
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Implementation and development of an offline co-simulation testbed for
studies of power systems cyber security and control verification

Eman Hammada, Mellitus Ezemeb, Abdallah Farraja,⁎

aUniversity of Toronto, Toronto, ON M5S 3H7, Canada
bUniversity of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada

A R T I C L E I N F O

Keywords:
Smart grid
Offline co-simulation
Cyber security
Control
Testbed design and implementation
Cyber-physical systems

A B S T R A C T

Smart power systems have recently shifted to accommodate distributed control systems, renewable sources of
energy, consumer-centric energy management systems, and active distribution systems. The smart grid evolution
is modeled by the integration of power systems and a communication network overlay to facilitate a bi-direc-
tional flow of information and energy in the grid. This article provides a detailed description of an offline co-
simulation testbed for smart grids, that is developed by integrating well-established power and communication
systems simulators. The testbed development approach, setup and implementation are described at a detailed
level to enable similar test-bed developments. The developed testbed is envisioned as a tool to help smart grid
researchers with the study of relevant research problems such as assessing power system resilience against cyber
attacks and threats, and verifying the performance of cyber-enabled control schemes.

1. Introduction

Smart grid stakeholders continue to invest in employing commu-
nication systems and infrastructure that enable more flexible, efficient
and reliable grid operations and control. By facilitating consumer-cen-
tricity and the integration of renewable resources within smart grid
systems, the landscape of power systems operation is changing espe-
cially in terms of the flow of both information and power. Given the
rapid evolution of smart power systems, it is critical that a rigirious
investigation of the impacts of (cyber) information and communication
technologies (ICT) on (physical) power systems and vice versa be
considered by the research community [1–3]. Earlier research studies
simplified the impact of communication network on a smart grid system
as time delay to be accounted for within the control loop; however, this
has proven to be insufficient in terms of investigating the cyber-physical
coupling within the smart grid [4,5]. Interfacing existing ICT and power
system simulators (termed co-simulation) is thought to be a practical and
realistic approach to represent their smart grid interactions [6,7].

The introduction of recent interoperability guidelines and standards
for smart grid development attests to the critical need for secure and
sustainable operation of the cyber and physical subsystems. For ex-
ample, the IEEE 2030–2011 standard provides principles for smart grid
interoperability of power and ICT components [8,9]. This standard
presents a system of systems view of the smart grid with three parts:

power systems, communication, and information technology. As illu-
strated in Fig. 1, this high-level architecture inspires our proposed co-
simulation testbed consisting of analogous abstractions.

Typically, the operation of smart grid power and control compo-
nents can be described with well-defined mathematical formulations;
however, the same cannot be said for the accompanying ICT system
because of its often (unpredictable) stochastic behavior and event-
driven layered protocol structure involved in data transmission. This
motivates the need to combine existing communication and power si-
mulators to enable formal and realistic studies including the verifica-
tion of cyber-enabled control and analysis of cyber security threats and
attacks. Hence, there has been a growing research interest in develop-
ment of smart grid co-simulators. Approaches for co-simulation devel-
opment can be categorized into two main approaches from an archi-
tecture perspective: 1) tool-based approach; where the test-bed is
focused on integrating a specific set of simulators based on the under-
standing of tools architectures and interfacing capabilities. 2) A plat-
form-based approach; where the focus is on developing a common co-
ordinating framework that adopts a more standardized interfacing to
support different simulation tools. The first approach is often adopted
by researchers who have a known limited set of tools and require more
understanding and control over subsystems interactions. The second
approach is appealing for researchers with more complex simulation
environments and studies that require the flexibility of a systematic

https://doi.org/10.1016/j.ijepes.2018.07.058
Received 27 March 2018; Received in revised form 13 July 2018; Accepted 24 July 2018

⁎ Corresponding author.
E-mail addresses: ehammad@ece.utoronto.ca (E. Hammad), mellitus.ezeme@uoit.net (M. Ezeme), abdallah.farraj@utoronto.ca (A. Farraj).

Electrical Power and Energy Systems 104 (2019) 817–826

0142-0615/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2018.07.058
https://doi.org/10.1016/j.ijepes.2018.07.058
mailto:ehammad@ece.utoronto.ca
mailto:mellitus.ezeme@uoit.net
mailto:abdallah.farraj@utoronto.ca
https://doi.org/10.1016/j.ijepes.2018.07.058
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2018.07.058&domain=pdf

interfacing approach without being involved in the details or archi-
tecture of either interfacing subsystem.

There has been a momentum of research into both approaches, a
survey in [10] elaborates on some of the developed testbeds. Functional
mock-up interface (FMI) is a popular framework that is used in plat-
form-based co-simulation approaches [11]. The framework defines a
standardized interface to integrate components of complex cyber-phy-
sical systems. High-level architecture (HLA) is another standardized co-
simulation architecture developed to link different simulators into a
distributed environment federation [12]. The ptolemyII platform-based
framework is developed using hybrid-systems theory to enable the si-
mulation of heterogeneous systems [13]. Further, other software tools
are developed that utilize multi-agent architectures to integrate the
simulation of different subsystems. Examples here include Multi-agent
Environment for Complex SYstem CO-simulation (MECSYCO) [14], and
Mosaik [15] which was developed with a focus on large scale smart grid
systems.

In this work, a tool-based approach is adopted because there is a
defined set of accessible simulators to use, and a more control on the
interfacing between the chosen simulators is preferred. Further, the
developed testbed aimed to simplify its approach to enable other re-
search teams to quickly reproduce similar testbeds.

An example subset of previously-developed smart grid co-simulation
testbed is captured in Table 1. The table summarizes available tools
from both domains (cyber and power) and the research problems stu-
died using these testbeds. The EPOCHS testbed [16] is developed using
a multi-agent approach based on the HLA architecture and run-time
infrastructure (RTI) middleware [16]. The testbed is among the first to
adopt a platform-based approach and is provided as an open-source to
interested researchers. GECO [17] presents a tool-based co-simulation
testbed that embeds a discrete events scheduler into the power simu-
lator for events coordination and data exchange. A GridLAB-D based
integrated simulation engine is described in [18] where a middle in-
terfacing and coordinating layer is developed to be shared between
GridLAB-D and NS3. The ORNL power system simulator presented in
[19] follows a similar tool-based approach where the ADEVS is

developed as a discrete events wrapper around the power simulator
THYME. ADEVS defines and coordinates the interfacing between
THYME and the OMNeT++ communication simulator. In GridSim
testbed [20] the authors develop their own data delivery module de-
noted GridStat, and integrates the power simulator TSAT within the
testbed. A SCADA Cyber Security Testbed integrating PowerWorld and
RINSE is illustrated [21]. The testbed implements a protocol converter
that is envisioned to enable interfacing with hardware systems/com-
ponents.

