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A B S T R A C T

Changing conditions of the climate and underlying surface have altered the rainfall-runoff relationships in many
basins, greatly increasing additional challenges in the applicability of hydrological models for studying the
hydrological response to those potential changes. However, systematic and simultaneous testing and comparing
of both temporal and spatial transferabilities of different hydrological models under changing conditions have
not received enough attention. The present study investigates the potential differences between temporal and
spatial transferabilities of different hydrological models under different climatic and underlying surface con-
ditions, which are synthesized from two basins in Southern China with 50-year historical records (1966–2015).
The transferability of five hydrological models, i.e., XAJ, HBV, SIMHYD, IHACRES and GR4J, is investigated
under the synthesised changing conditions by using a new evaluation method, proposed in this study. The results
show that: (1) the proposed evaluation method is proved to be effective in evaluating the transferability of the
models; (2) for temporal transferability under stationary condition, the five models show similar performances,
but for spatial transferability, the performances of complex models (XAJ and HBV) are better than that of the
simple model (GR4J); (3) the difference in underlying surface conditions in the target basin affects spatial
transferability of the models; (4) hydrological models have much better transferability from dry to wet period
than otherwise. This study provides an insight to test temporal and spatial transferabilities of hydrological
models in the context of changing climate and underlying surface conditions.

1. Introduction

The global climate and land use changes caused by substantial an-
thropogenic activities affect regional rainfall-runoff relationships, di-
rectly affecting local water resource availability (Arnell, 2004; Frich
et al., 2002; Lu and Qin, 2020; Ma et al., 2008; Ragettli et al., 2020; Ye
et al., 2013; Zhang et al., 2011, 2012). Scientific and accurate assess-
ments of future water resources under changing environment have at-
tracted more attention than before because water-related issues, such as
flooding, drought and pollution, are becoming increasingly grave due to
the impact of global warming and human activities (Alcamo et al.,
2007; Chen et al., 2019; Döll, 2002; Li et al., 2015; Milly et al., 2008;
Xiong et al., 2019). Hydrological models are the most important tool to
study the impact of the changing environment on water resources
(Chen et al., 2019; Fan et al., 2019; Guo et al., 2019; Xu and Singh,
2004). Hydrological models have several advantages in studying the

impact of environment change (Gleick, 1986; Jiang et al., 2007;
Klemes, 1986; Schulze, 1997). Firstly, many models are already avail-
able for different climatic or physiographic conditions, increasing
flexibility in identifying and choosing the most appropriate model to
evaluate any specific region. Secondly, extensive climate change sce-
narios obtained by climate models can be used as inputs for hydro-
logical models when assessing the hydrological response to climate
change. Thirdly, hydrological models are easy to manipulate and im-
prove for specific areas or conditions. They are usually calibrated by
using historic records, assuming that conditions of the model applica-
tion period will be similar to those of the calibration period (Jiang
et al., 2007; Xu, 1999b; Xu et al., 2005). However, altered rainfall-
runoff relationship caused by climate and land use changes has also
created some limitations and challenges in the use of hydrological
models, which may cause the established models to become less skillful
or lose their prediction ability in the new environment (Klemes, 1986).
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Therefore, it is essential to study the transferability of hydrological
models in a changing environment.

Many studies on testing the applicability of hydrological models in
changing climatic conditions have shown that many models do not have
good temporal transferability, especially under non-stationary climatic
conditions (Boorman and Sefton, 1997; Cornelissen et al., 2013; Eregno
et al., 2013; Jiang et al., 2007; Li et al., 2012; Merz et al., 2011;
Panagoulia and Dimou, 1997). Moreover, the studies revealed that
different hydrological models delivered different results when simu-
lating hydrological responses to future climate change scenarios. Coron
et al. (2012) used three lumped models (GR4J, MORDOR6 and
SIMHYD) to simulate runoff processes in 216 watersheds in south-
eastern Australia and found that the greater the climate difference be-
tween the calibration and validation periods, the worse was the trans-
ferability of the models. Broderick et al. (2016) used six lumped hy-
drological models to conduct a cross-validation study by dividing dry
and wet years in the 37 watersheds of Ireland; results showed that
model transferability depended on the selected catchment, tested sce-
narios and evaluation criteria. Oni et al. (2016) used historical wet and
dry years as a proxy for expected future extreme conditions in a boreal
catchment, demonstrating that runoff may be underestimated by at
least 35% when model parameters were transferred from dry to wet
years.

Hydrological models’ spatial transferability has been studied using
regionalisation methods (Bao et al., 2012; Merz and Blöschl, 2004;
Parajka et al., 2013; Samuel et al., 2011; Swain and Patra, 2017; Yang
et al., 2017, 2019, 2020). Yang et al. (2019) applied a lumped con-
ceptual hydrological model (WASMOD) to investigate the transfer-
ability of regionalisation methods under changing climate conditions,
based on 108 catchments in Norway. Lute and Luce (2017) built snow
models of varying complexity in the western U.S. to evaluate model
transferability in new locations and periods, indicating that the trans-
ferred models performed well in the new location with conditions si-
milar to the trained location. They also found that simple to moderately
complex models performed better than complex models when trans-
ferred to new locations in their study. Different results are reported by
Yang et al. (2020) who tested spatial transferability of five conceptual
hydrological models with varying number of parameters from 6 to 17,
and concluded that the model with more parameters produced better
results in most cases. A comprehensive survey of literature shows that
there is no consistent conclusion about which regionalisation method or
model performs best. Moreover, climate conditions are changing or are
becoming non-stationary (IPCC, 2014), and under non-stationary cli-
mate conditions, the reliability of the model’s spatial transferability
needs to be investigated. Therefore, it is very meaningful to further
jointly study temporal and spatial transferabilities of different hydro-
logical models under different climatic periods and in different basins.

