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In 1998, the Australian electricity distribution was deregulated with the aim of promoting competition and re-
ducing retail prices. However, since then these outcomes have not transpired, which raises the question of
whether there may be underlying causes leading to inefficiencies within the power distribution industry. To as-
sess the performance of the electricity distribution system and sources of (in)efficiency since deregulation, we
employ Simar and Wilson's (2007) double bootstrap data envelopment analysis truncated regression approach.
The results suggest that most distributors were operating well below efficient levels for the period concerned. In
the second-stage analysis, the results indicate that reliability promotes efficiency suggesting that a focus should
be placed on the continuous supply of energy. Specifically, inefficient distributors can improve network reliability
by replacing aged poles and the expansion of market size could encourage healthy competition.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Australia's National Electricity Market (NEM) covers the east and
south-eastern states of Queensland, New South Wales, Victoria, South
Australia, Tasmania and the Australian Capital Territory. It was devel-
oped during the 1990s to create competitive wholesale and retail elec-
tricity markets, and to raise the productivity and efficiency of
regulated monopoly networks through increased output and lower
prices. For most of the NEM's first 20 years of operations, wholesale
and retail markets performed well. Of considerable interest to
policymakers, however, had been the performance of regulatedmonop-
oly networks (see, for example, Mountain and Littlechild 2010;
Simshauser and Akimov 2019). A series of material policy changes in-
cluding a tightening of reliability standards in two NEM jurisdictions
in 2005 led to sizable increases in the capital stock and associated
resourcing (Simshauser 2014). These policies remained in force until
the early 2010s when it became clear that i). demand was contacting
due to the rising uptake of solar PV and energy efficient appliances,
and ii). the tightened standardswere beginning to drive sharp increases
in network tariffs. Our interest is therefore in analyzing sectoral perfor-
mance during and after these policy changes.
Finance, QUT Business School,
bane QLD 4001, Australia.
ilson@qut.edu.au (C. Wilson),
At a retail level, price controls in Victoria were removed in 2009, in
South Australia in 2013, in NSW in 2014, and in South East Queensland
in 2016. Throughout much of this period however, regulated network
charges increased. Thus, even with the introduction of competition,
retail-level electricity prices still rose (Wood et al. 2013). As noted by
the ACCC (2018, p. 155), “….network, environmental and retail supply
chain costs all make a significant contribution to electricity prices
faced by consumers”. These price rises related to regulated networks
and to the multi-billion outlays on infrastructure, some of which may
have been made redundant due to falling consumption. Higher prices
exacerbated falling consumption with consumers switching to alterna-
tive sources that were cheaper, such as rooftop solar PV (Abban and
Hasan 2020), and more energy efficient appliances (Swinson et al.
2015). Importantly, contracting demand for electricity in Australia had
not, overall, led to falling electricity prices. This has been blamed on
the high level of expenditure on electricity infrastructure - namely the
poles, wires and substations. Under these conditions, all stakeholders
within the electricity industry - especially within the distribution net-
work – have had to improve their management efficiency in order to
operate effectively.

For their part, regulated network utilities claimed rising expenditure
was justified, given the ageing infrastructure – poles, wires and substa-
tions require high levels maintenance or replacement which leads to
rising costs and Regulatory Asset Base. Other costs include fixing faults
and damaged power lines due to severe storms and bushfires which
might have otherwise caused supply outages. In addition, there are
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1 The Productivity Commission was actually then known as the Industry Commission.
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repairs to related infrastructure such as electricity meters that are lo-
cated at every house and business all of which add to costs. These issues
raise a key concern over whether the electricity distribution networks
are operating efficiently.

However, under the regulatory environment network businesses are
regulated monopolies and therefore not subject to usual market forces
(Wood et al. 2013; Productivity Commission, 2013). There are a number
of inefficiencies that have developed within the electricity network
which have been discussed in detail, for example, by Simshauser
(2019) and Simshauser and Akimov (2019) and others, but not deter-
mined usingdistribution network data to provide evidence of the extent
of the problemwhile also identifying some of the causes. The purpose of
this article is to rectify this void in the literature. In doing so we also
highlight some of the dilemmas that exist, and various issues that policy
decision makers need to consider while making systems more efficient
and also keeping electricity retail prices low at a timewhen behind-the-
meter substitutes are becoming widely available and affordable.

With this in mind, this article examines to what extent electricity
distribution networks have been efficient in Australia's NEM jurisdic-
tions. For this purpose, a Data Envelopment Analysis (DEA) approach
is adopted using panel data for the period, 2009–2019 representing 14
electricity distribution network businesses which cover the entire
NEM plus Australia's Northern Territory and determine the sources of
(in)efficiency.

Our analysis confirms that many of the distributors are operating
below required efficient levels. The individual distributors are identi-
fied. The results show that, except for years 2013 and 2015, more than
70% of distribution network businesses were operating inefficiently.
One of the key sources of inefficiency was the reliability of distribution.
However, addressing this issue while reducing inefficacy in distribution
requires the allocation of even more resources which will ultimately
reach a point of being counter-productive – an issue analysed in prior
work in the field (see, for example, Simshauser, (2019); Simshauser
and Akimov (2019). The results of the DEA highlight the dilemmas
that exists in Australia's distribution networks. The work raises the
question of whether Australia's incentive-based regulation system is
suitably framed. On the one hand, inefficient distributors can improve
the reliability of their network by allocating capital and operating
costs where needed, and not before it is needed, to improve efficiency
and sustainability of the network. Also, given an increasing number of
customers is shown to improve efficiency, it suggests a larger coverage
could induce better results (e.g. consolidations, mergers and acquisi-
tions of these regulated monopolies, as was done in Queensland during
2017). Growth in demand for grid-supplied electricity has not been
strong during the preceding decade, but electricity prices have
remained elevated (save for cost-of-capital induced step reductions in
network tariffs). Consequently, elevated tariffs encourage end-users to
seek cheaper behind-the-meter (partial) substitutes. On the other
hand, and as one reviewer noted, an output-based regulatory frame-
work may better target improvements in service quality. However,
this does not necessarily solve issues related to delivering cheaper
retail-level electricity and maintaining a stable level of grid-supplied
consumer demand. These issues are not restricted to Australia. As
many countries witness a surge in renewable energy and see the need
for network restructure and becomemore efficient, this article provides
valuable insights to the issues that are faced by electricity regulators and
policy decision-makers around theworld. There are lessons to be learnt
and some pitfalls to avoid.

The remainder of the article is organised as follows. Section 2 pro-
vides a brief background to the NEM. Section 3 presents the methodol-
ogy and a review of the literature on its application to the electricity
industry. Section 4 describes and discusses the data and explains the
reasons for choosing the inputs and outputs. Section 5 presents a discus-
sion of the results and sources of inefficiencies leading to policy recom-
mendations. Section 6 concludes with a summary of the main findings
and future possible research extensions based on findings of this study.
2

2. Background to the NEM

Prior to the 1990 reforms, vertically integrated monopoly electricity
utilities were public assets built-upwithin state boundaries. State Electric-
ity Commissions were non-taxpaying entities, responsible to their State
Government owners vis-à-vis systemplanning, investment, system oper-
ations, reliability of supply and tariffs. As with many vertical utilities
around theworld, during the 1980s and early-1990s the status of themo-
nopoly power generation industry in South-EasternAustraliawas border-
ing on critical due to excess capacity.Microeconomic reform of Australia's
power industry can be traced back to 1991 when the Commonwealth
Government initiated a national inquiry via one of its economics agencies,
the Productivity1 Commission. Australia's east-coast electricity market
was progressively deregulated (Nelson et al. 2019). What evolved was a
recommendation to restructure, deregulate and establish a 4-state inter-
connected grid covering east and south-eastern Australia; viz. Queens-
land (QLD), New South Wales (NSW), Victoria (VIC) and South
Australia (SA). The island state of Tasmania (TAS) would later be inter-
connected by an undersea HVDC cable. Western Australia and the North-
ern Territory could not be connected due to geographical distances.

