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Highlights: 

 Discussed on various optimization techniques used for wind farm development. 

 Critical comparative study is presented based on various performance parameters like 

algorithm complexity, computational speed, objective functions and optimization techniques. 

 Detailed analysis presented with Governing equations used for the modelling g of wind 

turbines.  
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Abstract 

The important interest and efforts devoted by industries and academic research institutions to electricity 

production from renewable and clean energy with the maturity of existed technologies justify the biggest 

exploitation of wind energy over the recent years. With the reduction in oil prices, renewable energy is way 

forward for efficient and environment friendly energy generation. Out of all existing available renewable 

energy, Wind Energy is the front runner owing to its ability of efficient power generation and to produce energy 

at large scale. Due to the non linear nature of wind energy, Optimization techniques are extremely critical as 

they are solely responsible for building an effective wind farm. Layout optimization is performed by using soft 

computing techniques and are extensively studied in the available literature. Therefore, this review paper 

highlights the significant research works of wind farm modelling using optimization techniques. This work also 

addresses the new approaches used in wind farm modelling. Further, it also presents a critical evaluation of 

existing research methodologies used for wind farm layout optimization. Hence, the objective of this work is to 

benefit scientists and new entrants in the field of modelling and layout optimization of the wind farm. 

 

Keywords: wind farm, renewable energy, modelling, optimization techniques, objective function. 

1. Introduction 

In today’s world, the atmosphere is getting polluted with carbon-dioxide and other global warming emissions, 

which trap heat and hence steadily increase the average temperature of the planet which creates a harmful 

impact on human health, environment and climate. On the other hand, many sectors of energy are facing a 

global recession due to the COVID 19 pandemic and also many other factors. A typical example of the above 

statement is the oil and gas sector, which is facing an appalling crisis due to fall in oil price per barrel. The 

world is focused on increasing renewable energy sources due to the reduction in oil prices. Renewable energy 

and oil/gas energy sources focus on different markets, economics of renewable energy are improving, the global 

dynamics of energy is changing, renewable energy is larger, cleaner and hence they provide a welcome diversity 

to the energy supply.  

 

Renewable energy is mainly used to supply cleaner and efficient electrical power. There are many types of 

promising renewable energy sources such as wind, solar, fuel cells; micro-hydro, etc. Among all, wind energy is 

now growing exponentially and has an impact with great potential. Electrical energy demand is met by means of 

wind turbine due to its multiple advantages like low cost and very robust in nature. 

 

In the modern world, the undisputed form of electrical energy generation is the wind energy. The growth of 

wind farms is enormous which grew in size and ratio from very small wattage to megawatts size. The 

conversion of wind energy to electrical energy involves primarily two phases: the first stage is the conversion of 

kinetic energy to mechanical energy for the wind generator of the shaft to be driven. The critical converting 

devices in this phase are the wind blades. The second stage is the mechanical energy captured by wind blades 

and are further converted to electrical energy via wind generators. The grid connection is highly driven by the 

converter, it is extremely important to maximize the performance of the first conversion, what can be done by 
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using variable speed generators as the conversion efficiency is very low [1].  The most sort after research in 

wind farm technology are performed on the areas, (a) wind farm layout optimization [2-5] (b) Modelling 

approaches of wind turbines [6-8] (c) Cost reduction (d) Grid planning and operation (e) Energy and power 

management [9]. 

 

Recently, a number of numerical tools are under development, some based on stochastic mathematical models, 

each presenting specific features in terms of accuracy, convergence, stability, robustness, and calculation speed 

[10]. Among the most promising methods which have applied wind farm layout optimization, are Greedy 

Algorithm [5, 121], Multilevel Extended pattern search algorithm [11] and Sequential convex programming 

(SCP) [12]. As of now, there is no single research article which summarizes the research of wind farm layout 

optimization. Hence, a detailed analysis of the existing technologies related to modelling techniques, wind farm 

layout optimization and new approaches adopted in wind farm technology are presented in this paper. This 

paper will also highlight the significant concepts and governing equations of the types of models in a wind farm.  

 

This work will also critically analyze the existing methodologies in wind farm technology and provide possible 

solutions. The objective of this paper is to provide a one stop solution to practicing researchers and new entrants 

in the field of wind farm modelling and wind farm layout optimization. The following sections are divided as 

follows: Sections 2 explains the modelling approaches used in Wind Farm Technology. Section 3 expounds the 

important inventions in objective functions. Section 4 elucidates the prominent works in wind farm layout 

optimization. Section 5 elucidates the novel approaches used in wind technology. Section 6 presents a Critical 

evaluation of existing research methodologies used for wind farm Layout Optimization and conclusion of the 

article is presented in section 7. 

 

2. Modelling approaches used in wind farm technology 

Wind turbines use the heavy winds to generate electricity. A wind turbine is a machine that has a rotor with the 

propeller blades. For the electricity generation, the blades are systematically arranged in a horizontal orientation. 

The wind farms are placed in areas with high wind velocity. As the velocity of the wind is higher, the blade spin 

will be faster, thereby increasing the rotor speed to transmit electricity to the generator. This produced electricity 

is supplied to different stations through the electric grid. A wind farm consists of many wind turbines that 

normally are 50 m long each in height [13, 14]. Air circulation increases with the increase in altitudes. Hence, 

Wind turbines are generally constructed at higher altitudes. It is noteworthy to mention that the mechanical 

power during higher wind speeds must be controlled and maintained. Fig. 1 illustrates the wind turbine system 

architecture. The figure illustrates the various parts of Wind turbine system such as the gear box and machine 

connected to the grid. The figure also highlights the stages of conversion such as primary conversion and 

secondary conversion. Jo
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Figure. 1. Wind turbine system architecture 

 

 

Figure. 2 Power output of Wind Turbine 

The basic characteristics of the wind turbine system are presented in Fig. 2. The gearbox mechanism is 

responsible for the conversion of low speed, high torque mechanical power to electrical power. This conversion 

of mechanical to electrical power is performed by the power electronic converters, transformers and circuit 

breakers [15]. 

 

2.2 Different modelling approaches used in wind farm technology 

Over many decades, there has been a genuine interest in Wind farm modelling research. The important types of 

wind farm modelling are broadly classified as follows and its detailed governing equations of each model are 

presented in this section. 