A realtime co-simulation testbed developed in [22] integrated RTDS
realtime digital power simulator with hardware controllers, relays and
real Ethernet network. The approach is made possible by the interfacing
capabilities of the RTDS which do not require additional customization
by the testbed developer. Another realtime co-simulation testbed is
described in [23] integrating Opal-RT power simulator and OPNET
communication simulator. The testbed capitalizes on the features pro-
vided by both simulators allowing an easy integration. It is important
here to note that realtime co-simulation testbeds often have plenty of
features provided by the expensive simulators allowing for seamless
integration in many cases. A disadvantage of these testbeds is re-
cognized when considering communication protocols that are not
supported by either simulator, where more elaborate development is
needed to add that capability [24].

It can be noted that a detailed implementation and setup of co-si-
mulation testbeds are not appropriately detailed in the existing co-si-
mulations literature especially to enable reproducing and comparing
research results. The lack of such details forces interested research
teams to create, from scratch, their own co-simulators. This paper is
motivated by the need for a comprehensive exposition on offline co-
simulator development for smart grid applications that can be re-
produced or easily modified to support smart grids studies. Offline co-
simulation is a cost-effective approach to analysis that is not only more
accessible (less expensive), but typically easier to implement while
being useful for a variety of “what-if” analysis and analytics for system
planning. However, offline co-simulation has few limitations such as it’s
extended time of simulation because of the added interactions between
subsystems. Moreover, offlines testbeds do not have the capability to
integrate hardware systems (e.g. PMU, relays, controllers).

A main challenge of interfacing two simulators, each of distinct
characteristics, is to integrate both simulated systems while effectively
maintaining the core independence of each. Enabling different simu-
lation platforms to work hand in hand to represent a realistic smart
power system behavior requires dealing with synchronization and data
exchange challenges [25]. Synchronization issues typically occur be-
tween interfaced simulators because of the differences in the size of
simulation time-step and the execution sequence [26]. On the other
hand, data exchange issues at the interface between the two simulators
should be scalable to have a minimal impact on the overall performance
of the co-simulation testbed.

Communication Power System

Information
Technology

topology, technology,
cyber events, ...

model, protection,
sensors, controllors

control, EMS, analytics,
optimization, ...

Fig. 1. System architecture in compliance with IEEE 2030.

Table 1
Sample co-simulation testbeds.

ID Power simulator Cyber simulator Offline/realtime Investigated problem

EPOCHS [16,29] PSCAD/EMTDC & PSLF NS2 Offline Protection, special protection schemes
GECO [17,30–32] PSLF NS2 Offline PMU based wide area monitoring systems
Integrated simulation engine [18] GridLAB-D NS3 Offline Distribution & demand response (DR)
ORNL power system simulator [19] THYME model ADEVS (NS2 & OMNeT++) Offline Control & communication
GridSim [20] TSAT (DSATools) GridStat Offline Wide area control & protection schemes
SCADA Cyber Security Testbed [21] PowerWorld RINSE Offline SCADA Cyber Security
[33,34] OpenDSS OMNeT++ Offline Electric vehicles (PEV) coordinated scheduling
[35] OpenVZ(emulator) S3F(simulator) Offline advanced metering infrastructure (AMI) attacks
[22,36] RTDS NS3 Realtime cyber vulnerability & mitigation
[23] Opal-RT OPNETa Realtime communication latency impact on microgrid control
[37] Opal-RT hardware network Realtime adaptive mitigation of cyber incidents
[38] Opal-RT communication adapter Realtime energy battery management

a The communication network simulator OPNET was later acquired by Riverbed and became known as Riverbed Modeler.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

818

Next, we expand on how synchronization challenges have been
approached in example testbeds. [27] sets the communication simu-
lator as the master of event synchronization between the two simula-
tors, but this causes challenges for events generated within Modelica
which is used as the power simulator. The GreenBench testbed devel-
oped in [28] integrating PSCAD and OMNeT++ attempts to avoid
synchronization errors by editing the behavior of OMNeT++ to self
trigger at time-steps equal to those of the power simulator. This mod-
ified behavior will add additional events in the communication simu-
lator that do not necessarily correspond to power system events, thus
resulting in an inaccurate communication representation and dynamics.
Coordination via RTI in EPOCHS handles synchronization by marking
synchronization points of fixed time separation for both simulators.
Both simulators continue execution in parallel until the next synchro-
nization point is reached where data then is exchanged if needed [25].
This approach partly ignores how communication network are un-
predictable such as in cyber security studies.

1.1. Contributions

This article describes an offline co-simulation testbed that utilizes
TCP/IP sockets and a lightweight database to facilitate data exchange
between the co-simulator components. This can guide research com-
munities when considering co-simulation development utilizing their
own tools. The main contributions of this works include the following:

1. A cyber-physical abstraction of offline tool-based co-simulation ar-
chitecture is provided. This abstraction can be extended to other co-
simulation testbeds such as intelligent transportation systems.

2. A detailed implementation of the offline co-simulation testbed using
selected tools is outlined. The described testbed implementation
relies on a system-view understanding of the tools and their hand-
ling of events.

3. An efficient event-based scheduler is developed to coordinate events
between the co-simulator subsystems. The proposed scheduler
bounds the synchronization error to the power simulator time-step,
and utilizes a light-weight database to buffer queued events.

4. A customized packet structure is developed for message exchange
between the two simulators than can be used to study the different
smart grid communication protocols.

The developed testbed can be scaled to any size power system
supported by PSCAD and any number of sensors and actuators without
an increased overhead due to the co-simulator setup itself. This work is
designed, developed and presented to provide comprehensive under-
standing of one possible approach for offline co-simulation develop-
ment. The proposed synchronization approach (scheduler) is not mat-
ched by other coordination schemes in similar tool-based testbeds.