There were four key steps to reform:

1. State-owned monopoly Electricity Commissions were ‘corporatised’
(i.e. commercialised). These entities became businesses incorporated
under Australian Corporations Law, were given a commercial man-
date and profit motive, and subsequently exposed to a taxation
equivalence regime.

2. Corporatised monopoly utilities were then vertically restructured
into three segments; generation, transmission and distribution/retail
supply, within existing state boundaries. This corporatisation process
proved to be a critical step in levelling the playingfield and removing
any residual unfair advantage that would otherwise exist.

3. Competitive segments of generation and retail supply were horizon-
tally restructured into a number of rival entities within each region.
Transmission and distribution networks, as natural monopolies,
would be subject to economic regulation. The form of regulation
would be based on Littlechild's (1983) incentive-based RPI-X.

4. Some businesses were privatised but the timing of this final stage
varied considerably across NEM due to regional political agendas.

3. Methodology

3.1. Data envelopment analysis

Data envelopment analysis (DEA) was developed by Charnes, Coo-
per and Rhodes (CCR) (Charnes et al. 1978) under the assumption of
constant returns to scale (CRS) and later modified by Banker, Charnes
and Cooper (BCC) under the variable returns to scale (VRS) assumption
in 1984 (Banker et al. 1984). It builds on the frontier efficiency concept
first elucidated in Farrell (1957). It is a non-parametric method that
measures the efficiency of decision-making units (DMUs) and does
not require the specification of a specific functional form relating inputs
to outputs or the setting of weights for the various factors. DEA thus op-
timizes for each observation an efficient frontier either based on an
input-oriented measure or output-oriented measure. For a general
overview of DEA, see Coelli et al. (2005).

We employ both CRS and VRS DEA models and assume an input-
orientationmodel. The output CRSDEAmodel (CCRmodel) is expressed
as:

θ̂i ¼ max
θ̂;λ

θi0 > 0jθ̂iyi
Xn
i¼1

yiλ; xi ≥
Xn
i¼1

xiλ;λ ≥ 0

( )
ð1Þ
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where yi is a vector of outputs, xi is a vector of inputs and λ is an I x 1
vector of constants. The value obtained for bθi is the technical efficiency
(TE) score for the i-th DMU. A measure of bθi ¼ 1 indicates that the
DMU is technically efficient, whereas it is inefficient if bθi<1. This linear
programming problem must be solved n times, once for each DMU in
the sample. To obtain the VRS DEA model (BCC model), we simply im-
pose the convexity constraint, Σλ0 = 1 (i.e. sum of the intensity vari-
ables, λ's, equal to one). The BCC model is expressed as:

θ̂i ¼ max
θ̂;λ

θi0 > 0jθ̂iyi
Xn
i¼1

yiλ; xi ≥
Xn
i¼1

xiλ;
Xn
i¼1

λ ¼ 1;λ ≥ 0

( )
ð2Þ

In this study, we employ an input-oriented model under both CRS
and VRS to derive TE scores. Studies such as Çelen (2013) and Arcos-
Vargas et al. (2017); and the literature reviewed in their studies noted
that the input-oriented model was most widely used. As pointed out
by Jamasb and Pollitt (2003), an input-oriented specification is appro-
priate because demand for distribution network services is a derivedde-
mand that is beyond the control of utilities.

3.2. Application of DEA in the electric power industry literature

The literature on the use of DEA in measuring energy (including
electricity) and environment is substantial and has been extensively
reviewed in Mardini et al. (2017) and Sueyoshi et al. (2017).2 We de-
scribe below some of the findings from these two articles and more re-
cent articles (2017 to 2020) in order to illustrate and specify our model.

The use of DEA is widely used in international studies. Yunos and
Hawdon (1997) compared Malaysia's electricity generation with
Thailand and United Kingdom using DEA and theMalmquist productiv-
ity index. Output data consisted of electricity generated and inputs in-
cluding installed capacity, labour, electricity losses and thermal
efficiency. In another study, Lam and Shiu (2001) used DEA to measure
the TE of China's thermal power generation for 1995 and 1996. Inputs
are capital (measured in terms of installed thermal generating capacity
in megawatts (MW); fuel consumption (coal, oil and gas aggregated
and measured in terajoules (TJs)); and labor inputs in terms of number
of workers employed in thermal power generation. Output is electricity
generated. Chen (2002) measured the TE and cross-efficiency in
Taiwan's electricity distribution sector for the period 1997 and 1998
using DEA. The inputs employed are labor, capital equipment (compris-
ing distribution networks and transformers) and general expenses. Out-
put comprises the number of low voltage electricity customers, the
number of high voltage electricity customers, low and high voltage elec-
tricity supply (MWh). Pacudan and de Guzman (2002) also employed
DEA to measure the efficiency of electricity distribution of 15 utilities
in the Philippines for the year 1996. Their inputs were comprised of
the number of employees, circuit km of network lines and network
losses (in GWh). Outputs included the number of customers, service
area and electricity sales (in GWh). Korhonen and Syrjanen (2003)
used DEA to measure cost efficiency of Finnish electricity distribution.
Inputs comprised operational expenditure and cost of capital; outputs
comprised distributed energy and quality. Nemoto and Goto (2003)
used a DEA dynamic framework to measure the efficiency of 9 electric
power production plants in Japan between 1981 and 1995. Inputs com-
prised variable inputs, fuel and labour. Quasi-fixed inputs were com-
prised of generation plants, transmission facilities and distribution
facilities. Outputs comprised amounts of MWh sold to commercial and
industrial use and electricity sold for residential use. Vaninsky (2006)
employed DEA to measure United States (US) electricity power genera-
tion for the period 1991 to 2004. The outputs comprised utilisation of
net capacity and inputs comprised operating expenses and energy
2 Their analysis considers impacts of technology heterogeneities on electricity produc-
tion (i.e. at the electricity generation stage). Our analysis focuses exclusively on distribu-
tion networks.

3

loss. Ajodhia (2010) employed DEA to measure efficiency performance
of UK and the Netherlands electricity distribution. Inputs comprise total
expenditures and customer minutes loss (CML). Outputs comprise en-
ergy delivered and the number of consumers.

