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A B S T R A C T

The reliability of energy systems is assessed to control their operation and expansion. An effective method for
reliability assessment is the Monte Carlo method. This process, however, is often time-consuming due to the
large size of the power system. This interferes with subsequent control problems. The speed of reliability as-
sessment and the accuracy of the result for the Monte Carlo method directly depend on the number of randomly
generated states of the system, their quality and the complexity of the subproblem to be solved for each state.
When solving such a subproblem for reliability assessment, random states can be defined as a shortage and
shortage-free ones. To assess the reliability of power systems using the Monte Carlo method, one should analyze
only the state of the system with a shortage. We suggest the use of machine learning methods to eliminate or sort
the shortage and shortage-free states. The paper demonstrates the effectiveness of two methods: a support vector
machine and a random forest. It also shows their performance when the Monte Carlo and quasi-Monte Carlo
methods are used.

1. Introduction

Modern power systems are characterized by high complexity and a
great number of problems that influence the reliability of electricity
supply to consumers. Quality and continuity of electricity supply be-
come increasingly more critical indicators for both large consumers and
small consumers (householders). Requirements of modern consumers
for reliable electricity supply can be satisfied by the effective measures
aimed at the improvement and maintenance of the power system re-
liability level in system expansion planning and its operation control.
However, such measures may prove to be economically inefficient and
excessive, and therefore, it is necessary to timely assess power system
reliability to make informed decisions. The reliability of power systems
can be assessed on-line (for the current operating conditions) and off-
line (for prospective expansion).

The technique based on the Monte-Carlo method is the most effec-
tive and widely used technique for power system reliability assessment
[1–5]. This method is used in many software systems intended for en-
ergy systems, such as GE-MARS, GridView, PLEXOS, and DIgSILENT /
PowerFactory. Unlike other widely used methods, for example, analy-
tical ones, it can reduce the problem of high dimensionality in large
systems, which are involved in practical calculations most frequently.

The reliability assessment technique based on the Monte Carlo
method [6] consists of the following steps [7–10]:

1) Generation of power system random states;
2) Minimization of power shortage in power system random states;
3) Calculation of reliability indices.

Normally, for the implementation of this technique, the first two
steps are integrated by a common cycle.

For the operational control of the electric power system, the relia-
bility of the current operating condition or security is assessed, and a set
of random states is formed relative to this condition, the probabilities
characterizing the state of the power equipment and a load of con-
sumers. The long-term planning of the EPS expansion involves the as-
sessment of adequacy. In this case, the annual interval is considered,
and the planned and unplanned (emergency) repairs of power equip-
ment, a change in the load curve and its random deviations are taken
into account.

High dimensionality, which increases with dimensionality and
complexity of the considered systems, creates difficulty even when the
Monte Carlo method is used. For example, for a small power system
consisting of 50 components of generating and network equipment, the
number of random states in the complete enumeration of all possible
equipment failure options will be about 1015. The EPS structure also
affects the speed of calculation. With its complication, the process of
power shortage minimization becomes more complicated, and, conse-
quently, the time for the EPS reliability assessment is increased. The
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speed of the EPS reliability assessment is essential for assessing both
security and adequacy. After the security evaluation, a set of control
actions that improve the EPS security should be proposed based on the
security indices, and the faster and more accurately the reliability in-
dices are obtained, the higher the probability of the reliable operation
of the EPS. After assessing the EPS adequacy, based on the obtained
adequacy indices, the generating capacity reserves, as well as the
structure and transfer capability of the network, are substantiated. In
this case, for all combinations of power equipment commissioning, the
adequacy should be evaluated. An analysis of real electric power sys-
tems can involve thousands of options for the commissioning of power
equipment. Therefore, by increasing the speed of reliability assessment
for each EPS expansion option and observing the required accuracy, the
validity of decisions made on the EPS expansion is increased.

