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This work presents a literature review of control methods, with an emphasis on the theory and appli-
cations of model predictive control (MPC) for heating, ventilation, and air conditioning (HVAC) systems.
Several control methods used for HVAC control are identified from the literature review, and a brief
survey of each method is presented. Next, the performance of MPC is compared with that of other control
approaches. Factors affecting MPC performance (including control configuration, process type, model,
optimization technique, prediction horizon, control horizon, constraints, and cost function) are elabo-
rated using specific examples from the literature. The gaps in MPC research are identified, and future
directions are highlighted.
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1. Introduction

With the significant increase of energy consumption in build-
ings, energy saving strategies have become a priority in energy
policies in many countries. For instance, building energy con-
sumption in the EUwas 37% of the final energy totals in 2004 [1]. In
the USA, building energy consumption accounted for 41% of pri-
mary energy consumption in 2010 [2]. The categories of building
services and heating, ventilation, and air conditioning (HVAC)
systems make up the major sources of energy use in buildings
(almost 50% [1,2]). Therefore, the development and implementa-
tion of effective control techniques for HVAC systems is of primary
importance. In particular, with the decreased costs of data pro-
cessing, storage, and communication over recent years, the design
and implementation of more complex control techniques have
become feasible.

Despite the similarity of HVAC control to other types of process
control, certain features exist that render HVAC system control
unique and challenging, including the following:

� Nonlinear dynamics;
� Time-varying system dynamics and set-points;
� Time-varying disturbances;
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� Poor data due to low resolution of analog-to-digital converter
(ADC) devices, sampling rates, accuracy of sensors, and lack of
access to network forecasting and environmental information;

� Interacting and at times conflicting control loops; and
� Lack of supervisory control (in many buildings).

Many control methods have been developed or proposed for
HVAC systems. However, because of their simplicity, on/off and PID
control are still used in many HVAC systems, resulting in incon-
sistent performance among such systems. With advances in data
storage, computing, and communication devices, it is now feasible
to adopt and implement a proper control approach to overcome the
inherent issues in HVAC control. The focus of this paper is on a
survey of control methods for HVAC systems, and emphasis is
placed on the model predictive control (MPC) approach because
research on MPC development for HVAC systems has intensified
over the last years due to its many inherent advantages, which
include

� Use of a system model for anticipatory control actions rather
than corrective control;

� Integration of a disturbance model for disturbance rejection;
� Ability to handle constraints and uncertainties;
� Ability to handle time-varying system dynamics and a wide
range of operating conditions;

� Ability to cope with slow-moving processes with time delays;
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� Integration of energy conservation strategies in the controller
formulation;

� Use of a cost function for achievement of multiple objectives;
� Use of advanced optimization algorithms for computation of
control vectors;

� Ability to control the system at both the supervisory and local
loop levels.

However, a comprehensive survey of MPC approaches for HVAC
systems is still lacking. In particular, selected trends and issues
related to MPC design must be identified.

The organization of this paper is as follows. First, a review of
HVAC systems is presented to outline the spectrum of control tasks
in HVAC systems. Section 2 includes a brief review of previous sur-
veys related to HVAC control. Section 3 classifies the approaches to
HVAC control according tomethodology, scope and implementation
to create a framework with which to compare MPC with other
methods. Section 4 discusses the comparison of MPC with other
methods as well as the factors that affect its performance. Finally,
Section 5 includes a summary of important factors that govern MPC
design and outlines open design problems for HVAC systems.

2. Previous surveys

A large body of literature has been published on applications of
MPC to HVAC systems, but to the best of the authors’ knowledge, no
recent comprehensive review has been published on the theory
and applications of MPC.

Brief reviews of hard and soft control techniques were reported
in Refs. [3,4], respectively. The hard control techniques reviewed in
Ref. [3] include gain scheduling, optimal control, robust control,
MPC, and nonlinear and adaptive control. The soft or intelligent
control techniques reviewed in Ref. [4] include controllers based on
the artificial neural network (ANN), fuzzy logic (FL), and genetic
algorithm (GA). Intelligent control techniques such as neuro- and
genetic-fuzzy approaches were also reviewed in Ref. [5]. A review
of hybrid controllers resulting from the fusion of hard and soft
control techniques was also provided in Ref. [4]. ANN and GA ap-
plications for energy conservation in HVAC systems were
comprehensively reviewed in Ref. [6]. A review of hybrid and soft
techniques (i.e., fuzzy-P, fuzzy-PI, fuzzy-PID, adaptive-fuzzy, fuzzy-
neural controllers) and multi-agent control systems (MACs) for
energy management was provided in Ref. [7]. A review of fuzzy
modeling and control of HVAC systems was published in Ref. [8]. A
review of load forecasting in HVAC systems using intelligent control
techniques was reported in Refs. [9,10].

An overview of HVAC simulation approaches that covers the
modeling of HVAC components, controls, and systems was pre-
sented in Ref. [11]. An overview of supervisory and optimal control
of HVAC systems was given in Ref. [12]. The optimization tech-
niques used in supervisory control (i.e., least squares, simplex
search, gradient-based search, sequential quadratic programming,
evolutionary programming and GA) were also reviewed in Ref. [12].
A survey of energy-efficient strategies for HVAC systems (i.e., heat
recovery, liquid pressure amplification, and thermal storage) was
conducted in Ref. [13]. Automatic controls for HVAC systems (i.e.,
on/off control, PID control, time control [on/off switch, fixed time
boosted start, and optimum start and stop]) were reviewed in Ref.
[14]. Additionally, a survey of the theory and applications of
adaptive control for HVAC systems was given in Ref. [15].

3. Classification of HVAC control methods

A classification for control methods in HVAC systems is illus-
trated in Fig. 1. The control methods are divided into classical
control, hard control, soft control, hybrid control, and other control
techniques. Brief details of each method are provided in the
following sections.

3.1. Classical control

Classical controllers consist of the most commonly used control
techniques, such as on/off control and P, PI, and PID control. The on/
off controller uses an upper and lower threshold to regulate the
process within the given bounds. The P, PI, and PID controllers use
error dynamics and modulate the controlled variable to achieve
accurate control of the process.

Classical controllers are used for the dynamic control of
cooling coil units [16,17], room temperature control [18e22],
damper gap rate control [17,23], supply air pressure control
[17,24], supply air temperature control [25,26], variable air vol-
ume (VAV) unit temperature control [27], evaporator supply heat
control [27], and heater control [17]. Most of the research is
focused on finding optimal tuning and auto-tuning methods for
PID controllers.

Although the on/off controller is the most intuitive and easiest
to implement, it is unable to control moving processes with
time delays. Because of the high thermal inertia of many HVAC
processes, a process that is controlled using an on/off controller
displays large swings from the set points. The PID controller pro-
duces promising results, but tuning the controller parameters is
cumbersome, and the performance of the controller degrades if
the operating conditions vary from the tuning conditions. Re-
tuning or auto-tuning approaches for the PID controller [28] can
be time-consuming. In certain applications, auto-tuning might be
unacceptable because of its intrusive nature relative to normal
operation [29].

