2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT)

CBQoS-Vanet: Cluster-based Artificial Bee Colony
Algorithm for QoS Routing Protocol in VANET

Mohammed El Amine Fekair

Computer Science Department,

University of Ouargla, Algeria
Email: fekair.medamine @univ-ouargla.dz

Abstract—Recent years have seen a growing interest in Ve-
hicular Ad hoc Networks (VANETSs) and their benefits to the
development of intelligent transportation systems (ITS). With
the deployment of multimedia services over VANETS, there is a
need to develop new approaches to insure higher level of quality
of services (QoS) for real time applications, and integrate QoS
into routing protocols. However, in VANET environment, it is
not an easy task to search for routes which satisfy the QoS
required by the applications. In this paper, we propose CBQoS-
Vanet, a new QoS-based unicast routing protocol for vehicular
networks. This protocol is based on the use of two techniques: a
clustering algorithm which organizes and optimizes the exchange
of the routing information based on QoS requirements, and an
artificial bee colony algorithm, which finds the best routes from
a source to a destination based on QoS criteria. In our approach
clusters are formed around cluster-heads that are elected based
on QoS consideration. In this paper we consider the following
QoS criteria: available bandwidth, end-to-end delay, jitter, and
link expiration time. Through simulation experiments, we show
that our method can improve greatly the performance of routing
in VANET by selecting routes based on the above mentioned QoS
criteria.

Keywords—VANET, QoS, Clustering, Artificial Bee Colony, ad-
hoc networks.

I. INTRODUCTION

In recent years, Vehicular Ad hoc Networks (VANETS)
have attracted the interests of researchers for their benefits
to the deployment of Intelligent Transportation Systems
(ITS). A VANET is a network of interconnected vehicles
that are able to communicate with each other and exchange
relevant information. The main objective of VANETSs is
to expand the reach to Internet and to access available
services while on the road. However road safety and travel
comfort applications are seeking to benefit from vehicular
networks. With the deployment of multimedia and real time
application over VANETS, there is a need not only to route
information between vehicles in an optimal way, but also
the need to select routes that comply the the Quality of
Service (QoS) that are usually required by such applications.
QoS requirements typically include bandwidth availability,
end-to-end delay, jitter, but other criteria that are inherent
to the nature of vehicular networks can be considered.
Indeed, in VANET where the network topology is highly
dynamic and connectivity between vehicles is constantly
changing, one may consider the stability of routes and the
life expectancy of links as QoS criteria. Therefore, providing
support for QoS in such a highly dynamic environment

978-1-5090-1743-0/16/$31.00 ©2016 IEEE

Abderrahmane Lakas
College of Information Technology
UAE University, Al Ain, UAE
Email: alakas@uaeu.ac.ae

Ahmed Korichi
Computer Science Department,
University of Ouargla, Algeria
Email: ahmed.korichi @univ-ouargla.dz

can be a very challenging task. Indeed, the objective of
a QoS routing protocol is to find a route between given
source and destination with the required QoS conditions
despite the high mobility of the communicating nodes and
the link failure that may occur between disconnecting vehicles.

In this paper, we present CBQoS-Vanet, a new QoS-
based routing protocol over VANET, based on the use of
two techniques: a QoS-based clustering algorithm and a
bio-inspired Artificial Bee Colony (ABC). The clustering
algorithm is used here to organize and optimize the exchange
of the routing information between various clusters. Each
cluster is formed around a cluster head which is elected
based on QoS criteria. The ABC is here to find the best route
between given source and destination and which comply
with given QoS metrics. ABC operation is inspired by the
behavior of bees in their search for food and by their strategy
for pinpointing various routes from their hive to various food
locations. CBQoS uses the concept of forward and backward
scouting which serves as the process for discovering a given
destination. In our approach the QoS criteria considered
are: available bandwidth, end-to-end delay, jitter, and link
expiration time. CBQoS-Vanet can be considered as a reactive
routing protocol, however, it is equipped with a caching
scheme which allows routes to be proactively discovered
without completing the full scouting process.

