://doi.org/10.1109/TIE.2018.2826476.

45. Paul, T. G., Hossain, S. J., Ghosh, S., Mandal, P., & Kamalasadan, S. (2018). A
quadratic programming based optimal power and battery dispatch for grid-
connected microgrid. IEEE Transactions on Industry Applications, 54(2), 1793–
1805. https://doi.org/10.1109/TIA.2017.2782671.

46. Sachs, J., & Sawodny, O. (2016). A two-stage model predictive control
strategy for economic diesel-PV-Battery Island microgrid operation in rural
areas. IEEE Transactions on Sustainable Energy, 7(3), 903–913. https://doi.org/
10.1109/TSTE.2015.2509031.

47. Combe, M., Mahmoudi, A., Haque, M. H., & Khezri, R. (2019). Cost-effective
sizing of an AC mini-grid hybrid power system for a remote area in South
Australia. IET Generation Transmission and Distribution, 13(2), 277–287.
https://doi.org/10.1049/iet-gtd.2018.5657.

Murty and Kumar Protection and Control of Modern Power Systems             (2020) 5:2 Page 19 of 20

https://doi.org/10.1109/TCST.2017.2657606
https://doi.org/10.1109/TCST.2017.2657606
https://doi.org/10.1109/TSG.2016.2585092
https://doi.org/10.1109/TSG.2016.2585092
https://doi.org/10.1109/TSG.2016.2580575
https://doi.org/10.1016/j.ijepes.2017.10.021
https://doi.org/10.1016/j.ijepes.2017.10.021
https://doi.org/10.1016/j.epsr.2017.04.019
https://doi.org/10.1016/j.energy.2017.07.138
https://doi.org/10.1016/j.energy.2017.04.115
https://doi.org/10.1016/j.energy.2017.04.115
https://doi.org/10.1016/j.ijepes.2017.06.010
https://doi.org/10.1080/0305215X.2016.1218864
https://doi.org/10.1016/j.energy.2016.10.113
https://doi.org/10.1109/TSG.2016.2598678
https://doi.org/10.1109/TSG.2016.2598678
https://doi.org/10.1109/TII.2017.2717906
https://doi.org/10.1109/TII.2017.2717906
https://doi.org/10.1016/j.epsr.2017.07.014
https://doi.org/10.1109/TIA.2017.2734045
https://doi.org/10.1109/TIA.2017.2734045
https://doi.org/10.1109/TSG.2016.2555245
https://doi.org/10.1109/TSG.2016.2555245
https://doi.org/10.1109/TSG.2016.2516256
https://doi.org/10.1109/TCST.2017.2692739
https://doi.org/10.1109/TSG.2016.2564645
https://doi.org/10.1109/TSG.2017.2726941
https://doi.org/10.1016/j.ijepes.2014.06.037
https://doi.org/10.1109/JSYST.2016.2614723
https://doi.org/10.1016/j.rser.2016.03.002
https://doi.org/10.1016/j.rser.2016.03.002
https://doi.org/10.1109/TSG.2016.2531004
https://doi.org/10.1002/etep.2244
https://doi.org/10.1109/TSTE.2013.2247428
https://doi.org/10.1109/TSTE.2013.2247428
https://doi.org/10.1002/etep.2634
https://doi.org/10.1109/TSTE.2019.2924936
https://doi.org/10.1109/TSTE.2018.2865454
https://doi.org/10.1109/TSTE.2018.2865454
https://doi.org/10.1109/TSTE.2018.2861986
https://doi.org/10.1109/TSTE.2018.2861986
https://doi.org/10.1049/iet-gtd.2018.6502
https://doi.org/10.1049/iet-gtd.2018.6502
https://doi.org/10.1002/etep.2641
https://doi.org/10.1109/TIA.2018.2870072
https://doi.org/10.1109/TIA.2018.2870072
https://doi.org/10.26599/TST.2018.9010083
https://doi.org/10.26599/TST.2018.9010083
https://doi.org/10.1109/TIA.2019.2912133
https://doi.org/10.1109/TSG.2018.2798039
https://doi.org/10.1109/TIE.2018.2826476
https://doi.org/10.1109/TIA.2017.2782671
https://doi.org/10.1109/TSTE.2015.2509031
https://doi.org/10.1109/TSTE.2015.2509031
https://doi.org/10.1049/iet-gtd.2018.5657


48. Nejabatkhah, F., Li, Y. W., Nassif, A. B., & Kang, T. (2018). Optimal design and
operation of a remote hybrid microgrid. CPSS Transactions on Power
Electronics and Applications, 3(1), 3–13. https://doi.org/10.24295/CPSSTPEA.
2018.00001.

