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Abstract: The capacitive current feedback active damping strategy has a limited damping region. When the grid-side
impedance is large, the digital control inductor–capacitor–inductor (LCL) grid-connected inverter system with grid-side current
loop control and capacitive current feedback active damping cannot run stably. To address this issue, this study proposes an
improved capacitive current feedback active damping strategy, namely the capacitive current fractional proportional–integral
feedback strategy (CCFPIFS), which increases the upper-frequency limit of the system damping region and approaches to the
Nyquist sampling frequency. Furthermore, this study analyses the constraints of fractional-order proportional–integral controller
parameters to ensure the stability of the system. The simulation analysis is performed by Simulink. The experimental results are
consistent with theoretical expectations. Consequently, the proposed CCFPIFS can not only achieve better control performance
and improve the robustness of the LCL grid-connected inverter system, but also improve the output power quality of the system.
This damping strategy can make the LCL grid-connected inverter system work stably under the environment of high grid
impedance.

1 Introduction
With the depletion of conventional fossil energy sources and the
aggravation of environmental pollution, new energy sources have
received widespread attention. In the new energy grid-connected
power generation system, grid-connected inverters play an
extremely important role as the key power electronic devices
connecting new energy power generation systems to the power
grid. Since the grid-connected power generation system needs to
meet the relevant standards in power quality [1–3] when connected
to the grid, and usually cascade filters after the grid-connected
inverter to improve the grid-connected power quality. Considering
that inductor–capacitor–inductor (LCL) filters have better high-
frequency performance and smaller filter size [4–6] than L and LC
filters, LCL grid-connected inverters are widely used in the grid-
connected power generation system. However, the inherent
characteristics of LCL filters may cause system instability [7],
which challenges the system damping strategy. Therefore, to
ensure the stable operation of the system, a damped resonance
scheme must be considered.

With the further development of LCL grid-connected inverter
system stability analysis, many damping strategies are proposed,
mainly including passive damping (PD) [8, 9] and active damping
(AD) [10–12]. Active damping has become the focus of research
due to its high transmission efficiency and improved output current
waveforms. Among various AD strategies, based on the principle
of the PD method, the capacitive current feedback strategy (CCFS)
[11, 13], which achieves the damping effect by simulating the
physical model of resistance, has become one of the most widely
used methods due to its simplicity, high robustness, and good
transient performance.

However, in the LCL grid-connected inverter system with
current single-loop control, the digital control system is usually
used in the implementation process, which will cause a digital
delay of 1.5 beats [14]. At this time, the effect of CCFS is
equivalent to a virtual frequency-dependent resistor and a virtual
frequency-dependent reactor in parallel with the filter capacitor.

The virtual resistor plays a role of damping the resonance peak,
and the virtual reactor plays a role in shifting the resonance
frequency. When the control amount of the current single loop is
the grid-side current, the positive and negative intervals of the
equivalent virtual resistor of CCFS in the frequency domain are
( f s/6, f s/2) and (0, f s/6) [15, 16]. When the resonance frequency
f r of the LCL filter is kept in the range of ( f s/6, f s/2), the
equivalent virtual resistor is positive, and the system can guarantee
stable operation [17]. In fact, due to the influence of grid
impedance and virtual reactor, there is a certain offset between f r
and the actual resonance frequency f r′. When f r′ ∈ (0, f s/6), the
negative equivalent virtual resistor will bring two right half-plane
unstable poles to the grid-connected inverter system, and the
damping effect of CCFS is negative, resulting in system instability.
Therefore, in the case of the weak grid and grid impedance
changes, additional damping strategies are still needed to ensure
the stable operation of the system.

To solve the various problems caused by the digital delay, the
capacitive current feedback AD strategy can also play a good
damping role in the case of grid impedance changes. There are
three common methods at present, which are additional time delay
compensation methods [18–20], additional digital filters methods
[21, 22], and expanding the system damping region methods [23,
24]. The additional time delay compensation method reduces or
predicts the digital delay, thereby reducing the negative effects of
the digital delay, but the digital delay cannot be completely
eliminated, and the control algorithms are mostly complicated or
require many sensors. The method of adding digital filters uses the
s-domain characteristics of the digital filter to change the system
resonance peak. For example, Cai et al.[21] used the phase lag
characteristics of the digital low-pass filter to make the system
meet the amplitude and phase margin, thereby keeping the system
stable. Pan et al. [22] used the 180° phase-frequency characteristic
of the digital resonance-notch (biquad) filter to translate the
resonance frequency into the damping region of the system.
However, the digital filter design process needs to know the system

IET Control Theory Appl., 2020, Vol. 14 Iss. 18, pp. 2889-2898
© The Institution of Engineering and Technology 2020

2889



parameters, so the method of adding digital filters is more sensitive
to the system parameters. In [23], from the perspective of virtual
impedance, 24 types of single-state feedback AD corresponding to
six basic PD strategies are summarised and analysed. It is
determined that the capacitor's current feedback strategy of the
filter capacitor parallel virtual impedance is the best AD choice,
and delay compensation is used to address the effects of the digital
delay. To further expand the damping region of the system, He et
al. [24] proposed an improved method of CCFS, namely the
capacitive current proportional–integral feedback strategy
(CCPIFS), which successfully raised the upper limit of the system
damping region to 0.48 f s. However, since this method adds a
feedback path, the stability margin of the system is insufficient, and
it is easy to oscillate during operation. Usually, a PD strategy is
needed to ensure a stable system operation.