3.2. Hard control

Hard controllers are based on a theory for control systems
composed of gain scheduling control, nonlinear control, robust
control, optimal control, and MPC.

In gain scheduling control, a nonlinear system is divided into
piecewise linear regions. For each of the linear regions, a linear PI or
PID controller is designed with a different set of gains. Self-tuning
PI or PID controllers are also proposed in the literature to vary
the controller gains based on the state of the process. For example,
in Ref. [19], two PI controllers are tuned to meet the high and low
heat demand conditions in a hydronic-radiator-based HVAC sys-
tem. In Ref. [24], to control the supply air pressure, a PI controller is
used with gains based on the error between the set point and the
measured supply air pressure.

For nonlinear controller design, the control law can be derived
using Lyapunov’s stability theory, feedback linearization and
adaptive control techniques. The control law is used to drive the
nonlinear system toward a stable state while achieving the control
objectives. Nonlinear controllers have been applied to air handling
unit (AHU) control [30], cross flow water-to-air heat exchanger
control [31], and control of greenhouse environments (ventilation,
cooling and moisturizing) control [32].

The purpose of robust control is to design a controller that
works well under time-varying disturbances and changes in pa-
rameters. Examples of robust control include supply air tempera-
ture control [33], supply airflow rate control [33], and zone
temperature control [34].

The optimal control algorithm solves an optimization problem
to minimize a certain cost function. The objectives of optimization
in HVAC systems are generally minimization of energy consump-
tion and control effort and maximization of thermal comfort.
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Examples of optimal control design include active thermal storage
control [35], passive thermal storage control [36], energy optimi-
zation of HVAC system [37,38], VAV system control [39], and
building heating and cooling control [40,41].

The hard controller techniques are well established in the con-
trol system design field. The nonlinear control techniques are
effective but require the identification of stable states and complex
mathematical analysis for controller design. For gain scheduling
control design, the identification of linear regions and design of
switching logic between regions is necessary, and the manual
tuning of multiple PID controllers in these regions can be quite
cumbersome. Optimal control and robust control are promising
techniques for HVAC process control because they are capable of
rejecting disturbances and time-varying parameters. In general,
robustness is difficult to guarantee in HVAC systems, which are
subject to varying conditions in buildings. Many of these ap-
proaches also require the specification of additional parameters,
which could be difficult and impractical for integration in HVAC
systems. Among the hard control approaches, MPC is one of the
most promising techniques because of its ability to integrate
disturbance rejection, constraint handling, and slow-moving dy-
namic control and energy conservation strategies into controller
formulation.
3.3. Soft control

Soft control techniques such as those based on FL [42e45] and
ANN [6,26,46e48] are comparatively new techniques made
possible by the advent of digital controllers.

In an FL controller [42e45], control actions are implemented in
the form of if-then-else statements. The FL also can be incorporated
for the auto-tuning of PID controller gains in which PID control
represents the local scope of control, and the FL supervisor is often
used to optimize the response of the system on the global scale. The
fuzzy supervisor also acts as an arbiter and resolves conflicting
objectives from the local level controllers by prioritizing certain
controllers over others based on the common goals of reduction in
energy consumption and maintenance of thermal comfort. Alter-
natively, the FL can be implemented on both the local and super-
visory levels of control. Examples of FL design include predicted
mean vote (PMV)-based thermal comfort control [43], which
controls temperature, humidity, and air velocity in an AHU.
Another example of FL is the design of a three-level hierarchical
supervisory-FL controller to generate the operating modes of the
water and air subsystems and the set-points for the lower level
controllers [49].

The ANN is trained on the performance data of the system and
fits a nonlinear mathematical model to the data. The algorithm is a
black box modeling technique that does not require an under-
standing of the underlying physics of the process. The ANN is
commonly used in feed-forward control, and ANN can be trained on
the controller inputeoutput in an attempt to replace a conventional
controller in that application. Examples of ANN design include a
PMV-based thermal comfort controller for zone temperature con-
trol [50], optimization of air conditioning setback time based
on outdoor temperature [51], and fan control of an air cooled
chiller [52].

The implementation of FL control requires comprehensive
knowledge of the plant operation and its different states, whereas
ANN-based control design requires training data on awide range of
operating conditions, whichmay not be available formany systems.
Additionally, industry is usually reluctant to adopt and use a black
box approach.

3.4. Hybrid control

Hybrid controllers are produced by the fusion of hard and soft
control techniques. Several controllers, including quasi-adaptive
fuzzy control [53], adaptive-neuro control [48] and fuzzy-PID
control [45], have been proposed in the literature for the control
of HVAC systems.

Hybrid controllers are composed of soft control techniques
such as ANN at higher levels and hard control techniques such as
adaptive controllers at the lower levels of the control structure.
In fuzzy-PID systems, controller gains can be auto-tuned using
FL. Both hard and soft control techniques complement each
other, and a combination of both can solve problems that may
not be solved by each technique separately. Examples of hybrid
control include a fuzzy self-tuning PI controller for supply air
pressure control [24] and a quasi-adaptive fuzzy controller for
zone temperature control [53] using convector-radiator power
control.

Just as hybrid control benefits from the qualities of both hard
and soft control techniques, it also inherits the problems associated
with those techniques. For example, the design of a soft control
component requires user expertise and large amounts of data for
training, and the hard control component may be difficult to design
and tune under the wide range of operating conditions often
observed in HVAC systems.
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3.5. Other control techniques

Other control techniques, such as direct feedback linear (DFL)
control [54], pulse modulation adaptive controller (PMAC) [55],
pattern recognition adaptive controller (PRAC) [56], preview con-
trol [57], two parameter switching control (TPSC) [58], and rein-
forcement learning control [59,60] have also been proposed for the
control of HVAC systems.

The purpose of DFL control is to achieve decoupling between
different control loops in HVAC systems and achieve global stability
of the system. By applying inputeoutput linearization, the coupled
equations of the system are converted to linear uncoupled equa-
tions to which conventional linear control techniques can be
applied. The DFL has been applied for control of zone temperature
in Ref. [54] and demonstrated lower energy consumption, better
disturbance rejection, and enhanced transient and steady state
performance compared with PID control.

The PMAC is useful only for on/off systems such as fixed capacity
compressors. The purpose of PMAC is to reduce the switching fre-
quency of an on/off system to reduce equipment cycling and the
associated energy costs and equipment wear. Using a PMAC, on/off
systems can be controlled by a closed loop controller such as PID.
The PID controller measures the error of the system from its set
point and generates an analog signal as its output. The PMAC
cascaded with a PID controller generates discrete an on/off pulse-
width pulse-frequency modulation (PWPFM) signal correspond-
ing to this analog signal. The PWPFM signal is applied to the
discrete input of the system instead of an analog signal. For
example, in Ref. [55], PMAC regulated the zone temperature of a
direct expansion (DX) system by controlling the single-capacity
compressor. The PRAC automatically tunes the gain and integral
time of the PI controller based on the closed loop response patterns
in self-regulating systems. This method produces near-optimal
performance, and according to Ref. [56], it has been applied to
HVAC control of many buildings, including offices, high schools,
national labs, and hospitals. The process output is measured and
fed to a digital PRAC, which estimates the process noise and tunes
the PI controller parameters to tightly regulate the process.