 

2.2.1 Governing equations in wind speed profile in the wind farm model 

The governing equations in wind speed profile of the wind farm model are detailed below [16]: 

Logarithmic Law 

   00 log/log zhzhuu refref                                                                                                               (1) 

Where 𝑢 − 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑,
refu refers to the speed of the wind at the reference height, 0z  refers to the  

ground roughness and 
refh is the reference height and ℎ refers to the hub center height. 

 

2.2.2 Governing equations in linear wake model 
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The governing equations and most significant equations in the linear wake model are as follows [6, 17-20]. 
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Where, 0u -  Speed of wind, x -  downstream distance from the wind turbine that generates the wake, 1r - Wake 

radius,  a -  Induction factor, 
TC - Thrust exerted on wind rotor by air, 

wR represents the radius of the wake 

region at a specified section along the crosswind, calculated by 

1rxRw   

Where, α = entrainment constant, 𝑟 = Turbine radius 

The wake flow equation can be given as follows: 
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where iu0  and 
ju0
 are the wind speeds at the thi and the thj  turbines positions, respectively. They are equal to 

the inlet speed  0u of wind farm.  
iju  is the wind speed at the wind rotor of thi turbine in the wake region of 

the thj turbine. TN is the number of wind turbines in wind farm. ir is the rotor radius of the thi  turbine. 
ijA is 

the rotor area of the turbine inside thi and the thj  turbine’s wake. 

The description and the governing equations of the other two models are detailed in Table 1. The prominent 

works by authors in wind farm models are detailed in Table 2. 

 

Table 1 Description of the model/ Governing equations in model 

Reference Type of Model Description of the model/ Governing Equations of the model 

[6, 23, 24] Objective Model  In this works, the authors have addressed the problem of multiple 

objectives by combining it into a single formulation. 

tot

N

i

P

iCost
Objective

T


                                                                              (7) 

The cost model is shown in the numerator and the denominator is the total 
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power output  

[7] Particle wake model In this paper, the authors have deduced the particle wake model which is 

primarily used to understand the momentum diffusion process. 

 

Table 2 Prominent works of authors in models used in wind turbine technology 

Reference Type of Make/Model of wind 

Technology 

Remarks 

[10] Turbine layout optimization 

model  

This paper presents a modified version of the Jensen wake model. 

Simulated data collected from six wind locations, all offshore, were 

used to conduct numerical experiments. 

[25] Wake interaction model The paper uses energy balance to create a mechanistic, linear model 

for the wake interactions. This method can be used with standard 

mathematical programming methods. 

[26] 5kW simulated wind power 

generator 

This paper describes a simulation system for the research and 

development of wind power optimization using grid-connected 

power generator. The simulations can produce fluctuant power that 

meets the demand of optimization of wind power flow systems. 

[27] Mathematical Model  The author addresses the design thickness of the airfoil, by 

increasing the thickness, better aerodynamic performance is 

observed. The optimal design takes into account the complicated 

requirements and still shows an overall improvement in the airfoil 

performance. 

[28] Surrogate Modelling The paper uses surrogate modelling to optimize the layout of 

hydrokinetic turbine layout. The method uses surrogate model 

construction, experiment design, simulations of computational fluid 

dynamics analyze the various parameter combinations and satisfy the 

optimal criteria at a very reasonable computational time. 

 

3. Objective function 

A correct definition of the objective function is essential to solve a complex non-linear problem. The following 

section discusses about the formulation of objective function. 

3.1 Energy cost minimisation 

The cost of the wind farm (WF) divided by the total power production [20], is widely used in literature and is 

the most commonly used objective function: 
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totP

Cost
EnergyofCost                                                                                                                                       (8) 

 

where ‘Cost’ represents the cost of the wind farm, Ptot is the total power production modelled by a simple 

function which only depends on the number of wind Turbines: 
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The cost of energy is extremely important. The power improvements, thereby improving energy efficiency in 

wind farm technology have eventually resulted in lower costs [21]. 

 

3.2 Maximization of Annual Energy Production 

The maximum of annual energy for a given distribution was investigated in the following references [32-41]. 

Integration of the wind turbine power combined with a wind speed distribution over the wind speed spectrum 

can be defined as the annual energy. 

   dVVfVPAEP

V

V


max

min

                                                                                                                       (10) 

where, P(V) is the power curve of the wind turbine, f(V) is the wind speed distribution. 

 

4. Wind farm layout using several optimization techniques 

Wind farm layout design optimization has taken number one priority in the recent times and soft computing 

techniques are being preferred to solve nonlinear problems compared to classical analytical optimization 

techniques. It involves several constraints like legitimacy and social issues, engineering and design that may be 

logistic, economic, technical or environmental [42]. The main area of concern is placement of wind turbines, 

optimization of objective functions for energy maximization and cost minimization. Additionally the constraints 

involve turbine proximity, farm boundary, initial investment, noise emission level, hub height, number of 

turbines and the type of turbine. The prominent works in optimization techniques using several optimistion 

techniques are detailed below. 

 

4.1 Genetic Algorithm 

Genetic algorithm is used to improve population of random candidate solutions, best known as chromosomes by 

repeated application of selection, crossover, and mutation operators. In every cycle, the fitness of the said 

chromosome in the population is estimated using an objective function. The genomes, also known as the 

decision variables of the designated chromosomes are changed after a series of crossover and mutation 

operators, to create new chromosomes for the subsequent generation. The crossover probability enunciates the 

probability of each designated chromosome to be mated with a different chromosome. Ideally, two parents 

produce two offsprings, with some exceptions [43]. 