Considering that fractional-order controllers have more fine-
grained control performance than integer-order controllers [24, 25],
this paper proposes a new improved method of CCFS, namely
capacitive current fractional-order proportional–integral (PI)
feedback strategy, which can expand the damping domain of the
system. The contributions of this study include the following
points:

i. An end-to-end efficient PI feedback framework based on
capacitive current fractional-order, dubbed capacitive current
fractional PI feedback strategy (CCFPIFS), is carried out,
which integrates a single-phase LCL grid-connected inverter
and a CCFPIFS-based AD control strategy.

ii. Through the optimal selection of the parameters, the upper
limit of the system damping region is very close to the Nyquist
frequency increasing the degree of freedom of the system, and
thus the system can be controlled more precisely.

iii. The robustness and output power quality of the system are both
improved, the stability constraint conditions and simulation
experimental results are provided analysed. In addition, the
Appendix provides some Bode diagrams and corresponding
analyses of the various states that may exist for a dual-current
loop system with CCFPIFS.

This paper is arranged as follows: in Section 2, a digitally
controlled LCL-type grid-connected inverter system model using
CCFS AD and grid-side current single-loop control is established.
The problems in the damping region of the system are obtained by

analysing the mathematical model of the CCFS virtual equivalent
impedance. In Section 3, the CCFPIFS AD control strategy is
proposed through the analysis of the virtual equivalent impedance
mathematical model of CCFPIFS, the damping range of the system
and the stability constraints of the fractional-order PI (FOPI)
controller parameters are discussed. Section 4 validates the
proposed method through Simulink simulation experiments. The
results prove the validity of the theoretical analysis. The difference
in control performance between CCFPIFS and other control
strategies is compared. Section 5 is the conclusion of this paper.

2 Analysis of LCL grid-connected inverter system
based on CCFS
2.1 Structure description of LCL grid-connected inverter
system

The system structure of the single-phase LCL grid-connected
inverter is shown in Fig. 1, the system adopts double closed-loop
feedback control of grid-side current and capacitive current, VT1–
VT4 are the switching tubes of the full-bridge inverter. L1, C, and
L2 form an LCL type filter connected to inverter. vin and vg
represent the DC input voltage and the grid-side voltage,
respectively. The grid impedance at the point of common coupling
(PCC) is composed of inductance and resistance, since the grid
resistance provides damping and helps stabilise the system, it is
considered here that the pure inductance Lg represents the worst
case. A phase-locked loop (PLL) is used to extract the phase angle
at vPCC, and the reference value of the grid-connected current is
denoted as I ∗. Gi stands for the current regulator. Hi1 and Hi2 are
the sampling coefficients of capacitor current ic and grid-side
current i2.

2.2 Mathematical model of LCL grid-connected inverter
system with CCFS

The control block diagram of the system is shown in Fig. 2. 
Kpwm = vin/vtri (vtri is the triangular carrier amplitude) is the transfer
function of the inverter bridge. Gd(s) includes 0.5 beat of
calculating the delay and 1 beat of the pwm modulation delay, and
Ts is the sampling period. Gd(s) can be expressed as

Fig. 1  Main circuit and control block diagram of digitally controlled LCL single-phase grid-connected inverter system with CCFS
 

Fig. 2  System model with CCFS
(a) System control block diagram, (b) Equivalent circuit diagram
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Gd(s) ≃ e−1.5sTs . (1)

The current regulator uses a proportional resonance (PR)
regulator, and its transfer function is

Gi(s) = Kp + 2Krωis
s2 + 2ωis + ωo

2 . (2)

where Kp is the proportionality coefficient, Kr is the resonance
gain, ωo = 2π f o is the fundamental angular frequency, and ωi is the
bandwidth of the resonance section. The open-loop transfer
function G(s) of the system can be obtained from Fig. 2

G(s)

= Hi2Gi(s)
sL1(L2 + Lg)C

⋅ KpwmGd(s)
s2 + s ⋅ Hi1KpwmGd(s)/L1 + ωr

2 . (3)

where ωr is the resonant angular frequency of the LCL filter, and f r
stands for resonant frequency:

ωr = 2π f r = L1 + L2 + Lg
L1(L2 + Lg)C

. (4)

Formula (4) shows that the factors affecting the resonance
frequency include filter parameters L1, C, L2, and grid impedance
Lg.

2.3 Virtual impedance analysis in CCFS

According to the system control block diagram and equivalent
physical model diagram in Fig. 2, the current feedback loop of C
can be equivalent to a virtual equivalent impedance Zeq in parallel
with C. The Zeq can be expressed as

Zeq(s) = M
Hi1

⋅ 1
Gd(s) . (5)

where M = L1/(KpwmC). Substituting s = jω,
Gd(s) = e− j1.5ωTs = cos 1.5ωTs − jsin 1.5ωTs into formula (5) can
yield

1
Zeq

(ω) ≜ 1
Req(ω) + 1

jXeq(ω)

= Hi1
M (cos 1.5ωTs − jsin 1.5ωTs) .