The next section presents the architecture of the co-simulator and its
subsystems. The power system component of the co-simulator is dis-
cussed in Section 3. Section 4 details the implementation of the sche-
duler which handles the coordination amongst different subsystems.
The development of the communication simulator is further explained
in Section 5. The overall interaction between the co-simulator sub-
systems is examined in Section 6, followed by an example case study in
Section 6.1. Finally, concluding remarks are included in Section 7.

2. Architecture of Co-simulation Testbed

Co-simulation testbeds can be classified as realtime or offline. A
realtime co-simulator indicates that the time-step of individual simu-
lators is configured in such away that the runtime of the physical
system model simulation is equal to that of the real physical system.1

For example, a 20-s realtime co-simulation is a simulation of the actual
physical system running for 20 s. However, in an offline co-simulation
testbed, the time-step of either or both simulation software is (typically)
longer than that of the physical system being simulated. Realtime co-
simulation testbeds usually include expensive computational engines
with dedicated realtime hardware and operating systems. Conse-
quently, for a general-purpose smart grid testbed that is more accessible
to research and development teams we consider the development of an
offline co-simulation testbed. The testbed adopts a system-of-systems
view recommended by the IEEE 2030–2011 standard as shown in Fig. 1.
If needed, this hierarchical approach allows the interfacing of various
information processing tools, such as optimization or data analytics
engines.

Illustrated in Fig. 2, the proposed smart grid co-simulator testbed
includes:

1. EMTDC/PSCAD [39] module that will be used as a power system
simulator,

2. scheduler module,
3. OMNeT++ [40] module that will be used as a communication si-

mulator, and
4. third-party component; for example, an energy management system

that is implemented using MATLAB.

In the following sections, we present a detailed description of the
implementation steps of each subsystem of the co-simulator.

3. Power simulator: EMTDC/PSCAD

PSCAD provides a graphical user interface for the EMTDC power
system simulation engine. A testbed user can utilize PSCAD to model,
build, and simulate power systems of interest. For this co-simulation
testbed, the power system model is designed in PSCAD with minimal
customization. PSCAD provides pre-programmed and user-defined
modules. It is also a single-thread application by design; thus, if the
execution of the main program is interrupted or stops for any reason,
the PSCAD program will pause until the execution returns to the main
program. As such, the co-simulation testbed is designed with an addi-
tional module (the scheduler) to handle the different interactions be-
tween the various testbed simulators to ensure synchronization.

As a power system model is designed in PSCAD, different sensors
can be added as measurement points that will be later defined as inputs
to the user-defined module. In addition, actuation points can be defined
in the power system, where either delayed measurements or control
commands are fed to the power system after interacting with a com-
munication simulator or other functions outside the PSCAD environ-
ment.

3.1. C++ and C interfaces

PSCAD allows users to build custom user-define modules and embed
them into the EMTDC simulation engine. In the presented testbed, a
user-defined module is developed to provide an interface to enable data
exchange from EMTDC to the rest of the co-simulation testbed and vice
versa. As shown in Fig. 2, the main interfaces that are developed in the
testbed are:

1. C-subroutine that enables the interaction between the (pre-pro-
grammed) PSCAD modules and the user-defined modules, and

2. C/C++ inter-process windows socket interface that enables ex-
ternal interactions between the communication simulator and the

1 Physical systems simulators rely on mathematical models and

(footnote continued)
computational solvers, where fixed time-steps or variable time-steps can be
configured.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

819

PSCAD/EMTDC system.

3.2. Sockets

TCP/IP windows sockets are used as the interface between the dif-
ferent simulators in the testbed due to their low complexity, efficiency,
and scalability. TCP/IP sockets are used to couple the two simulators,
which requires a reliable protocol (TCP) to ensure messages from one
simulator are delivered to the other. Further, the use of TCP/IP sim-
plifies the implementation of the testbed in regular research labs
computer networks. The socket interface can be adjusted using the
following user-configurable parameters:

• Sensor sampling rate: this parameter allows a user to specify different
sensors in the power system with different sampling rates, if needed,
to enable the study of different power system dynamics of interest.

• Dynamic buffer size: this parameter is used to define the size of data
packets that are exchanged between the EMTDC/PSCAD simulator
and the communication simulator.

The sensor sampling rate directly affects how the scheduler sub-
system responds to changes. If the power system is equipped with
synchronized sensors (for example, phasor measurement units), then
the sensor sampling rate can be made uniform for all sensors, and in this
case only one value is configured. The dynamic buffer size is usually
configured depending on the number of sensors deployed in the simu-
lated power system. This parameter can be manually modified through
the system configuration file.

4. Scheduler

The co-simulation testbed relies on the scheduler to coordinate the
operation of the different simulators. The basic functionality of the
scheduler module is that:

• it creates a discrete-event queue for all events that are generated
from the different simulators,

• it sorts these events according to their corresponding time-stamp,
and

• it alternates the run of the simulators based on the next event in the
queue.

The scheduler operation requires a database to store temporary data
fields during the co-simulation run. The used database in this im-
plementation is an open-source lightweight database: SQLite, [41]. An
advantage of SQLite database is that it can be easily embedded in ap-
plications because of its small size. In addition to the business logic of
the scheduler, the socket code is included. The SQLite database provides
the scheduler with a C API to establish and maintain a database

connection. The SQLite database is designed to include tables that
correspond to the number of output devices that need to be controlled
in the power system.

The input signals from the PSCAD/EMTDC simulator are not stored
in the database; rather, these signals create interrupt signals that halt
the operation of the power simulator. This is followed by the scheduler
handing over to proceedings to the OMNeT++ simulator. When the
transmitted signals finish traversing the communication network,
OMNeT++ delivers them to the scheduler which in turn utilizes the
signals’ destination tag for storage at the correct database tables. The
database tables include two fields to facilitate this process: one field for
the time-stamp of each output device being controlled and another field
for the control status.

Fig. 3 presents a depiction of the PSCAD user-defined module that
contains the scheduler code. The scheduler module contains various
functions that are called every time-step during the co-simulator run
time. Inputs and outputs of the user-defined module are denoted with
respect to the interface between the PSCAD power system model and
the user-defined module. For examples, sampled sensor measurements
are inputs, and communication delayed actuation/measurements are
outputs to be fed into the power system model. For the remainder of
this article, the term actuators is used to denote the power system model
components that rely in their state on the output of the user-defined
module (e.g., returned values from the communication simulator).