The problem of general model transferability (spatial and temporal)
has been recognised early as the major aim and the most difficult aspect
of hydrological modelling (Klemes, 1986; Xu, 1999b). Despite this fact,
less attention has been paid to the testing of this most important aspect,
compared with many other modelling issues like manual versus auto-
matic calibration, optimisation, regionalisation, etc. (Klemes, 1986; Xu,
1999b). In other words, operational testing of the models is not given
the priority it deserves. Xu (1999b) made a preliminary attempt to
evaluate temporal and spatial transferabilities of a lumped model in
different simulation strategies; however, the study was limited by the
number of models and data available at that time.

Above discussion reveals that although previous studies have ex-
plored transferability of hydrological models, some key issues are yet to
be studied, which motivated the current study: (1) How do temporal
and spatial transferabilities of hydrological models differ with the
model complexity? (2) How do temporal and spatial transferabilities of
hydrological models depend on different climates and underlying sur-
face conditions of the basin? (3) What are the performance differences
when the models are calibrated under dry/wet condition and trans-
ferred to wet/dry condition? To achieve these goals, five lumped hy-
drological models, including XAJ (Zhao et al., 1980), HBV (Bergstrom,
1976), SIMHYD (Chiew et al., 2002), IHACRES (Jakeman et al., 1990),
and GR4J models (Perrin et al., 2003) with different complexities and
flow generation methods are applied to two catchments in central-south
China in this study. The temporal and spatial transferabilities of the five
conceptual models are compared and analysed by using the split-
sample, differential split-sample, proxy-basin and differential proxy-
basin tests under stationary and changing conditions, including dif-
ferent climatic periods, different basins and their combinations. The
rest of this paper is organised as follows. Section 2 introduces the study
area and data. Section 3 provides the details about the five lumped
models, and model calibration and validation methods. Section 4 pre-
sents and discusses the results corresponding to different simulation
strategies. Finally, Section 5 draws major conclusions and presents the
limitations and possible future development of this study.

2. Study area and data

The study area for such a study must meet three requirements: (1)
availability of long-term observation data; (2) extreme and variable
climatic conditions to make it possible to select contrasting periods to
test the capability of hydrological models under extreme conditions;
and (3) significant differences of the underlying surface between the
two basins. According to the requirements, Daxitan and Xiangxiang
basins are selected as the study areas, whose location is shown in Fig. 1
and characteristics are listed in Table 1. The two basins are located in
central-south China and cover a total area of 3010 km2 and 5970 km2,

Fig. 1. Location and underlying surface mapping of the study area.
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respectively. They both belong to a humid climate zone, which is also a
necessary condition, as in practice, one will not expect to transfer a
calibrated model in a humid region to an arid region, and vice versa.
Affected by the monsoon climate and terrain, > 65% of rainfall occurs
in the rainy season from April to September for both basins. The mean
annual rainfall, evapotranspiration and air temperature are 1560 mm,
847 mm, and 17 °C, respectively, in Daxitan basin, and 1363 mm,
750 mm, 16.5 °C, respectively, in Xiangxiang basin.

Although both basins belong to the same climate zone, differences
in their underlying surface, i.e., land covers and slope of the terrain,
etc., are significant, as detailed in Table 1. Underlying surface condi-
tions of Daxitan basin are more favourable for runoff generation and
concentration than that of Xiangxiang basin, which can be verified by
their runoff coefficients.

In this study, daily values of rainfall, pan evaporation, runoff and
mean air temperature of the two basins for the period 1966–2015 are
used to calibrate and validate the models. The daily mean air tem-
perature is obtained from the National Meteorological Information
Centre (http://data.cma.cn/), and other data are obtained from the
published Yearly Hydrological Books of China. Considering the uneven
distribution of meteorological stations, the Thiessen polygon method is
used to calculate mean areal rainfall, evaporation and temperature of
both basins as model input. These hydro-meteorological data are
quality controlled by the Hydrology and Water Resources Bureau of
Hunan Province, China and have been used in many other studies (e.g.,
Li et al., 2015; Xu et al., 2015a; Zeng et al., 2018).

Fig. 2 shows standardised annual rainfall and runoff (defined as
deviation from the mean divided by the mean values) and standardised
mean daily temperature (defined as deviation from the mean) and their
five-year sliding results. Consistent changes between runoff and rainfall
series can be seen, indicating that runoff is mainly driven by rainfall in
the region. Temperature difference between the two basins is very small
as they belong to the same climatic zone. The annual rainfall and runoff
show no obvious trend but with distinct dry and wet periods, while the
temperature of both basins showed a major upward trend over the
entire record period, indicating that the selected period of 1966–2015
can be taken as the climate warming period to study the transferability
of the hydrological models.

3. Hydrological models and methods

3.1. Hydrological models

Five conceptual hydrological models (XAJ, HBV, SIMHYD, IHACRES
and GR4J), running at a daily time step, used to investigate transfer-
ability under changing conditions, are listed in Table 2. They are se-
lected based on consideration of three aspects. First of all, the models
are popular and commonly used in previous studies. Secondly, there are
remarkable differences in their parameters and structures. Thus, they
provide a good range of conceptual models available. Thirdly, as con-
ceptual hydrological models are most widely used in assessing the im-
pact on water resources in a changing environment, it is important to
compare transferabilities between different conceptual hydrological
models in changing environments (Broderick et al., 2016; Coron et al.,
2012; Dakhlaoui et al., 2017; Fowler et al., 2016; Li et al., 2015, 2019;
Vaze et al., 2010; Yang et al., 2020).