The TPSC can be viewed as an improvement to the on/off
controller, which uses one sensor or parameter to control the oper-
ation. Instead, the TPSC uses two sensors mounted at different points
to control the system. For instance, the TPSC has been used to control
the flow rate of hot water in radiant floor heating systems based on
measurements of slab temperature and air temperature [58].
Compared with the on/off controller, the TPSC reduces oscillations of
the air temperature and slab temperature because it increases the
control effort by turning the control valve on and off more often.

Reinforcement-learning controller learns from the input
and output of the system from past control actions using machine-
learning techniques. For example, reinforcement learning control
has been applied for thermal energy storage [59,60]. The
reinforcement-learning controller savings are comparable to those
of conventional control techniques but do not reach the level of
MPC cost savings. Reinforcement learning is a model-free method
and improves the controller performance based on previous control
actions; however, it takes an unacceptably long time to learn and is
difficult to implement in practice [12].

3.6. Summary

When considering HVAC control system characteristics, the
MPC offers many advantages. Many processes in HVAC systems are
slow moving with time delays, and time-varying internal and
external disturbances act on the system. The system undergoes a
wide range of operating conditions. The actuators exhibit rate and
range limit constraints. In many areas, energy has a variable price
structure. In the presence of all of these challenges, an ideal
controller should be able to handle time-varying disturbances,
wide operating conditions, actuator constraints, and variable price
structures. Apparently, many control systems display several
shortcomings in their application to HVAC control. For instance, the
classical controllers require manual tuning and perform sluggishly
or too aggressively outside of the tuning band. The hard controllers
require rigorous mathematical analysis and the identification of
stable equilibrium points for the controller design. Soft control
requires massive amounts of data for training and reinforcement,
and learning techniques require extensive time, rendering them
impractical for industrial implementations. Alternatively, MPC
provides a solution to many of the aforementioned problems and
therefore constitutes the focus of this survey.

4. Model predictive control (MPC)

Because the focus of this paper is MPC, a comprehensive review
of MPC techniques and comparisons with other control techniques
are provided in this section.

The MPC uses a system model to predict the future states of the
system and generates a control vector that minimizes a certain cost
function over the prediction horizon in the presence of distur-
bances and constraints. The first element of the computed control
vector at any sampling instant is applied to the system input, and
the remainder is discarded. The entire process is repeated in the
next time instant. The cost function can take the form of tracking
error, control effort, energy cost, demand cost, power consumption,
or a combination of these factors. Constraints can be placed on the
rate and range limits of the actuators and the manipulated and
controlled variables (e.g., upper and lower limits of the zone tem-
perature, supply airflow rate limits, and range and speed limits for
damper positioning). External and internal disturbances acting on
the system due to weather, occupant activities, and equipment use
are alsomodeled, and their predicted effects on the system are used
during control vector computation. This effort results in a controller
that is robust to both time-varying disturbances and system pa-
rameters and regulates the process tightly within the given bounds.
The MPC is used in both supervisory and local (execution) levels of
control in HVAC systems.

4.1. Comparison of MPC with other control approaches

The following comparison metrics are commonly used to
compare the performances of various controllers:

� Energy and cost savings [61e66]
� Peak load shifting capability [61]
� Transient response improvement (decrease in rise time, settling
time, and peak time) [67e70]

� Steady-state response improvement (decrease in offset error)
[62,69]

� Control of variables within bounds [71,72]
� Reduction in fluctuations from a set-point (better regulation)
[66]

� Efficiency and coefficient of performance (COP) improvements
[68]

� Robustness to disturbances and changes in operating conditions
[67,73]

� Indoor air quality and thermal comfort improvement [64,66,72]
� Computation time reduction [73]

Most researchers use one or two of the above performance
metrics to evaluate the performance of their proposed controllers
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against others. In fact, MPC for HVAC systems is shown to outper-
form most control techniques using the aforementioned perfor-
mance metrics.

The results obtained for MPC applications can be divided into
simulation and experimental categories. To show the significance
and advantages of MPC approaches, details of the developed MPC
controllers are presented within simulation and experimental
platforms in the following subsections.

4.1.1. Simulation results
The zone temperature and damper position in a simulated VAV

systemwere controlled using MPC in Ref. [67]. Compared with a PI
controller, the MPC-based supply airflow rate controller displayed
better transient response (rise time, settling time, percentage
overshoot) and was more robust in the presence of air duct pres-
sure disturbances. During the regulation of a low-flow-rate set
point, the PI controller produced a sluggish response that needed
additional time to reach the set point. At a high-flow-rate set point,
the PI controller responded too aggressively, which resulted in
excessive overshoots above the set point. In contrast, the MPC-
based technique produced consistent responses in both cases and
achieved both faster settling time and lower overshoot. When zone
temperature regulation was tested for low cooling load and high
cooling load situations, the PI controller was able to regulate the
process precisely at the set point, whereas MPC regulated the
process within a feasible range close to the set point. However, the
control effort put forth by the PI controller was much larger than
that of the MPC controller. From inspecting the control signals
generated by the PI andMPC controllers, it was observed that the PI
controller signal exhibited much more fluctuation under low
cooling load and oscillated at a high cooling load, which resulted in
the need for re-tuning. In contrast, MPC produced amuch smoother
control signal under both the high and low cooling load conditions.

Simulations of zone temperature regulation using decentralized,
centralized, and distributed MPC were presented in Ref. [66]. The
zone temperature was well regulated at the set point using
centralized and distributed MPC in the presence of coupling effects
between adjacent zones. The PI controllers used a decentralized
structure because they do not consider the coupling effects be-
tween zones. Each PI controller regulated the zone temperature
individually in a multi-zone building without communicating any
information to the neighboring controllers. The multi-zone
decentralized MPC controllers also behaved in a fashion similar to
that of the PI controller. However, the centralized and distributed
MPC controllers accounted for the coupling effects of the neigh-
boring zones by making predictions for the coupling effects and
communicating the control decisions to the neighboring control-
lers. Compared with the PI controller, decentralized MPC was able
to reduce the energy consumption by approximately 5.5%, whereas
centralized MPC and distributed MPC were able to achieve an
additional 36.7% increase in thermal comfort and a 13.4% reduction
in energy consumption.

When used for the temperature and ventilation control of six
zones in Ref. [72], the MPC-based technique was able to regulate
the temperature within the limits and provided adequate ventila-
tion levels based on the occupancy of the zones. However, the PI
controllers failed tomaintain zone temperatures within the desired
thermal comfort range at all times and resulted in low ventilation
when the occupancy was increased.

To achieve a desired zone temperature, the supply water tem-
perature for a radiant floor heating system was computed using
both the numerical Simulink� model (also referred to as the exact
solution) and MPC in Ref. [71]. The MPC maintained the room
temperature within the desired bounds at all times using weather
prediction and accounting for the dead time of the building.
However, the exact solution method was unable to maintain the
room temperature at the set point at all times because it did not use
weather forecasting.