 

There are primarily two methods, arithmetic and linear crossover. While two parents produce two offsprings in 

the first one, the two parents produce three offspring in the latter.  Once produced, the two fittest offsprings 

replace their parents in the population [44, 45]. The purpose of mutation is to generate new genetic material in 
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the population and preserve the population diversity. This usually amounts to changing a random part of a gene 

of an arbitrarily picked chromosome. The most widely used method is the uniform mutation operator where a 

random element of the chosen chromosome is switched to another feasible arbitrary value [44]. As only 

characteristics of fitter chromosomes have a higher chance of being passed on to the following generation, the 

gross fitness of the population betters over time. The algorithms continues until the maximum number of 

generations have been created or an acceptable fitness value has been attained. The authors have used the 

parallel selection method in multi objective genetic algorithm (MOGA) in which the initial step is to create 

some starting individuals arbitrarily. Following which the genetic algorithm will separate them into two equal 

halves, out of which one is used for calculation of farm efficiency and the other is for calculation of cost per unit 

power.  

 

A fixed percentage of the individuals will be picked for the crossover mutation, usually the random mate 

selection method in MOGA is deployed for this purpose. The highest probability of selections is given to the 

individuals with the best fitness in the sub-population, these designated individuals are then combined into a 

single population for crossover and mutation. While we cannot presume that with this selection method the 

fitness value in each generation will definitely improve, it will most certainly prevent false convergence or 

premature phenomena. This will, however, ensure that the MOGA will reach global search and optimization 

[46]. The downside of using random mate selection method is, one cannot prevent the participation of poorer 

individuals in the selection process, since the distance between the champion and medicore could have a large 

euclidean distance. Although, it does have advantages of avoiding premature as compared to other selection 

methods [46]. 

 

Related works: 

The authors in [2, 3] investigates the effect of pursuing different aspects of internal structural geometry as 

compared to a sequence of wind turbine blade design created with altering structural configurations. The main 

considerations of investigation are the geometry of the structural spar done by changing the width of the spar 

caps along with the number and location of shear webs that are inclusive if the span wise starting and ending 

location.  

In [4] authors developed a structurally optimized model for wind turbine composite blades considering a 

parametric FEA (finite element analysis) model and GA (genetic algorithm) model.  The idea of the 

optimization model is to minimize the mass of the composite blades with multiple criteria, constraint, like, 

number of unidirectional piles, thickness of shear webs and locations of spar cap which are considered as the 

design variables. The mass of the optimized blade has been lowered by 17.4% compared to the intial design, 

now weighing 228 kg, which indicates that blade mass can be considerably reduced by using the current 

optimization model. The model is also capable of perfectly determining the optimal structural lay-up of 

composite blades as demonstrated in the paper. 

In paper [6] the use of different hub heights for wind turbines is assessed. Using Genetic algorithm for various 

wind conditions proved that optimizing the height will yield more power with the same number of turbines. The 

below figure is plotted between power output (MW) and generations. Fig. 3 below clearly shows that with 
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increase in height, the output of power is higher. Further, the genetic algorithm with definitive point selection is 

implemented by author in [47].  

 

 

Figure. 3 Power output Vs generations 

 

4.2 Greedy Algorithm 

The layout of the wind turbine is optimised by the usage of the greedy algorithm [48]. Most of the research 

considered identical hub height for the wind turbine and used two dimensional grid system to identify the 

position of the wind turbines. 

 

Related Works: 

The author in [5] uses the greedy algorithm to explain the wind turbine layout optimization with multiple hub 

heights. The two models, linear wake model and particle wake model are used to estimate the wake flow 

calculation over flat and complex terrain respectively.  

Using the greedy algorithm over the genetic algorithm incurs low computational cost and gives better results, as 

the layouts with multiple hub heights can increase the total power output and reduce the cost per unit output 

significantly, essentially for complex terrain wind farms. The flowchart representation of greedy algorithm is 

presented in Fig. 4. The flowchart details each process flow of the algorithm. 

In greedy algorithm a set of resources are recursively divided based on the maximum, immediate availability of 

that resource at any given stage of execution. 

Two conditions define the greedy paradigm.  

 Each stepwise solution must structure a problem towards its best-accepted solution.  

 It is sufficient if the structuring of the problem can halt in a finite number of greedy steps. 

Important characterstics of greedy algorithm 

 There is an ordered list of resources, with costs or value attributions. These quantify constraints on a 

system. 

 You will take the maximum quantity of resources in the time a constraint applies. 
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 For example, in an activity scheduling problem, the resource costs are in hours, and the activities need 

to be performed in serial order. 

 

Figure. 4 Greedy Algorithm 

En , Er  are the set of normal and abnormal links in the road network, i = 1,2,3,…m; m is equal to the number of 

links belonging to Er. i = 1,2,3,. . .,m; m is equal to the number of links belonging to Er. Ie’ is the ratio of ci
e to  

ci
e’ it represents the importance of a given link e. ci

e  is system-wide travel cost after repairing i links and link e 

is repaired in the last. E is the set of all links in the road network. 

 

4.3 Multilevel Extended pattern search algorithm 

A pattern search can be defined as a purely deterministic search algorithm [49, 50] which uses a defined set of 

pattern directions to traverse potential solutions. To aid the escaping of local minima, attributes are infused 

stochastically into the search which are the extensions provided to the EPS.  

 

As a first step, a broad range of turbine locations is established using a randomized initial layout of turbines 

which do not specifically assign starting locations. Secondly, to avoid favoring individual turbine movement the 

search order is randomized. Lastly, to pick the weakest turbines, a popping algorithm is used and it tries to 

assign a new random location to the selected turbines until a certain number of attempts are complete or the 

superior global evaluation is used for the relocation of the turbine [49, 50].  

 

Related Works: 
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The authors in paper [11] discuss a system of modelling advances that can be used for computational 

optimization of wind plants. This technique involves accurate cost and power modelling, effects of varying 

atmospheric stability and partial wake interaction. This algorithm is used to validate this advanced modelling 

system for multiple wind scenarios. The multi level pattern algorithm is presented in Fig. 5. 

 

 

Figure. 5 Multi level pattern algorithm 

 

4.4 Particle Swarm Optimization (PSO) 

The PSO algorithm mimics the behavior of a swarm as a simplified social system, mainly inspired by the swarm 

intelligence of birds flocking or fish schooling [51, 52]. 

 

Related Works: 

The authors [53, 54] uses model predictive control and a binary particle swarm optimization (BPSO) system 

with time-varying acceleration coefficients (TVAC) to address the optimal placement of wind turbines within 

the farm. The aim being extraction of maximum turbine power output with a minimum investment cost, the 

BPSO-TVAC algorithm takes into account uniform and non-uniform wind speeds with variable direction 

characteristics and applies to a 100 square cells test site. 