At present, the machine learning methods are increasingly more
used in various spheres, including the techniques based on the Monte
Carlo method [11–13]. This work continues the similar studies pre-
sented in [14]. As a rule, the application of machine learning methods
does not directly concern the technique, but it is connected with the
modification of repeated operations in the body of the technique or
setting of the parameters. In this paper, which develops our results in
[15], we propose these methods for classification of power system
states with and without power shortage. For this purpose, the classifiers
are used to determine the shortage level of generated power system
states without their calculation in the computationally expensive
second stage (calculation block). The paper presents two classification
methods (support vector machine [16] and random forest [17]), the
assessment of their efficiency and accuracy with respect to the problem
statement, and their applicability in general. Additionally, the use of
machine learning methods is considered along with the use of the
Monte Carlo and quasi-Monte Carlo methods. The quasi-Monte Carlo
method is widely used to solve computationally difficult problems, for
example, in stochastic financial mathematics or in modeling physical
processes [18–21]. Its main advantage is that it has convergence close
to O ( ),N

1 while the convergence rate of the Monte Carlo method is of the

order of O ( ),
N
1 which is ensured by the use of quasi-random sequences

(or low-discrepancy sequences (LDS)) [22] instead of random gen-
erators, which are usually pseudorandom ones. Based on the studies, a
qualitative analysis of the applicability of machine learning methods for
classifying design states to assess the EPS reliability using the Monte
Carlo method and the benefits of using Sobol sequences is presented,
which is an improvement in the methods for the EPS reliability eva-
luation.

The paper consists of 4 parts. The first part states the problem of
adequacy assessment by the Monte Carlo method. The second part
describes the classification of shortage and shortage-free EPS states
based on machine learning methods. The focus of the third part is on
the efficiency of the Mersenne twister and the Sobol LDS-sequence
generator when used to assess the EPS reliability. The experimental part
of the paper is concerned with the test of the proposed approach to
increasing the computational efficiency of the technique for EPS relia-
bility assessment using the methods of random number generation and
machine learning to determine their most effective combination.

2. Power system reliability assessment based on the Monte Carlo
method

As noted above, the technique for power system reliability assess-
ment based on the Monte-Carlo method consists of three computational
stages. Their more detailed description is below:

1) Generation of power system states. In this stage, the states of power
system facilities and the value of consumer loads are modeled based
on the statistics on emergency rates of energy facilities and random
deviations of consumer loads. One random event = …K f F, 1, , ,f

with the probability = …p f F, 1, , ,f is modeled when generating
one random number = …r f F, 1, ,f from the equidistributed set R in
the interval [0, 1]. If rf is in the interval [0, pf], the event is con-
sidered to occur, otherwise, not to occur, i.e.:

= ⎧
⎨⎩

∈

∈
= …K

if r p

if r p
f F

1, [0, ]

0, ( , 1]
, 1, , .

f f

f f (1)

The distributed set R is a sequence of random numbers generated by
the pseudo- or quasi-random numbers generators.

1) Minimization of power shortage in generated power system states. The
steady state that is optimal in terms of minimum power shortage is
calculated for each modeled state. For the power system adequacy
assessment, the mathematical formulation of the problem has the
following form [7,15]

for power shortage evaluation of each power system state determine:

∑ →
=

y max,
i

I
i1 (2)

subject to the balance constraints
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and the linear constraints on variables
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where gi is the capacity used at node (reliability zone) i, MW; ḡi is the
available generating capacity at node i, MW; yi is the value of firm load
at node i, MW; ȳi is the load at node i, MW; zij is the power flow from
node i to node j, MW; z̄ij is the transfer capability of the transmission
line between nodes i and j, MW; aij are the given coefficients of specific
losses of power when transmitted from node i to node j,

= … = … ≠i I j J i j1, , ; 1, , ; .

1) Calculation of reliability indices. After the calculation of all generated
states, the calculated parameters of power systems are processed by
statistical methods. In the end, we obtain a set of power system
reliability indices. Below are some main reliability indices:
- the probability of failure-free (shortage-free) operation;
- the electricity undersupply expectation;
- the power shortage expectation;
- the coefficient of power availability;
- the probability of operating parameters deviation beyond the
maximum admissible values.

3. Machine learning methods

The second stage of the electric power system adequacy assessment
involves solving the problem of power shortage minimization. This
process is time-consuming, therefore a reduction in the number of states
to be calculated while maintaining the accuracy of the estimate will
increase the computational efficiency of the whole technique.