(6)

It can be seen from formula (6) that Zeq can be expressed as a
virtual resistance Req in parallel with a virtual reactance Xeq, the
mathematical models of Req and Xeq can be expressed as

Req(ω) = M
Hi1

⋅ 1
cos θ

Xeq(ω) = M
Hi1

⋅ 1
sin θ .

(7)

where θ = 1.5ωTs = 1.5ω/ f s, f s is the sampling frequency.
According to formula (7), the frequency characteristics of Req and
Xeq can be drawn as shown in Fig. 3. 

Based on the analysis of Figs. 2b and 3, it can be seen that the
main function of Xeq is to be in parallel with the C in the LCL filter,
thus affecting ωr, which is reflected in formula (4). When Hi1 > 0,
Xeq > 0 in (0, f s/3) and Xeq < 0 in ( f s/3, f s/2), since the filter
capacitor C is parallel to the Xeq, it can be seen from formula (4),
f r′ > f r in (0, f s/3), and f r′ < f r in ( f s/3, f s/2), where f r′ is the
actual resonant frequency, it is affected by CCFS and Lg.

The main function of Req is to affect the stability of the system.
The damping domain of the system can be judged according to the

Req . When Hi1 > 0, Req > 0 in (0, f s/6) and Req < 0 in
( f s/6, f s/2), since Req > 0 can damp the resonance peak of the
system, the system is stable in (0, f s/6), while Req < 0 will
introduce two poles of the right-half plane of the s-domain, at
which point the system is unstable in ( f s/6, f s/2). Taking ω = 2π f
into account, f is the frequency of the system, the critical conditions
for system stability and the critical stability frequency are shown
below

Req(ω) = M
Hi1

⋅ 1
cos θ = ± ∞ .

f = k f s
3 + f s

6 , k ∈ N .
(8)

Based on the above analysis, Hi1 > 0, the system is unstable
when f r′ ∈ ( f s/6, f s/2). By the same analytical method, Hi1 < 0,
the system is unstable when f r′ ∈ (0, f s/6). Although f r can be
determined by designing filter parameters L1, C and L2, due to the
influence of Xeq and Lg, there is a certain deviation between f r and
f r′. Hence, a suitable damping method is needed to expand the
damping domain of the system and providing better system
stability.
 

Remark 1: Generally, the controllability of the system is usually
ensured in f r′ < f s/2, but f r′ > f s/2 may exist when Hi1 < 0. In
this study, this issue is not considered.

3 Analysis of LCL grid-connected inverter system
based on CCFPIFS
To ensure the stable operation of the system with the influence of
Xeq and Lg, we expand the positive frequency range of equivalent
virtual resistance. The new scheme proposed in this paper is to
change the proportional feedback loop of the capacitor current into
a proportional-fractional–integral feedback loop. Based on the
CCFS and CCPIFS, the precise control characteristics of the
fractional-order controller are utilised to obtain a better damping
effect.

3.1 Mathematical model of the system with CCFPIFS

Fig. 4 shows the system control model of CCFPIFS. According to
Fig. 4a, CCFPIFS adds a fractional integral feedback loop of the
capacitor current on the basis of CCFS. It can be considered that
the capacitor current feedback loop changes from the proportional
feedback loop to the FOPI controller feedback loop. Since the right
half-plane zero is introduced when the FOPI controller coefficients
are reversed, only the condition of Hi1/K > 0 is considered, where
K represents the feedback coefficient of the fractional–integral
loop. The additional equivalent virtual impedance Zfoi is reflected
in the physical model of Fig. 4b, which is in parallel with C and
Zeq. To analyse the equivalent virtual impedance of CCFPIFS, this

Fig. 3  At Hi1 > 0, the frequency characteristics of Req and Xeq

 

IET Control Theory Appl., 2020, Vol. 14 Iss. 18, pp. 2889-2898
© The Institution of Engineering and Technology 2020

2891



paper considers that Zfopi(ω) = Zeq(ω)Zfoi(ω). According to Fig. 4,
the transfer function of the system with CCFPIFS is

G2(s) = Hi2Gi(s)
sL1(L2 + Lg)C

× KpwmGd(s)
s2 + s ⋅ Gfopi(s)KpwmGd(s)/L1 + ωr

2 .
(9)

where Gfopi(s) represents the FOPI controller in the capacitor
current FOPI feedback loop, λ is the fractional order of the integral,
and its value is in the range of (0, 2). The transfer function of
Gfopi(s) is shown in formula (10)

Gfopi(s) = (Hi1 + K /sλ) . (10)

According to Fig. 4b, Zfopi(ω) can be subdivided as follows:

1
Zfopi

= 1
Rfopi

+ 1
jXfopi

≜ 1
Zeq

+ 1
Zfoi

≜ 1
Req

+ 1
Rfoi

+ 1
jXeq

+ 1
jXfoi

(11)

The equivalent virtual impedance of Zfoi can be expressed as

Zfoi(s) = sλM
Ke−1.5sTs

. (12)

Considering the substitution of s = jω and jλ = e j(λπ /2), the Zfoi
can be solved as

1
Zfoi(ω) ≜ 1

Rfoi(ω) + 1
jXfoi(ω)

= K
ωλM

⋅ (cos(θ + θλ) − jsin(θ + θλ)) .
(13)

where θλ = λπ /2. According to formula (13), the expressions of Rfoi
and Xfoi are as follows:

Rfoi(ω) = ωλ ⋅ M
K ⋅ 1

cos(θ + θλ)
.