 

The authors in paper [55] attempts to optimize offshore wind farm layouts, by optimizing the position of the 

wind turbines in the wind farm to ensure maximum energy production. A penalty function method is introduced 

in this paper to account for a restricted zone due to limiting factors of wind turbine placement like marine 

traffic, shipwrecks or seabed conditions. The particle swarm optimization algorithm with multiple adaptive 

methods (PSO-MAM) is a stochastic algorithm that can simulate a layout to find a feasible solution which can 

out-do the baseline layout of a reference wind farm (RWF). 
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The Unrestricted wind farm Layout Optimization (UWFLO) is a novel approach [56] which determines both 

optimal farm layouts as well as selection of suitable turbines based on the rotor diameter which will enhance the 

net power generation. 

 

4.5 Ant Colony Algorithm (ACO) 

Ant colony optimization (ACO) has been yet another algorithm developed to address discrete optimization 

problems [57], the algorithm reproduces the behavior of a real ant and the colony in the process of looking for 

food [58]. 

Related Works: 

The authors in [59] adapt the ant colony algorithm for maximizing the desired energy output, it takes into 

account wake loss which is determined by wind turbine location and wind direction. The results show this 

method produces better results than evolutionary algorithm. The ant colony algorithm is presented in Fig. 6. The 

flowchart details the steps presented in the algorithm. 

 

 

Figure. 6 Ant colony algorithm 

Characteristics of Ant colony algorithm 

The Ant colony algorithm mimics the real ant colony behaviour while they look for food. 

 Ants randomly explore the area to find food. 

 After finding a source, the ant returns back to its nest. 

 During traversing, ants leave a trail of pheromones. 

 Pheromone quantity increases according to food quantity 

 The follower ants of the first ant go after the pheromones deposited by the first ant. 

 As a result of this transaction, the deposition of the pheromone on the trail will be strengthened. 

 The quantity of pheromones in each traversal will evaporate. 
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 If there are two paths to get to the same source of food, the ant finds the shortest path between their 

nest and food with the help of the freshpheromones. 

The first step consists of initialization of the pheromone trail. Each ant constructs a complete solution to the 

problem according to a probabilistic state transition rule which depends mainly on the state of the pheromone. 

Finally, quantity of pheromone is updated in two phases; an evaporation phase where a fraction of the 

pheromone evaporates, and a reinforcement phase where each ant deposits an amount of pheromone which is 

proportional to the fitness of its solution. This process is iterated until a stopping criterion.It is shown in below 

in the form of pseudocode.  

Initialize m, T, best ant, 0ij  

Randomly generate m ants using 
   

    


iN

l
ilil

ijij
ijp

1
0

0








  

for t = 1 to T { 

for k = 1 to m { 

evaluate ant k 

if ant k better than best ant k 

best ant = ant k 

ijt - fitness of ant k if using assignment ij  

otherwise 0 

} 




 

m

k

ijtijtijt

1

1   

for k = 1 to m { 

Construct new ant k using 
   

    


iN

l
ililt

ijijt
ijp

1








                         

} 

} 

return best ant 

 

m = number of ants in population, T is number of iterations (generations), ij = portion of entire solution (trail), 

iN = neighborhoods of location i, l indicates number of neighborhoods, ijt = amount of pheromone on trail ij 

at time t, ijt = addition of pheromone on trail ij at time t,  = evaporation factor ( 10  ), ij = heuristic 

regarding trail ij,  ,   are relative importance of pheromone and heuristic respectively.  

4.6 Sequential convex programming (SCP) 

SCP is applied to maximize the objective function and to study the optimal wind farm layout problem. 
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Related Works: 

The energy production of downstream wind turbines in a wind farm reduces due to wind speed and elevated 

levels of turbulence caused by wakes from the upstream wind turbines, which reduce the overall efficiency of 

the farm due to the wake interference. The authors in [12] present an efficient solution to optimize the placement 

of wind turbines to generate maximum wind farm power output. 

4.6 Random Search Algorithm 

The random search (RS) algorithm for wind farm layout optimization in the previous study [60] was based on a 

continuous formula and refines the results obtained by GA [61] for an ideal test problem presented in [20]. 

While in this study, adaptive mechanisms are added to the algorithm to the same problem and subsequently for 

the Horns Rev 1 WF. To minimize the computational cost, a strategy similar to that adopted by Wagner et al. 

[62,63], is applied to evaluate the layouts. 

Related Works: 

The random search (RS) algorithm [64] is based on a continuous formulation which begins from an initial 

feasibility layout and proceeds to improve the layout iteratively in the feasible solution space by adding adaptive 

mechanisms. 

4.7 Evolutive Algorithm 

Evolutive algorithms mainly consider two operators to generate new individuals or potential solutions. The 

method is the roulette wheel wherein the parents with the highest NPV have a higher chance of selection. The 

paper describes five types of crossover operators applied in a random way [65]. 

 

Related Works: 

The authors discuss optimum wind farm configuration problem along with evolutive algorithm to optimize the 

layout [66]. The results are compared with previously published works and test cases used as performance 

evaluation of the proposed algorithm.  

5. Novel approaches in Wind Farm Optimization 

This section will describe the approaches that will use optimization techniques along with a specific method. 

This section will help the readers to understand the usage of specific methods such as mixed Linear 

Programming methods and mathematical programming techniques. Also, this section highlights more practical 

case studies of usage of optimization techniques in Wind Farm modelling. 

 

The authors in [67] have applied wind farm optimizations for lands that are owned by different people which 

includes a traditional penalty technique that depends on the type of wind farm land division. The traditional 

approach could be quite cumbersome in the case of complex divisions, a new method is discussed in this 

reference. The approach is to repair infeasible solutions prior to fitness evaluation rather than having a 

penalizing term during evaluation of the fitness function. Results from three types of farm divisions were 

compared to prove the efficacy of the method proposed. In [68], the authors developed a novel mathematical 

programming technique for layout optimization. To account for the multi-turbine wake effects the authors 

consider the Jensen's wake decay model.  
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In [69], A mixed Integer Linear Programming method (MILP) should be used to solve two fold problems that 

deal with investment cost and operation cost, this is a better approach than solving them as independent issues. 