We propose dividing a set of random states obtained during the first
stage into smaller and larger data sets. The calculation of indices for the
states of the first set will not differ from the initial solution, except that
the states themselves, as well as the calculation result, will form a
training data set, which will be used as a basis for the classifier to be
built. Then, for each state of an electric power system from a larger set,
the classifier predicts its shortage and, if the state does not have a
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shortage, this state is not analyzed for the shortage and its size. The
power shortage at nodes of the electric power system is assumed to be
0. If the algorithm classifies the state as the one with shortage, then the
exact value of the power shortage is determined in the second calcu-
lation block, which reduces the number of states to be considered in it.

The considered problem of state-with-shortage classification ac-
cording to the configuration, and operability of electric power system
equipment is a typical precedent training problem, which requires that
an algorithm be constructed to approximate the objective relationship
XA → L between a set of objects XA and a set of all answers L for the
objects of training set S. In the problem of shortage classification, XA

represents a set of all EPS states, and ∈ −L [ 1, 1], where 1 means a state
without shortage, and 1 is a state with shortage.

Each data object ∈ = …x X a A¯ , 1, , ,a A represents a vector in the d-
dimensional space and characterizes the electric power system state
where d is a quantity of object features defining this state, A is the
number of all possible states of the electric power system.

The training data S is formed from a set of objects XU, for which the
value of shortage in the electric power system state is known:

= …S x l x l x l(( ¯ , ), ( ¯ , ), , ( ¯ , )),n n1 1 2 2 (5)

where ∈ ∈ = …x R l L i n¯ ; ; 1, ,i
d

i ; n is the number of objects in the
training set, XU is a set of electric power system states modeled in the
first stage, XU ∈ XA. The number of objects n in the training set is

specified by the user and normally does not exceed half of the number
of modeled states N.

The effectiveness and applicability of the proposed technique are
determined by the increase in the calculation speed and, accordingly,
by a reduction in the time expenditure. However, the complication of
the technique by involving machine learning methods and the related
time spent on construction of a training data set, model training, se-
lection of hyperparameters and classification should be compensated
for by reducing the number of calls to the optimization methods. Thus,
a potentially successful machine learning algorithm for solving our
problem should differ not only in the classification accuracy but also in
the overall speed in all the above-mentioned stages of its work.

The paper considers two most common methods of machine
learning. These are the linear kernel support-vector machine [16] and
the random forest [17]. These methods were not chosen by chance, the
application of various machine learning methods in electric power
problems was analyzed [23–25]. The analysis has indicated that the
linear kernel support-vector machine works faster but less accurately,
while the random forest can require more time.

3.1. Support-vector machine

The support vector method is one of the most popular training
methods, which is used to solve classification and regression problems.
The main idea of the method is to construct a hyperplane separating the
sample objects in an optimal way [16]. Optimality is understood in the
sense of minimizing the upper bounds on the generalization error
probability. It is assumed that the greater the distance (gap) between
the separating hyperplane and the objects of the separated classes, the
smaller the average error of the classifier will be.

3.2. Random forest method

The random forest is an ensemble of simple decision trees, each
built based on a random sample from the original training set (bag-
ging), and only a fraction of randomly selected features is used to split
the vertices [17]. The optimal number of trees is selected to minimize
the error of the classifier on the test sample. Classification of objects is
carried out by voting: each committee tree assigns the classified object
to one of the classes, and the winner is the class for which the largest

Fig. 1. Graphical representation of points. (a) First 1024 points of the sequence (b) 1024 random points.

Fig. 2. Scheme of the studied 3-node power system.
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number of trees voted.

4. Method for the formation of random states of EPS

In the formation of random states of EPS, one of the important
points that directly affects the computational efficiency of the whole
technique is the operation of the random number generator. The re-
quirements imposed on their work include a long cyclic period, the
most accurate reproduction of a given random distribution, and the
absence of correlation in the mutual arrangement of the sequence
members. These properties affect the results of the simulation by the
method of statistical tests.

The widespread use of the Monte Carlo method in computer mod-
eling has predetermined the use of pseudorandom number generators
as a source of entropy, which is associated with the difficulty and low
efficiency of sequences obtained from the sources of real random
numbers.