In Ref. [61], MPC was used for zone temperature control. By
employing the MPC technique, the peak loads were shifted, and the
on-peak power profile was flattened. Compared with the baseline
night setup strategy (0%), MPC yielded higher savings (28%) than
did the linear-up (17%) and step-up (24%) strategies.

For the charging and discharging control of an ice storage sys-
tem, MPC outperformed conventional control strategies (i.e., chiller
priority control, constant proportion control, and storage priority
control), as reported in Ref. [74]. Supervisory MPC was used to
generate the optimal zone temperature set point profile, the ther-
mal storage optimal charging and discharging profiles, and the pre-
cooling profile in Ref. [75]. Compared with conventional chiller
control techniques, which have no thermal storage and chiller
priority control, the MPC generated extra energy savings of 27% and
17%, respectively. When a supervisory MPC-based optimal
sequence of tank water set points was used in Ref. [65], the energy
consumption of heat pump was reduced.

4.1.2. Experimental results
To control the temperature of multiple zones, multi-input/

multi-output (MIMO) MPC was used to control the water flow
valve (WFV) in Ref. [68]. The MPC was also applied to regulate the
evaporator temperature and pressure by controlling the electronic
expansion valve (EEV) and compressor speed. For comparison
purposes, local level PI controllers were also implemented on the
aforementioned processes. It was observed that the MPC out-
performed the PI controllers, e.g., improved regulation of superheat
temperature and evaporator pressure. Adding supervisory MPC to
the system improved the COP of the system by 9.5% and resulted in
higher efficiency.

The MPC and PID control simulations for regulating the dry bulb
temperature of the off-coil air from the AHU were carried out in
Matlab� in Ref. [70]. In the simulations, MPC produced less over-
shoot and a faster settling time compared with the PID controller.
The controller was implemented on a lab-scale pilot HVAC system.
The implemented controller also showed improved robustness and
superior tracking performance compared with the PID controller.

The supply air temperature of a test room in a factory building
was controlled using controllers designed using prescribed error
dynamics and MPC techniques in conjunction with feedback line-
arization [62]. The MPC controller performed remarkably well,
demonstrating good trajectory tracking. The MPC could account for
process dead time and use future values of the reference signal.
Therefore, the MPC controller demonstrated a minimal delay in
response, less overshoot, and a shorter settling time comparedwith
a controller designed with prescribed error dynamics.

For zone temperature control in a large university building, the
performance of the MPC was compared with that of a finely tuned
weather compensated controller that also usedweather forecasting
in Ref. [64], and the heating curve method in Ref. [63]. The MPC
used 29% less energy while maintaining the same thermal comfort
level in both applications. Because the building had a time delay of
12 h in its temperature response because of its large thermal
capacitance, MPC heated the building in advance to track the
reference trajectory more accurately. The weather-compensated
controller supplied water to the radiant ceiling heating system at
a much higher temperature compared with that of the MPC
controller, resulting in higher energy consumption. The heating
curve method heated the concrete of the building during the night
and turned off the heating in the morning. The MPC also preheated
the building during the night, but it did not switch off the heating
during day, which resulted in a significant peak energy reduction.
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The zone temperature and humidity of a thermal chamber in a
university lab were controlled with an MPC and a neural-fuzzy
controller in Ref. [69]. Compared with the neural-fuzzy controller,
the MPC demonstrated superior performance: it improved the
settling time by 25% and the steady-state error for temperature and
humidity by 100% and 400%, respectively.

A comparison of on/off control with learning-based MPC
(LBMPC) was carried out in Ref. [76] using a single heat pump air
conditioning (AC) system installed in a university lab. LBMPC
reduced the energy consumption by 30e70% compared with the
on/off control. The energy savings were reduced as the occupancy
and temperature of outside air increased, resulting in a higher
thermal load on the AC.

In summary, both the simulation and experimental results
suggest many advantages in the use of MPC for HVAC system
control. The remaining sections shed light on the components of
the MPC system and its implementation.
4.2. Factors affecting MPC performance

A typical MPC system is composed of a system model, con-
straints, a disturbance model, a cost function, an optimization
method, and a control horizon, which could all affect the perfor-
mance of MPC. The remainder of this paper examines the effects of
these choices on MPC performance.
4.2.1. Control configuration and type
Different MPC configurations can be considered, and such con-

figurations can be categorized into hierarchical, cascaded, central-
ized, decentralized, and distributed structures.

The controllers can be used in a hierarchical or cascaded design
to cater to both fast-moving and slow-moving disturbances in
HVAC systems. For instance, MPC was combined with conventional
local loop PID controllers in a hierarchical structure in Ref. [63] and
cascaded to the PI controller in Ref. [77]. MPC can also be combined
with a rule-based control (RBC) in a hierarchical structure to derive
control signals using a set of rules [78]. MPC-based controllers can
also be used in both the upper (supervisory) and lower (execution)
levels of hierarchical control [79] and in both the inner and outer
loops of the cascaded configuration [67].

Decentralized, centralized and distributedMPC can be used for a
multi-zone building [66]. The decentralized control uses the same
local controller separately for each zone without any consideration
of thermal coupling between zones. Because zone coupling is not
addressed in decentralized implementation, it results in tempera-
ture swings in the zone due to heating of neighboring zones at
different set points resulting in poor control performance. The
centralized controller considers the inputs, outputs, occupancy and
thermal coupling for all zones simultaneously. Therefore it is able to
track the set point of each zone despite different occupancy periods
and zone temperature set points. However, a centralized MPC
configuration results in a higher computation time and lower
reliability because any problem in the central controller will disable
the HVAC system of the entire building. This system is also not
scalable to large buildings because implementing the controller
would require higher-order MIMO models and a large amount of
computing power. The solution is to design a distributed controller
similar to the decentralized controller in which each controller
communicates with the neighboring controllers to share the zone
temperature information and the future course of action. The
distributed controller performance [66] is comparable to that of the
centralized controller and achieves similar energy savings and
temperature regulation and its computational cost is low compa-
rable to decentralized controller.
Robust MPC can be used to provide consistent control perfor-
mance in the presence of disturbances and over a wide range of
operating conditions [67,80].

For instance, a VAV AHU system was controlled using robust
MPC, and the results were comparedwith those of the conventional
PI control strategy in Ref. [80]. Compared with the conventional
strategy, the robust strategy yielded tighter control of the supply air
temperature set point by modulating the cooling coil valve. The
robust strategy also showed a faster response compared with that
of the conventional strategy in the presence of disturbances. The
robust strategy accounted for the uncertainty in the gain and the
time delay in the temperature control process and produced a
control signal with such actuator constraints as rate and range
limits. In contrast, the conventional strategy did not consider un-
certainties and constraints, resulting in a sluggish response if the
operating conditions deviated from the tuning conditions. In the
robust MPC control strategy, control laws were implemented in the
form of state feedback control in which the optimum gain was
determined by optimizing a cost function based on tracking error.