The remainder of this paper is organized as follows: in
section II, we briefly review the related work. In Section III,
we present a detailed description of our proposed protocol
CBQoS-Vanet. In Section IV we provide an analysis of the
performance results obtained from simulation experiments.
Finally, we draw our conclusions in Section V.

II. RELATED WORK

There is a several research studies that have been carried
out on routing for VANET in general and on QoS-based
routing in particular. In this section we will limit our review
of the existing studies to those adopting the clustering and
bio-inspired swarm intelligence approaches.

Many routing protocols such as [1] and [2] are based route
discovery while minimizing network overhead and packet
collisions. However only few compute all possible routes
before selecting an optimal one. In [3], the authors propose a
routing protocol based on clustering approach and ant colony
optimization technique. In this approach, the cluster head is
selected based on highest QoS value. The cluster head uses

an ant hello message to discover the network and select]s a
MultiPoint Relay (MPR) to form a stable cluster and increase
the stability during communications and link failures while
satisfying the Quality of Service requirements.

In [4], the authors propose a Passive Clustering Aided
Routing (PassCAR) protocol, which enhances the routing
performance in one-way multi-lane highway scenario. It
includes route discovery, route establishment, and data
transmission phases. PassCAR selects suitable nodes to
become cluster heads by using multi-metric election approach
based on metrics such as node degree, estimated transmission
count, and link expiration time. Where this solution construct
a cluster during the route discovery phase.

In [5], the authors propose a new quality of service
multi-path routing protocol called QoSBeeVanet for VANET.
It is based on biological paradigm of communication between
bees in the food source searching behavior. This protocol
used scout and forager as packets for discover network and
transport data to destination where each scout recorded its
information in routing table, and for each path in this table is
evaluated relevant to its quality by a weighting factor.

The authors of [6] and [7], proposed the hybrid bee
swarm routing (HyBR) protocol for VANET. HyBR is unicast
and multipath routing protocol which guarantees road safety
services by transmitting packets with minimum delays and
high packet delivery. Which in case the network is dense
use topology-based routing procedure where use two types
of packets for discovering network: Scout and Forager which
inspired from communication between bees and in case the
network density is low use geography-based routing procedure
where use metaheuristic method (Genetic algorithm) to find
the shortest paths between the source and the destination

In [8], authors proposed a solution (MAZCORNET) for
find multiple route between nodes in the network, where
developed a hybrid, multipath ant colony based routing
algorithm. Where partition the network into multiple zones,
where use proactive approach to find a route within a zone
and reactive approach to find route between zones by using
the local information stored in each zone. This algorithm is
scalable and robust to link failures

III. CBQOS-VANET PrROTOCOL

In this section, we describe our proposed protocol CBQoS-
Vanet, a new quality of service unicast routing protocol adapted
for the vehicular ad hoc networks (VANET). CBQoS-Vanet
is a new QoS unicast routing protocol where combines two
algorithms: Clustering algorithm and Artificial bee colony
algorithm, in the following we present this algorithms and
relation between them. Before that, we present QoS metrics
used in our proposed protocol CBQoS-Vanet.

A. QoS Metrics

In this section, we describes the QoS metrics used in our
system. The QoS metrics are used to determine the routes
which best comply with given QoS conditions. To improve
and optimize the selection of the QoS compliant routes, QoS

metrics are also used here as a basis in the election of cluster
heads. The five metrics considered in our model are the (1)
available bandwidth, (2) the end-to-End delay, (3) the jitter,
(4) the link expiration time (LTE) and (5) the degree.