Another step was the use of low-discrepancy sequences [22] as a
replacement for random number sequences, which gave rise to a whole
subclass of quasi-Monte Carlo numerical methods. There is a relation-
ship between the discrepancy of the sequence and the equidistribution
[26,27]. Such a significant feature as a low discrepancy of these se-
quences provides a higher convergence rate than the classical Monte
Carlo method [6].

Nevertheless, not only the algorithm used but also the im-
plementation features affect the speed and efficiency of the generators

The paper focuses on two representatives of their subclasses of
random number generators – a pseudorandom Mersenne Twister [28]
and a quasi-random generator of Sobol sequences [29].

4.1. Mersenne twister

The Mersenne twister is a pseudo-random number generator based
on the properties of the simple Mersenne numbers [28]. The Mersenne
numbers are the numbers of the form:

= − = …w t T2 1, 1, , ,l
t (6)

where: t is the natural number.
The Mersenne Twister belongs to the class of so-called generalized

feedback shift register generators (TGFSR) [30]. “Twister” is the
transformation that ensures equidistribution of generated pseudo-
random numbers in 623 measurements. Therefore, the function of
correlation between two sequences of samples in the output sequence of
the Mersenne twister is negligibly small.

This algorithm quickly generates pseudo-random numbers that are
of high quality by the randomness criterion, does not have many
shortcomings inherent in other pseudo-random number generators,
such as short period, predictability, easily revealed statistical laws.

An additional advantage is the presence of an effective algorithm
implementation called SIMD-oriented Fast Mersenne Twister (SFMT)
[31].

4.2. Sobol sequence

Sobol sequence is a low-discrepancy sequence introduced by I.M.
Sobol [29]. It represents the points located in a certain way in a hy-
percube and is defined as follows: let … ∈p p F x, , ( )s1 2 be primitive
polynomials ordered by nondecreasing degrees. Then, for 1 ≤ i ≤ s let

= + + … + +−
−p x x a x a x( ) 1.i

e
i

e
e i1,

1
1,i i

i (7)

Take arbitrary odd positive integers …m m, , ,i e i1, ,i such that mk,

Fig. 3. Scheme of the studied 24-node (bus) IEEE RTS-96 system.

D. Krupenev, et al. Reliability Engineering and System Safety 204 (2020) 107171

4



i < 2k for 1 ≤ k ≤ ei. For allk > ei, the numbers mk, i are determined
recursively using the bitwise operator XOR (exclusive or ⊕):

= ⊕ ⊕ … ⊕ ⊕− −
−

− − −

−

m a m a m a m a

m

2 2 2 2

.
k i i k i i k i

e
e i k e i

e
e i

k e i

, 1, 1,
2

2, 2,
1

1, 1, ,

,

i
i i

i
i

i (8)

Next, the direction numbers ϑk, i are determined as

=
m

ϑ
2

.k i
k i
k,
,

(9)

As a result, for an arbitrary point in the sequence n∈ N0 having a
binary decomposition, which is expressed as n = n0 + 2n1 + ... + 2 (r-

1) nr-1, the ith coordinate has the form:

= ⊕ ⊕ …⊕ −x n n nϑ ϑ ϑ .n i i i r r i, 0 1, 1 2, 1 , (10)

Thus, the Sobol sequence is defined as the collection
…x x( , , ),0 1 where = …x x x( , , )n n n s( ,1) , .

There is also an advantage of the Sobol sequence over other quasi-
random sequences, which is the fact that for this sequence we know the
effective sequential algorithm of Antonov I.A. and Saleev V.M. [32]
based on Gray codes.

5. Experimental studies

The first stage of the experimental studies involved a statistical
analysis of the sequences of numbers generated by the Mersenne twister

and Sobol sequence. The obtained two-dimensional points are pre-
sented in Fig. 1 as a point diagram.

Fig. 1 shows that the points of the Sobol sequence form a grid of
points filling the space uniformly. The points generated by the Mers-
enne twister algorithm form areas of concentrations and rarefactions,
which are inherent in all random number generators to a varying ex-
tent.

The more objective evaluation is obtained using the Kolmogorov-
Smirnov criterion [33]. This criterion is intended to test simple hy-
potheses that the analyzed sequences belong to some completely known
distribution law, in our case to equidistribution. The closer the criterion
value to 0.87, the higher the randomness degree of equidistributed
random numbers. The analysis was based on 1024 one-dimensional
points generated for each algorithm, the criterion values equaled 0.84
for the Sobol sequence and 0.97 for the Mersenne twister, which in-
dicates higher randomness of the first algorithm.