Besides the use of DEA, some studies included variations of DEA and
other complementary models. Sueyoshi and Goto (2001) used slack-
adjusted DEA modelling to examine the performance of 10 electric
power generation companies in Japan between 1984 and 1993. They
employed three inputs - the amount of total fossil fuel generation capac-
ity measured by megawatts, the amount of total fuel consumption (oil,
coal, and gas) and the total number of employeesworking in these fossil
fuel plants. Output consisted of the total power generation (GWh) from
these plants. Omrani et al. (2015) employed a combination of principal
component analysis and DEA to evaluate efficiency of electricity distri-
bution companies in Iran. Inputs comprised transformer capacity
(MVA), number of transformers, terrestrial network length, aerial net-
work length, number of employees and area. Outputs comprised energy
delivery (MkW), energy consumption of other customers, industrial en-
ergy consumption, household energy consumption, number of other
customers, number of industrial customers, number of household cus-
tomers and number of lights of street lighting. Tavassoli et al. (2015)
employed a slacks-based measure, strong complementary slackness
condition, and discriminant analysis DEA approach to rank electricity
distribution companies in Iran. Inputs comprised number of employees,
transmission capacity (MVA) and network length. Outputs comprised
unit delivery (MWh) and service area (km2). Bongo et al. (2018)
employed conventional DEA and super-efficiency DEA to measure the
efficiency of an electricity distribution utility in Philippines. The input
indicators considered were purchased electricity supply and total
length of power lines. Outputs were electricity consumed, number of
consumers, and total power losses.

Some studies incorporated bad outputs in the DEA model to assess
environmental efficiency. Seifert et al. (2016) employed a metafrontier
DEA to measure the performance of the German electricity generating
sector. Inputs comprised capital, fuel and labour. Outputs comprised en-
ergy output (good output) and CO2 output (bad output). Bigerna et al.
(2019) employed a two-stage DEA and Malmquist productivity model
to measure the environmental and energy efficiency performance of
the electricity industry of 19 European Union countries. Inputs com-
prised electrical capacity, input fuels and employment. Outputs com-
prised good outputs (electricity generation or output measured by
total net production) and bad outputs (greenhouse gas emission).
Their study also included a regression analysis using explanatory vari-
ables such as the overall regulatory index for the electricity sector and
environmental policy stringency. Monastyrenko (2017) employed
DEA and Malmquist-Luenberger productivity indexes to measure the
eco-efficiency of European electricity producers in 2005–2013. The
input indicators considered were total installed capacities involved in
electricity generation (MW) and total operational expenditures. Out-
puts were physical amounts of generated electricity (TWh) and total
CO2 emissions from electricity generation.

There are also studies that included a regression analysis to deter-
mine sources of (in)efficiency. Besides Bigerna et al. (2019) as described
earlier, Saastamoinen et al. (2017) employed DEA to assess the perfor-
mance of Norwegian electricity distribution from 2004 to 2012. The
input indicator is total cost. Outputs are the number of customers, the
length of high voltage (HV) lines and the number of network stations.
Environmental variables include geo1 and geo 2which relates to the op-
erating environment, distance to road, forest and share of underground
lines in the HV network. Bobde and Tanaka (2018) employed a two-
stage DEA with bootstrap estimation to examine the efficiency of elec-
tricity distribution utilities in India from2005 to 2012. Inputs comprised
number of employees, distribution line length, transformer capacity and
total assets. Outputs comprised number of customers and electricity de-
livered. Environmental variables for the second stage comprised the tar-
iff ratio, consumer structure, population density, ownership and



3 Hoff (2007), Simar and Wilson (2007, 2011), McDonald (2009) and Ramalho et al.
(2010) review the various models used for explaining efficiency scores using regression
analysis.
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subsidy. Zhao et al. (2018) employed a three-stage DEAmodel to assess
the operational efficiency of the Chinese Provincial Electricity Grid. In-
puts comprised number of employees, fixed assets investment, 110 kV
and below distribution line length and 110 kV and below transformer
capacity. Outputs comprised electricity sales, number of customers
and line loss rate. Environmental variables for the regression analysis
comprised GDP per capita, proportion of the second industry added
value in GDP and urbanization rate.

Most recently, Navarro-Chávez et al. (2020) employed a network
DEA to measure efficiency of the electricity sector of Mexico for the pe-
riod 2008–2015. They identified four nodes (generation, transmission,
distribution and sales) in the network DEA. In node 1 generation, the
inputs - plant capacity and the number of electricity generating units -
produces the output - electric power generated. Electric power gener-
ated in node 2 (transmission) becomes an input and is transmitted via
transmission lines (another input) to produce transmitted electric
power (the output). The transmitted electric power becomes an input
in node 3 and is distributed via inputs (distribution lines and transfor-
mation capacity). The distributed electric power becomes an input
and together with the number of employees (another input) in node 4
is sold (the output) to customers.

In the case of Australia, there are only a handful of studies usingDEA.
Zhang and Bartels (1998) used DEA to measure the efficiency of
Queensland and NSW electricity distributors. Inputs included the num-
ber of employees, total kilometres of distribution lines and total trans-
former capacity. Output is measured in terms of the total number of
customers served. London Economics (1999) assessed the efficiency
and productivity performance of NSW electricity distributors using
DEA. The inputs were comprised of total operations & maintenance
(O&M) expenditures, route kilometres and nameplate transformer ca-
pacity. Outputs included total energy delivered, total number of cus-
tomers and peak demand (measured in MW). Abbott (2006) used the
Malmquist productivity (DEA approach) to estimate productivity
change of the Australian electricity supply industry from 1969 to 1999
between states. The study used aggregated inputs such as capital
stock, energy and labour employed. Outputs were measured in terms
of the amount of electricity consumed. The Australian Energy Regulator
(AER) (2016) measured the efficiency of 13 electricity distribution net-
work service providers (DNSPs) in theNEMusing a TFP index approach.
Inputs included operating expenditure and capital stock. Outputs com-
prised the number of customers, circuit line length, maximum demand,
energy delivered and reliability. In addition, the AER (2016) measured
the efficiency of five DNSPs in the NEM using the TFP index approach.
Inputs included operating expenditure and capital stock. Outputs com-
prised the line length, energy transported,maximumdemand (quantity
specified), voltage of entry and exit points and reliability.

The literature above essentially employs DEA and satisfies themodel
specification of input-output production. Some studies focused only on
the transmission process whereas others focused on the distribution
component. The only study that focused on the entire network was
Navarro-Chávez et al. (2020). With regards to examining sources of
(in)efficiency - of particular interest to policy makers - only a handful
of studies have attempted this. This study focuses on determining
sources of (in)efficiency among Australian electricity distribution net-
works and provide recommendations for improvement.

3.3. Second-stage – bootstrap regression

DEA, however, has some limitations. There is no error term in DEA
suggesting that mismeasurement and misspecification errors are in-
cluded in the efficiency estimates. DEA scores also provide no conven-
tional measures of statistical significance owing to its nonparametric
nature. To overcome this problem, Ray (1991) and Coelli et al. (2005)
suggested the use of a two-stage analysis, whereby the first stage de-
rives efficiency estimates, and the second stage performs a regression
analysis on the efficiency estimates.
4

By their nature, DEA efficiency scores are bounded at unity from
above, thereby making them a limited dependent variable (McDonald
2009; Ramalho et al. 2010). Econometric modelling of bounded depen-
dent variables—especially non-binary variables with a significant num-
ber of observations at the extremes—becomes a challenge because it
makes the application of standard linear models inappropriate. The
use of logit and probit models - given their strong distributional as-
sumptions for the underlying population - provides only a limited ap-
proach to solving the problem. Tobit regressions, on the other hand,
are appropriate when the dependent variable is limited either above
or below, but is unbounded elsewhere (Ramalho et al. 2010). Simar
andWilson (2007) argued that numerous studies suffer from the prob-
lem of serial correlation. That is, these studies adopt a two-stage ap-
proach and regress DEA scores on covariates (i.e. environmental
variables) without considering an appropriate data generating process.
Hence, direct regression analysis is invalid owing to the dependency of
the efficiency scores.