In another work [67], a robust gain-scheduling MPC was
considered with a bi-linear MPC for zone temperature control. The
former MPC regulated a damper nonlinear process and managed
the fast variations in supply airflow rate due to the change in
damper position. The latter MPC controlled the process tempera-
ture, which could exhibit time-varying dynamics. The temperature-
process MPC produced a reference for the supply airflow rate based
on the error between the zone temperature and its set point. The
damper-process MPC tracked this supply airflow rate and adjusted
the damper position based on the error between the reference and
measured supply airflow rate.

4.2.2. Controlled process
An HVAC system is composed of many subsystems that can be

controlled independently of one another. The most important
controlled variables in the HVAC system are zone temperature,
humidity, and ventilation rate. The set points of temperature,
pressure, and flow rate in the water and refrigerant loops are also
controlled variables that are regulated by fans, pumps, compressor,
boiler, and valves. Similarly, the temperature, flow rate, and pres-
sure in the air loop are also controlled variables that are controlled
by the heating and cooling water flow-rate valves, fans and
dampers. The damper position, valve position, compressor speed,
boiler fuel consumption rate, fan speed, and pump speed are all
manipulated variables.

MPC was applied to zone temperature control in Refs. [61,65e
67,71], damper position control in Ref. [67], HVAC energy con-
sumption control in Ref. [78], hot water supply temperature regu-
lation in Ref. [63], optimal storage water temperature profile
generation in Ref. [65], charging and discharging rate control of an
ice storage system in Ref. [74], thermal storage of a large-scale
cooling system [81], temperature control of multiple-zones in
Refs. [66,68,72], evaporator pressure and cooling set point gener-
ation in Ref. [68], zone humidity control in Ref. [69], temperature
control of a MIMO process in Ref. [73], and ventilation control in
Ref. [72].

For instance, an MPC controller was designed for a large uni-
versity building using a state-space model identified by a subspace
state-space identification method [64]. The MPC controlled the
room temperature by regulating the heating-water flow rate into a
radiant ceiling heating system. The MPC was used to control
thermal storage by controlling the condenser water temperature,
the chilled water temperature and the chilled water flow rate for a
university campus cooling system [81]. In this work, the models of
cooling system components and energy consumption were first
determined and validated. Next, the MPC controller was designed
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to produce the set point for the condenser water supply, the
chilled water supply, and the chilled water flow rate used to
charge the storage tanks during the night. The designed MPC
demonstrated an improved COP and a reduction in the electricity
costs compared with the baseline case implemented using oper-
ator experience. This result was achieved by increasing the set
point temperature and the flow rate of chilled water and by
reducing the charging time. In the baseline case, operators
charged the tanks with a lower temperature for extended periods
of time, resulting in overcharging and greater losses that lowered
the efficiency.

4.2.3. Building HVAC systems
MPC controllers have been applied to a variety of building HVAC

systems. For example, MPC was applied for zone temperature
control of a single-story office building with a VAV cooling system
without heating or mechanical ventilation [61], zone temperature,
and damper process control for a single-zone VAV system [67], and
supply-air temperature control of a continuous air volume (CAV)
system installed in a factory [62].

HVAC systems serve both single-zone and multi-zone buildings.
In single-zone buildings, the set points of thermal comfort and
indoor air quality variables are the same in all rooms, whereas in
multi-zone buildings, the set points of the different zones can be
controlled by the users. It is easier to design a controller for a
single-zone building because simplifications can be used for the
geometric and thermal properties of the building and because the
insulation between the zones is poor. In this case, coupling cannot
be neglected and must be modeled properly for the accurate con-
trol of zone temperature, humidity, and air quality. This strategy
results in more complex MIMO controllers. Several MPC strategies
have been applied to both single-zone and multi-zone buildings,
i.e., a single-story office building [61], a factory building [62], a
small studio apartment [78], a large university building [63,64,82],
a test room [66,71,75], a shed [65], and a multi-story office building
[74].

4.2.4. Energy conservation strategy
Energy can be conserved by implementing different control

strategies, such as thermal storage in the buildingmass [61] or floor
heating mass [65], passive solar gains [65], thermal storage in tank
water [74,75], temperature reset during unoccupied hours [3,48],
night setbacks, pre-cooling during off-peak periods and set-point
changes during peak hours [83,84], optimum start and stop times
[85], ventilation control [86,87], and economizer cycle control
[3,4,13]. These conservation strategies can be implemented
together with MPC to maximize energy savings. The cost function
of a predictive controller can be based on energy conservation such
that peak loads can be shifted to off-peak hours and energy con-
sumption during peak hours can be minimized. The peak shifting
does not always result in lower energy consumptions but may
result in lower operating costs in the presence of a variable rate
structure.

For example, in Ref. [75], an optimum amount of thermal energy
storage in the tank water was used to compare the performance of
MPC with that of other conventional energy storage strategies
based on chiller priority and storage priority control. It was found in
Ref. [75], that thermal energy storage with MPC resulted in a sig-
nificant operating cost reduction. Even a simple non-predictive
strategy such as chiller priority resulted in greater savings than a
systemwithout thermal storage. It was shown that passive storage
in building mass results in the highest savings for buildings with a
large thermal mass [88]. Obviously, passive thermal storage savings
are low for buildings with less thermal mass, such as residential
buildings.
4.2.5. Prediction basis and disturbances
The MPC algorithm must predict the future state of the system

based on an estimate of internal and external disturbances acting
on the system. Internal disturbances occur because of occupant
activities, equipment use, and lighting. External disturbances pri-
marily occur because of weather variables, e.g., outside tempera-
ture, humidity, solar irradiance, wind velocity, and cloud factor. The
internal disturbances can be estimated using the known occupancy
and lighting and equipment use schedules [61,72,75]. The external
disturbances can be estimated using short-term weather forecast
models, such as the bin predictor, random walk, and harmonic
predictor; linear parametric models such as the auto-regression
integrated moving average (ARIMA); and nonlinear models such
as ANN [89,90]. The bin predictor models and ANN models can
provide near-perfect forecasting.

An MPC that uses a forecast generated by these models can
outperform other methods that do not use weather forecasting.
For example, the effects of weather forecast uncertainty on HVAC
control performance in terms of energy consumption and ther-
mal comfort violations were investigated and reported in Ref.
[91]. The room temperature regulation performance of RBC was
compared with those of deterministic MPC (DMPC) and sto-
chastic MPC (SMPC). The RBC used expert knowledge in
controller design and was used as a benchmark. A theoretical
benchmark known as performance bound (PB) was also used to
evaluate the theoretical saving potentials among RBC, DMPC, and
SMPC. During the computation of PB, it was assumed that the
weather forecast was 100% accurate and without any uncertainty.
This assumption allows the calculation of the maximum savings
potential of DMPC. The DMPC used linear constraints in the MPC
formulation and assumed that the weather forecast was accurate,
thus remaining at its expected value. Due to this assumption, the
uncertainty in weather variables was not considered, and the
DMPC did not perform well when the actual weather varied from
the forecast. In constraint and cost function formulation for
SMCP, the weather uncertainty was assumed to have a Gaussian
distribution. This assumption was validated via analysis of the
predictions of the weather forecast model and its actual mea-
surements. The performances of RBC, PB, DMPC, and SMPC were
compared based on non-renewable primary energy (NRPE) usage
and the amount of comfort violation. The PB performed best
because it was a theoretical concept and considered no variations
in the predicted and actual weather. The RBC outperformed the
DMPC in most cases, whereas the SMPC outperformed the RBC in
all simulated cases with the lowest NRPE and a minimum
amount of comfort violations. The results showed that by
incorporating weather uncertainty, the SMPC can serve as a su-
perior controller that consumes less energy and produces a zone
temperature within the given bounds most of the time compared
with an RBC approach. A good weather prediction model can
further enhance the SMPC performance. The amount of comfort
violations can be decreased, if desired, if using an SMPC scheme,
but doing so results in higher energy usage.