The proposed methods were evaluated in the second stage of ex-
perimental studies by the practical analysis. The reliability indices were
calculated for two test schemes – the 3-node scheme presented in Fig. 2

Table 1
Main characteristics of generating units of the 3-node power system and RTS-
96.

No of node Rated capacity
of generating
unit, MW

The number of
generating
units, pcs.

Emergency rate
of generating
unit, p.u.

Load, MW

3-node system
1 50 5 0.05 450

100 2 0.05
2 50 5 0.05 400

100 1 0.05
3 50 5 0.05 490

100 1 0.05
200 1 0.05

24-node IEEE
RTS-96
system

1 20 2 0.10 108
76 2 0.02

2 20 2 0.10 97
76 2 0.02

3 - - - 180
4 - - - 74
5 - - - 71
6 - - - 136
7 100 3 0.04 125
8 - - - 171
9 - - - 175
10 - - - 195
11 - - - 0
12 - - - 0
13 197 3 0.05 265
14 - - - 194
15 12 5 0.02 317

155 1 0.04
16 155 1 0.04 100
17 - - - 0
18 400 1 0.12 333
19 - - - 181
20 - - - 128
21 400 1 0.12 0
22 50 6 0.01 0
23 155 2 0.04 0

350 1 0.08
24 - - - 0

Table 2
Main characteristics of transmission lines of the 3-node power system and RTS-
96.

No of
transmission
line

Transmission
line vector

Transfer
capability,
MW

Emergency rate
per 100 km,
p.u.

Length, km

3-node power
system

1 1-2 150 0,001 400
2 1-3 150 0,001 400
3 2-3 150 0,001 400
4 2-3 150 0,001 400
24-node IEEE

RTS-96
system

1 1-2 175 0.009079396 4.828
2 1-3 175 0.00065774 88.5139
3 1-5 175 0.001063992 35.4056
4 2-4 175 0.000838297 53.1084
5 2-6 175 0.000680955 80.4672
6 3-9 175 0.000869499 49.8897
7 3-24 500 0.0 0.0
8 4-9 175 0.00094577 43.4523
9 5-10 175 0.001048572 37.0149
10 6-10 175 0.00512046 25.7495
11 7-8 175 0.00132999 25.7495
12 8-9 175 0.000725824 69.2018
13 8-10 175 0.000725824 69.2018
14 9-11 500 0.0 0.0
15 9-12 500 0.0 0.0
16 10-11 500 0.0 0.0
17 10-12 500 0.0 0.0
18 11-13 500 0.00094577 53.1084
19 11-14 500 0.001049316 46.671
20 12-13 500 0.00094577 53.1084
21 12-23 500 0.000605575 107.826
22 13-23 500 0.000637213 96.5606
23 14-16 500 0.001098145 43.4529
24 15-16 500 0.002145717 19.3121
25 15-21 500 0.000940903 54.7177
26 15-21 500 0.000940903 54.7177
27 15-24 500 0.00088863 57.9364
28 16-17 500 0.001517173 28.9682
29 16-19 500 0.001658054 25.7495
30 17-18 500 0.002496834 16.0934
31 17-22 500 0.000577179 117.4821
32 18-21 500 0.001517173 28.9682
33 18-21 500 0.001517173 28.9682
34 19-20 500 0.001078178 44.257
35 19-20 500 0.001078178 44.257
36 20-23 500 0.001768591 24.1402
37 20-23 500 0.001768591 24.1402
38 21-22 500 0.000747058 75.6392
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Fig. 4. Power shortage expectation in the test 3-node system.

Fig. 5. Power shortage expectation in the RTS-96 system.

Fig. 6. Diagram of a decrease in the relative error versus the number of tests.
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and the 24-node (bus) IEEE RTS-96 system [34] presented in Fig. 3.
Table 1 demonstrates the main characteristics of power system nodes.
Table 2 presents the main characteristics of transmission lines (the
characteristics of the transmission lines for RTS-96 are converted into
metric units).