In order to define these metrics mathematically, let us de-
fine our model. We represent VANET by a graph G = (V, L),
where V' is the set of vehicles in the network and E as the
set of connection links between pairs of vehicles; that is,
L = {l;;|3 vi,v; € V xV, v; and v; are connected}. The
quality of a link /; ; is evaluated by the function qos : L — ¢
where ¢ is a value determined by one of the four QoS metrics.
Let’s assume that p is the path between pairs of vehicles
comprising with the following links [, ...,[,,—1. The quality
of a link qos(l;), where [; € L is evaluated by one or
a combination of the four QoS metrics mentioned earlier.
Therefore, the quality of a route is function of the quality of
all the links, which make up the route. That is, if p is a path
connecting directly or indirectly two vehicles vy and v,,, then
the quality of the path p is stated as qos(p) = qos(ly, ..., ln—1)
where [; is the link connecting v; to v;1.

1) Available Bandwidth: The available bandwidth for each
link is defined as the maximum throughput at which packets
can be transmitted between these two nodes without disrupting
any already ongoing flow in the network [9]. To improve the
QoS provided with our algorithm, we use an estimator of
the available bandwidth in VANETS, and which based on the
ABE™ estimator[10] for IEEE 802.11p networks illustrated
by the following equation:

ABE™(s,d) = (1 - K)(1—p(m,N,s)) x Ty x T, x C (1)

where T is the idle time at the sender, 7. is the idle time at the
receiver , C' is the maximum link capacity; K is the additional
overhead due to the binary exponential backoff mechanism in
802.11 networks, and p(m, N, s) is the collision probability for
packets the m bits long. The value for the available bandwidth
is source-specific and recorded at the neighboring vehicles
since ABE™ estimates available bandwidth between a sender
and a final receiver. The calculation of the available bandwidth
is obtained by the following:

bw(p) = min(bw(ly), ..., bw(l,))

where p is the communication path between two vehicles s
and d and p =< ly,...,l,, > where lgy,...,l,—1 € L are the
links, which make up path p. The QoS condition in terms of
available bandwidth that a path must satisfy to be selected is
expressed as;

bw(p) > B

where B is a given value of the bandwidth.

2) End-to-End Delay: The end-to-end delay is the time
taken for a data packets to be transmitted across a VANET
from source vehicle s to a destination vehicle d. This metric is
important for understanding the delay incurred by intermediary
vehicles which relay the packets towards the destination but
also by the initial route discovery [11]. This metric is defined
as follows:

Delay(p) = Z Delay(l;)
i=0

where p is the communication path between two vehicles p =<
loy ..., I, > where ly,...,l,, € L are the links, which make
up path p.The delay condition that a path must satisfy to be
selected is expressed as;

delay(p) < D
where D is a given value of time delay.

3) Jitter: The jitter — also referred to as delay variation,
is typically used to measure the transmission quality of real-
time applications such as VoIP, video conferencing and multi-
player games[12]. It represents the end-to-end delay variation
between packets arriving at the destination in comparison to
the delay variation between packets leaving the source. This
metric is defined as follows:

B " jitter(l;
jitter(p) = Z #
i=0

where p =< Iy, ..., [, > is the communication path between
two vehicles and ly, ...,1,,—1 € L are the links, which make up
path p. The QoS condition in term of jitter that a path must
satisfy to be selected is expressed as;

jitter(p) < J
where .J is a given value of delay jitter.

4) Link Expiration Time: In highly dynamic wireless net-
works like VANET, it is important to reduce the probability of
link breakage. Therefore a measure for a link expiration time
(LET) can be an important QoS criteria for the quality of a
network. The calculation for this measure is based on the work
of[13]., considering the locations of the vehicles, their veloci-
ties, and the direction towards which vehicles are heading. We
assume each vehicle is equipped with GPS receiver allowing
therefore calculation of various distances based on vehicles’
coordinates at different times[11]. The lifetime of a path is the
minimum value of the expected lifetime for each link in the
path.

LET(p) = min(LET(ly), ..., LET(l,,))

The QoS condition in term of link expiration time that a path
must satisfy to be selected is expressed as:

LET(p) > E
where FE is a given value of the expiration time.