It is helpful here to define what we refer to as a synchronization
window. Let tsim be the simulation time and tstep be the time-step of the
power simulator. Then, a synchronization window is defined as the
time interval between tsim and +t tsim step. The database can be perceived
as a simplified event queueing system; as returned values are stored
until they fall in a synchronization windows of the power simulator,
where at that time their value is used to update the state of the corre-
sponding actuators, and is then deleted from the database.

The logic included in the scheduler logic can be divided into four
sections based on functionality as illustrated in Fig. 4. Specifically, the
configuration section holds global variables; the database section in-
cludes functions used by the scheduler to interact with SQLite; the
networking section has the TCP/IP socket code to interface with OMNet
++; and the scheduling section has the core logic for the scheduler as
will be explained below. A flowchart of the implemented scheduler is
depicted in Fig. 5.

4.1. Scheduler functions description

A brief description of the scheduler main functions is included
below. Please note the correspondence between the function index in
the flow chart in Fig. 5 and the index below:

1. create_table(): during the initialization phase, a check is performed

EMTDC

INET

Third Party
Software

OMNeT++

C++ Interface
(sockets)

PSCAD
Power Simulator

Communication
Simulator

Information
Technology

Scheduler
(Embedded Custmized

Code)

Database
(SQLite)

Code)

chedul

C
In
te
rf
ac
e

Fig. 2. Co-simulator subsystems.

PSCAD
User Defined Module

(Scheduler.c)
Time Stamp

Time Step

C
++

 in
te

rf
ac

e
to

 O
M

N
eT

++

Inputs

Input 1

Input n

Send
Buffer

O
ut

pu
tsOutput 1

Output n

Receive
Buffer

Fig. 3. Scheduler interface block diagram.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

820

to verify if the current time-step is the first time-step of the simu-
lation. If that is the case, the create_table() function creates the
corresponding database tables to store the status with its time-stamp
for each of the actuators in the power system.

2. default_status(): all declared variables are required to have a value
before proceeding to the next step of the PSCAD simulation. This
function populates the different actuators with default values. The
actuators’ default values are selected based on knowledge and de-
sign considerations of the power system model and expected values.

3. check_input(): this function decides when values from every con-
troller and sensor should be collected and sent to the communica-
tion network simulator interface. When a sensor requires transmit-
ting a value through the communication network, the sensor sets its
corresponding send_flag value to 1. At each simulation time-step, the
sensor rate dictates whether the send_flag for that sensor is set to 1 or
not. If the simulation time is a multiple of the sensor rate, then that
sensor’s send_flag is set. Further, this function supports fixed (syn-
chronized) rates and variable rates for different sensors in the
system. The rates are typically set by the testbed user in the con-
figuration section.

4. search_send_flag(): this function continuously scans the send_flag to
find if any of the sensors has a set value (i.e., send_flag = 1). If no

Scheduler.c

Networking

Database

Scheduling Logic

Configuration

Reserved
SQLite Source Code

Reserved
SQLite Source Code

Fig. 4. Scheduler.c file content.

Fig. 5. Scheduler flowchart.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

821

send_flag is set, the PSCAD simulation proceeds. On the other hand,
if a send_flag is set, the scheduler initiates the interaction with
OMNeT++ simulator using the windows socket interface.
However, since both the communication and power simulators are
single threaded, this action will automatically pause the operation of
PSCAD/EMTDC until the scheduler decides to return the execution
to it.

5. client_socket(): this function is used to establish the data exchange
and interaction with the communication simulator module. It cre-
ates a socket that binds to the socket server at the communication
simulator. The function then uses the socket to exchange data with
the communication simulator in the form of send buffer and receiver
buffer (termed sendbuf and recvbuff respectively). There is no delay
between setting the send_flag and sending the measurement to the
communication simulator because the two events are executed at
the same time-step of the simulation.

6. write_database(): if the client_socket() function is called and a suc-
cessful communication is established, the scheduler uses write_da-
tabase() to store returned values from OMNeT++ in the database
with their corresponding time-stamps. These values could represent
delayed measurements or control decisions/commands (for ex-
ample, a simple close or open command from actuators to power line
circuit breakers or set points decision from centralized control to
local controllers).

7. read_database(): this function is used during the simulation to scan
the database at every time-step for actuators requiring a status up-
date. If the time-stamp of any actuator falls in the current syn-
chronization window, then the stored status of the actuator is re-
trieved from the database.

8. write_default_values(): given that read_database() is executed suc-
cessfully and the actuator entry is retrieved from the database (this
implies that the time-stamp falls in the current synchronization
window), then the default values file is updated correspondingly.

9. update_output(): this function is used to update the statuses of cor-
responding actuators in the power system model from the default
values file. If multiple actuators share the same time-stamp, these
actuators will be updated at the same time. This function enable the
power simulator to resume execution.

Further, the scheduler flow chart includes two additional func-
tionalities:

1. update_output_test(): this loop tests the scheduler logic without in-
teracting with the communication simulator; hence, the function
updates the user-defined module output values from the input. The
test loop restricts the number of inputs to be greater than or equal to
the number of outputs.

2. to enable cyber security impact analysis, cyber attacks can be im-
plemented using two functions: falseDataRand() and
denialOfServiceRand(). More details on the implementation are
provided in Section 5.3.

It is important to note here that the PSCAD/EMTDC module of the
testbed is capable of interacting with other communication simulators,
provided that the communication simulator supports: 1) embedded
sockets, and 2) a mechanism for messaging between the embedded
socket and the network model.

5. Communication simulator: OMNeT++

A communication network model is defined by the testbed user. The
communication model should have a correspondence to the power
system model under study and its deployed communication-enabled
points. The communication simulator enables the modeling of com-
munication delays and link congestion. In addition, from a cyber se-
curity perspective, different cyber events can be included such as denial

of service attacks. OMNeT++ provides the interface for the design and
simulation of communication networks. The testbed utilizes OMNeT+
+/INET framework which is a collection of different C++ modules
(libraries) used for network modeling and simulation. Within this setup,
a communication system is defined that is equivalent to the corre-
sponding PSCAD/EMTDC power system model, and a C++ interface
code is included to interact with the scheduler via sockets. Further, the
developed software enables using another socket interface for inter-
acting with third-party software such as MATLAB if needed.