The MILP is a reliable and effective approach. Cost of energy loss must not be neglected as they influence the 

financial results, the expense is comparable to cable laying and influences the design approved for the internal 

network. The algorithm has practical use in the design process of the wind farm.  

 

In [70], a brand new method which involves simultaneous layout plus control optimization are followed by the 

authors. The results are compared to various other approaches as layout and control optimization using both grid 

based and unrestricted coordinate design methods for both ideal and also realistic wind conditions. The 

technique yields close to 1-3kW more power for each turbine as compared to self optimum control technique 

whereas unrestricted coordinate method produces 1-2 kW more power for each turbine turbine when compared 

with the grid based method. 

 

In [71], the authors consider the landowner participation as well as a number of turbines as a binary string 

variable, in cases where continuous availability of land  for wind farm construction cannot be assumed. The 

authors provide an enhanced levelled wind farm cost model which takes into account remittance fees to decide 

the optimal placement of turbines in three landowner involvement scenario and couple of land-plot shapes. The 

system-level cost-of-energy (COE) optimization model is tested for the two different shapes of the plot, i.e., 

equal sized square plot and unequal rectangular plots. The results produced were realistically comparable to the 

original COE data. Irregularly shaped land plots too are handled easily by the model and result show landowner 

remittance fee accounts for close to 10% of all the operating costs. Larger plots always incur higher remittance 

costs. This particular model helps wind farm developers locate crucial plots for successful layouts and optimal 

positioning of the turbines with actual estimates of profit and cost.  

 

In [72], the current trend involves researchers focusing on advancing optimization algorithms and enhancing 

wind farm models based on two designing methods, i.e., grid based method and unrestricted coordinate method. 

These two methods are explained in the paper by taking three unique grid situations for producing best 

optimization solutions using grid based methods and pitched against the results obtained from the unrestricted 

coordinate method. Additionally, cost models like Mosetti's and Chen's model are employed to study the impact 

on the results of optimization.  

 

In [73], A parametric aerodynamic optimization study is discussed to produce the blade design for a unique 

implementation of a vertical axis wind turbine, the technique was put on to enhance the cross-sectional and two-

dimensional geometry of the blades in the turbine. In order to compare the geometries, a non dimensional 

coefficient of energy was used as the fitness function, to assess the blade performance unsteady viscous 

computational fluid dynamic simulations were employed as well as to accommodate the transient nature of the 

given physical process moving meshes were considered. For the blade cross sections a unique parameterized 

approach which involves circular arcs was developed. The entire optimization process was created in 2 stages: 

Experiments designed based on response surface fitting to explore the parametric design space and use of 

Nelder Mead simplex gradient based optimization procedure. 
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In [74], the current model uses turbine induction factor as a function to calculate the wind velocity for the wake 

behind the turbine, this factor is usually considered as 0.324 in all previous approaches. But as an improvement 

the induction factor is calculated for the wind turbines based on Blade Element Momentum theory. This 

accounts for the blade profile, wind speed and the angular velocity of the turbine. The important conclusion of 

this method is that varying blade profiles and differing operational conditions obtain different induction factors, 

this greatly affects the calculated power gain from a farm. Hence, influencing the farm layout in the 

optimization process.  

In [75], When considering an offshore wind farm, the port should be installed and designed in an efficient way 

to minimize factors like transportation cost of required components within the port. Two MILP are developed to 

establish the optimized port layout in which the shape of the internal areas present in the port maybe rectangular 

with the possibility of other dimensional configurations. The final shape of the required port area may be treated 

as a convex or a concave polygon. For small-sized problems, MILP can be used while for medium-sized 

problems while for medium sized issues, Meta heuristic methods like variable neighborhood search (VNS) can 

be applied. These methods are used on random data sets. 

 

In [76], the authors approach the optimum layout design for onshore farms in which the wind load is decided 

based on stochastic fields. Metaheuristic search algorithms designed around discrete variants of harmony search 

are employed. Wake effects and influence of wind direction are considered to solve the optimization problem. 

The results show the efficiency and applicability of putting together metaheuristic optimization along with 

stochastic methods of implementing wind loads for an optimized wind farm layout. 

 

In [77], The author covers an approach that include both warm and cool thermal packed beds where the heat 

engine as well as pump function on a reciprocating Joule cycle which makes use of argon as dealing solution. 

Results mainly focus on trade surfaces for complete efficiency, power and energy density, this is conveyed as 

fairly dull effectiveness Vs. energy density trade off. This is used to guarantee a heightened storage density that 

could be accomplished by using a reduced efficiency penalty. Loss thanks to irreversible heat transfer and 

pressure fall within the winter reservoir are negligent. Hence, the effectiveness is primarily affected by 

processes of expansion and compression. 

 

In [78], Computational fluid dynamics is used to simulate the output of two straight-bladed vertical-axis wind 

turbines and further analysed and optimized by adapting the Taguchi method. There are various factors 

considered like the incoming flow angle (b), turbine spacing (S/d), tip speed ratio (k), blade angle (/) and 

rotational direction (RD). In addition, there are four levels taken into account to influence the output of the dual 

turbine system. Based on this, an orthogonal array of L16 is designed. The factors stated above are ranked in the 

order of the strength as k > b > RD > S/d > /. After analysing the signal-to-noise (S/N) ratio, it is deduced that 

the five factors can be optimized to maximize the power generated by the system, and this optimum solution 

occurs at k=2, b=120 either counter-clockwise or clockwise, /=0 and S/d =3. The flow velocity can be enhanced 

in the regions that are beyond, between and beyond the two turbines but drops significantly in the wake regions. 

As compared to a single turbine system, using the optimum conditions and factors for the dual turbine system 

can improve the mean power coefficient by 9.97%.  
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In [79], the stability is discussed by the authors and reactive power management through an isolated hybrid type 

of the Offshore wind-diesel-tidal turbine, this system is prone to losing stability due to uncertain input 

parameters and load, hence making reactive power management an urgent requirement. This power management 

is made possible through the use of FACTS devices.  