The XAJ model proposed by Zhao et al. (1980) has been widely
applied in humid and sub-humid regions (Jie et al., 2016; Lin et al.,

2014; Yao et al., 2014; Zeng et al., 2016). In this model, hydrological
processes can be divided into four groups: evapotranspiration, runoff
production, separation of runoff components, and flow routing, linked
to 15 parameters (Zhao, 1992). The HBV, originally developed by
Swedish Meteorological and Hydrological Institute (SMHI) (Bergstrom,
1976), has been applied in many countries. The HBV model consists of a
soil moisture routine, a response routine with three linear reservoir
equations and a routing routine using the unit hydrograph (Osuch et al.,
2019; Seibert, 1999). The SIMHYD model has nine parameters and
includes three storages for interception loss, soil moisture and
groundwater and the routing process (Chiew et al., 2002; Li et al.,
2013). It considers different runoff production mechanisms for appli-
cation in dry and wet areas. The IHACRES model is a lumped con-
ceptual model based on the principle of unit hydrograph (Jakeman
et al., 1990). It applies a transfer function/unit hydrograph approach to
transform total rainfall to total runoff in two stages. In the first, a non-
linear module is used to calculate effective rainfall by deducting the loss
of rainfall, and then in the second linear module, effective rainfall is
transformed into total runoff by fast and slow flows. The GR4J model is
a simple lumped conceptual hydrological model with four parameters
(Perrin et al., 2003). It routes runoff through a production reservoir,
two linear unit hydrographs and a non-linear routing reservoir (Wang
et al., 2018). Based on the difference in the routing time, the total
runoff generation is divided into two runoff components according to
the ratio of 9:1 (Perrin et al., 2003).

The five models are different in the way they conceptualise the
hydrological processes and in their complexity (4–15 free parameters).
The physical process is described in more detail and physical me-
chanism is more complex in XAJ, HBV, and SIMHYD models. The
IHACRES model is a hybrid conceptual metric model, while GR4J is
more simplified and empirical. The main feature of the runoff genera-
tion of XAJ and HBV models is that runoff is not generated until the soil
moisture content of the aeration zone reaches its field capacity (i.e.,
saturation excess flow mechanism), while for SIMHYD model, surface
runoff is not produced until the effective rainfall intensity is greater
than the infiltration (i.e., infiltration excess mechanism). For the si-
mulation of evaporation, XAJ model uses a three-layer evaporation
model, while HBV and SIMHYD models use a one-layer model.
Additionally, XAJ and HBV models consider uneven distribution of
rainfall, but SIMHYD model does not. While IHACRES model is de-
signed to utilise the simplicity of the metric model to reduce the un-
certainty of the hydrological model, it attempts to represent more detail
of internal processes than is typical for a metric model (Coron et al.,
2012). The GR4J model has the simplest structure between the models.

3.2. Validation methods for hydrological models

The test framework proposed by Klemes (1986) is used in this study.
It is a typical test procedure based on selecting a specific contrast period
from a long historical record to test a model’s capability under changing
conditions. The purpose of the test is to provide a set of basic safeguards
and prevent the application of the model for tasks beyond its ability.
The proposed scheme is called hierarchical because the modelling tasks
are ordered according to their increasing complexity, and the demands
of the test increase in the same direction. The four major categories are
shown in Fig. 3.

The split-sample test is the most common and fundamental opera-
tion to test model performance under stationary conditions. Available

Table 1
Characteristics of the climate, terrain and vegetation cover of the study basins.

Basin Area (km2) Prec. (mm/m) Runoff (mm/m) Runoff Coefficient Slope (°) Forest (%) Lake (%) Meadow (%) Farmland(%) Building(%)

Daxitan 3010 130.1 75.4 0.58 9.60 75.7 0.2 0.4 19.9 3.8
Xiangxiang 5970 113.6 50.2 0.44 8.32 56.5 0.9 0.9 40.5 1.2
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data are split into two parts; one for calibration and other for valida-
tion. Depending on the length of available sequences, segmentation can
usually be done in a ratio of 1:1 or 7:3 (Klemes, 1986).

Proxy-basin test should be applied as a basic test when models are to
be transferred between different basins, i.e., from a gauged to an un-
gauged catchment. The test needs to select at least two gauged basins in
an adjacent region. The model is calibrated on a gauged basin and
validated on the other gauged basin and vice versa. Only if the vali-
dation results of two basins are acceptable, the model might be used in
the ungauged basin.

Differential split-sample test is used when a model is to be applied to
simulate hydrological process under climate change in a gauged basin
(Daggupati et al., 2015; Dakhlaoui et al., 2017; Fowler et al., 2016;
Patil and Stieglitz, 2015; Westra et al., 2014; Zheng et al., 2018). This
test is meaningful whenever a model is used to simulate runoff under
conditions different from those corresponding to the available historical
record. The main distinction from the split-sample test is that historical
records are divided according to contrasting conditions of rainfall or
other climatic variables, attempting to show that the model has general
validity when used under climate change. For example, if increase in
rainfall/temperature is the main change scenario in future, a dry/cold
segment is selected to calibrate the model and wet/hot segment to
validate it. The model with better validation results means better
transferability under climate change.

The proxy-basin differential split-sample test is the most compli-
cated test in Klemes’ hierarchy. The model parameters need to be
transferred under different climatic and spatial conditions. Such

extensive transferability can be used as the ultimate objective and
evaluation criterion of hydrological models. The specific test procedure
is the combination of the proxy-basin and differential split-sample tests.
First, two gauged basins A and B need to be selected, belonging to the
same climate zone. Then, if increase in rainfall/temperature is the main
change scenario in future, a dry/cold segment of basin A (B) is selected
to calibrate the model and wet/hot segment of basin B (A) to validate it.
The model with the best validation results will become the candidate
model.