OMNeT++ employs a network description language termed NED.
NED lets users declare modules, connect them, and assemble them into
compound modules, of which some can be labeled as networks [42].
The network model is constructed in the NED file at the top root of the
project file hierarchy. Every module that is contained in the NED net-
work must have their own corresponding NED file used to define and
build that module. Further, every NED module must have im-
plementation files which are declared and implemented in the corre-
sponding C++ header and source files respectively.

5.1. Interface description

The relationships between the different software components im-
plemented in the OMNeT++ subsystem are shown in Fig. 6 via a
unified modeling language (UML) class diagram. The names of few
classes have been adjusted in the UML diagram to be appended with
“Ned” to indicate that the class is of a NED file type. The figure captures
different classes which can be classified into two categories:

1. Standard classes from OMNeT++/INET:

• StandardHost: the class can be used as either a server or a client.

• DatarateChannel: one of the classes for defining communication
links between network nodes.

• cPacket: the class is used for messaging between components.

• cSimpleModule: this is the base class in INET, which all other
modules inherit from.

• ITCP: the class is the INET implementation of TCP.

• NodeBase: this class is an INET compound module2 that contains
the common lower layers of different types of network nodes such
as Router, StandardHost, etc.

2. Subclassed classes; developed classes with the testbed and are
shaded in blue in Fig. 6:

• clientMsg: this is a subclass of cPacket. The user will need to define
the contents of the message definition file clientMsg.msg; upon a
successful build, the corresponding source and header files are
automatically generated.

• InterfaceModule: this module is a subclass of cSimpleModule and
acts as the interface between PSCAD and the OMNeT++ net-
work.

• ClientApp: this class is also a subclass of cSimpleModule, but it re-
presents the sensor/actuator nodes on the network.

The following scenario helps in conceiving the process abstracted by
the class diagram. Define a PSCAD model with a certain number of
sensors, one actuator, and a control center. In OMNeT++ define the
corresponding communication network in a NED file with a network
name smartgrid as an example. In this network model, the user defines
the types of network nodes, their NIC interfaces, and types and para-
meters of communication links. The example network will contain a
number of ClientNed nodes, one ControlCenterNed, one
InterfaceModuleNed, and communication links which in this scenario are
FiberLine. Data exchange between network nodes requires a special
class ClientMsg to define the packet format.

2 In OMNeT++, a compound module groups other modules into a larger unit
[42].

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

822

The InterfaceModule receives a packet interrupt from PSCAD via a
listening socket ListenToPSCAD(). It communicates the messages
ClientMsg to the appropriate client nodes using the method
handleMessage(), which in turn calls recvFromPSCAD(). Each client node
then forwards the message to ControlCenterNed which calls its
connectToSCADA() function. At the ControlCenterNed a control logic can
be implemented, and then the message is propagated to the destination
node. The destination node sends the final message to InterfaceModule,
where it is finally sent to PSCAD via sendToPSCAD().

5.2. Delay configuration in OMNeT++

OMNeT++ defines three types of channels: ideal channels that
have zero delay, delay channels whose model account for propagation
delay but not for transmission delay, and data-rate channels which
model both propagation and transmission delays. In the developed
testbed, data-rate channels can be used and correspondingly channel
parameters can be configured to obtain the delay model of the com-
munication channel of interest. A testbed user can configure the fol-
lowing parameters:

1. Byte-size: this parameter specifies the number of bytes that are
generated by a node per transmission; this parameter can be varied
according to a random distributions. For example, a user can use a
uniform distribution to sample the byte size. In this case, the para-
meters of the random distribution are configured in the omnetpp.ini
file.

2. Data-rate: this parameter defines the maximum number of bytes that
can be carried by a communication channel in a second. This
parameter can be configured in the network section of the omnetp-
p.ini file.

3. Propagation Delay: this parameter is related to the distance between
the communication nodes and the propagation speed as

=Delay Distance/Speed .Propagation Propagation

Hence, given specific Data-rate and Byte-size values, the transmission
delay can then be calculated using

= Byte size Data rateDelay - / - .Transmission

Then, the total delay of the communication link is computed as

= +Delay Delay Delay .Transmission Propagation

The total communication delay can also be captured through the si-
mulator API using the defined methods in the cPacket class by calcu-
lating the difference between packet arrival time and packet creation/
sending time. To do that, getCreationTime method retrieves the time a
packet was created and getArrivalTime method returns the time a packet
arrived.

5.3. Cyber attacks

Denial of Service (DoS) attacks aim to impact availability of in-
formation by either imposing congestion on communication channels
and network devices or by causing failure to obstruct information
transmission. The impact of DoS attacks is typically modeled as variable
delay imposed on the measurements. False Data Injection (FDI) attacks
impact the integrity of information to either cause failure/damage or
deceive the system to operate in an alternate state that is more bene-
ficial to the adversary [43,44]. FDI attacks include inducing a bias in
the measurements, injecting malicious code into controllers or de-
ceiving the system using purposefully delayed measurements (replay
attacks). Any cyber attack targeting cyber-physical systems can be de-
scribed by either DoS,FDI or a combination of both. The developed
testbed enables the study of a wide range of cyber attacks.

For simplicity, the proposed testbed supports modeling both DoS
and FDI attacks at the interface between PSCAD and OMNeT++ as
illustrated in Fig. 7. The cyber events are directly implemented on the
corresponding buffer data. The developed co-simulator offers the fol-
lowing implementations of cyber attacks in PSCAD, which are equiva-
lent to attacks implemented in OMNeT++ from an impact perspective
on the cyber-physical system:

• DoS attacks are implemented by their impact on the measurements,
where measurements are delayed or obstructed. The co-simulator
user can specify a range of time delays from which a random delay is
selected and is added to the time-stamp of the measurement. This
logic can be activated on the send buffer (sendbuff) for DoS attacks
targeting measurement links, and on the receive buffer (recvbuff) for

Fig. 6. OMNeT++ co-simulator class diagram.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

823

DoS attacks targeting control and commands links (assuming the
user has defined the communication network in a similar fashion).

• FDI attacks translate to a bias introduced into data values. Similar to
DoS attacks, FDI attack logic can be activated on the send buffer
(sendbuff) and/or the receive buffer (recvbuff).

Alternatively or concurrently cyber incidents can be modeled in
OMNeT++ directly on communication channels and communication
network devices.