Xfoi(ω) = ωλ ⋅ M
K ⋅ 1

sin(θ + θλ)
.

(14)

The same as formula (8), the critical stability condition of the
fractional–integral feedback loop is

Rfoi(ω) = ωλ ⋅ M
K ⋅ 1

cos(θ + θλ)
= ± ∞ .

f = k f s
3 + (1 − λ) f s

6 , k ∈ N .
(15)

According to formulae (14) and (15), the frequency
characteristics of Rfoi and Xfoi under different λ conditions can be
drawn separately in Fig. 5. It can be seen from Fig. 5 that when
K > 0 and λ ≥ 1, Rfoi < 0 in (0, (3 − λ)/6 ⋅ f s) and Rfoi > 0 in
((3 − λ)/6 ⋅ f s, f s/2). With the λ increases, the stable region of
Rfoi > 0 gets bigger. Xfoi > 0 in (0, (2 − λ)/6 ⋅ f s) and
((4 − λ)/6 ⋅ f s, f s/2), and Xfoi < 0 in
((2 − λ)/6 ⋅ f s, (4 − λ)/6 ⋅ f s). As the λ increases, the region of
Xfoi > 0 is significantly reduced.

When λ < 1, it can be seen in the following discussion, the
region of Rfoi > 0 is changing, but the region length is not
significantly changed, the stability of the system is also weakened,
so it is not considered.

3.2 Characteristic analysis of CCFPIFS equivalent virtual
impedance

According to the equivalent physical model of CCFPIFS in Fig. 4b,
it can be seen that Rfopi(ω) = Req(ω)/ /Rfoi(ω), and

Fig. 4  System model with CCFPIFS
(a) System control block diagram, (b) Equivalent circuit diagram

 

Fig. 5  At K > 0, frequency characteristic of R f oi and X f oi

(a) Rfoi model, (b) Xfoi model
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Xfopi(ω) = Xeq(ω)/ /Xfoi(ω). Therefore, substituting formulae (7)
and (14) into formula (12), Rfopi(s) and Xfopi(s) of the CCFPIFS can
be obtained as follows:

Rfopi(ω) = ⋅ Mωλ

K ⋅ cos(θ + θλ) + ωλHi1cos θ
.

Xfopi(ω) = ⋅ Mωλ

K ⋅ sin(θ + θλ) + ωλHi1sin θ
.

(16)

When Hi1 > 0 and K > 0, the frequency characteristics of Rfopi
and Xfopi under different λ conditions can be drawn separately in
Fig. 6. As shown in Fig. 6a, with the fractional order λ increases,
the range of Rfopi < 0 gets bigger. However, when λ is greater
than a certain degree, such as λ ≥ 1.2 in Fig. 6a, Rfopi  has a section
of opposite amplitude in the low-frequency band, there are
situations where Rfopi > 0 and Rfopi < 0. From Fig. 6b, with λ
increases, the range of Xfopi > 0 gets bigger. Considering that the
composition of the Xfopi interval is relatively simple, the
relationship between f r′ and f r can be roughly judged by Fig. 6b,

and the specific coefficient relationship can be obtained by
formulae (4) and (16).

It can be seen from formula (16) that M > 0, ω > 0, Rfopi , and
Xfopi  are plus or minus depending on Hi1 and K. When K < 0 and
Hi1 < 0, the frequency characteristics of Rfopi and Xfopi are mirror
images of Fig. 6, and the critical conditions are the same. With the
λ increases, the range of Rfopi > 0 gets bigger. It can be seen from
the above discussion, when K < 0 and Hi1 < 0, the maximum
damping domain can be obtained.

To ensure the stable operation of the system, the range of
Rfopi > 0 needs to be as large as possible, since the system has to
satisfy the condition that Hi1/K > 0, the feedback loop parameters
are selected as K < 0 and Hi1 < 0.

Since K < 0 and Hi1 < 0, the critical condition of Rfopi and Xfopi
do not change, the critical condition of Rfopi reflects the critical
damping frequency of the system using CCFPIFS, and the critical
conditions of Xfopi reflect the offset direction of f r′. The critical
conditions of Rfopi  and Xfopi  are shown below

Rfopi(ω) = ± ∞, Xfopi(ω) = ± ∞ .
K ⋅ cos(θ + θλ) + ωλHi1cos θ = 0.
K ⋅ sin(θ + θλ) + ωλHi1sin θ = 0

(17)

Since formula (17) is a transcendental equation, the
approximate solution is given and discussed in this section, and the
detailed analytic process will be given in the next section. To
ensure the maximum damping interval, 1 < λ < 1.2 is chosen in
this paper. Then substituting the approximate conditions that
ωλ = ω and sin(λπ /2) = 1 into formula (17), and the approximate
expression of formula (17) can be obtained as follows:

Kcos λπ
2 − Ktan 3

2ωTs + ωHi1 = 0.

Ktan 3
2ωTs ⋅ cos λπ

2 + K + ωHi1tan 3
2ωTs = 0.