The computational efficiency of the described generators was
compared based on a set of experiments on reliability assessment that
involved the determination of power shortage expectation for 10000
states of one operating condition for the 3-node system and 30000
states for RTS-96 system. We calculated the operating condition at the
maximum shortage hour of the year. Five experiments were carried out
for each generator. The results of power shortage stabilization for the 3-
node system are presented in Fig. 4, for RTS-96 system – in Fig. 5.
Stabilization for the Mersenne twister is shown in red and that for Sobol
sequence- in blue.

Fig. 4 shows that the power shortage expectation for the Sobol se-
quences converges to the “true” value faster than for the pseudorandom
numbers generated by the Mersenne Twister. Moreover, uniformity in
the variance decrease allows the automatic termination of calculations,
when the required accuracy of the result is achieved. This advantage of
Sobol sequences was noted in other works, for example in [18]. How-
ever, the result obtained for a larger scheme (for the RTS-96 system)
does not allow similar firm conclusions to be drawn. Hence, to assess
the efficiency of the algorithms for larger schemes, it is appropriate to
apply statistical analysis methods, for example, the relative error esti-
mate:

= −δ I I
I

·100%.u true

true. (11)

Since the true value is unknown, the average of the last 250 values
of power shortage expectation was taken as the true value in each
calculation. The diagram of a decrease in the relative error is presented

in Fig. 6.
The obtained results indicate that the application of the Sobol se-

quences to assess power system reliability by the Monte-Carlo method
provides more qualitative calculation results and their achievement
based on a fewer number of random states.

The efficiency of the technique for improving the current method of
adequacy assessment was tested at the second stage of experimental
studies by the machine learning methods. For this purpose, we made
calculations similar to the first stage and estimated the program run
speed for different combinations of machine learning methods (random
forest and support vector machine) and generation of random numbers
(Mersenne twister and Sobol sequences).

The model parameters were selected by monitoring the AUC ROC
metric value [35] for the fivefold cross-validation. The penalty coeffi-
cient was varied in the method of support vector machine [16]. The
depth of trees and the number of considered random features during
division were selected for the random forest method. The class weight
imbalance was revealed for both methods. For prediction, preference is
given to a shortage state. This is explained by the fact that in practical
problems, the training set is usually unbalanced, the vast majority of
generated states of real power systems are shortage-free. It is also worth
noting that the statement of our problem differs from that of classical
machine learning problems that normally have one studied object, to
which the model is adjusted in the best possible way. In our case, each
calculation power system scheme is an independent object. Therefore, it
is impossible to create and adjust the only one model, because these
operations are performed automatically at each new scheme calculation
using cross-validation. As a result, the optimal parameters can differ
even for two identical calculations due to the existing dependence on
the randomly formed training set.

The test schemes were calculated by the Python-based program for
the conditions indicated in Table 3. Parallel calculations were not used.

Fig. 7 presents the calculation results for the 3-node scheme, and
Table 4 shows the time spent on the corresponding calculation and the
number of states indicated by the classifier as shortage-free (hereafter –
rejected states). Here, the total time of calculations by the techniques
based on the machine learning methods includes the time spent on the
formation of the training set, model learning, and selection of para-
meters.

Fig. 7 shows that the methods and the combinations of methods

Table 3
The system used for estimation.

Python version 3.6
Operating system Windows 10 × 64
Processor Intel i7 8700K
RAM 16 GB
Video card No

Fig. 7. Power shortage expectation in the test 3-node system.
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based on the Sobol sequences are the best from the standpoint of con-
vergence speed and quality (blue and green color shades). Classification
accuracy is better for the random forest method, which is confirmed by
the analysis of metrics in Table 4. However, this method requires more
time for calculations, which contradicts the task stated in the study. The
support vector machine is worse in accuracy, but this deviation is
negligible, and the technique speed with its use is much higher, as is
seen from the graph.

Fig. 8 presents the calculation results for the RTS-96 system, and
Table 6 shows the time spent on the corresponding calculation and the
number of states indicated by the classifier as shortage-free. The Table
also includes the information on the range of values, as it is of concern
in the analysis of the results obtained.