 

In [80], the authors describe a maintenance model which will evaluate the joint redundancy as well as formulate 

the imperfect block opportunistic model, hence reducing the loss of load probability and the total life cycle cost 

for a wind farm. The approach is to enable different thresholds of reliability for imperfect maintenance that 

include failed and working turbines, preventive and proactive dispatching of the maintenance team. 

Additionally, to evaluate the performance metrics of the farm like the various types of turbines, delays in the 

maintenance, activation, duration and considering the limitation on availability of maintenance teams. 

Sensitivity analysis is performed on this data and the multi-objective particle swarm optimization algorithm is 

used to drive pareto optimal solutions. A comparative study with the current policies show the advantages of the 

proposed system.  

 

In [81], The application discussed in this paper addresses a gradient based optimization algorithm to solve 

previously constrained physical model. In every iteration, the performance and flow of array configuration are 

predicted using a two-dimensional finite element shallow water model. Using the fraction of time used by the 

flow the power is extracted using the turbine position and tuning parameters. The solution is derived by solving 

the associated adjoint equations. The method is designed to backtrack the computation to tuning parameters and 

turbine positions, making the gradient almost independent of the number of turbines. 

 

In [82], the authors present a non-linear mathematical programming model to solve land-use constraints and 

other heavy constraint practical problems using a continuous-variable layout optimization of the wind farm. This 

effective method makes use of the accurate gradient data pertaining to the problem constraint and objective. The 

results are then compared to the genetic algorithm in certain wind farm layout optimization test cases. When the 

method is applied to cases of high dimensionality and constraints proves effective reduction in computational 

cost and an increase in wind farm efficiency.  

 

In [83], the paper talks about a hybrid evolutionary method  or a quadratic assignment problem-genetic 

algorithm to solve restrictions due to a turbine arrangement in farms with the candidate selection approach. 

Initial candidate point selection approach discussed, is adapted by four cases to show optimal design efficiency. 

Along with previously addressed wake effects, rotor diameter and turbine hub height, the algorithm accounts for 

restrictions on prohibiting places for placement, load bearing capacity and changing wind direction and velocity. 

The approaches show a 3% improvement in efficiency for one case and reasonable impact on the remaining. 

 

In [84], The author propose a definite point selection algorithm and an area rotation method to ascertain optimal 

dimensions for the wind farm, thereby facilitating the farm to face maximum free stream velocity. The points 

are used for the placement of the turbines for maximum efficiency while allowing for the minimum safety 
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operation distance. This method has the potential to identify zero-wake effects points in the farm. This provides 

better overall power for a fixed number of turbines as compared to previous methods.  

 

In [85], The paper describes the optimization of blade development process by considering the trailing edge flap 

controllers and individual pitch to estimate the impact they have on energy cost. The parameters considered are 

twisted, blade chord, material distribution, width of the spar cap and also includes costs of the turbine to create a 

mass model from the present simulation codes. Constraints considered are fatigue damage, resonant frequency, 

rotor thrust and ultimate stresses. NREL 5 MW was used as the reference turbine to estimate the gain of this 

optimization, estimating to 1.05% levelized cost of energy with collective pitch control and 1.17% with 

individual pitch control. Using trailing edge flaps additionally increases it to 1.27%. The main parameters of 

consideration for optimizing the design are ultimate stresses in the spar cap, rotor thrust and blade deflection.  

 

In [86], particle filtering approach is discussed which describes an optimized model for wind farms that have 

least wake effect and most power generation, although the constraints are the farm boundary and gap between 

two adjacent turbines which are factored into the solution. It has been used to optimize cases with different wind 

speed and direction distribution. This method shows results comparable to evolutionary strategy and colony 

algorithms discussed above. 

 

In [87], deep learning can be used in Wind farm optimization. The primary contributions of the experts are 

automated suggestion process for harm detection in drone inspection pictures, accuracy in the suggestion model 

attained through skilled details augmentation and publication of wind generator inspection information sheet. 

Vestas is one of the leading companies in R&D of Wind farm technology. Vestas product portfolio covers all 

wind classes across the world and ambition to lower the cost of energy faster than anyone in wind energy 

through various optimization techniques [88]. The author in [110] presents a novel approach based on the 

characteristics of all Wind turbines effectively available in the market, thus mainly focussing on Wind turbine 

selection rather than on mere wind turbine best allocation. 

 

To conclude, this section outlays the various novel works carried out in the field of Wind farm optimization. 

6. Critical evaluation of existing research methodologies used for wind farm Layout Optimization  

Due to the ever increasing power demands and concern over the environmental impact of conventional fossil 

fuelled power plants, Wind energy has rapidly developed [111]. Wind energy has experienced an amazing 

expansion in the previous years. The global collective capacity of wind power development has amplified 

twenty times in a 10 year period and is anticipated to get much more quicker in the future [89]. Most developed 

countries are in the mission to produce 20% of electricity by wind energy by the year 2030. Hence, wind energy 

is the next potential replacement source of clean energy.  

Wind Farm optimisation is very important in offshore platforms. Accurate optimization of wind farms in 

offshore platforms help in high cost reduction and also energy savings. There are many works from authors 

[115-120] which highlight the importance of energy yields based on control strategy and accurate wind farm 

layout optimization. 
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It is important to mention that there is very little uniformity of wind farm modelling proposed by all researchers. 

Also, there is no in-depth information about the constraints used and codes of the various algorithms. Also, the 

manufactures data sheet gives only limited values. This section will present an evaluation of all the research 

performed on wind farm layout optimization. The performance parameters such as (1) algorithm complexity, (2) 

Convergence speed and computational domain, (3) soft computing techniques, (4) comments on wind farm 

optimisation using MPPT approach, (5) hardware implementation, (6) Cost statistics of wind farm optimization 

are selected to generally categorize the methods. Table. 4 summarizes all the discussed optimisation techniques 

into catergories such as convergence speed, Wind Behaviour, complexity level, computational domain and 

Hardware Implementation. 