To find a path which satisfies multiple QoS conditions in
terms of a given bandwidth, delay, jitter and LET, we use the
following formula:

_ abw(p) + B.let(p)
qos(p) = 5.dgla$(5) - v.jz?ttepr(p)

2
a+B+i+y=1

where a, 3, § and « are weighting factors which indicate the
level of importance we give to the any one of the four QoS
components. In general, these factors are decided based on the
application. For instance, when the vehicles are transferring
real-time data such as audio or video, we may focus on mini-
mizing the jitter and the delay, and maximizing the bandwidth
and the LET. For example = 0.1, § = 0.1, § = 0.4 and
v =0.4.

B. QoS Model for Cluster Head Election

In this section we present the QoS model used by nodes
(vehicles) for electing the cluster head. To improve the quality
of service and the stability of of the clusters, CBQoS-Vanet use
several QoS metrics as we explained above. Each node votes
for its cluster head according its local QoS value obtained
through the Hello message. Nodes pay extra attention to
the link expiration time of the node, as we would like to
maximize the stability of the cluster head and thus the cluster.
The calculation of the QoS value is based on the formula 2
explained above.

Finally, for the sake of electing the cluster head, we use
the formula in (2) with the following parameters o« = 0.4,
B8 =0.4,6 =0.1 and v = 0.1 with a focus on a maximization
of the link expiry time and the bandwidth, and a minimization.

Fig. 1: Clusters

C. Clustering Algorithm

In this section we present a clustering mechanism inspired
from [3], and suitable for VANETS in a highway environment,
with the objective of improving the stability of the network
topology and maintaining an end-to-end communication be-
tween nodes even during link failures.

This clustering algorithm can be divided in two compo-
nents: (1) a cluster-heads election algorithm which purpose
is to partition the network into clusters and elect an optimal
cluster-head (CH) based on QoS requirements. The cluster
heads will play later an important role in determining QoS-
based routing paths. (2) Multi-point relays selection algorithm
where each cluster selects one or few special nodes that are
responsible for relaying information between different clusters.
Considered as gateways, the multi-point relays (MPRs) are
used with the objective to minimize the information flood-
ing between and within clusters during the dissemination of
routing packets. Accordingly, members of a given cluster are
classified as cluster heads (CH), multipoint relays (MPR), or
regular cluster member (CM).

In CBQoS-Vanet clustering algorithm works as follows:
each vehicle periodically broadcasts a Hello message every §
time to its neighbors to inform them of its presence. The Hello
message, illustrated in Figure 2, includes a field QoS value
which is used for the election of the CH. Every time a vehicle

joins a cluster and send a Hello message, all the other vehicles
in the neighborhood update their neighbors list and take note
of the received QoS value. When all the vehicles converge
on a common list of neighbors and the corresponding QoS
value, the best QoS value is determined and therefore the CH is
elected. Obviously, QoS values can change dynamically due to
the change in the network topology, that is why each QoS value
is also associated with a Creation Time. When a QoS
value is changed a new value is created and communicated
to all the neighbors and a new CH is elected accordingly
This is done following the conditions shown in Algorithm 1.
Each node continuously updates its neighbors list. Therefore
the Hello message is very important in building the local
topology. For that, each node counts value the link expiration
time between itself and the sender. A node is removed from
the list of neighbors when no Hello message is received within
a ¢ time.This is illustrated further in Algorithm 2.

01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01 2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MAC Address ID Vehicle ID Message

QoS Value Elected Node ID

Fig. 3: Elect Message

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MAC Address ID Vehicle ID Message

QoS Value ID MPR Cluster Head ID

MAC Address ID Vehicle ID Message

IDLE Time Degree Role

GPS Position Average Speed

QoS Value Creation Time Cluster Head ID

Fig. 2: Hello Message

Algorithm 1 Adding and Updating the neighbors list.