49. Zhao, B., Qiu, H., Qin, R., Zhang, X., Gu, W., & Wang, C. (2018). Robust
optimal dispatch of AC/DC hybrid microgrids considering generation and
load uncertainties and energy storage loss. IEEE Transactions on Power
Apparatus and Systems, 33(6), 5945–5957. https://doi.org/10.1109/TPWRS.
2018.2835464.

50. Alharbi, H., & Bhattacharya, K. (2018). Stochastic optimal planning of battery
energy storage Systems for Isolated Microgrids. IEEE Transactions on
Sustainable Energy, 9(1), 211–227. https://doi.org/10.1109/TSTE.2017.2724514.

51. Lara, J. D., Olivares, D. E., & Cañizares, C. A. (2019). Robust energy
Management of Isolated Microgrids. IEEE Systems Journal, 13(1), 680–691.
https://doi.org/10.1109/JSYST.2018.2828838.

52. Li, Y., Wang, P., Gooi, H. B., Ye, J., & Wu, L. (2019). Multi-objective optimal
dispatch of microgrid under uncertainties via interval optimization. IEEE
Transactions on Smart Grid, 10(2), 2046–2058. https://doi.org/10.1109/TSG.
2017.2787790.

53. Yang, L., Yang, Z., Zhao, D., Lei, H., Cui, B., & Li, S. (2019). Incorporating
energy storage and user experience in isolated microgrid dispatch using a
multi-objective model. IET Renewable Power Generation, 13(6), 973–981.
https://doi.org/10.1049/iet-rpg.2018.5862.

54. Yang, L., Member, Z. Y., Li, G., Zhao, D., & Tian, W. (2019). Optimal scheduling
of an isolated microgrid with battery storage considering load and
renewable generation uncertainties. IEEE Transactions on Industrial
Electronics, 66(2), 1565–1575. https://doi.org/10.1109/TIE.2018.2840498.

55. Chaouachi, A., Kamel, R. M., Andoulsi, R., et al. (2013). Multiobjective
intelligent energy management for a microgrid. IEEE Transactions on
Industrial Electronics, 60(4), 1688–1699. https://doi.org/10.1109/TIE.2012.
2188873.

56. Maknouninejad, A., & Qu, Z. (2014). Realizing unified microgrid voltage
profile and loss minimization: A cooperative distributed optimization and
control approach. IEEE Transactions on Smart Grid, 5(4), 1621–1630. https://
doi.org/10.1109/TSG.2014.2308541.

Murty and Kumar Protection and Control of Modern Power Systems             (2020) 5:2 Page 20 of 20

https://doi.org/10.24295/CPSSTPEA.2018.00001
https://doi.org/10.24295/CPSSTPEA.2018.00001
https://doi.org/10.1109/TPWRS.2018.2835464
https://doi.org/10.1109/TPWRS.2018.2835464
https://doi.org/10.1109/TSTE.2017.2724514
https://doi.org/10.1109/JSYST.2018.2828838
https://doi.org/10.1109/TSG.2017.2787790
https://doi.org/10.1109/TSG.2017.2787790
https://doi.org/10.1049/iet-rpg.2018.5862
https://doi.org/10.1109/TIE.2018.2840498
https://doi.org/10.1109/TIE.2012.2188873
https://doi.org/10.1109/TIE.2012.2188873
https://doi.org/10.1109/TSG.2014.2308541
https://doi.org/10.1109/TSG.2014.2308541

	Abstract
	Introduction
	Modeling of hybrid energy sources in microgrid
	Modelling of PV system
	Modelling of wind power
	Modelling of BES
	Modelling of power converter
	Generator capacity
	Demand response

	MGEM problem modeling
	Objective function
	Constraints

	Scheduling of ESS
	Fuzzy logic based ESS scheduling
	Fuzzification process
	Inference engine
	Defuzzification

	Implementation of demand response
	Load control in the time-based rate DR programs
	Load control in the incentive-based DR programs

	General framework for MGEM problem solving
	Solution methods
	Fuzzy membership rule


	Results and discussions
	MGEM without using the fuzzy scheduling of ESS
	Use the global criterion method to find the final optimum
	MGEM without demand response program
	MGEM with demand response program

	MGEM using fuzzy scheduling of ESS
	Optimal power dispatch in standalone microgrid with hybrid energy sources

	Conclusion
	Nomenclature
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References