Researchers have also used the future value of the reference
signal [62], prediction of tracking error [67], and historical value of
the control signal [71] to predict future system states in MPC
design.

Apart from the internal and external disturbances discussed
above, other disturbances such as coupling between neighboring
zones [66], variable air mass flow rates and water inlet tempera-
tures in the AHU [62], and interaction between the evaporators in
multi-evaporator systems [68] also act as disturbances in a control
system. Certain works used simulated disturbances, e.g., random
noise [73] and heating at an unknown rate [68], in their proof of
concept.
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4.2.6. Model for system dynamics simulation and controller
development

The MPC controller can use either physics-based models (also
known as analytical first principle or forward models) or data-
driven models (also known as black box or inverse models) to
predict the system output.

Physics-based models are based on the knowledge of the pro-
cess, parameters that can be determined from manufacturer
documentation and application of parameter estimation tech-
niques on measured process data. Physics-based models have been
developed for zones [92e94], mixing boxes [93], AHUs [95,96],
compressors [68,97], fans [98], pumps [99], valves [16], dampers
[67], and ducts [92]. Physics-based models of thermal processes are
analogous to electrical RC networks. For simplicity, these models
use lumped thermal capacitance and resistance in place of
distributed thermal capacitance and resistance. This strategy re-
sults in simple dynamic first-order models that represent the
thermal process. Data-driven models fit linear and nonlinear
mathematical functions to measured data. Examples of data-driven
models include ANN [46,100e102], FL [103,104], support vector
machine (SVM) [105], first- and second-order time delay models
[106,107], and statistical models (e.g., autoregressive (AR), autore-
gressive with exogenous (ARX), autoregressive moving average
(ARMA), finite impulse response (FIR), autoregressive moving
average exogenous (ARMAX), output error (OE), and BoxeJenkins
(BJ) models) [108]. The accuracy of data-driven models is high
compared with that of physics-based models, but these models
suffer from generalization capabilities.

Comprehensive models can be developed using HVAC simula-
tion programs such as EnergyPlus [61,65], TRNSYS [75], and
Simulink� [66,71] for HVAC systems and buildings under consid-
eration. Suchmodels produce highly accurate results that are useful
for performance analysis and optimization of HVAC systems.
However, these models are generally not used for controller
development. The controller is generally developed on simpler
physics-based and data-driven models that achieve reasonable
accuracy and simplicity. Researchers have generally used compre-
hensive models in conjunction with simpler models, whereas
simpler models are used for controller development and compre-
hensive models are applied to simulate the performance of the
controller.

To develop good quality models, the data should have high ac-
curacy, low noise, and appropriate temporal resolution to capture
the process dynamics correctly. For fast-moving processes in HVAC
systems (i.e., airflow rate and water flow rate measurements), the
sampling rate should be higher comparedwith that of slow-moving
processes (i.e., air temperature and water temperature). In HVAC
system control, data sampled at one-minute intervals are appro-
priate for fast-moving processes, and hourly data are appropriate
for slow-moving processes. Median and averaging filters can be
applied for removing spike noise and quantization noise, respec-
tively [109]. The data should also cover a broad range of operating
conditions observed by the HVAC system such as variations in
weather parameters and occupancy patterns throughout the year.
Due to changes in the building and HVAC parameters over time, the
model prediction will deviate from the actual process output. To
cope with this situation, the models can be updated online. If
performance data are available for multiple years, then it is good
practice to train and test models on data sets from different years.
The accuracy of models can be increased by clustering the data into
different seasons or similar outdoor weather conditions [102].
Multiple models can be trained on these data clusters, and an
appropriate model can be selected based on input measurements.

After a model has been developed, model validation is necessary
to verify its accuracy. Model validation can be carried out by
comparing model outputs with measurements, analytical solutions
of a known problem, or with results of other modeling software
[110]. Performance metrics are defined to compare prediction re-
sults of different models and their deviations from measured data.
Models are compared using absolute error (AE), maximum absolute
error (MAXAE), mean absolute error (MAE), mean bias error (MBE),
mean squared error (MSE), absolute percentage error (APE), mean
absolute percentage error (MAPE), standard deviation of absolute
error (StdAE), standard deviation of absolute percentage error
(StdAPE), coefficient of determination (D), root mean square error
(RMSE), coefficient of variation (CV), goodness of fit (G), relative
mean error (RME), mean absolute relative error (MARE), coefficient
of multiple determination (R2), and correlation coefficient (CC)
[46,89,101,102,104,111e115].

To obtain further insight into model development and its
application in MPC, several examples are taken from the literature.
For example, in the application of MPC to the HVAC system of a
plant [62], the system included a cooling coil whose outlet air
temperature must be controlled by manipulating the position of a
chilled water control valve. Physics-based models were developed
for the valve gear, hydraulics, cooling coil, and temperature sensor
to simulate the plant dynamics. The hydraulics were modeled by
measuring the valve actuation signal and the resulting water flow-
rate and fitting a third-order polynomial on the data. A cooling coil
dynamic model was obtained from a mass and energy balance of
the air and water streams, resulting in first-order differential
equations for the air and water temperature inside the cooling coil.
A model for a temperature sensor was developed using a first-order
time delay model. The cooling coil and temperature sensor models
were converted into linear discrete state space models.

In another example, physics-based models were developed in
the design of a MPC to simulate the control of zone temperature
inside a small studio apartment [78]. The focus of this work [78]
was primarily on parameter identification in models for zone
temperature, HVAC energy consumption and control signals. The
estimated parameters included thermal capacitance and conduc-
tance of air and structural nodes of the building. Two types of
parameter estimation algorithms were presented and applied to
measured data to find estimates of the capacitance and conduc-
tance of a building structure and the control input and energy
consumption. A rule-based MPC controller was subsequently
applied to regulate the zone temperature based on models with
estimated parameters, and the effect of model mismatches on the
controller performance was studied.

Finally, it should be noted that due to the simplicity of linear
models in control law development, certain MPC designers often
attempt to linearize the obtained models using Jacobian lineariza-
tion [116] and feedback linearization [62]. Linearmodels can also be
obtained using the prediction error method [68] and system
identification techniques [65].