1: NeighList: Neighbors list;
2: Upon receiving (Hello message) from node n; Do

3: if (n; € NeighList) then

4: Update neighbors information with a new time of arrival;
5: Re-calculate link expiration time;

6: else

7 NeighList + NeighList N {n;};

8: Re-calculate link expiration time;

9: end if
10: endDo

Algorithm 2 Maintain the neighbors list.

TimeN ow: Current time;
LET: Link Expiration Time;
NeighList: Neighbors list;
For every (§ time) Do
TimeN ow < current time;
if (n;.LET< TimeNow) then
Remove node n; from the NeighList;
else
n;.LET< n; LET-0;
end if

endDo

_
TRV

—

1) Cluster Head Election Algorithm: The cluster head is
responsible for selecting the appropriate path between the
source and destination by routing packets according to an
Artificial Bee Colony (ABC) algorithm based on specific QoS
requirements. The cluster head election algorithm works as
follows: each node n; broadcast Hello messages to its one-
hop neighbors, containing it QoS value every § time period.
Within a Wait Time (3, if no new neighbor has joined the
cluster, then all existing nodes in the neighborhood will send

Fig. 4: Format MPRSelection Message

an Elect message to the node with the best QoS value selecting
it as the cluster head. In the case a node has received an elect
message before the Wait Time has expired, and the node
does not have the best QoS value, then it will send an FElect
message to the nodes in its neighbors list with the highest
QoS value.The node which has received an Elect message
from all its neighbors will change its class to cluster head
and assume this role by broadcasting an Ack message to all
its neighbors. Upon receiving the Ack message, all the other
nodes will assume their role of Cluster member. This algorithm
is described further in Algorithm 3.

Algorithm 3 Cluster Head Election Algorithm

1: N: Number of nodes

2: ID: ID of the node

3: CHID: Cluster head ID

4: Foreach node n; (1<i<N) Do

5: if (Last neighbor arrival time + WaitTime (3 > TimeN ow) Then
6: Broadcast Elect Msg(ID, CHID);

7 Flag node as having best QoS value;

8

9

endIf
: Upon receiving (Elect-Msg) and n;.ID#Elect-Msg.CHID) Do
10: Broadcast Elect-Msg (ID, CHID);
11: Flag node as having best QoS value;
12: endDo

13: endForeach

14: Upon receiving (Elect Msg) and n;.ID == Elect msg.CHID) Do
15: n;.Voted++;

16: endDo

17: If (n,;.Voted==N) Then

18: Node n;.role<—CH;

19: Broadcast(Ack msg);

20: endIf

21: Upon receiving (Ack msg) and n;.role #CH Do

22: n;.role<—CM;

23: endDo

2) MPR Selection Algorithm: MPR nodes play the role
of communication gateways between different clusters. All
communication between clusters must transit through corre-
sponding MPRs. One cluster may have one or many MPRs.
When clusters are formed and cluster heads are selected for
each one of them, the algorithm of determining MPRs kicks
off (Algorithm 4). Upon a receiving an Ack message from
a cluster head, node take note of their cluster head. When
a node receives Hello messages from its neighbors, it also
learns about the presence of other clusters. The node sends,
then, an M PRPropose to the cluster head offering to serve
as an MPR to a given cluster. The cluster head replies with
M PRSelect (Figure 4) confirming the role of the node as an
MPR. If the cluster head receives multiple M P RPropose, the
node with the best QoS value will be selected. Upon receiving

an M PRSelect message, a node change its role to MPR and
starts assuming its role as a gateway of its own cluster to
another cluster.