To overcome this problem, they proposed an alternative estimation
and statistical inference procedure based on a double-bootstrap ap-
proach. We employ this approach in our analysis.3 The novelty of the
second-stage bootstrap regression is that the approach allows one to
omit the nondiscretionary inputs from the initial DEA and introduce
them in sequential non-DEA stages as proposed by Ray (1991) and
Mũniz (2002). In doing so, one can explicitly identify environmental
variables that would allow policy makers to address. If non-
discretionary variables were incorporated in the first stage DEA, the re-
sults will not provide sufficient information for policy-makers to work
with. In addition, the second-stage bootstrap regression of Simar and
Wilson (2007) is a novel approach because it performs bootstrap repli-
cations to increase the sample size (for example n=2000) andprovides
statistical inferences in the form of confidence intervals. This is espe-
cially useful for studies with small sample size such as the current
study. Nonetheless, Simar andWilson's (2007) DEA bootstrap approach
is only applicable for cross-sectional data and hence we employed DEA
on each year. While one could attempt using multi-factor productivity
such as Malmquist, it is proven by O'Donnell (2011, 2014) that
Malmquist is multiplicatively incomplete and fails the transitivity prop-
erty. Alternatively, one could employ the Färe-Primont productivity
index, which satisfies all economically-relevant axioms in the index
number theory (O'Donnell, 2011, 2014). Incorporating Simar and
Wilson's (2007) bootstrap regression within the Färe-Primont produc-
tivity index framework is a worthwhile task but would have to be a fu-
ture endeavour due to the magnitude of research to be undertaken.

By combining DEA with bootstrapping techniques, we successfully
generate a set of bias-corrected estimates of the DEA efficiency scores

(denoted bbθi) and confidence intervals that help resolve this problem.
In the second stage of our analysis, we regress the bias-corrected effi-
ciency scores derived from the bootstrap algorithm on a set of environ-
mental variables using the following regression model:

bbθi ¼ aþ Ziδþ εi, i ¼ 1, . . . ,n ð3Þ

where εi ~ N(0,δε2) is an error term with left-truncation at 1–Ziδ, a is a
constant term and Zi is a vector of specific variables for school i expected
to influence school efficiency. Simar andWilson (2007, 2011) detail the
bootstrap truncated regression algorithm, which is also described
step-by-step in Barros and Assaf (2009). For brevity sake, we refer the
interested reader to these studies for details.

We use the software package rDEA version 1.2–4 developed by
Simm and Besstremyannaya (2016) to carry out the DEA and double-
bootstrap estimations.



Table 2
Select studies and the rule of thumb.

Rule of thumb Min. no. of DMUs

(x = 3, y = 1)

Boussofiane et al. (1991) X × Y 3
Golany and Roll (1989) 2 (X + Y) 8
Banker et al. (1989); Bowlin (1998) 3 (X + Y) 12
Friedman and Sinuany-Stern (1998) (X + Y) < n/3 4 < 4.66
Dyson et al. (2001) 2 (X × Y) 6
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4. Data

The data used for deriving efficiency scores are drawn from the
AER website https://www.aer.gov.au/networks-pipelines/network-
performance. Benchmark efficiency comparisons for 2009 to 2019 are
based on data from the Electricity network performance report 2020,
the respective distributors' Economic benchmarking RIN-Templates re-
sponse documents and Category Analysis RIN-Templates response doc-
uments for age of poles. As noted by Economic Insights (2014), the
AER's economic benchmarking RIN data provides the most consistent
and thoroughly examined DNSP dataset yet assembled in Australia.
We use panel data for fourteen electricity distributors (the entire NEM
and Northern Territory), shown in Table 1 covering the period
2009–2017. The study does not include Western Australia (WA) due
to data limitations.

4.1. Inputs and outputs

The definition of inputs and outputs used in this study follow those
adopted by annual benchmarking reports and are defined below. The
input variables used are Operating Expenditure (OpEx), x1, the network
capacity measured in mega volt amp (MVA), x2, and the length of the
distribution line in km, x3. OpEx is expenditure on operating andmain-
taining a network. Network capacity is the total amount electricity
which is converted from the high voltage transmission network into
medium and low voltages and transport electricity from points along
the transmission lines to residential and business customers. These in-
puts are then used to deliver electricity via electrical cables. Hence, we
identify one output – electricity delivered in GWh, denoted by y1. A re-
view of 20 benchmarking studies by Jamasb and Pollitt (2001) showed
electricity delivered and number of customers were two outputs widely
used. We adopted electricity delivered as an output because it satisfies
our production model. However, we argue that number of customers,
as an output, is more likely to be determined by factors such as price,
which are not included in our input set. This suggests that the produc-
tionmodel of price “producing” numbers of customers is not directly re-
lated to the production model of OpEx.

Besides determining the input and output in the production model,
there is also the issue of determining the number of inputs, outputs
and DMUs. As noted in Sarkis (2007), the choice and number of inputs
and outputs and DMUs determines the quality of discrimination that
can exists between efficient and inefficient firms. Table 2 presents a se-
lect list of studies that recommend a rule of thumb regarding the
minimumnumber of DMUs required in order for the analysis to provide
sufficient discrimination.

Cook et al. (2014, p. 2) however argue that “such a rule is neither im-
perative, nor does it have a statistical basis, but rather is often imposed
for convenience”. Nonetheless, they feel that it is still important to
Table 1
Distributors in the NEM and Northern Territory.

Region Distributors

ACT/NSW 1 Evoenergy
2 Endeavour Energy
3 Essential Energy
4 Ausgrid

QLD 5 Energex
6 Ergon Energy

SA 7 SA Power Networks
VIC 8 CitiPower

9 Powercor
10 United Energy
11 Jemena
12 AusNet Services

TAS 13 TasNetworks
NT 14 Power and Water
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consider all relevant inputs and outputs for DEA studies. As our model
considers 3 inputs, 1 output and 14 DMUs, it therefore satisfies themin-
imum condition in the studies listed in Table 2 and the condition that
the productivity model should provide sufficient discrimination.

4.2. Environmental variables

The bias-corrected TE scores are regressed against three
determinants:

• Reliability
• Average age of poles
• Number of customers4

Reliabilitymeasures the extent to which networks are able to main-
tain a continuous supply of electricity. Three measures of reliability
identified by the AER include system average interruption frequency
index (SAIFI), customer average interruption duration index (CAIDI)
and systemaverage interruption duration index (SAIDI). SAIFImeasures
the frequency of outages,which essentially shows the number of supply
interruptions each customer experienced in a year when averaged over
all customers on the distribution network. CAIDI reflects the duration of
outages for each customer. It also captures the firm's ability to respond
and implement repairs or switching when faults do occur. SAIDI mea-
sures the average length of time each customer was without supply
when averaged over all customers in the distribution network. In regard
to our model, we use SAIDI because we focus on the reliability of the
network which would be best measured in terms of duration rather
than in terms of customer average or number of supply interruptions.
As the value of SAIDI shows the average length of time customers are
without supply, we therefore take the reciprocal of this value to reflect
reliability. Average age of poles (pole age) is the average age of all
poles that have been inspected and treated, starting from when the
pole was installed. Number of Customers is a demand factor and beyond
the control of the distributor.We hypothesise that the greater the num-
ber of customers, the greater the improvement to economies of scale
and therefore the greater the efficiency.