3.3. Model calibration and evaluation method

The shuffled complex evolution (SCE-UA; see Duan et al. (1992)
algorithm, an effective global optimisation algorithm, is used to cali-
brate the models in this study. The algorithm is mainly based on the
concept of information-sharing and natural biological evolution (Duan
et al., 1994). It integrates the advantages of global sampling and
complex evolution (Nelder and Mead, 1965). These characteristics can
ensure the full use of sample information and greatly improve the
convergence efficiency of the algorithm (Jeon et al., 2014). Therefore,
it is widely used to calibrate parameters of conceptual hydrological
models (Jie et al., 2018; Zeng et al., 2018).

In general, model parameters need to be calibrated with the cri-
terion of making the difference between the simulated and observed
runoff values from the historical record as small as possible. In this
study, the objective function is a weighted combination of Nash effi-
ciency coefficient (NS) and relative volume error (RE) proposed by

Fig. 2. Standardized mean annual precipitation (P), air temperature (T), and mean annual runoff for Daxitan and Xiangxiang basins. The bar chart shows the results
of each year, and the red line shows the results of every consecutive 5-year period by moving the window by one year. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Viney et al. (2009):

= × + REF NS 5 |ln(1 )|2.5 (1)

where, NS and RE are shown in Eqs. (2) and (3), respectively. The
optimal value of F is 1. This objective function is selected considering
that it can effectively minimise RE, while at the same time maximise NS
(Vaze et al., 2010).
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Here, Qobs
t and Qsim

t are the daily observed and simulated runoffs at
time t, respectively, and Qobs is the mean value of daily observed runoff.
The NS represents the ratio between residual variance and observed
data variance (Nash and Sutcliffe, 1970). To minimise the influence of
initial condition on model performance, one year before the calibration
period is used as the warm-up period.

The NS and RE are generally used to evaluate the accuracy of runoff
simulation. Moriasi et al. (2007) proposed an NS and RE evaluation-
grading category (Table 3) for evaluating model performance, widely
used in runoff simulation in the world (Dakhlalla and Parajuli, 2016;
Yang et al., 2019). However, numerical values of NS and RE are very
different depending on, among others, geographic regions and hydro-
logical models. For example, different threshold values of NS and RE
are recommended in China for Hydrological Information and Hydro-
logical Forecasting (HIHF) (Ministry of Water Resources, 2008). They
are also listed in Table 3.

In order to have an objective criterion for evaluating the perfor-
mance of transferability of hydrological models, we defined a new
evaluation method based on the changes of NS and RE, shown in
Table 4 and described as follows.

(1) (1) If NS of the target catchment NST ≥ 0.70 and RE of the target
catchment RET ≤ 10%, the model is considered to have transfer-
ability regardless of the change range of NS (ΔNS) and RE (|ΔRE|)
between the calibrated and transferred models.

(2) (2) If NST < 0.70 and RET ≤ 10%, the model is considered to have
transferability when ΔNS ≤ 0.2; otherwise, it is considered to not
have transferability.

(3) (3) If NST ≥ 0.70 and RET > 10%, the model is considered to have
transferability when |ΔRE| ≤ 20%; otherwise, it is considered to
not have transferability.

(4) If NST < 0.70 and RET > 10%, the model is considered to have
transferability when ΔNS ≤ 0.2 and |ΔRE| ≤ 20%; otherwise, it is
considered to not have transferability.

4. Results and discussions

4.1. Spatial-temporal transferability tested by using odd and even years
split-sample and proxy-basin methods

4.1.1. Temporal transferability tested by using odd and even years split-
sample test method

The split-sample test is carried out under stationary climate and
basin conditions. In this experiment, the complete 50-year record is
divided into odd and even years to avoid the influence caused by cli-
mate change. The Mann-Kendall (MK) test results reveal that the odd
and even years runoff series in both basins do not have significant
changing trends at 5% significance level and are considered to be sta-
tionary series. The models are calibrated using data of odd (even) years,
and optimised parameters are used to simulate the runoff of even (odd)
years.

The NS and RE values for different calibration and validationTa
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periods for the split-sample test are shown in Table 5. The five models
perform similarly well for all calibrations, with all NS values > 0.79
and all RE values seem to be 0. All validations are slightly poorer but
also show very good performance with all NS values exceeding 0.79 and
RE values within ± 10%. According to the proposed evaluation method
in Table 4, performances of the five transferred models for this test are
considered to be acceptable, as all NS > 0.70 and RE < 10%, in-
dicating that the five models have temporal transferability under sta-
tionary conditions. Additionally, the difference between the results of
different models is small.

4.1.2. Spatial transferability tested by using proxy-basin method
Similar to the split-sample test, the odd and even years described in

Section 4.1.1 are used to obtain stationary climate conditions in this
test. In this section, the spatial transferability test includes the proxy-
basin and differential split-sample proxy-basin tests as shown in Fig. 3,
with the following combination scenarios: (1) Proxy-basin: calibrated
on odd (even) years in Daxitan basin (A) and tested on odd (even) years
in Xiangxiang basin (B) (Aodd-Bodd or Aeven-Beven), calibrated on odd
(even) years in Xiangxiang basin (B) and tested on odd (even) years in
Daxitan basin (A) (Bodd-Aodd or Beven-Aeven). (2) Differential split-
sample proxy-basin: calibrated on odd (even) years in Daxitan basin (A)
and tested on even (odd) years in Xiangxiang basin (B) (Aodd-Beven or
Aeven-Bodd), calibrated on odd (even) years in Xiangxiang basin (B) and
tested on even (odd) years in Daxitan basin (A) (Bodd-Aeven or Beven-
Aodd).