5.4. Third party software

Third-party software interface enables utilizing extra intelligence
such as analytics and optimization tools to improve the cyber-physical
system operation. The interface with third-party software such as
Matlab has been included in the co-simulator design, and is im-
plemented via a separate network socket initialized from OMNeT++.
The InterfaceModule function socketToMatlab() establishes a socket
communication with Matlab via an intermediate compiler (Visual
Studio). The data to be exchanged with Matlab through the socket is
handled by matControlComm(). The third-party software interface can
be disabled if not needed.

The developed testbed can interface with any third-party software
provided it can be called and executed from a C++ program. For ex-
ample, on a Windows based system, this can be implemented in
OMNET++ using CreateProcess() or system() to call the third party
software.

6. Subsystems interaction

Fig. 8 shows graphical illustrative example to clarify the different
interactions between the co-simulation testbed subsystems. The dia-
gram focuses on the sequence of events’ interaction between the power
simulator, scheduler, and communication simulator as the simulation
progresses. The following notation is used:

NU indicates no change in the status of the power simulator ac-
tuators. In this case, the progress of the simulation depends on
previously-stored values.
ti represents a time instant in the simulation run time, where

= ⋯i n1 where n is ⩽ end of simulation time.

+ti represents the time-stamp of the communication packet, in-
cluding total delay, at the end of the communication simulation. Let
total delay be denoted as tcomm then = ++t t ti i comm.
Ei represents an event that is generated at time instant ti from the
power simulator and is passed to the communication simulator via
the scheduler module.
Ri represents the control command information that is returned
from the communication simulator and is meant to be applied on the
power simulator at time instant +ti . Let tsimulation denote the power
systems simulation time, then Ri may be stored in the database if

>+t ti simulation and is applied when =+t ti simulation.
↓ indicates either the scheduler handing over co-simulation to the
communication simulator or the case when the power simulator
hands over to the scheduler in order to make a decision.
↑ indicates either the scheduler handing over co-simulation to the
power simulator or the communication simulator handing over to
the schedule.
→ shows progress of the simulation in the testbed simulators or
buffer (database) updates in the scheduler module.

is the “catch-up” in simulation time in which the power si-
mulator has to run in order to reach to the simulation time at which
the scheduler hands over to it.
0|1 the 0 indicates that the sensing device has no information to pass
to the communication simulator, and 1 indicates otherwise.

The power simulator, scheduler, and communication simulator in-
teract sequentially via network sockets, where the power simulator via
its embedded scheduler acts as a client in the network sockets setup,
and the communication simulator is configured as the server. This setup
enables the scheduler to control when to interact with the commu-
nication simulator. In this section the third-party software subsystem is
not included for simplicity.

The diagram in Fig. 8 is based on a power system model with two
sensor nodes and one actuator node, and it traces the sensor and ac-
tuator send_flags and time-stamps. Further, a network model to re-
present the communication between the three nodes and an additional
control node is defined by the testbed user in the communication si-
mulator. The sequence of interactions in the diagram can be described
as follows:

1. Sensor S1 sampling rate indicates a measurement is to be sent to the
communication simulator, so it sends an event labeled E1 to the
scheduler at time t1. Hence, send_flag is updated to t(1, 0,)1 .

2. The scheduler immediately forwards E1 to the communication si-
mulator at the same time instant t1 and the event is removed from
the scheduler. The power simulator is paused and the scheduler
hands over simulation to the communication simulator.

3. The communication simulator simulates the communication and
returns the response R1 at time instant +t1 to the scheduler. The
scheduler stores it in the database and hands over simulation to the
power simulator.

4. The power simulator resumes simulation, and at the following time-
step it checks whether R1 time-stamp is within the synchronization
window; since it is not, the power simulator updates the actuator
from the stored default values (history), and there is no new system
state update (NU).

5. The simulation of the power simulator proceeds until at time t2 both

PSCAD

O
M

N
eT++

DoS

FDI

Send
Buffer

Receive
Buffer

Send
Buffer

Receive
Buffer

Fig. 7. Cyber attacks implementation.

Fig. 8. Subsystems interaction diagram.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

824

sensors S S,1 2 indicate that they wants to communicate with the
communication simulator with an event E2. Thus, send_flag is set to

t(1, 1,)2 .
6. Power simulator pauses and scheduler forwards the event E2 to the

communication simulator (at the same time-step) which takes over
the simulation.

7. At +t2 , the communication simulator returns a control decision R2.
At this same time instant, R1 time-stamp is found to be within the
synchronization window and its value is used to update the state of
the actuator. Therefore, only R2 is left in the scheduler.

8. At t3, the power simulator generates another event from S1 and
passes E3 to communication simulator via the scheduler.

9. Finally, at +t3 , the communication simulator finishes the simulation
and returns the response R3 which is stored alongside R2 in the
database.

10. The power simulator resumes simulation and checks for an actuator
update from the database (an entry with a time-stamp within the
current synchronization window); however, since there is none, no
change of actuator states and we have no update (NU).

The subsystem interaction model described, illustrates how the de-
veloped scheduler is able to effectively coordinate between the two
simulators. However, it is noted that the time-step of the power system
simulator dictates the upper bound of the synchronization error of the
testbed. PSCAD supports time-steps in the range of −(1 250) micro-
seconds, hence approximations due to co-simulation interactions are
induced, where the power system model may be instructed to proceed
without the measurements update until the following time-step.
Nonetheless, power system applications that utilize communication are

typically concerned about communication delays that are comparable
to the power system dynamics being studied. Most of these studies
consider a time scale of milliseconds and above, hence the approx-
imations introduced by our testbed synchronization errors are negli-
gible.

6.1. Offline co-simulator case study

The case study considered here is based on the microgrid model in
[45] which is illustrated in Fig. 9 and includes three 0.6-kV dispatch-
able electronically-interfaced DER units and eleven loads which are
connected to a 13.8-kV distribution system. The microgrid is operated
in islanded mode, i.e., the circuit breaker CBg is open. A centralized
controller is implemented that processes signal measurements of total
power to actuate the set-points of the different DERs. The impact of an
FDI attack is investigated where the adversary aims to manipulate
targeted DER operating points above capacity while maintaining con-
troller observed total power unaffected. Two scenarios are considered:

• the attack is activated within the interval −1.1 1.3 s while the mi-
crogrid is operating in steady state. Simulation results are shown in
Fig. 10(a). The FDI attack causes the DER 2 output to initially fall,
rise up and fall again while DERs 1, 3 increase output to balance the
load demand. However, this forces DER 3 to operate above its

p u1.0(.) capacity, which could consequently activate the generator
protection and drive the microgrid further into instability.