Table 3 presents descriptive statistics of the inputs, outputs, and en-
vironmental variables for 2017.

5. Results

Table 4 presents the TE scores of each electricity distribution net-
work firm based on the VRS input-oriented DEA model for the period
2009–2019. Only 6 distributors remained efficient throughout the sam-
ple period - Evoenergy, Ausgrid, Endeavour Energy, Citipower, Jemena,
and Power and Water. However, the efficiency scores under the CRS
input-oriented DEA model shown in Table 5 reveal Citipower as the
only efficient distributor throughout the sample period. As discussed
in Coelli et al. (2005), a firm that is on the VRS frontier (technically effi-
cient) but not on the CRS frontier, is scale inefficient. This suggests that
4 One Reviewer queried whether CO2 emissions might be included in these variables.
Due to the negligible interaction and impacts of power generation investment decisions
on distribution networks, CO2 emissions have not been incorporated.

https://www.aer.gov.au/networks-pipelines/network-performance
https://www.aer.gov.au/networks-pipelines/network-performance


Table 3
Descriptive statistics of the inputs, output and environmental variables, 2017.

Variable Mean Min. Max. Std. dev.

Inputs Operating
expenditure

227.4 49.0 555.0 149.7

Network capacity
(MVA)

7204.0 1370.9 15,250.6 4434.7

Length of distribution
line (km)

53,235.4 4550.0 192,103.0 57,433.6

Output Electricity delivered
(Gwh)

10,355.8 1780.0 25,669.0 7050.9

Environmental
variables

Reliability 0.015 0.004 0.050 0.012
Average age of poles 32.0 23.7 46.9 6.4
Number of customers 723.0 85.7 1706.9 464.3
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apart fromCitiPower andUnited Energy, and to some extent Ausgrid, all
other firms are not operating at the optimal scale of operations and that
they either need to increase or decrease their scale of operations. As
shown in Table 6, the increasing returns to scale (IRS) for Evoenergy
suggest that it needs to increase its scale of operations for all years.
Ausgrid exhibited CRS for most years suggesting that it was operating
at optimal levels except for 2016 when it should have reduced its
scale of operations (represented by decreasing returns to scale (DRS)).
The same situation is evident for Endeavour Energy whereby it should
have reduced its scale of operations for the years 2009, 2014 and
2016. Jemena Electricity should have increased its scale of operations
for years 2011, 2012, 2016, 2017, 2018 and 2019; and Power and
Table 4
Technical efficiency scores (input-oriented VRS) 2009–2019.

2009 2010 2011 2012

1 Evoenergy 1.000 1.000 1.000 1.000
2 Ausgrid 1.000 1.000 1.000 1.000
3 Endeavour Energy 1.000 1.000 1.000 1.000
4 Essential Energy 0.606 0.583 0.597 0.624
5 Energex 1.000 1.000 1.000 1.000
6 Ergon Energy 0.947 0.943 0.883 0.943
7 SA Power Networks 0.831 0.854 0.741 0.752
8 TasNetworks (D) 0.760 0.740 0.769 0.768
9 AusNet (D) 0.738 0.800 0.776 0.815
10 CitiPower 1.000 1.000 1.000 1.000
11 Jemena Electricity 1.000 1.000 1.000 1.000
12 Powercor Australia 0.918 0.931 0.908 0.939
13 United Energy 1.000 1.000 0.978 1.000
14 Power and Water 1.000 1.000 1.000 1.000

Mean 0.914 0.918 0.904 0.917
Efficient firms (no.) 8 8 7 8

Table 5
Technical efficiency scores (input-oriented CRS) 2009–2019.

2009 2010 2011 2012

1 Evoenergy 0.762 0.747 0.759 0.787
2 Ausgrid 1.000 1.000 1.000 1.000
3 Endeavour Energy 0.989 0.986 1.000 1.000
4 Essential Energy 0.595 0.582 0.572 0.608
5 Energex 0.886 0.890 0.853 0.870
6 Ergon Energy 0.935 0.940 0.853 0.925
7 SA Power Networks 0.777 0.801 0.739 0.752
8 TasNetworks (D) 0.749 0.713 0.723 0.719
9 AusNet (D) 0.737 0.786 0.757 0.809
10 CitiPower 1.000 1.000 1.000 1.000
11 Jemena Electricity 1.000 1.000 0.974 0.995
12 Powercor Australia 0.885 0.919 0.906 0.938
13 United Energy 1.000 1.000 0.967 1.000
14 Power and Water 0.664 0.680 0.659 0.687

Mean 0.856 0.860 0.840 0.863
Efficient firms (no.) 4 4 3 4
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Water should have increased its contribution to the NEM. Various stud-
ies show that between 2004 and 2018, the Regulatory Asset Base of
Australia's electricity network tripled in value, from $32 billion to $93
billion. While this has been the result of forecast demand growth and
tightening of reliability standards (see, Simshauser and Akimov 2019),
demand forecasts proved erroneous. Simshauser and Akimov (2019)
also point out that “some networks were characterized by significant
investment mistakes in retrospect” (p. 117). Therefore, some of the in-
efficiencies seen among some of the distributors could be attributed to
inefficiencies that have been built into Australia's NEMpolicies and reg-
ulatory structures.

As observed, somedistributors are efficient under VRS but not under
CRS, which raises the question about the underlying technology and
whether it exhibits CRS or VRS. As DEA is a non-parametric method, it
relies on convexity assumptions. To test this, we apply Simar and
Wilson's (2002) returns to scale bootstrapping statistics test. To for-
mally test whether the technology set T from our sample exhibits CRS
or VRS, we express our null and alternative hypothesis as follows:

Ho: T is CRS
Ha: T is VRS
Fromour test, a false responsewas returned and indicates that the p-

value (0.338) is greater than alpha = 0.05. Thus, the null hypothesis
(CRS) is not rejected in favour of the alternative (VRS).