Showing NS and RE values of different scenarios for the proxy-basin
test, Fig. 4 reveals: (1) In most cases there is a slight increase in NS
values when calibrated on Xiangxiang basin (B) and transferred to
Daxitan basin (A), which include all four scenarios and almost all

Fig. 3. Hierarchical approach for operational testing of hydrological simulations.

Table 3
Classification of model performance into categories with limits following
Moriasi et al. (2007) and Standard of HIHF (Ministry of Water Resources,
China, 2008) for NS and RE.

Sources Criteria Performance class

Very good Good Satisfactory Unsatisfactory

Moriasi et al.
(2007)

NS (–) > 0.75 0.65–0.75 0.55–0.65 < 0.55
RE (%) < 10 10–15 15–20 > 20

Standard of
HIHF in
China

NS (–) > 0.9 0.90–0.70 0.70–0.50 < 0.50
RE (%) > 20

Table 4
Evaluation criteria for hydrological model transferability based on Table 3.

Criteria Transferability

NST (–) ≥ 0.70 RET (%) ≤ 10 – Acceptable

NST (–) < 0.70 RET (%) ≤ 10 ΔNS ≤ 0.2 Acceptable
ΔNS > 0.2 Not

NST (–) ≥ 0.70 RET (%) > 10 ΔRE (%) ≤ 20 Acceptable
ΔRE (%) > 20 Not

NST (–) < 0.70 RET (%) > 10 ΔNS ≤ 0.2 and ΔRE
(%) ≤ 20

Acceptable

ΔNS > 0.2 or ΔRE
(%) > 20

Not

Note: NST and RET is the NS and RE of the transferred model; ΔNS (ΔRE) is the
NS (RE) difference between the calibrated and transferred models.

Table 5
Comparison of the statistics results of the five models for temporal transferability test by using odd and even years split-sample test.

Basin Period XAJ HBV SIMHYD IHACRES GR4J

NS RE (%) NS RE (%) NS RE (%) NS RE (%) NS RE(%)

Odd(Cali) 0.91 0.0 0.89 0.0 0.89 0.0 0.90 0.0 0.87 0.0
Daxitan Even(Trans) 0.90 3.1 0.88 2.8 0.88 2.7 0.88 5.8 0.87 2.1

Even(Cali) 0.91 0.0 0.89 0.0 0.89 0.0 0.89 0.0 0.87 0.0
Odd(Trans) 0.91 −2.1 0.89 3.4 0.88 −3.0 0.89 −1.2 0.87 −2.3
Odd(Cali) 0.85 0.0 0.81 0.0 0.81 0.0 0.80 0.0 0.83 0.0

Xiang Even(Trans) 0.84 7.0 0.81 6.4 0.80 5.5 0.79 9.6 0.80 8.7
xiang Even(Cali) 0.84 0.0 0.79 0.0 0.81 0.0 0.80 0.0 0.80 0.0

Odd(Trans) 0.84 −2.6 0.80 9.5 0.81 −5.6 0.80 −4.6 0.83 −8.0
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models (i.e., Bodd-Aeven, Bodd-Aodd, Beven-Aodd and Beven-Aeven), except
Beven-Aodd for HBV model. This slight increase in NS values is because
the calibration result of Daxitan basin as measured by NS is about
0.05–0.1 higher than that of Xiangxiang basin, as seen in Table 5. In this
case, the XAJ model performed best for all the scenarios and GR4J is the
worst for two scenarios (Beven-Aodd and Beven-Aeven). (1) In all scenarios,
there is a big drop of NS values when calibrated on Daxitan basin (A)
and transferred to Xiangxiang basin (B) (i.e., Aodd-Beven, Aodd-Bodd,
Aeven-Bodd and Aeven-Beven). In this case, the XAJ model performed best
and GR4J is the worst for all scenarios. (3) In terms of RE values, there
is a 10% to 20% negative bias when the models are calibrated on
Xiangxiang basin and transferred to Daxitan basin, which is true for all
four scenarios and five models (i.e., Bodd-Aeven, Bodd-Aodd, Beven-Aodd

and Beven-Aeven). The opposite is true when the models are calibrated on
Daxitan basin and transferred to Xiangxiang basin, where there is 10%
to 30% positive bias depending on the model (i.e., Aodd-Beven, Aodd-Bodd,
Aeven-Bodd and Aeven-Beven). (4) According to the evaluation criterion
defined in Table 4, transferability of all five models is not accepted
under Aodd-Beven scenario; GR4J does not have transferability under
Aeven-Bodd scenario, as its RE > 10% and |ΔRE| > 20%. The GR4J
and SIMHYD models do not have transferability under Aodd-Bodd sce-
nario as their RE > 10% and |ΔRE| > 20%; only IHACRES shows
transferability under Aeven-Beven scenario, as its NS > 0.7 and
|ΔRE| < 20%. Only performances of transferred GR4J and SIMHYD
are not acceptable under scenario Beven-Aodd because their RE > 10%
and |ΔRE| > 20%.