• the adversary monitors and waits for the microgrid to be in a
transient or weak state before activating the FDI attack. In this case,
FDI is activated at 1 s following the disconnection of a large load. As

Fig. 9. Microgrid Model.

Time (s)

0

0.5

1

1.5

2

2.5

3

A
pp

ar
en

t P
ow

er
 (p

u)

DER1
DER2
DER3

0.5 1 1.5 2 0.5 1 1.5 2
Time (s)

0

0.5

1

1.5

2

2.5

3

A
pp

ar
en

t P
ow

er
 (p

u)

DER1
DER2
DER3

Fig. 10. Impact of cyber attacks.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

825

DERs are reducing their outputs to adjust to new load demands, the
adversary exploits the transient state of the system and is able to
drive DER 3 above the p u1(.) limit as shown in Fig. 10(b) while the
rest of the generators lower their outputs to balance the total power
output of the system.

7. Conclusion

Co-simulation of cyber-physical power systems is an important tool
to evaluate various cyber-enabled power system components such as
distributed control. The implementation of a tool-based offline smart
grid co-simulation testbed is described in this work to enable practical
cyber security and control studies. The detailed architecture and sub-
systems interactions of developed testbed are described to facilitate a
more involved understanding of co-simulation development concepts.
The power simulator PSCAD and open source communication simulator
OMNeT++ are integrated using a discrete-events scheduler. A case
study on control performance and cyber attacks impact on microgrids
using the developed testbed is illustrated.

References

[1] Güngör V, Sahin D, Kocak T, Ergüt S, Buccella C, Cecati C, et al. Smart grid tech-
nologies: communication technologies and standards. IEEE Trans Industr Inf
2011;7(4):529–39.

[2] Sabbah A, El-Mougy A, Ibnkahla M. A survey of networking challenges and routing
protocols in smart grids. IEEE Trans Industr Inf 2014;10(1):210–21.

[3] Farraj A, Hammad E, Kundur D, A cyber-physical control framework for transient
stability in smart grids, IEEE Trans Smart Grid.

[4] Hammad E, Farraj A, Kundur D. Fundamental limits on communication latency for
distributed control via electromechanical waves. In: IEEE International Conference
on Communications (ICC); 2017. p. 1–6.

[5] Farraj A, Hammad E, Kundur D, A systematic approach to delay-adaptive control
design for smart grids. In: IEEE International Conference on Smart Grid
Communications (SmartGridComm); 2015. p. 768–73.

[6] Yang C-h, Zhabelova G, Yang C-W, Vyatkin V. Cosimulation environment for event-
driven distributed controls of smart grid. IEEE Trans Industr Inf 2013;9(3):1423–35.

[7] Kosek AM, Lunsdorf O, Scherfke S, Gehrke O, Rohjans S. Evaluation of smart grid
control strategies in co-simulation integration of IPSYS and mosaik. In: Power
Systems Computation Conference (PSCC); 2014. p. 1–7.

[8] IEEE Standards Association. IEEE2030; 2016.< grouper.ieee.org/groups/scc21/
2030/2030_index.html> [accessed March 2018].

[9] Basso T, DeBlasio R. Ieee smart grid series of standards ieee 2030 (interoperability)
and IEEE 1547 (interconnection) status. Grid-Interop 2011:5–8.

[10] Palensky P, van der Meer A, Lopez C, Joseph A, Pan K. Applied cosimulation of
intelligent power systems: implementing hybrid simulators for complex power
systems. IEEE Ind Electron Mag 2017;11(2):6–21.

[11] T.M. Association, FMI: Functional Mock-up Interface; 2018.< https://fmi-
standard.org/literature/> [accessed June 2018].

[12] Georg H, Wietfeld C, Müller SC, Rehtanz C. A HLA based simulator architecture for
co-simulating ICT based power system control and protection systems. In: Smart
Grid Communications (SmartGridComm), 2012 IEEE Third International
Conference on, IEEE; 2012. p. 264–69.

[13] Brooks C, Derler P, Lickly B, Lee E. Ptolemy Project; 2018.< http://ptolemy.
berkeley.edu/ptolemyII/> [accessed June 2018].

[14] de Lorraine U, Inria. MECSYCO: Multi-agent Environment for Complex SYstem CO-
simulation; 2018.<http://mecsyco.com/> ; [accessed June 2018].

[15] Mosaik OeV. 2018.< https://mosaik.offis.de/> [accessed June 2018].
[16] Hopkinson K, Wang X, Giovanini R, Thorp J, Birman K, Coury D. Epochs: a platform

for agent-based electric power and communication simulation built from com-
mercial off-the-shelf components. IEEE Trans Power Syst 2006;21(2):548–58.

[17] Lin H, Sambamoorthy S, Shukla S, Thorp J, Mili L. A study of communication and
power system infrastructure interdependence on PMU-based wide area monitoring
and protection. In: IEEE Power and Energy Society General Meeting; 2012. p. 1–7.

[18] Fuller JC, Ciraci S, Daily JA, Fisher AR, Hauer M. Communication simulations for

power system applications. In: Workshop on Modeling and Simulation of Cyber-
Physical Energy Systems (MSCPES); 2013. p. 1–6.

[19] Nutaro J. Designing power system simulators for the smart grid: combining con-
trols, communications, and electro-mechanical dynamics. In: IEEE Power and
Energy Society General Meeting; 2011. p. 1–5.

[20] Anderson D, Zhao C, Hauser C, Venkatasubramanian V, Bakken D, Bose A. A virtual
smart grid. IEEE Power Energy Mag 2012;10(1):49–57.

[21] Davis CM, Tate J, Okhravi H, Grier C, Overbye T, Nicol D. Scada cyber security
testbed development. In: Power Symposium, 2006. NAPS 2006. 38th North
American; 2006. p. 483–88.

[22] Reddi R, Srivastava A. Real time test bed development for power system operation,
control and cyber security. In: North American Power Symposium (NAPS); 2010.
p. 1–6.