As noted by Hughes and Yaisawarng (2004); Avkiran (2007), Tyagi
et al. (2009), Liu et al. (2010) and Fallahi et al. (2011), DEA results are
sensitive to the number of variables and sample size. A stability test is
thus performed by omitting one input variable at a time under CRS
2013 2014 2015 2016 2017 2018 2019

1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.708 0.745 0.759 0.747 0.754 0.761 0.798
0.910 1.000 1.000 1.000 1.000 1.000 1.000
1.000 0.998 0.977 0.946 0.861 0.861 0.891
0.747 0.744 0.701 0.771 0.706 0.697 0.696
0.869 0.883 0.955 0.844 0.770 0.830 0.845
0.828 0.854 0.885 0.830 0.852 0.822 0.829
1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.918 0.949 0.934 0.934 0.910 0.891 0.896
1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.927 0.941 0.944 0.934 0.918 0.919 0.925
8 8 8 8 8 8 8

2013 2014 2015 2016 2017 2018 2019

0.815 0.820 0.815 0.946 0.916 0.829 0.817
1.000 1.000 1.000 0.976 1.000 1.000 1.000
1.000 0.995 1.000 0.998 1.000 1.000 1.000
0.707 0.741 0.756 0.746 0.747 0.748 0.782
0.874 0.900 0.891 0.942 0.945 0.891 0.902
1.000 0.993 0.974 0.944 0.849 0.848 0.875
0.745 0.738 0.695 0.749 0.705 0.684 0.674
0.760 0.743 0.782 0.825 0.729 0.745 0.734
0.817 0.845 0.871 0.825 0.822 0.792 0.792
1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 0.971 0.976 0.965 0.953
0.915 0.926 0.931 0.913 0.905 0.873 0.872
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.681 0.758 0.779 0.792 0.771 0.801 0.745
0.880 0.890 0.892 0.902 0.883 0.870 0.867
6 4 5 2 4 4 4



Table 6
Scale efficiency scores (input-oriented) 2009–2019.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

1 Evoenergy 0.762 irs 0.747 irs 0.759 irs 0.787 irs 0.815 irs 0.820 irs 0.815 irs 0.946 irs 0.916 irs 0.829 irs 0.817 irs
2 Ausgrid 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 0.976 drs 1.000 crs 1.000 crs 1.000 crs
3 Endeavour Energy 0.989 drs 0.986 irs 1.000 crs 1.000 crs 1.000 crs 0.995 drs 1.000 crs 0.998 drs 1.000 crs 1.000 crs 1.000 crs
4 Essential Energy 0.983 irs 0.997 irs 0.959 irs 0.974 irs 0.998 irs 0.994 irs 0.995 irs 0.998 drs 0.990 irs 0.984 irs 0.980 irs
5 Energex 0.886 drs 0.890 drs 0.853 drs 0.870 drs 0.961 drs 0.900 drs 0.891 drs 0.942 drs 0.945 drs 0.891 drs 0.902 drs
6 Ergon Energy 0.987 irs 0.998 irs 0.965 irs 0.980 irs 1.000 crs 0.995 irs 0.997 irs 0.998 drs 0.986 irs 0.985 irs 0.982 irs
7 SA Power Networks 0.935 drs 0.938 drs 0.997 irs 1.000 irs 0.997 irs 0.991 drs 0.992 irs 0.972 drs 0.998 drs 0.982 irs 0.968 irs
8 TasNetworks (D) 0.986 irs 0.964 irs 0.940 irs 0.936 irs 0.875 irs 0.841 irs 0.819 irs 0.977 irs 0.946 irs 0.898 irs 0.868 irs
9 AusNet (D) 0.998 drs 0.981 drs 0.976 irs 0.993 irs 0.988 irs 0.990 irs 0.984 irs 0.995 irs 0.966 irs 0.963 irs 0.955 irs
10 CitiPower 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs
11 Jemena Electricity 1.000 crs 1.000 crs 0.974 irs 0.995 irs 1.000 crs 1.000 crs 1.000 crs 0.971 irs 0.976 irs 0.965 irs 0.953 irs
12 Powercor Australia 0.964 drs 0.987 drs 0.998 irs 0.999 irs 0.997 irs 0.975 drs 0.997 irs 0.977 drs 0.994 irs 0.980 irs 0.973 irs
13 United Energy 1.000 crs 1.000 crs 0.989 irs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs 1.000 crs
14 Power and Water 0.664 irs 0.680 irs 0.659 irs 0.687 irs 0.681 irs 0.758 irs 0.779 irs 0.792 irs 0.771 irs 0.801 irs 0.745 irs

Mean 0.940 0.941 0.933 0.944 0.951 0.947 0.948 0.967 0.963 0.948 0.939
Efficient firms (no.) 4 4 3 5 6 4 5 2 4 4 4

Notes: irs – increasing returns to scale, drs – decreasing returns to scale, crs – constant returns to scale.

Table 7
Stability test results (2017).

Non bias-corrected Bias-corrected

Input Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

OpEx ($'M) Yes Yes Yes No Yes Yes Yes No
Network capacity (MVA) Yes Yes No Yes Yes Yes No Yes
Circuit line length (km) Yes No Yes Yes Yes No Yes Yes
CRS
Spearman rho with Model 1 – 0.996 0.682 0.939 – 0.996 0.723 0.930
P-values <0.00001 <0.00001 0.0072 <0.00001 <0.00001 <0.00001 0.0035 <0.00001
VRS
Spearman rho with Model 1 – 1.000 0.790 0.869 – 0.969 0.785 0.785
P-values <0.00001 <0.00001 0.0008 <0.00001 <0.00001 <0.00001 0.0009 0.0009
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and VRS models to validate the robustness of the DEA efficiency scores.
Two tests are performed; one between non-bias efficiency scores and
one between bias-corrected efficiency scores. For each test, four models
are considered with model 1 as the principal model. A Spearman corre-
lation test is then conducted for model relative to model 1 to assesses
the impact of each variation. From the stability test results in Table 7,
the Spearman's rho between model 1 and 2; and model 1 and 4 are
high, but less so with model 3. Nonetheless, as the p-values are ex-
tremely low, we observe a significant positive correlation and that
dropping variables are insignificant compared to the results obtained
from model 1.
5.1. Radial and slack movements

Using 2017 as an example, Table 8 shows the radial and slackmove-
ments for each distributor needed to achieve overall efficiency. In es-
sence, inefficient firms would need to change the amount of inputs
and/or outputs to become efficient. Using Evoenergy to illustrate this
point, it is peered against Citipower andUnited Energywithλ (weights)
0.2442503 and 0.1872449, respectively.5We note that Evoenergy has to
cut back on x1 (OpEx) by $4.11 million to $44.89 million. It also has to
reduce network capacity (x2) by 183.385 MVA and circuit length (x3)
by 447.14 km (a shift towards the frontier which denotes radial move-
ment) and a further 1276.279 km (movement along the frontier which
denotes slack movement).
5 Note that Σλiis not equal to 1 (0.2442503 + 0.1872449 = 0.431495) because of the
convexity constraint, Σλi = 1 (i.e. the sum of the intensity variables, λ's, is equal to one)
is not imposed in the CRSmodel, hence theweights (i.e. lambdas (λ)) may not necessarily
equal 1.00 (i.e. 100%).
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5.2. Determinants of efficiency for electricity distribution networks

To quantify the sources of (in)efficiency, we select 2017 as our year
for analysis. Ideally, wewould have used the averages of the inputs, out-
puts and environmental variables for the period 2009–2017 because av-
eraging reduces the effects of noise, such as unexpected cost shocks
(Kuosmanen et al. 2013). However, thiswas not possible due to unavail-
able data for some distributors for some years.

As the study employs a second-stage regression analysis, the as-
sumption of separability needs to be tested (Daraio et al. 2018). Using
Wilson's (2008) FEAR software package version 3.1, we test the separa-
bility condition using Daraio et al.'s. (2018) proposed central limit the-
orem. Using bootstrap replications of 1000 and 2000; and 10 splits as
recommended by Daraio et al. (2018), each environmental variable is
tested individually, while considering all inputs and outputs. After
that, we test all environmental variables as a whole. Table 9 presents
the p-values greater than 0.05 suggesting that the null hypothesis of
separability is not rejected and that the separability assumption holds.