 

6.1 Cell Technologies 

There are five types of modelling approaches used for wind farm technology. The first type of model is the 

wake interaction model which is linear or mechanistic in nature. Most authors have used the linear wake. The 

other four types of models namely the turbine layout optimization model, simulated wind power generator 

model, mathematical model and surrogate model are not widely used for wind farm layout optimization as it is 

more complicated in nature for real time implementation. 

 

6.2 Convergence Speed and computational domain 

The primary cause is the fact that the dynamic and static characteristics of large scale wind turbines differ from 

the traditional power plant systems. Thus, novel theories for modeling wind generator methods are required. 

Optimization techniques are a solution to solve this complex problem due to its non-linear and dynamic nature. 

Hence, optimization techniques with faster convergence speeds are necessary. 

The convergence quickness is very dependent on the specific set of constriants. Hence, it is noteworthy to 

mention that conventional algorithms and methods is very limited as known set of constriants and values are 

used. If we deeply analyse we can also understand optimization techniques are comparable to adaptive 

conventional algorithms in terms of performance. It is due to changes in steps, constraints and values, we notice 

an enhanced and better performance. In [2-4] GA is implemented for standalone wind systems; convergence is 

accomplished at less than 0.3s with less steady state oscillations. Recently new domains of evolutionary 

algorithms have emerged to handle Wind Farm applications. Among all the algorithms presented in the previous 

section, the greedy algorithm [5, 121] stands tall in terms of convergence value and It is noteworthy to mention 

that theoretical error in this method is 0.0001%. In the evolution algorithm [65] the convergence characteristics 

are achieved in very less generations and very minimum computational effort.  

There are four types of objective functions used for wind farm layout optimization. The first objective function 

is the minimization of the cost of energy which has been predominately used in most papers. The second 

objective function is Maximization of Annual Energy Production, the third objective function is Minimization of 

Blade Mass and the fourth objective function is multidisciplinary optimization. Minimization of the cost of 

energy is the objective function used in most papers due to its manifold advantages such as computational speed 

and less complexity compared to the other objective functions. 
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6.3 Algorithm Complexity 

The complexity ranking for soft computing techniques on the basis of algorithm complexity can be expressed in 

terms of the amount of computation involved, complexity and number of steps, although this would be an 

indirect comparison. Essentially, multilevel extended pattern search algorithm occupies highest complexity 

ranks while factoring in the computational time and memory. 

According to procedural and implementation complexity the following soft computing wind farm optimization 

layouts techniques are ranked. (1) Multilevel extended pattern search algorithm [11] (2) Greedy Algorithm [5, 

121] (3) Ant Colony algorithm [58] (4) Quadratic Interpolation Optimization [90] (5) Particle Swam 

optimization [53] (6) Binary Particle Swarm Optimization [54] (7) Genetic Algorithm [2, 112] (8) Definite Point 

Selection [91] (9) Evolutive algorithm [92] (10) Random Search [93] (11) Simulated Annealing [94]. 

 

6.4 Comments on soft computing techniques 

PSO has been employed to solve the majority of the control issues of energy development for MPPT or perhaps 

Maximum Power Point Tracking. This is completed for each fixed and adjustable speed wind turbines, the 

concept is usually to estimate the correct tip speed ratio for adjustable wind generator and rotor velocity for 

repaired wind turbines to produce optimum energy annually [95]. Additionally, PSO shows simpler 

implementation and faster convergence compared to GA [96]. The best way to go is Hybrid algorithms to 

address the complexity of power system problems. Existing algorithms take considerable computational time to 

provide in-depth analysis, while what essentially is required is a turn around time in milliseconds. This prospect 

of parallel processing has great scope for improvement [97]. Power supply systems must be reliable as they are 

critical for renewable sources that mainly depend on the weather [98], hence digital control [99] or intelligent 

control based on Neural Networks [100] [101] should be used as control strategies for the optimal sizing of 

renewable generators.  

 

6.5 Comments on Wind Farm optimization using MPPT approach 

Most wind farm optimizations are conducted making use of the optimum power point method. It is conducted 

using the wake design and is very associated with distant relative positions of the wind generator and input wind 

velocity. Thus, additionally, it justifies the choice of the wind farm area. Installation and wind turbine placement 

is dependent on the wind direction [105]. The wake loss can go down when the distance between wind turbines 

along prevailing wind direction must be greater compared to the vulnerable wind direction [106]. 

 

6.6 Hardware Implementation 

The authors in [107] present a series of studies of various optimization techniques showing processor speed, 

function calls, number of cores used, and total Random Access Memory (RAM) installed in the system. The 

inference deduced from this study is the conventional algorithms such as the basic genetic algorithm and simple 

particle swarm optimization approach are simpler, less complex and require less memory. Whereas advanced 

algorithms and methods such as preconcoditioned sequential quadratic programming require higher memory but 

have faster convergence. It's also noteworthy to point out that the gradient based strategies have done much 

better in finding the relative optima particularly for scaled-down wind farm sizes. Also, latest research shows 

that wind farm using optimisation techniques are extensive in the offshore region [102]. The energy production 
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in offshore wind farms are highly dependent on the model type (wake interaction model, turbine layout 

optimisation model, simulated wind power generator, mathematical model and surrogate model), control 

strategy and optimisation technique [103-104].  

 

Hence, the algorithms categorised are easy, moderate and difficult in Table. 4. This categorisation is based on 

the number of steps the algorithm takes for execution, computational time and convergence speed. Hence, the 

algorithms with least number of execution steps, least computational time and faster convergence speed is 

categorised as ‘Easy’. The algorithms with high number of execution steps, high computational time and slow 

convergence speed is categorised as ‘difficult’. 

6.7 Cost statistics of Wind Farm Optimization 

Table 3. Cost element contribution to CAPEX, DECEX, and OPEX 

Cost element  CAPEX DECEX OPEX Sensitivity to output 

Turbine supply      ✓                -               -  Low  

Turbine Installation      ✓                -               -  Medium  

Foundation concept      ✓                -               -  Medium  

Operations and maintainence   -                -               ✓  Medium  

 

The algorithmic optimizations have been thorough in the prior sections. This section will detail on the price 

degree optimizations on Wind Farm. The estimated price of wind farms is based on the following factors such as 

the turbine supply, turbine installation etc. Each cost element is decided to becoming a part of the capital 

spending (CAPEX) and the functional expenditure (Decommissioning expenditure or opex) (DECEX) [109]. 