[23] Guo F, Herrera L, Murawski R, Inoa E, Wang C-L, Beauchamp P, Ekici E, Wang J,
et al. Comprehensive real-time simulation of the smart grid. IEEE Trans Ind Appl
2013;49(2):899–908.

[24] Hegazi O, Hammad E, Farraj A, Kundur D, IEC-61850 GOOSE Traffic Modeling and
Generation. In: IEEE Global Conference on Signal and Information Processing
(GlobalSIP); 2017. p. 1100–1104.

[25] Hopkinson K, Wang X, Giovanini R, Thorp J, Birman K, Coury D. Epochs: a platform
for agent-based electric power and communication simulation built from com-
mercial off-the-shelf components. IEEE Trans Power Syst 2006;21(2):548–58.

[26] Lin H, Veda SS, Shukla SS, Mili L, Thorp J. Geco: global event-driven co-simulation
framework for interconnected power system and communication network. IEEE
Trans Smart Grid 2012;3(3):1444–56.

[27] Liberatore V, Al-Hammouri A. Smart grid communication and co-simulation. In:
Energytech, 2011. p. 1–5.

[28] Wei M, Wang W. Greenbench: a benchmark for observing power grid vulnerability
under data-centric threats. In: IEEE INFOCOM; 2014. p. 2625–33.

[29] Ross K, Hopkinson K, Pachter M. Using a distributed agent-based communication
enabled special protection system to enhance smart grid security. IEEE Trans Smart
Grid 2013;4(2):1216–24.

[30] Lin H, Veda SS, Shukla SS, Mili L, Thorp J. Geco: global event-driven co-simulation
framework for interconnected power system and communication network. IEEE
Trans Smart Grid 2012;3(3):1444–56.

[31] Lin H, Sambamoorthy S, Shukla S, Thorp J, Mili L. Power system and commu-
nication network co-simulation for smart grid applications. In: IEEE PES Innovative
Smart Grid Technologies (ISGT); 2011. p. 1–6.

[32] Lin H, Deng Y, Shukla S, Thorp J, Mili L. Cyber security impacts on all-PMU state
estimator-a case study on co-simulation platform GECO. In: IEEE International
Conference on Smart Grid Communications (SmartGridComm); 2012. p. 587–92.

[33] Lévesque M, Xu DQ, Joós G, Maier M. Communications and power distribution
network co-simulation for multidisciplinary smart grid experimentations. In:
Annual Simulation Symposium; 2012. p. 2.

[34] Levesque M, Xu DQ, Joos G, Maier M. Co-simulation of PEV coordination schemes
over a FIWI smart grid communications infrastructure. In: IECON Annual
Conference on IEEE Industrial Electronics Society; 2012. p. 2901–906.

[35] Jin D, Zheng Y, Zhu H, Nicol D, Winterrowd L. Virtual time integration of emulation
and parallel simulation. In: ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS); 2012. p. 201–10.

[36] Srivastava A, Morris T, Ernster T, Vellaithurai C, Pan S, Adhikari U. Modeling cyber-
physical vulnerability of the smart grid with incomplete information. IEEE Trans
Smart Grid 2013;4(1):235–44.

[37] Poudel S, Ni Z, Malla N. Real-time cyber physical system testbed for power system
security and control. Int J Electr Power Energy Syst 2017;90:124–33.

[38] Bottaccioli L, Estebsari A, Pons E, Bompard E, Macii E, Patti E, et al. A flexible
distributed infrastructure for real-time cosimulations in smart grids. IEEE Trans
Industr Inf 2017;13(6):3265–74.

[39] Divisions of Manitoba Hydro International Ltd. PSCAD; 2016,<hvdc.ca/pscad/
> [accessed March 2018].

[40] O. Ltd. omnetpp; 2016.< omnetpp.org/> [accessed March 2018].
[41] SQLite.org. sqlite; 2016.<www.sqlite.org/> [accessed March 2018].
[42] OpenSim Ltd. OMNeT++ Simulation Manual; 2016<https://omnetpp.org/doc/

omnetpp/manual/> [accessed March 2018].
[43] Farraj A, Hammad E, Kundur D. A distributed control paradigm for smart grid to

address attacks on data integrity and availability. IEEE Trans Signal Inf Process
Networks 2018;4(1):70–81.

[44] Hammad E, Khalil AM, Farraj A, Kundur D, Iravani R. A class of switching exploits
based on inter-area oscillations. IEEE Transactions on Smart Grid.

[45] Etemadi AH, Davison EJ, Iravani R. A generalized decentralized robust control of
islanded microgrids.

E. Hammad et al. Electrical Power and Energy Systems 104 (2019) 817–826

826

http://refhub.elsevier.com/S0142-0615(18)30912-8/h0005
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0005
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0005
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0010
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0010
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0030
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0030
http://grouper.ieee.org/groups/scc21/2030/2030_index.html
http://grouper.ieee.org/groups/scc21/2030/2030_index.html
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0045
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0045
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0050
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0050
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0050
https://fmi-standard.org/literature/
https://fmi-standard.org/literature/
http://ptolemy.berkeley.edu/ptolemyII/
http://ptolemy.berkeley.edu/ptolemyII/
http://mecsyco.com/
https://mosaik.offis.de/
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0080
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0080
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0080
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0100
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0100
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0115
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0115
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0115
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0125
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0125
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0125
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0130
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0130
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0130
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0145
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0145
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0145
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0150
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0150
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0150
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0180
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0180
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0180
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0185
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0185
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0190
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0190
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0190
http://hvdc.ca/pscad/
http://omnetpp.org/
http://www.sqlite.org/
https://omnetpp.org/doc/omnetpp/manual/
https://omnetpp.org/doc/omnetpp/manual/
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0215
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0215
http://refhub.elsevier.com/S0142-0615(18)30912-8/h0215

	Implementation and development of an offline co-simulation testbed for studies of power systems cyber security and control verification
	Introduction
	Contributions

	Architecture of Co-simulation Testbed
	Power simulator: EMTDC/PSCAD
	C++ and C interfaces
	Sockets

	Scheduler
	Scheduler functions description

	Communication simulator: OMNeT++
	Interface description
	Delay configuration in OMNeT++
	Cyber attacks
	Third party software

	Subsystems interaction
	Offline co-simulator case study

	Conclusion
	References