Similar to the first stage of experimental studies, the result pre-
sented by the graph is ambiguous. However, the information of the
Table can be used to carry out a preliminary analysis. As in the case of
the 3-node scheme calculation, the best stabilization results are
achieved by the methods based on the Sobol sequences. It is more in-
teresting to compare the methods of random forest and the support
vector machine. As seen from Table 6, the range of variation in the
number of rejected states by the random forest method is quite wide,

which indicates strong dependence of the classification quality on the
initial data set, which is formed randomly. In turn, the total calculation
speed is directly proportional to the number of rejected states, and the
best time corresponds to the least number of rejected states. However,
this is not so important, because the random forest does not demon-
strate an increase in the calculation speed even with optimal para-
meters, and in combination with the Sobol sequences retards it. The
support vector machine is learned fast and provides sensibly accurate
results, the speed of power shortage calculation increases on the
average threefold without loss of the result accuracy.

We analyze the convergence speed of power shortage expectation
using the relative error formula (11). The results obtained by the
random forest method are excluded from the graph as contradicting the
problem statement. Fig. 9 presents the diagram of a change in the re-
lative error for the calculations performed.

The trend of the green-blue color in Fig. 9 shows that from the
standpoint of relative error reduction, the combinations with the Sobol
sequences are the most effective for power system reliability assessment
by the Monte-Carlo method.

6. Conclusion

The computational efficiency of the techniques and software for
power system reliability assessment is one of the criteria of their ef-
fective application to practical problems.

In the assessment of the EPS reliability using the Monte Carlo
method, one of the factors affecting computational efficiency is the
number of random states of EPSs that are necessary to achieve the re-
quired accuracy of the power shortage value. The reduction in the

Table 4
Operation time of combinations of the methods and the number of rejected states in the calculation of the test 3-node system.

Combination of methods Average time of work (sec.) The average number of rejected states

Mersenne twister (MT) 28.33520942 -
Sobol sequence (S) 29.45201483 -
Mersenne twister + Random forest (MT+RF) 30.80900955 1302
Mersenne twister + Support vector machine (MT+SVM) 24.99896854 1584
Sobol sequence + Random forest (S+RF) 31.61228132 1400
Sobol sequence + Support vector machine (S+SVM) 25.94910803 1778

Table 5
The values of model quality metrics based on the holdout data set.

Methods Accuracy F1-metric

Support vector machine 0.8945 0.9130
Random forest 0.9482 0.9650

Fig. 8. Power shortage expectation in the RTS-96 system.
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number of such system states will increase the speed and accuracy of
calculations overall.

The first stage of the study involved an analysis of two random
number generators for the formation of random EPS states: the
Mersenne Twister and Sobol sequences without using machine learning
methods. Calculations were performed for two test power systems using
the data from these generators. Expectedly, the results of the calcula-
tions indicated that the quasi-random Sobol sequence proved to be the
most effective generator of random states for assessing the EPS relia-
bility.

The second stage of the studies employed the machine learning
methods (support vector machine and random forest) to reduce the
number of analyzed power system states. The efficiency of both
methods and the technique overall were analyzed.

The analysis showed that both methods allowed reducing the
number of analyzed states necessary to determine the value of the
mathematical expectation of a system power shortage. In some cases,
however, this does not lead to a reduction in time expenditure. When
applying the random forest method in combination with the Sobol se-
quence, the time spent on calculations was higher than in the option
with the Sobol sequence alone, which is due to the low speed of the
random forest method (training and prediction). With the increase in
the size of the electric power system, however, this disadvantage is
reduced. Already in the calculation of the RTS-96 system, which con-
sists of 24 nodes, both machine learning methods showed a positive
impact on the calculation efficiency, i.e., reduced the number of ana-
lyzed random states of the EPS and calculation time. For this reason, the
proposed technique for the improvement of the speed and accuracy of

calculations can be evaluated as positive for power system adequacy
assessment.

Based on the results obtained, it can be concluded that the best
combination of methods for calculating the power shortage of EPS is the
use of the Sobol sequence combined with the support vector machine.
The obtained result improves the practice of EPS adequacy assessment
and allows us to move on to solving the problems of synthesizing the
reliability of EPSs, substantiating the level of reservation of generating
capacities, as well as the structure and bandwidth of the electric net-
work at a new higher level.
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