  

6.7.1 Turbine supply 

The rotary engine costs are decided based upon the worth per turbine in concert with tower. The turbine 

producers have furnished these values through various considerations with the policy makers of the offshore 

wind business. This value thus does not vary due to the layout unless the whole range of turbines or perhaps 

invest capability changes. 

 

6.7.2 Turbine installation 

The rotary engine installation costs are backed promote values for vessel costs as well as capacities. These costs 

are modelled by scheming the anticipated time required to invest all of the turbines at the specific locations. The 

value design differs from typical methods through the work of the algorithms. 

 

6.7.3 Foundation concept 

The cost of transition piece and delivery of an invented foundation to the set up port are embodied by the 

foundation conception prices. Wind power facility layout improvement tools are generally deployed in first 

stages of the wind farm design at the objective elaborate the value of soil testing. Soil surveys are very crucial 

prior to the assembly of the wind farm as soil that is loose is able to damage or perhaps collapse the wind farm. 

Hence, economical models are needed dependent on correct soil surveys. 
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6.7.4 Maintenance and operations 

The maintenance and operations costs are supported anticipated maintenance and operations expenses, is within 

the 5-100 MW to 1000 MW. The maintenance and operations costs are classified as operational expenditure as 

these are incurred annually during the time of operation. Fig. 7 details the areas of concentration to reduce and 

optimise wind farm cost. 

 

Fig. 7 Cost effective wind Farm structure 

 

6.8 Future research trends in wind farm technology  

Within the last 15 years, maturity has been reached by turbine technology. The developments in horizontal 

turbine performance methods as well as strategies are able to end up to more cost reductions and within the near 

future, wind energy will have the ability to replace Gas and Oil. The main conclusion that will be obtained from 

this particular assessment would be that the amount of analysis documents that will utilize optimization 

strategies to unravel for the maximum horizontal turbine blade, aerofoil type and rotor like challenges have 

exaggerated significantly in the recent past. The authors anticipate long haul optimization challenges are likely 

to be set as multi disciplinary problems. Thus, to place the final remarks, the writers have broadly classified the 

future research trends in wind farm technology. 

1. The majority of the papers presented illustrates the works contemplating optimizing the power system 

topology and the mechanics topology. The two factors are co related that ought to be considered at 

exactly the same period in wind farm planning stage, therefore, in the future, a general cost effective 

wind farm may be found. Efforts should be put on the information exchange, along with an alternative 

management system to verify the collaboration between different sections. General electric along with 

the wind farm industry is switching to some digitization stage where together with the assistance of 

analytics and data for creating superior design for better problem solving. Customized aerodynamic 

efficiency and analytics platform upgrades the trouble shooting and enhances better and efficient usage 

of the wind Farm [108]. 

2. Exhaustion load is the change seen in a material under the influence of stress created during cyclic 

stacking. It causes the decrease of wind farm lifetime because of the wake turbulence. In the event that 

closer dispersing is orchestrated between two Wind turbines, the weakness burden will increment. 

Expository models are expected to assess the weariness heap of the entire wind farm in the future. 
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3. Unwavering quality is a significant factor for the exhibition of wind farm at Offshore. Since the activity 

and support is expensive and tedious for offshore wind farm, it is important to have a safe electrical 

framework. In any case, greater unwavering quality consistently reacts to greater venture. Henceforth, 

the electrical framework configuration should find the trade off as indicated by the down to earth 

necessities. 

4. Heuristic calculation and scientific programming strategy are both pertinent in fathoming the wind 

farm enhancement. For wind farm with a predetermined number of Wind turbines, numerical 

programming strategy has its one of a kind focal points as fast convergence and robustness. The 

improvement of offshore wind farm is towards enormous limit within excess of 100 Wind turbines. In 

such a case, the heuristic calculation will show its preferred position since it can get another ideal 

arrangement quicker, and adopting innovation can be effectively received to additional computational 

speed. 

5. Wind farm noise control is another area interest in the present trend and will continue further [114]. 

Previous research on wind farm layout optimization has been generally aimed at achieving the 

minimum investment costor maximum captured energy. The approach in [114] focuses on an optimal 

layout for a wind farm considering its noise, without sacrificing power production. 

Table 4. Summary of Optimization Techniques in Wind Farms 

S. No Name of the method Convergence 

speed 

Wind 

Behaviour 

Level of 

complexity 

Computational 

Domain 

Hardware 

Implementation 

1 Genetic algorithm [2, 3, 4, 

6] 

Normal Mean Moderate Discrete Difficult 

2 Particle swarm  ptimization 

[51, 52, 113] 

Good Mean Moderate Continuous Moderate 

3 Binary Particle swarm 

optimization [54] 

Good Mean Moderate Continuous Moderate 

4 Multilevel extended pattern 

search algorithm [11] 

Good Mean High Continuous Difficult 

5 Greedy Algorithm [5, 121] Good Mean High Continuous Moderate 

6 Ant Colony Algorithm [58] Good Mean High Continuous Moderate 

7 Random Search Algorithm 

[93] 

Good Mean Low Continuous Easy 

8 Evolutive Algorithm [65] Good Mean Moderate Continuous Moderate 

9 Definite point selection [84] Normal Mean Moderate Discrete Moderate 

10 Quadratic Interpolation 

Optimization [90] 

Normal - High Discrete Difficult 

11 Simulated Annealing [94] Good Mean Low Not Specified Easy 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



7. Conclusions 

Wind farm increasingly attracts worldwide attention due to its contributions in reducing carbon emission as well 

as the potential value of higher energy production efficiency. In this paper, the most important papers on wind 

farm layout optimization techniques are systematically reviewed. The concepts behind types of models used in 

wind technology are highlighted as well. The different works on soft computing techniques for wind farm layout 

modelling are elaborated in detail. In the critical evaluation section, the research methodologies are reviewed in 

terms of base factors such algorithm complexity, computational speed, objective functions, optimization 

techniques, cost statistics and hardware implementation. Hence, this paper will be useful to the researchers and 

new entrants as it is one step solution for the research of wind farm layout optimization. 
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