(18)

The approximate solution of the critical frequency can be
obtained by the derivative treatment of formula (18), and then
combined with formulae (6), (7), (14), and (15). The frequency-
domain range of the virtual impedance is shown in Table 1. 

Comparing the FOPI controller feedback link with the
proportional feedback link and fractional-integral feedback link in
Table 1, the virtual resistance frequency interval of Z < 0 changes
from Req ∈ ( f s/6, f s/2) to Rfopi ∈ (0, A), as the λ increases, the
negative interval increases and is close to Rfopi ∈ (0, f s/2). The
Z > 0 damping region is converted from Req ∈ (0, f s/6) to
Rfopi ∈ (A, f s/2), the positive damping region decreases
significantly and is close to 0 with λ increases, but when λ is too
large, Rfopi has a positive interval in the low-frequency band. The
virtual reactance frequency region of Z < 0 changes from
Xeq ∈ ( f s/3, f s/2) to Xfopi ∈ (B, f s/2), and the equivalent virtual
impedance is capacitive at this time, the equivalent filtering
capacitor C′ > C, the resonant frequency f r′ < f r. Z > 0 region is
changed from Xeq ∈ (0, f s/3) to Xfopi ∈ (0, B), and the equivalent
virtual impedance is inductive, C′ > C, f r′ < f r. The situation is the
same for Hi1 < 0 and K < 0.
 

Remark 2: To further analyse the damping effect of CCFPIFS,
all possible cases of the system under difference Lg are given in
Table 2, and the system Bode diagram and correlation analysis are
given in the Appendix. 

3.3 FOPI controller parameter characteristics analysis

According to the above analysis, to ensure the stability of the
system, the constraints of the CCFPIFS system can be given from
formula (19) that

Fig. 6  At Hi1 > 0 and K > 0, frequency characteristic of Rfopi and Xfopi
(a) Rfopi model, (b) Xfopi model

 
Table 1 Frequency domain range of system virtual
impedance under different feedback paths
Case Z > 0 Z < 0
Req (0, f s/6) ( f s/6, f s/2)
Rfoi ((3 − λ)/6 ⋅ f s, f s/2) (0, (3 − λ)/6 ⋅ f s)
Rfopi (A, f s/2) (0, A)
Xeq (0, f s/3) ( f s/3, f s/2)
Xfoi (0, (2 − λ)/6 ⋅ f s) &

((4 − λ)/6 ⋅ f s, f s/2)
((2 − λ)/6 ⋅ f s, (4 − λ)/6 ⋅ f s)

Xfopi (0, B) (B, f s/2)
Discuss case under Hi1 > 0 and K > 0. The parameters in the table are
A = ( f s/6π) ⋅ arccos(1 − (3K /Hi1 f s)) and B = ( f s/6π) ⋅ arccos(1 − (2K /Hi1)).
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K ⋅ cos(θ + θλ) + ωλHi1cos θ > 0. (19)

in which, K < 0 and Hi1 < 0.
Since there are four variables in formula (19), which is not

convenient for further analysis of the stability conditions of the
system, formula (18) is adjusted to become three variables Hi1/K,

ωTs, and λ. At this point, 3D images can be drawn through the
Mupad toolbox of MATLAB, but it is still difficult to analyse.
Furthermore, three 2D images are drawn, respectively, as Figs. 7–
9, and the stability constraints of the system are discussed further. 

(i) When λ is determined, the relationship between Hi1/K and ωTs:
from Fig. 7a, when λ = 1, the maximum damping region is
(0, 0.48 f s), and as the λ increases, the maximum damping region
keeps expanding, but correspondingly, the selection range of
parameter Hi1/K is narrowed. The green shaded region in Fig. 7b is
the unstable region corresponding to λ = 1.2, when the point
corresponding to the resonant frequency and Hi1/K is located in the
region, the system cannot run stably.

Following the above analysis, we observe that (i) when a certain
parameter λ is determined, the larger the value of Hi1/K within the
constraint range, the larger the system damping region, but when
Hi1/K exceeds the constraint range, the unstable region appears at
low frequencies; (ii) the larger λ, the wider the system damping
region range, but the constraint conditions of the corresponding
coefficient Hi1/K is stricter; (iii) it can be seen that when λ = 2, the
system can take the damping region as (0, f s/2), but Hi1/K does not
have an effective solution. Hence, it can be obtained that this
method can approach a constant stable system infinitely.
(ii) When Hi1/K is determined, the relationship between λ and ωTs:
from Fig. 8a, as the Hi1/K increases, the maximum damping region
keeps expanding, but correspondingly, the selection range of λ is
narrow. The green shaded region in Fig. 8b is the unstable region
corresponding to Hi1/K = 0.5 × 10−5, when the point corresponding
to the resonant frequency and λ is located in the region, the system
cannot run stably.