Above discussion reveals that performances of the five models in
Daxitan basin (A), with a runoff coefficient of 0.58, are consistently and
significantly better than those in Xiangxiang basin (B) with a runoff
coefficient of 0.44, in the calibration period. This is an important reason
behind the sharp drop in NS values and a positive bias when the models
are calibrated on Daxitan basin (A) and transferred to Xiangxiang basin
(B) (i.e., Aodd-Beven, Aodd-Bodd, Aeven-Bodd and Aeven-Beven). On the con-
trary, there is a negative bias when the models are calibrated on
Xiangxiang basin (B) with lower runoff coefficient and transferred to
Daxitan basin (A) with a higher runoff coefficient (i.e., Bodd-Aeven, Bodd-
Aodd, Beven-Aodd and Beven-Aeven). In this case, there is even a slight in-
crease in NS values; however, transferred NS values in Daxitan basin
(A) are still lower than calibrated values in the basin (Table 5). These

results mean that when a model is transferred from a basin with fa-
vorable runoff generation conditions to one with less favorable runoff
generation conditions, a big drop in NS values may be expected.

4.2. Spatial-temporal transferability tested by using driest and wettest
periods using split-sample and proxy-basin methods

4.2.1. Temporal transferability tested by using driest and wettest periods
using split-sample method

This section verifies the prediction ability of the hydrological
models in transferring from more contrasted periods of five consecutive
driest (wettest) years to five consecutive wettest (driest) years, using
the differential split-sample test. The consecutive driest and wettest
five-year records from the 50-year historical dataset are selected for this
test. As runoff generation is mainly driven by precipitation in both
basins, the driest and wettest hydrological periods are chosen according
to the sum of consecutive five-year annual rainfall amounts from the
rainfall series. Table 6 shows the mean monthly rainfall, runoff, tem-
perature and runoff coefficient of the selected consecutive five-year
driest and wettest periods. Compared with the driest hydrological
period, the rainfall of the wettest period increases by nearly 20% and
the runoff increases by > 50%.

To perform this differential split-sample test, the driest and wettest
periods are in turn taken as calibration and transfer periods in the study
basins, whose results are shown in Fig. 5. Fig. 5 reveals that results of

Fig. 4. Comparison of the NS and RE values of the five models for the proxy-basin test using the odd and even years. (A = Daxitan; B = Xiangxiang; Aodd-Beven

indicates the calibration in odd years at Daxitan and transfer in even years at Xiangxiang, etc.; Dotted line means ΔNS > 0.2 or |ΔRE| > 20%).

Table 6
The hydro-climatic variables with the driest and wettest consecutive 5-year
periods.

Basin Variables Dry Wet Variability

Daxitan P (mm/month) 116.0 137.4 18.4%
T (°C) 17.2 17.6 0.4 °C
Q (mm/month) 60.1 91.8 52.7%
Runoff coefficient 0.52 0.67 29.0%

Xiangxiang P (mm/month) 102.7 121.6 18.4%
T (°C) 16.9 16.6 0.3 °C
Q (mm/month) 35.8 58.7 64.0%
Runoff coefficient 0.35 0.48 38.5%
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transferred models in Daxitan (A) and Xiangxiang basins (B) are quite
different. In Daxitan basin (A), the five transferred models show slight
decrease in NS values, where GR4J model has the biggest drop in Awet-
Adry scenario, but the transferred NS value is still higher than 0.77. As
for the RE value, both positive and negative biases are seen depending
on the model and the scenario. However, only in the Awet-Adry scenario,
the positive bias of GR4J model exceeded the threshold limit of 20%,
and all other models and scenarios are considered as acceptable. In
Xiangxiang basin (B), when the driest period is used as the calibration
period, performances of the five models when transferred to the wettest
period are satisfactory, as their NS > 0.7 and |ΔRE| < 20%. When
the five models are transferred from the wettest to the driest period,
XAJ, IHACRES and GR4J have temporal transferability, while HBV and
SIMHYD do not have temporal transferability as their |ΔRE| > 20%.

From these results, the models perform better in Daxitan basin (A)
than they do in Xiangxiang basin (B). It also can be found that they
perform better when transferred from the driest to the wettest period in
both basins than when transferred from the wettest to the driest period.

4.2.2. Spatial transferability in contrast periods by using proxy-basin test
In order to further investigate spatial transferability of the models

under contrast hydrological conditions, a process similar to Section
4.1.2 is performed here, except that the calibration and transfer periods
are replaced by the consecutive wettest and driest five-year periods,
whose results are shown in Fig. 6.

Fig. 6 reveals that the five transferred models perform well under
Bwet-Adry and Adry-Bwet scenarios, as all NS values of the transferred
models > 0.7 and |ΔRE| < 20%. Under Awet-Bdry, Bdry-Awet and Bdry-
Adry scenarios, the transferability of XAJ and HBV is acceptable, but for
other three models it is not acceptable, as their |ΔRE| > 20% in the
transferred models. The five models perform poorest under Adry-Bdry

scenario, as all ΔNS > 0.2 and |ΔRE| > 20% in the transferred
models. Under Bwet-Awet and Awet-Bwet scenarios, GR4J and IHACRES
do not have transferability as their |ΔRE| > 20%.

It can be concluded from the results in Fig. 6 that all five models are
verified to have transferability under scenarios Bwet-Adry and Adry-Bwet.
While SIMHYD, IHRCRES and GR4J do not have transferability, XAJ
and HBV have transferability under other three scenarios: Bdry-Awet,
Awet-Bdry and Bdry-Adry. Transferred results of SIMHYD, IHRCRES and
GR4J deteriorate sharply under Awet-Bdry scenario, as seen from their
large ΔNS and |ΔRE| values. Under Adry-Bdry scenario, all five models
lose their simulation ability as reflected by low NS values and high RE
values of the transferred models.