4.2.7. Prediction horizon, control horizon and time step
The prediction horizon refers to the length of time for which

system output is computed by the MPC, whereas the control ho-
rizon denotes the length of time for which the control signal is
computed. The time step (or control sampling time) is the time
during which the control signal remains unchanged. Typically, for
slow-moving processes in HVAC systems, the prediction horizon is
5e48 h, the control horizon range is 4e5 h, and the time step is
between 1 and 3 h [62,63,65]. The control horizon is generally
smaller than or equal to the prediction horizon. The selected ho-
rizon depends on the controlled process and its dynamics. For
instance, in many indoor applications, a time step of 1 h is
reasonable because temperature change is a slow-moving process.
Using a smaller prediction horizon or a faster sampling time could
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result in degradation of the controller performance due to delays in
the temperature process. Using a longer prediction horizon could
lead to increased computation time without any further benefit
[75,117]. When applied to fast-moving dynamic processes such as
compressor pressure and superheat temperature control, the pre-
diction horizon and control horizon often shrink to a few seconds
[68]. In certain applications, a time-variable horizon is also
employed. For instance, in optimizing energy consumption over a
24-h period [61], a shrinking horizon scheme is applied in which
the prediction horizon reduces as the time progresses towards the
end of the day.

4.2.8. Constraints
The MPC is also known as constrained control because of its

ability to find a solution that does not violate the constraints placed
on the inputs, outputs, and actuators. Types of constraints include
equality (e.g., capacity limits of the tank, boiler, and chiller), and
inequality (e.g., actuator range and rate limit) constraints. For
example, the speed at which a damper moves from a fully open to a
fully closed position is finite and can be expressed as a rate limit. As
another example, due to either manufacturing imperfections or
restrictions on the minimum and maximum ventilation rates, the
damper operating range may be limited to positions between fully
open and fully closed. This type of constrained damper motion is
known as the damper range limit constraint [67]. In addition to
placing constraints on actuators, rate and range limit constraints
can also be placed on controlled variables. For example, to maintain
thermal comfort, the zone temperature may not be allowed to
change by more than a specified amount per unit time, and the
temperature should be maintained within a certain band.

To further the understanding of the types of constraints in MPC
development, selected examples from the literature are described.
In temperature process control, the supply air temperature [62]
and/or supply airflow rate [67] were constrained to operate in a
given range. For room temperature control in Ref. [71], limits were
placed on the supply heat flux and indoor temperature. The mini-
mum heat flux was constrained to zero, but its maximum remained
unconstrained. For zone temperature and humidity control in Ref.
[69], constraints were placed on the supply-air fan speed to remain
between 0.1 and 0.75 of the rated value and on the chilled water
valve opening to remain between 0.1 and 1. For the generation of an
optimal temperature set point profile for tank water storage in Ref.
[65], the allowable values of the tank temperature set point were
constrained to 30 �Ce55 �C. For the control of the charging rate of
an ice storage system in Ref. [74], charge and discharge rate con-
straints and range constraints were placed on the state of charge of
the storage tank. The storage tank and chiller capacities were
constrained to provide four times and one time the peak cooling
load, respectively.

For temperature control of two separate zones in a multi-
evaporator system in Ref. [68], the vapor compression cycle (VCC)
constraints included the minimum evaporator pressures, the
maximum compressor speed and capacity, and the valve maximum
opening. The EEVs and WFVs were constrained to operate within
8%e14.5% and 22%e50% of their ranges, respectively. An output
constraint was placed on the superheat to remain between 6 �C and
12 �C. In Ref. [66], constraints were also placed on the minimum
and maximum of evaporator cooling, evaporator pressure, pressure
differential, and max pressure slew rate.

4.2.9. Cost function
The cost function is based on the desired behavior of the system

and serves to stabilize the system if the optimal cost can be
described by a Lyapunov function [91]. For systems with slow dy-
namics (i.e., temperature processes), stability is not an issue, and
one can choose any form of cost function. The cost function also
describes the performance target, such as the minimization of en-
ergy consumption and the maximization of thermal comfort in
HVAC systems. Maximizing thermal comfort and minimizing en-
ergy consumption are two competing objectives, and a trade-off
must be found by placing weights on these factors in the cost
function. In the quadratic cost function, the weights provide a
trade-off between tracking error and control effort. A linear cost
function is used in minimizing such economically driven signals as
operating cost, terminal cost and energy cost. The following cost
functions or combinations of them are widely used in MPC-based
HVAC control:

� Weighted sum of tracking error and control effort [62,66e
68,70,72,73];

� Quadratic cost function for tracking the error and control effort
[63,64,68];

� Sum of the energy cost and demand cost [61];
� Norm of the momentary temperature deviation [71];
� Sum of the tracking error [65];
� Integrated power or energy consumption [61,79];
� Operating cost [74,75];
� Terminal cost [69]; and
� Dissatisfaction cost [79].

Most researchers have attempted to minimize the weighted
sum of the tracking error and control effort, and others have only
minimized the sum of tracking error or instantaneous error
(operating cost will increase as a result). The latter cost function is
useful if there is no incentive to save energy and the price of
electricity is constant throughout the operating period. However,
certain researchers have only minimized power consumption,
operating cost and terminal cost and sacrificed thermal comfort.
Such a cost function is useful if a significant cost savings exists at
the expense of thermal comfort, i.e., in the case of a variable price
structure. The dynamic cost function can also be used to place
different weights on thermal comfort and energy consumption
based on the energy conservation incentive during the day. The
following two examples provide further details on the formulation
and use of cost functions in an MPC framework.

The proposed MPC for room temperature control in Ref. [76]
used a two-term cost function. The first term was the squared
sum of the tracking error (i.e., the difference between room tem-
perature and desired temperature over the control horizon). The
second term represented the energy conservation over the opti-
mization period as a function of the control signal. Because the
occupancy varies widely over the day, as does the weather, these
factors together represent the uncertainty faced by the controller.

A hierarchical MPC (H-MPC) was proposed in Ref. [79] for en-
ergy consumption reduction in a residential house. The two-level
H-MPC consisted of a scheduling MPC (S-MPC) and a piloting
MPC (P-MPC). The S-MPC used dissatisfaction and energy con-
sumption cost functions that were minimized over a large horizon
of 7 h with a sampling time of 1 h to produce a solution that was
partially used by the P-MPC. The S-MPC addressed the slow-
moving dynamics and the varying price profile of the electricity.
The P-MPC operated on a shorter horizon with a sampling time of
5 min to track the state sequence generated by the S-MPC and
manage the disturbances and fast-moving dynamics. Compared
with a centralized MPC, the H-MPC showed superior performance
in terms of dissatisfaction cost.

4.2.10. Optimization problem
After the formulation of the system model, the disturbance

model, the constraints and the cost function, MPC solves a
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constrained optimization problem to compute the optimum control
vector. Because gradient-based techniques are usually designed to
work with continuous functions and may not even be able to find
global minimum of the function, a variety of optimization methods
have been proposed. A classification of linear and nonlinear opti-
mization methods for HVAC control is given in Ref. [12].