Following the above analysis, we observe that: (i) under a
certain Hi1/K, when λ > 1, the larger the λ when the constraint
conditions are satisfied, the larger the system damping domain, but
when λ exceeds the constraint range, the unstable region appears at
low frequencies; (ii) when Hi1/K is reduced, the upper limit of the
system damping domain increases, but the corresponding λ is
increased accordingly; (iii) when 0 < λ < 1, with the λ increases,
the starting point for positive virtual resistance is shifted from f s/6
to 0, but the region length is not significantly changed. Therefore,
the case of 0 < λ < 1 is not considered in this paper.
(iii) When ωTs is determined, the relationship between λ and
Hi1/K, there are the green shaded region in Fig. 9b is the unstable
region when ωTs = 0.9π, and the upper limit of the damping
domain is ωTs/2π = 0.45 f s. The line corresponds to the
relationship of parameters when the system is critically stable. It
can be seen from Fig. 9 that with the expansion of the upper limit
of the damping region, the select range of the parameters Hi1/K and
λ gradually decreases. When the upper limit of the damping
domain is 0.5 f s, there is no valid parameter select range.
(
i
v
)

Through the aforementioned analysis, there are according to the
above analysis, it can be seen that the constraint conditions of λ
are: 1 < λ < 2 and the constraint range of Fig. 9 must be satisfied
when Hi1/K is determined. The constraint conditions of Hi1/K are
Hi1 < 0, Hi1/K > 0, and the constraint range of Fig. 8 must be
satisfied when λ is determined. Fig. 9 presents the selection range
of Hi1/K and λ when the upper limit of the damping region is
determined. The FOPI controller parameter design can be
performed based on the above analysis.

4 Experimental results and analysis
4.1 Root locus analysis of systems using CCFPIFS

Figs. 10a and b show the distribution of the closed-loop zero poles
of the system, respectively. Since the stability of the system is
mainly affected by the closed-loop poles, so the effects of closed-
loop zero and dipole are not considered for the time being. It can
be seen from Fig. 11a, when λ ≃ 1, the system is difficult to run
stably, and with the increase of λ, the system gradually changes
from unstable to stable, and then finally outside the unit circle. The

Table 2 Stability analysis of LCL grid-connected inverter
with CCFPIFS
Case λ The

number of
0 dB

points

Phase
angle

jump at
f r′

Gain
margin

Phase
margin

Stability
judgment

1 < 1 1 ↓ — — unstable
2 1 1 ↓ GM > 0 PM > 0 stable
3 > 1 1 ↓ GM > 0 PM > 0 stable
4 > 1 3 ↓ — — unstable
5 > 1 3 ↑ GM > 0 PM > 0 stable
6 > 1 1 ↑ — PM > 0 stable
Discuss case under that: λ meets the constraints, Hi1 < 0 and K < 0.

 

Fig. 7  Frequency characteristic curve of Hi1/K
(a) Diagram of Hi1/K and ωTs, (b) Diagram of system stability domain when λ is
determined

 

Fig. 8  Frequency characteristic curve of λ
(a) Diagram of λ and ωTs, (b) Diagram of system stability domain when Hi1/K is
determined

 

Fig. 9  Parameter characteristic curve of λ
(a) Diagram of λ and Hi1/K, (b) Diagram of system stability domain when ωTs is
determined
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system has a certain stability range, which is consistent with the
conclusion of the system stability constraints in Section 3. Fig. 11b
shows that as Lg varies, the closed-loop poles of the system with
CCFPIFS are basically distributed in the unit circle, and the system

can ensure stable operation. Therefore, compared with CCPIFS,
CCFPIFS has better stability, and can still guarantee the stable
operation of the system when the strong grid becomes the weak
grid, CCFPIFS has strong robustness.

4.2 Analysis of simulation results

To verify the feasibility of the proposed method, a 6 kW single-
phase LCL grid-connected inverter model was built in Matlab
Simulink. The specific parameters of the model are shown in Table
3. The parameters of the FOPI controller are Hi1 = − 0.06,
K = − 1600, and λ = 1.19. For the PR controller, when PM = 60°
and f c ≃ 4% f s, the method proposed in the literature [26] and the
simulation adjustment method were adopted, and Kp = 0.5 and
Kr = 1200 was selected to meet THD requirements. Moreover, to
simulate the actual state, I ∗ is enabled at 0.04 s.
 

Remark 3: The parameter design process of the FOPI controller
in the control system is as follows: first, considering the situation
of the power grid, the range of the stability domain is selected, and
select the corresponding parameters range of λ and Hi1/K
according to Fig. 9, here we assume that the left starting point of

Fig. 10  Distribution of closed-loop zero poles of CCFPIFS system
(a) Distribution of closed loop zero poles when λ changes, (b) Distribution of closed loop zero poles when Lg changes

 

Fig. 11  Output power quality waveform of the system under different grid impedances
(a) Waveform of the output voltage and current of the system, (b) Output current total harmonic distortion (THD) analysis as Lg = 0, Lg = 0.4mH, Lg = 2.6mH

 
Table 3 System parameter table
Parameter Symbol Value Parameter Symbol Value
input voltage vin 360 V inverter-side

inductor
L1 0.9 mH

grid voltage vg 220 V grid-side inductor L2 0.4 mH
output power Pout 6 kW filter capacitor C 10 μF
fundamental
frequency

f o 50 Hz switching
frequency

f sw 10 kHz

sampling
frequency

f s 15 kHz grid-side current
feedback
coefficient

Hi2 0.15

triangle carrier vtri 5 V LCL f r 3.6 kHz
internal
resistance of DC

Rin 0.1 Ω bandwidth of PR
controller

ωi 0.1π
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the stable region is 0. Then by substituting the range of the stability
domain into Fig. 7, multiple groups of λ and Hi1/K can be obtained.
Finally, the appropriate parameters of the FOPI controller are
selected through the system Bode diagram and Simulink test.
 