4.3. Transferability test under the most extreme conditions

In previous sections, studies on transferability of the hydrological
model are carried out under long-term (Section 4.1) and contrast

consecutive five-year wettest and driest periods (Section 4.2). As the
occurrence of extreme climatic or hydrological events has been on the
rise in recent years (Groisman et al., 2005; Westra et al., 2013), it is of
great significance to study the mechanism and influence of extreme
hydrological events on an annual scale. Here, the driest and wettest
years of the 50-year series will be selected to verify the ability of hy-
drological models to simulate extreme hydrological events on an annual
scale, in order to answer the question: Do the models still have the
similar predictive ability when calibrated under the driest or wettest
year condition? To answer this question, we design and perform an-
other transferability experiment under driest and wettest year of the 50-
year series. Characteristics of the driest and wettest years are shown in
Table 7. Climate difference is more significant than the consecutive
five-year record, as expected (shown in Table 6). Rainfall and tem-
perature variations of the two basins have exceeded 60% and 1.0 °C
between the driest and wettest years, respectively. Compared with the
driest year, runoff changes in the wettest year exceed 160% and 290%
for Daxitan (A) and Xiangxiang basins (B), respectively. They can re-
present the main characteristics of annual extreme hydrological events
in both basins.

The results of this experiment obviously magnify the runoff simu-
lation error shown in Section 4.2 (comparing Figs. 6 and 7). Fig. 7 re-
veals that for temporal transferability (up panel), the five models do not
have transferability under Awet-Adry and Bwet-Bdry scenarios as their
ΔNS > 0.2 and |ΔRE| > 20%; only SIMHYD does not have trans-
ferability under Adry-Awet scenario as its |ΔRE| > 20%. The SIMHYD
and IHACRES models do not have transferability under Bdry-Bwet sce-
nario as their |ΔRE| > 20%, although their NS values are higher than
0.70. For spatial transferability (lower panel), five transferred models
perform well under Bwet-Awet and Awet-Bwet scenarios because their
NS > 0.70 and |ΔRE| < 20%. For Bdry-Adry scenario, only HBV and
XAJ perform well as their NS > 0.70 and |ΔRE| < 10%. For Adry- Bdry

scenario, HBV, XAJ and SIMHYD perform well as their NS > 0.70 and
|ΔRE| < 20%. For temporal and spatial transferabilities (middle
panel), most models perform poorly and do not have transferability
because of large change in their NS and RE values, especially under
Awet-Bdry scenario. The HBV performs well when transferred from the
driest year in Xiangxiang Basin (B) to the wettest year in Daxitan basin
(A). The GR4J performs well under Bwet-Adry and Adry-Bwet scenarios, as
its NS > 0.70 and |ΔRE| < 20%. The XAJ and HBV also show
transferability under Adry-Bwet scenarios, as its NS > 0.70 and
|ΔRE| < 20%. It is concluded that all transferred models show greater
uncertainties in different scenarios under yearly extreme scenarios,
especially from the wettest to the driest year. According to the ranges of
changes in NS and RE values, the five models perform worse when
transferred from the wettest to the driest year, although their calibra-
tion performances are very good in both the driest and wettest years.

In order to further test the transferability of the models under the

Fig. 5. Comparison of the NS and RE values of the five models for the differential split-sample test using the driest and wettest consecutive 5-year records.
(A = Daxitan; B = Xiangxiang; Adry-Awet indicates the calibration in dry years at Daxitan and transfer in wet years at Daxitan, etc.; Dotted line means ΔNS > 0.2 or
|ΔRE| > 20%).
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driest and wettest years, five typical years with quantiles of 5%, 25%,
50%, 75% and 95% are selected from the 50 annual runoff series, sorted
from low to high. The five models are transferred from the driest or
wettest year to the five typical years between the two basins, which will
generate 200 cases for this test. Based on the proposed evaluation
method, the case that the transferability of one model is accepted is
recorded as 1, otherwise 0, counted for each model and listed in
Table 8. For temporal transferability, the five models show better per-
formances in Daxitan basin (A) than in Xiangxiang basin (B), consistent
with the fact that Daxitan basin (A) has a favourable runoff generation
condition. For spatial transferability, similar results can be found
wherein the five models perform poorly when transferred from Daxitan
basin (A) to Xiangxiang basin (B); only XAJ and HBV perform well
when transferred from the driest year in Xiangxiang basin (B) to five
typical years in Daxitan basin (A). Other three models show no trans-
ferability in these scenarios. Five models except IHACRES show good
performance when transferred from the wettest year in Xiangxiang
basin (B) to the five typical years in Daxitan basin (A). According to the
results given in Table 8, the transferred XAJ model performs the best,
while IHACRES is the worst between the five models. The main reason
is that IHCRES in the calibration driest or wettest year has a lower NS
value than other models in both basins, according to Fig. 7.

4.4. Comprehensive evaluation of spatial and temporal transferabilities of
the hydrological models

According to the results from Sections 4.1–4.3, in total, 76 change
scenarios are used to compare spatial and temporal transferability dif-
ferences of the five models. From the above discussion it is seen that the
model evaluation method defined in this study (Table 4) has been
proved to be useful since it simultaneously evaluates the NS and RE
values together with the changes in them. In order to synthetically
compare the transferability of the five models based on the results from
Sections 4.1–4.3, the 76 scenarios are divided into different categories
as shown in Table 9. Results of the transferred models with acceptable
transferability are recorded as 1, while results with unacceptable
transferability as 0, counted for each scenario and listed in Table 9.