Optimization techniques commonly used by HVAC researchers
include linear programming (e.g., Simplex method) [61], quadratic
programming (QP) [67], dynamic programming (DP) [65], mixed
integer programming (MIP) [74], evolutionary algorithm (EA) [118],
particle swarm optimization (PSO) [119], and the GA [120]. In
addition to EA, PSO, and GA, other meta-heuristic optimization
techniques such as simulated annealing [121], differential evolu-
tion, ant colony optimization [105], bee algorithms [122], the Tabu
search [123], the Harmony search [124], firefly algorithm [125],
cuckoo search [126], artificial immune systems [127], the memetic
algorithm [128], the cross entropy method [129], and the bacterial
foraging method [130] are less common among HVAC researchers
and thus present a potential area of research. The following ex-
amples illustrate the use of optimization methods in MPC
development.

In Ref. [61], the minimization of energy and demand cost was
formulated as a linear program solved using a variation of the
Simplex method under the Matlab� function ‘Linprog’. In Ref.
[62], the weighted sum of the tracking error and control effort
was minimized using the Matlab� MPC Toolbox. The QP algo-
rithm in the MPC of the temperature process was used to mini-
mize the tracking error and control effort in Ref. [67]. To
minimize the quadratic cost function (which penalizes rapid
changes in heating water temperature), SciLab’s internal
quadratic optimization program solver was used in Refs. [63,64].
In Ref. [71] a constrained nonlinear multivariable function was
minimized using a variation of sequential QP under the Matlab�

‘fmincon’ function. The purpose was to minimize the deviations
in the indoor temperature and the norm of the momentary
temperature. Deviations above and below the comfort range
were penalized. The DP algorithm was used to minimize the in-
tegrated power consumption rate of a heat pump over a period of
interest in Ref. [65]. The operating cost of a cooling plant over a
simulation period was minimized in Ref. [74] using DP and MIP.
The Wolfe-Dantzig algorithm was applied to solve the QP prob-
lem using the QPDANTZ program included in the Matlab� MPC
Toolbox in Ref. [68]. Iterative DP (IDP) was applied to solve the
convex quadratic optimization problem in Ref. [69] to minimize
the terminal cost. The quasi-Newton and DP algorithms were
applied for passive and active storage optimization, respectively,
to minimize the operating cost for time-of-use-differentiated
electricity and fixed-cost natural gas in Ref. [75].

The GA technique was used to compute the control vector for
MPC in room temperature control under a variable electricity price
structure [120]. Compared with a non-optimized base case, the
optimized MPC was able to reduce the operating cost of the HVAC
system by 30% by shifting the load to off-peak hours. Discomfort
was increased during the optimized control scheme, but temper-
ature was maintained within the upper and lower control limits.
The supervisory controller developed using a model-based GA in
Ref. [131] resulted in significant energy savings in the winter or
mild seasons and a significant indoor air quality (IAQ) improvement
in the summer season compared with those of a conventional
controller. The GA was used to compute optimal set points for
supply air flow rate, chiller temperature, and zone temperature. In
Ref. [119], PSO-based MPC was used to control the temperature and
ventilation rate of a greenhouse by forced heating and natural
ventilation. Compared with a conventional controller, PSO-based
MPC was able to reduce the control effort and the heating and
ventilation costs, resulting in greater savings and reduced wear of
the components. An improved PSO algorithm known as the dif-
ferential discrete PSO (DDPSO) was proposed in Ref. [132]. The
proposed DDPSO achieved a better solution in fewer iterations
compared with the standard PSO when applied for building tem-
perature control.

5. Conclusions

Certain important points of MPC development for HVAC control
can be summarized as follows:

� Many attractive choices are available for HVAC system control in
the form of conventional controllers, hard controllers, soft
controllers, and hybrid controllers. These techniques were
reviewed, and the advantages and disadvantages of each tech-
nique were highlighted. Compared with most of the other
control techniques, MPC generally provides superior perfor-
mance in terms of lower energy consumption, better transient
response, robustness to disturbances, and consistent perfor-
mance under varying conditions.

� The accuracy of the model, weather forecasting and disturbance
predictions all affect the energy consumption and performance
of MPC. New information such as measured weather variables
(wind speed, solar flux, ambient temperature, and humidity)
should be incorporated in MPC at each sampling instant to
improve controller performance.

� Most of the MPC formulations use discrete linear models of
the system obtained by either linearizing the state-space
models around a certain equilibrium point or creating linear
ARX models from empirical data. Certain MPC formulations
use discretized versions of continuous model equations ob-
tained from physics-based models. The system identification
techniques are also used to derive simple linear models for
MPC formulations from more complicated and comprehensive
models developed in EnergyPlus and TRNSYS. The MPC can be
interfaced with comprehensive models built in the Ener-
gyPlus, TRNSYS, and Matlab� Simulink� platforms to simulate
control performance for a real building and actual weather
conditions.

� Selection of the prediction horizon and sampling time affects
the accuracy, computational cost, and response time of MPC. H-
MPC and cascade MPC are designed to handle both slow- and
fast-moving disturbances. The slow dynamics are controlled by
a supervisory-level controller, which operates using a longer
time horizon of typically 24 h and a slow sampling time of
typically 1 h. The fast-moving disturbances are controlled by a
lower-level controller that operates on a shorter horizon in the
range of 30e60 min and using a fast sampling time of typically
5e10 min.

� Even in its most basic form (such as DMPC), MPC with linear
constraints, simple disturbances, and load forecasting models
outperforms the conventional control approaches that do not
contain any built-in predictive algorithms.

� Energy conservation strategies can be easily integrated intoMPC
design. Thermal storage presents opportunities for peak shifting
and reducing operating costs. The MPC with thermal energy
storage outperforms controllers that do not use thermal storage.
Buildings with large thermal mass (such as office buildings)
could use passive thermal storage by pre-heating or pre-cooling
the building during the off-peak period. Buildings with small
thermal mass (such as residential buildings) can use tank water
for thermal energy storage. The use of thermal storage may
result in higher energy consumption but lower costs because of
the variable price of electricity throughout the day.
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Despite considerable work on MPC development for HVAC
systems, possible areas that require further investigation still exist
and are summarized as follows:

� Performance comparison of different MPC techniques (i.e.,
robust MPC, SMPC, D MPC, LBMPC, and H-MPC);

� MPC development for ground source heat pumps;
� Investigation of integrating nonlinear modeling methods (i.e.,
ANN, FL, and SVM) for use in MPC;

� Study of techniques for comprehensive on-line updates of the
model and accurate estimates of disturbances as well as their
impact on MPC performance;

� Investigation of integrating meta-heuristic optimization tech-
niques and their impact on MPC performance. Such methods
include simulated annealing, differential evolution, ant colony
optimization, bee algorithms, the Tabu search, the Harmony
search, the firefly algorithm, cuckoo search, artificial immune
systems, memetic algorithms, the cross entropy method, and
the bacterial foraging method for use in MPC control vector
computation;

� Further research on factors that affect MPC performance.
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