We quantify the determinants of efficiency using Simar andWilson's
(2007) double bootstrap truncated regression based on the maximum
likelihood estimation. The estimated specification for the regression is:

bbθi ¼ β0 þ β1reliabilityþ β2pole_ageþ β3customers ð4Þ

where bbθi is the bootstrapped bias-corrected efficiency score.
Table 10 provides the estimated coefficients and 95% confidence in-

tervals for the second stage estimation under VRS and CRS. As the R
package rDEA reports, the efficiency scores is the reciprocal of the
input DEA efficiency scores, whereby the efficiency scores range from
one to infinity. A positive sign for a coefficient thus indicates a negative



Table 8
Radial and slack movement (CRS), 2017.

DMU Benchmark(Lambda) Radial
movement

Slack
movement

Projection Radial
movement

Slack
movement

Projection

(x1) (x2)

Evoenergy CitiPower(0.24425403); United Energy(0.1872449) −4.11 0 44.89 −183.39 0 2003.83
Ausgrid Ausgrid(1.000000) 0 0 555.00 0 0 15,250.64
Endeavour Energy Endeavour Energy(1.000000) 0 0 319.00 0 0 10,168.80
Essential Energy Ausgrid(0.23330466); Endeavour Energy(0.3828848) −85.38 0 251.62 −2528.28 0 7451.54
Energex CitiPower(0.92076617); United Energy(2.0278973) −20.33 0 351.67 −815.13 0 14,099.87
Ergon Energy Ausgrid(0.519381) −55.94 −26.80188 315.06 −1406.42 0 7920.86
SA Power
Networks

Endeavour Energy(0.1972554); United Energy
(0.881907)

−77.37 0 184.63 −2670.59 0 6372.59

TasNetworks (D) CitiPower(0.09016258); United Energy(0.466536) −26.59 0 71.41 −1007.91 0 2707.51
AusNet (D) Ausgrid(0.29892088) −38.35 −11.75314 177.65 −983.98 0 4558.75
CitiPower CitiPower(1.000000) 0 0 78.00 0 0 4408.04
Jemena Electricity Ausgrid(0.13310479); CitiPower(0.14320319) −2.16 −3.796 88.84 −64.73 0 2661.17
Powercor
Australia

Endeavour Energy(0.4933582); United Energy
(0.3152759)

−21.11 0 200.89 −691.25 0 6577.98

United Energy United Energy(1.000000) 0 0 138.00 0.00 0 4951.46
Power and Water Ausgrid(0.069344) −17.14 −19.37056 57.86 −313.36 0 1057.53
DMU Benchmark(Lambda) Radial

movement
Slack
movement

Projection Radial
movement

Slack
movement

Projection

(x3) (y1)
Evoenergy CitiPower(0.24425403); United Energy(0.1872449) −447.14 −1276.28 3609.58 0 0 2914.00
Ausgrid Ausgrid(1.000000) 0 0 41,642.00 0 0 25,669.00
Endeavour Energy Endeavour Energy(1.000000) 0 0 36,993.00 0 0 16,716.00
Essential Energy Ausgrid(0.23330466); Endeavour Energy(0.3828848) −48,667.42 −119,556.25 23,879.33 0 0 12,389.00
Energex CitiPower(0.92076617); United Energy(2.0278973) −2937.91 −19,573.40 31,245.69 0 0 21,355.00
Ergon Energy Ausgrid(0.519381) −22,993.45 −107,869.47 21,628.08 0 0 13,332.00
SA Power
Networks

Endeavour Energy(0.1972554); United Energy
(0.881907)

−26,274.41 −43,633.12 19,063.47 0 0 10,215.00

TasNetworks (D) CitiPower(0.09016258); United Energy(0.466536) −6164.82 −9925.42 6634.76 0 0 4193.00
AusNet (D) Ausgrid(0.29892088) −7972.19 −24,487.15 12,447.66 0 0 7673.00
CitiPower CitiPower(1.000000) 0 0 4550.00 0 0 5917.00
Jemena Electricity Ausgrid(0.13310479); CitiPower(0.14320319) −150.68 0 6194.32 0 0 4264.00
Powercor
Australia

Endeavour Energy(0.4933582); United Energy
(0.3152759)

−7143.49 −45,520.30 22,457.21 0 0 10,720.00

United Energy United Energy(1.000000) 0 0 13,342.00 0 0 7844.00
Power and Water Ausgrid(0.069344) −1603.47 −2523.89 2887.64 0 0 1780.00

Table 9
Separability test (p-values).

CRS VRS

n = 1000 n = 2000 n = 1000 n = 2000

Reliability 0.396 0.569 0.907 0.894
Average age of poles 0.575 0.381 0.928 0.922
Customers 0.590 0.333 0.914 0.916
All three environmental variables 0.723 0.740 0.930 0.910

Table 11
System GMM results (one-year lag), 2015–2019.

Estimate Std.Err.rob z-value.rob Pr(>|z.rob|)

Efficiency t-1 −0.1574 1.1789 −0.1340 0.8934
Reliability t 3.4456 0.2393 14.3970 <0.00001***
Reliability t-1 −0.2859 0.1125 −2.5410 0.0111*
Ln_Pole_age t −0.0128 0.4639 −0.0280 0.9777
Ln_Pole_age t-1 −0.1447 0.4447 −0.3250 0.7452
Ln_Customers t 0.8084 2.7387 0.2950 0.7680
Ln_Customers t-1 −1.4610 0.1135 −12.8760 <0.00001*
2017 −0.0065 0.1275 −0.0510 0.9593
2018 −0.0514 0.0963 −0.5340 0.5933
2019 −0.0720 0.1541 −0.4670 0.6405

Signif. codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’.
J-Test (overid restrictions): 12.3 with 7 DF, pvalue: 0.0911.
F-Statistic (slope coeff): 297625.9 with 7 DF, pvalue: <0.001.
Serial correlation test: normal = −0.16116, p-value = 0.872.
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influence on efficiency, whereas a negative sign indicates a positive
influence on efficiency.

Results from both tables show that reliability (SAIDI), or network
reliability, is significant and positively impacts on efficiency, which sug-
gests a continuous supply of electricity with minimal outages. Average
Table 10
Truncated regression results (VRS and CRS).

Variable VRS CRS

Coefficient 95% Confidence interval Coefficient 95% Confidence interval

Lower bound Upper bound Lower bound Upper bound

Constant 1.157069⁎ 0.915511 1.405890 1.249659⁎ 0.995200 1.498057
Reliability −26.290870⁎ −37.599920 −10.776280 −18.815340⁎ −25.775010 −9.298864
Average age of poles 0.011778⁎ 0.004091 0.018814 0.009313⁎ 0.002304 0.016209
Number of customers −0.000172⁎ −0.000295 −0.000035 −0.000189⁎ −0.000298 −0.000059

Note: A positive (negative) sign indicates an increase (decrease) in inefficiency.
⁎ Significant at the 5% level; total number of iterations = 2000.
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Table 12
Results of the LSDVC (Blundell and Bond estimator).