Remark 4: In the implementation process, the fractional
integration of the capacitor current is prone to problems, such as
DC errors and large transient errors, which have a certain impact
on the stability and speed of the system. To ensure the stability and

speed of the system, the feedback link of the capacitive current is
changed from (Hi1 + K /sλ) ⋅ ic to Hi1 ⋅ ic + (K /sλ) ⋅ sC ⋅ uc.

The implementation steps of the fractional-order PI–derivative
controller include discrete and approximation, the approximate
process is divided into the direct approximation method and
indirect approximation method, respectively, on behalf of the
fractional-order controller is realised in the chips or PC. In view of
the simulation model provided in this paper, the match method is
adopted to discretise the fractional-order-integral link. The
approximate method of the controller is the indirect approximation
method of refined Oustaloup, the approximate frequency band is
(0.001, 1000), and the approximate order is selected as the fifth
order.

The waveform and THD analysis of the output voltage and
current are shown in Fig. 11. The blue line in Fig. 11a is the output
voltage, and the red line is the output current. When Lg = 0,
Lg = 0.4mH and Lg = 2.6mH, the system works in the inverter
state, and maintains the unit power factor state. Fig. 11b shows the
THD analysis of output current, when Lg = 0, THD = 4.61%, and
with the Lg increases, the output power THD decreases
monotonically, such as Lg = 0.4 mH and THD = 3.73%, better
power quality can be achieved. When Lg is large, the input voltage
of the PLL has a large distortion, so THD increases when
Lg = 2.6 mH.

The dynamic performance of the system with CCFPIFS is
shown in Fig. 12. The output power of the system changes from 6 
kW at full load to 3 kW at half load at 0.15 s, and then changes
back to full load at 0.2 s. It can be seen that the output power is
adjusted when the current waveform crosses zero, although the
slope of the current waveform is the largest at this time, the system
current can complete the dynamic adjustment process in a quarter
cycle, and the dynamic tracking ability of the system is not
significantly changed under the different grid impedance
conditions. It can be seen from the above discussion that CCFPIFS
has good dynamic performance and strong robustness.

To verify the effectiveness of the constraints proposed in
Section 3.3 of this paper, and compare the performance differences
of CCFS, CCPIFS, and CCFPIFS, the output voltage and current
waveforms of the system at Lg = 9.6mH are shown in Fig. 13. Figs.
13a and b are, respectively, the system output waveforms
corresponding to CCFS and CCPIFS, Figs. 13c and d, respectively,
corresponding to the CCFPIFS when λ = 1.1 and 1.2, at this time
f r′ < f s/6. As seen in Fig. 13a, under the condition of
Lg = 9.6 mH, due to the limitation of the damping region, the
system based on CCFS cannot maintain stability. From Fig. 13b,
CCPIFS can be understood as a special case of CCFPIFS when
λ = 1.1, at which time the output voltage and current waveforms

Fig. 12  Voltage and current waveforms on the grid side of the system when full load and half load are changed
(a) Lg = 0, (b) Lg = 0.4 mH, (c) Lg = 2.6 mH

 

Fig. 13  Output waveform of the system under different control strategies
(a) λ = 0, (b) λ = 1, (c) λ = 1.1, (d) λ = 1.2
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are not ideal, and additional PD is required to ensure stable
operation of the system, this case is consistent with the conclusion
of root trajectory analysis in Fig. 10a. It can be known from Fig.
13c that when λ = 1.1, only using CCFPIFS can keep the system
stable and work in the state of unit power factor. The output current
also conforms to the grid-connected standard. When λ = 1.2, as is
seen from Fig. 13d, the system adopting CCFPIFS is in an unstable
state. Accordingly there is an upper limit for λ that maintains the
system stability, when λ is too large, if ωr is not appropriate, the
system will also be unstable, which consistent with the system
stability constraints obtained in Section. 3.3.

To compare THD differences between CCFS and CCFPIFS
control strategies, Fig. 14 shows a histogram of the system output
current THD with different Lg. When Lg < 0.4 mH, the THD of
CCFS is slightly lower than CCFPIFS, but the gap between the two
is small. As Lg increases, the THD of CCFS and CCFPIFS is
reduced to different degrees, and the THD of CCFPIFS decreases
faster. When Lg = 0.4 mH, both methods have the same output
current THD. When Lg > 0.4 mH, the THD of CCFS is slightly
higher than CCFPIFS, and the larger the Lg, the greater the
difference in control effect. According to the analysis in Figs. 13
and 14, the grid-connected power quality of the two damping
strategies is close to each other in the case of a strong power
network, but in the case of a weak power network, the CCFPIFS
has obviously better performance.