For temporal transferability, XAJ, GR4J and HBV show good
transferability as their recorded numbers are > 22 of the total 32 sce-
narios. For spatial transferability, there is a big difference between the
complex and simple models. For example, there are 10 scenarios for
XAJ and HBV, while only four for GR4J to have acceptable transfer-
ability. Similar results can be found in temporal-spatial categories. This
is helpful in selecting models to transfer runoff in spatial and temporal
dimensions. In this study, the selected two basins are adjacent and
belong to the same climatic zone; thus, their precipitation regimes can
be regarded as similar, while, their terrain and land covers are sig-
nificantly different, as detailed in Table 1. The percentage of the model
cases recorded with acceptable transferability from B to A (59.1%) is
much higher than 46.4% of the models transferred from A to B,
meaning that the underlying surface conditions of the target basin are
important impactors to the spatial transfer of the hydrological models.
Results of the five transferred models between the driest and wettest
conditions are also quite different. There are 70% of the model cases
with acceptable transferability from the driest to the wettest period,
while the number is 37.5% from the wettest to the driest period ac-
cording to the data in Table 9. As there are only two basins selected to
compare the models’ transferability in this study, the results and find-
ings need to be further verified by selecting more basins.

Fig. 6. Comparison of the NS and RE values of the five models for proxy-basin test using the driest and wettest consecutive 5-year records. (A = Daxitan;
B = Xiangxiang; Adry-Bwet indicates the calibration in dry years at Daxitan and transfer in wet years at Xiangxiang, etc.; Dotted line means ΔNS > 0.2 or
|ΔRE| > 20%).

Table 7
The hydro-climatic variables with the driest and wettest 1-year periods.

Basin Variables Dry Wet Variability

Daxitan P (mm/month) 98.8 163.2 65.2%
T (°C) 18.4 16.9 1.5 °C
Q (mm/month) 41.4 108.3 161.6%
Runoff coefficient 0.42 0.66 58.4%

Xiangxiang P (mm/month) 90.7 148.7 64.4%
T (°C) 17.3 16.3 1.0 °C
Q (mm/month) 22.1 86.4 291.0%
Runoff coefficient 0.24 0.58 138.5%
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5. Summary and conclusions

Hydrological models have been widely used in hydrology and water
resources management. It is also the most important tool for hydrologic
prediction in ungauged basins, and for studying the impact of climate
change and human activities on hydrology. However, models have
different conceptualisation schemes and mathematical representation
of the hydrologic processe, which determines that the prediction ability
of each model is different. When a model is transferred to another basin
or period, the question to be answered is whether the model still has the
same ability of simulation and prediction as in the calibration period?
To answer it, exploratory research on temporal and spatial transfer-
abilities of hydrological models is carried out in this study. To achieve
the goal, five hydrological models with different complexities of

structure are used to illustrate differences in transferability between the
models. Two basins with different underlying surface conditions are
adopted to set up 76 transferability scenarios, including odd and even
stationary series, driest and wettest series, which can reflect temporal
and spatial changes between the two basins. Simulation results of these
scenarios are evaluated by a new evaluation method proposed in this
study, and the main conclusions are as follows.

(1) The proposed evaluation method for transferability based on ab-
solute and relative changes of NS and RE values is used to judge
whether the transferred model has the ability of simulation and
prediction. The study proves the proposed evaluation method is
effective in evaluating the transfer ability of the model, as it pro-
vides an objective and quantitative measure.

Fig. 7. Comparison of the NS value and RE value of the five models using the driest and wettest 1-year records. (A = Daxitan; B = Xiangxiang; Adry-Bwet indicates the
calibration in dry years at Daxitan and transfer in wet years at Xiangxiang, etc.; Dotted line means ΔNS > 0.2 or |ΔRE| > 20%).

Table 8
The sensitivity analysis of the temporal and spatial transferability of the hydrological models under driest year and wettest year.

Transferability No. of scenarios XAJ HBV SIMHYD IHACRES GR4J Test Count Accepted count

Adry-A5%25%50%75%95% 5 5 5 4 5 5 25 24
Awet-A5%25%50%75%95% 5 5 5 5 4 3 25 22
Bdry-B5%25%50%75%95% 5 3 2 2 1 4 25 12
Bwet-B5%25%50%75%95% 5 3 1 1 0 3 25 8
Adry-B5%25%50%75%95% 5 1 3 4 2 1 25 11
Awet-B5%25%50%75%95% 5 3 2 2 2 2 25 11
Bdry-A5%25%50%75%95% 5 5 4 0 0 0 25 9
Bwet-A5%25%50%75%95% 5 5 4 4 0 4 25 17
Total 40 30 26 22 14 22 200 114

Note: A-Daxitan; B-Xiangxiang.
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(2) For temporal transferability under stationary condition, all five
models show good performances. But for spatial transferability, the
complex models (XAJ and HBV) have much better performances
than the simple model (GR4J) in this study, as there are 10 of the
total 12 scenarios for XAJ and HBV, while only four for GR4J to
have acceptable transferability.

(3) The difference in underlying surface conditions in the target basin
affects the spatial transferability of the models in such a way that
better results are obtained when the model is transferred to a basin
with favourable runoff generation condition than the opposite case.

(4) In the transfer between the driest and wettest periods, the error is
larger when the models are calibrated in the wettest period and
transferred to the driest period than the opposite approach. This
provides good reference information for the study on the impact of
climate change on hydrological extremes.

There are, however, also some limitations in this study, which
warrant further study. For example, the uncertainties of the models are
not considered in this study. In the study of spatial transferability, only
two adjacent basins are considered, and the conclusions obtained from
them may not be generalized until more basins are evaluated. This
study only considers different types of lumped models, however, dis-
tributed models are also widely used in changing environments.
Therefore, a comprehensive comparison of the differences between
distributed and lumped models in spatial and temporal transferabilities
will be helpful to enrich the research results of the spatial and temporal
transferabilities of hydrological modelling in changing environments.
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