95% Confidence interval
Coef. Std. Err. z P > |z| Lower bound Upper bound

Efficiency t-1 11.6824 0.0630 185.52 0.00000 ⁎⁎⁎ 11.5589 11.8058
Reliability 50.7409 5.5248 9.18 0.00000 ⁎⁎⁎ 39.9126 61.5692
Ln_Average age of poles 0.8489 0.1417 5.99 0.00000 ⁎⁎⁎ 0.5711 1.1267
Ln_Customers 18.2488 0.3071 59.43 0.00000 ⁎⁎⁎ 17.6469 18.8506
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age of poles is significant and negatively impacts on efficiency. This sug-
gests that older poles require more frequent maintenance and replace-
ment of poles indicating more outages. Number of customers is
significant and positively impacts on efficiency suggesting increased de-
mand plays a significant contributor to improving efficiency. However,
electricity demand is also influenced by competing substitutes, such as
solar uptake. As households demand for solar uptake rises, demand for
electricity from the grid will fall. The consequence of this is that the re-
maining customers will have to bear the burden of higher network tar-
iffs (ie. within retail-level prices) in order to maintain the ageing poles
and wires (Simshauser, 2016). This outcome will only worsen as poles
and wires age, which also impacts on continuous supply and increases
the frequency of outages.

As the above result is based on cross-sectional analysis, we verify the
results' robustness by performing tests on endogeneity issues such as
omitted variables, reverse causality and fixed-effects.

To handle the potential endogeneity issues like omitted variable bias
and reverse causality,6 we use Arellano and Bond's (1991) two-step dy-
namic generalisedmethod ofmoments (GMM)7 based on the nonlinear
moment conditions as proposed by Ahn and Schmidt (1995). As our
panel-data was unbalanced covers the years 2015–2019.8 As noted in
Wintoki et al. (2012), system GMM provides consistent estimates in
the presence of different sources of endogeneity, namely unobserved
heterogeneity, simultaneity and dynamic endogeneity. Using Fritsch
et al. (2019) ‘pdynmc’ R package version 0.9.2, we produce the system
GMM results in Table 11.

The GMM results support the second-stage regression findings of
Table 10. The results are based on one-year lag because our
time-series was limited to 5 years. Using two or more lags will reduce
the degrees of freedom and reduce the number of observations, and
may generate weaker instruments (Roodman 2009). The J-Hansen
test is insignificant and we do not reject the null hypothesis because
the test does not provide any indication that the validity of the instru-
ments employed in estimationmay be in doubt. The second order serial
correlation test does not reject the null hypothesis thus not providing
any indication that the model specification might be inadequate.

As noted byNankervis and Savin (1987), estimating a dynamic panel
model with finite time series will lead to poor asymptotic estimates and
is prone to type one error. Even using the Least Square Dummy Variable
(LSDV) or within-group estimators such as the fixed effects, difference
and system GMM, Anderson and Hsiao IV can lead to bias estimates
(Nickel, 1981; Kiviet, 1995, 1999). To handle the short-comings of the
least square estimator, studies such as Judson and Owen (1999),
Hansen (2001), Bun and Kiviet (2003); Bruno (2005), Bogliacino et al.
(2012), and Kurennoy (2015) proposed a bias corrected LSDV as it has
been found to yield more efficient estimates than the GMM method.9
6 For details on the types of endogeneity issues, see Antonakis et al. (2010); Ketokivi
and McIntosh (2017).

7 Also known as system GMM.
8 As noted by Arellano and Bond (1991, p. 289), “three cross-sections are lost in con-

structing lags”. As such we considered the period 2015–2019 to meet the minimum re-
quirement for the time-series analysis. Data for 2018 and 2019 were available from the
AER website as described at the start of Section 3. 2015 and 2016 were incomplete due
tomissing data and as such, our 2015–2019 data is an unbalanced panel. Nonetheless, this
is still suited for GMM as recommended by Judson and Owen (1999).

9 Also known as least square dummy variable correction (LSDVC).
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We employ the LSDVC with fixed effects and perform Monte Carlo
simulations.10 The LSDVC estimation is initialised using Blundell and
Bond (1998) GMM estimator to enable the bias correction (Bun and
Kiviet, 2003). We present the LSDVC results in Table 12.

The LSDVC results show reliability and customers as significant and
having a positive influence on efficiency. This supports the
second-stage regression findings. However, age of poles is significant
and positively affects efficiency, which contradicts Table 10. One possi-
ble explanation for this is the lagged efficiency having a positive contri-
bution to the next period's performance suggesting that efficiency via
improved operations, maintenance and streamlining tasks. On the
whole, the LSDVC results supports the second-stage regression results
of Table 10.

6. Conclusions

This article addresses to what extent electricity distribution net-
works are efficient in Australia's restructured market. To do so we use
panel data for the period 2009–2019 representing 14 electricity distrib-
utors covering the entire NEM plus Northern Territory and determine
the sources of (in)efficiency. Our results extend the AER's annual
benchmarking report on electricity distribution networks by
performing a second-stage analysis based on a bootstrap truncated re-
gression which reveals the sources of (in)efficiency.

The mean DEA efficiency scores for both VRS and CRS showed little
variation over the sample period. The number of efficient distributors
operating under VRS were greater than those operating under CRS
which implied that the latter distributors could improve performance
by changing their scale of operations, for example by way of mergers
or divestment. Several tests such as the stability test, separability test,
and test for endogeneity such as omitted variable, reverse causality
and fixed-effects were performed to validate the results robustness
and the tests supported the study's findings.

In terms of policy implications, our research provides added evi-
dence that many distribution networks are operating below efficient
levels. Except for 2013 and 2015, less than 30% of distribution networks
were found to be efficient. Most notably, Essential Energy, SA Power
Networks and TasNetworks exceeded efficient input levels by of 25%,
29% and 27%, respectively11 in 2017.

Our regression analysis reveals that reliability promotes efficiency.
This suggests policy should focus on this aspect of distribution net-
works. However, there is a need to bemindful that greater reliability re-
quires more resources and will ultimately reach the point of being
counter-productive. This issue has been highlighted by previous work
conducted due to significant investment mistakes in retrospect (see,
for example, Simshauser, (2019) and Simshauser and Akimov (2019)).

This raises the question of whether Australia's incentive-based regu-
lation is suitably framed. On the one hand, inefficient distributors can
improve the reliability of their network by allocating capital and operat-
ing costs where needed, and not before it is needed, to improve effi-
ciency and sustainability. Also, given an increasing number of
10 Based on the recommendation of Judson and Owen (1999), that a balanced panel is
required for the LSDVC. As such, we could only use the years 2017–2019.
11 Excess use of inputs is the ratio of input reduction (radial movement) over actual
inputs used.
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customers is shown to improve efficiency, this suggests larger coverage
could encourage better results (e.g. consolidations, mergers and acqui-
sitions). Note that from 2010 to 2015, demand in fact contracted. Only
from 2015 to 2018 did demand increase (Simshauser and Akimov
2019). On the other hand, and as one reviewer noted, an output-based
regulatory framework (cf. the NEM's existing incentive based)may bet-
ter target improvements in service quality.

In terms of future research there is a clear indication that the linkage
between Opex and efficiency should be examined at the micro level, to
provide precision to this linkage.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eneco.2021.105210.
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