Fig. 15 shows a histogram of grid-connected current quality
when CCFPIFS is adopted. It can be seen from Fig. 15 that when
λ ≤ 1.1, the system cannot operate stably. With the increase of Lg,
the system can operate stably when Lg = 2.6 mH and λ = 1.1, it can
be seen that when λ ≃ 1, the stability of the system is relatively
poor in the case of small internal resistance of the system, which is
consistent with Fig. 13b. As λ increases from 1 to 2, the system can
still guarantee stable operation, and the THD of the output current
does not change much. In contrast, Figs. 15 and 13d can be seen

that when λ = 1.2, the system with Lg = 2.6 mH can run stably, but
the system with Lg = 9.6 mH cannot, which corresponds to what
Fig. 6a shows. The system exists negative damping in the low-
frequency domain, so the size of the Lg decides the size of f r′. It
can be concluded that under strong grid conditions, the system
stability constraints of λ are relatively loose, and the performance
is better than CCFS. However, if the stability of the whole
sampling frequency range is taken into account, the system still
needs to meet the stability constraints given in Section 3.3.

4.3 Analysis of advanced inverter control strategies

The performance comparison between the control method proposed
in this paper and several advanced inverter system control
strategies are shown in Table 4. The following control
characteristics are considered: observed signals, control methods,
degrees of freedom and complexity, and high tolerance parameters
of the system. Among them, the observed signals reflect the
number of sensors in the system, the degree of freedom of the
control quantity reflects the complexity of the control strategy, the
reaction speed represents how fast the system responds to changes
in load, and the high tolerance parameters represent the biased
aspects of the high robustness system in Table 4. It can be seen that
several kinds of systems have different preferences and advantages
in different aspects.

5 Conclusion
This paper introduces a CCFPIFS AD control strategy. Through
using the FOPI controller, the CCPIFS AD is extended from the
integer-order domain to the fractional-order domain. The damping
region of the system is wider than CCPIFS and a degree of control
freedom is employed to improve the performance of AD control.
By analysing the equivalent virtual impedance of CCFPIFS, the
stability constraints of the CCFPIFS AD control strategy are
obtained, and the effectiveness of CCFPIFS is verified by Simulink
simulation. In terms of the system stability, the damping domain of
CCFPIFS is wider on the basis of CCPIFS, the upper limit of the
damping domain can be approximated to the Nyquist frequency
through parameter selection, and the robustness of the system is
enhanced. In terms of the output power quality, with the increase of
grid impedance, the output power quality obtained by CCFPIFS is
better than that of the CCFS method.

Since the implementation algorithm of fractional-order
controllers belongs to another research area, and the truncation
error between the analytic solution of the theoretical model and the
actual model of the fractional-order controller, as well as the
existence of many different discrete and approximate methods, are

Fig. 14  System output current quality under different control strategies
with Lg changes

 

Fig. 15  System output current quality with λ changes
 

Table 4 Comparison of this method with related methods
Method [27] [28] [29] Proposed

method
observed
signals

inverter-side
current, grid-
side current,

capacitor
voltage

inverter-side
current

output
power

grid-side
current,

capacitor
current and

voltage
control
method

generalised
droop control

generalised
predictive

control, finite
impulse

response
filter

static
output

feedback
control

PR controller,
FOPI

controller

degrees of
freedom and
complexity

medium high high medium

reaction
speed

second millisecond second millisecond

high
tolerance
parameter

frequency
and output

power

LCL filter
parameters

frequency
fluctuation

grid
impedance
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worth considering. Our future work is to further improve the
performance of the implementation algorithm of the FOPI
controller, and it will be applied in practical engineering.
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7 Appendix
 
Fig. 16 shows the effect of increasing λ and Lg on the resonance
peak of the system. As can be seen in Figs. 16a–c, as λ increases,
the system bandwidth decreases. When λ is around 1, the amplitude
margin and phase margin of the system are both insufficient. When
λ decreases from 1, both margins of the system decrease sharply
and the system is unstable. In Fig. 16a, as the λ increases from 1,
both margins of the system are increasing. However, when the
value of λ is large, the damping effect on the resonance peak
becomes worse, even if the resonance peak exceeds 0 dB, which
causes negative phase margins. In Figs. 16b and c, under the
condition of large grid impedance, the system cannot run stably
when λ = 1. With the λ increases from 1, both margins of the
system are increasing, and the damping effect on the resonance
peak is the first weakened and then increased. From the perspective
of stability margin, when λ is small, as the damping effect weakens
or even be negative, the system stability margin is insufficient and
it is difficult for the system to run stably. When λ becomes larger
gradually, the phase characteristics of the system have changed
greatly. The initial phase angle and phase transition of the system
are different from before, at this time, the system can ensure stable
operation. As shown in Fig. 16d, with Lg increases, f r′ decreases,
and the resonance peak reduces.

Considering Figs. 6 and 16, it can be obtained that due to
different λ, the impedance characteristics of the system are
different, so the stabilities of the system at different resonance
frequencies are also very different. To sum up, when f r′ > f s/6, it
only needs to ensure that the amplitude margin and phase angle
margin meet the conditions, and the system can run stably. When
f r′ < f s/6, with the λ increases from 1, the stability margin of the
system becomes larger. As λ continues to increase, the initial phase
of the system changes, and the phase-frequency characteristics of
the system jump, the system can also run stably. When the
amplitude margin of the resonance peak is > 0 dB and the phase
angle margin does not jump, the system is unstable.
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Fig. 16  Bode diagram of CCFPIFS system open-loop transfer function
(a), (b), (c) λ increasing, (d) Lg increasing. (The solid blue line in (a), (b), and (c) corresponds to the system characteristics when λ < 1, and the solid orange line corresponds to the
system characteristics when λ = 1)
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