Algorithm 4 MPR Selection Algorithm

1: CI : Cluster 1
2: C2: Cluster 2
3: CM1: Cluster member in C1
4: CM2: Cluster member in C2
5: CH: Cluster head
6: Foreach node n; € CMI Do
7. Upon receiving(Hello msg) from n; €CM2 Do
8: If (CM1.CH # CM2.CH) Then
9: n.;.send(MPRProposed) to n;.CHI;
10: end if
11: endDo
12: Upon receiving (MPRPropose msg) from n; and n; is CHI Do
13: n;.send(MPRSelection) to n;
14: endDo
15: Upon receiving (MPRSelection msg) Do
16: n;.role<—MPR;
17: endDo

18: endForeach

D. Artificial Bee Colony Algorithm

1) Bees Communication Principle: Routing can be con-
sidered as an optimization problem when we want to find
the best path among many paths between a source node and
a destination node. Various computational problems can be
solved using algorithms inspired by bees behaviors. Two major
classes of such algorithms are derived from the behavior of
bees mating and food foraging [5].

Food foraging behavior is observed when bees search for
new nest sites or scuting for new sources of food. To do this,
some bees (called scouts) navigate and explore the region in
search for food. When found, they come at the dance floor in
the beehive to share this discovery with their nest mates via a
language of dance, which can be round or waggle expressing
the distance to the discovery site. Some bees (called foragers)
are recruited to exploit this discovery by finding efficient paths
from their beehive to the food sources using shared information
including location, direction, quantity, and quality of food
found [14].

CBQoS-Vanet protocol is inspired by the way a swarm of
bees communicate and their forage for food. Here, the protocol
uses two types of packets. The first type of packets, called
scout is used to discover route between the cluster head to a
given destination, a route that satisfies a certain QoS condition.
Thus, the discovered route should satisfy a combination of
conditions based on the available bandwidth, the end-to-end
delay, jitter, and link stability. The second type of packets,
called forager is used to transmit the data between nodes.

2) CBQoS-Vanet RoutingTable: The routing table in
CBQoS-Vanet is situated at the level of each cluster head,
which is responsible for discovering the network and exploring
it before data is exchanged between members of the clusters.
Each entry of the routing table, representing a route to a des-
tination is evaluated according to the QoS condition. Multiple
routes to the same destination can be found in the routing table,
but each route evaluates to a different QoS value. The route
with the best QoS value is used to transmit the data packets.

When backward scout arrives at the CH of a source, it
creates a new entry in the table, which contains the following

01 2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MAC Address ID Message

ID Vehicle

Scout ID Backward ID Creation Time

Beehive ID QoS Value Hop Count

Food ID Cluster Head Path

Fig. 5: Format Backward Scout Message

information: a unique path id, the id of the scout, which
discovered this path, the next cluster head (that is the next
hop), and the hop count, which indicate the number of cluster
heads travelled through before the backward scout reaches the
destination. The entry includes weighted factor field reflecting
the QoS value for this route. A timeout value is used to
retransmit the forward scout if it does not return within a
maximum waiting time.

3) Route Discovery: When a node wants to send data to
another node in a different cluster, the source nodes sends a
request to its CH. If no route is available in the routing table,
the cluster head releases a scout (forward scout) to discover
a route to the destination. The forward scouts moves from
one cluster head to another through MPRs until it reaches the
destination. As many copies of forward scouts are forwarded as
there are neighboring clusters. As forward scouts are relayed,
the routing table in the cluster head is updated with route back
to the source. Once the destination cluster head is reached, a
backward scout is created and sent back to the source along
the reverse path (Figure 5). When the source CH receives all
the backward scouts, it selects the path with the best QoS
(see Algorithm 5). When a backward scout arrives at the
source CH, a weight factor is calculated based on the QoS
information carried in the backward scouts. The QoS value is
recorded along with the route in the routing table. The routing
table is updated as backward scouts arrive at the cluster head.
Finally data packets are forwarded through the appropriate
path according to the QoS requirements and the QoS values
associated with paths in the routing table.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our protocol we used a sim-
ulation approach. We considered the case of a 3-lane highway
in each direction. Each vehicle is assigned a direction and a
average speed selected randomly. However, vehicles are put in
the lanes according to their speeds, given that one lane is for
the faster vehicles, the middle lane if for vehicles with medium
speed and the slower lane is for the slower vehicles. We assume
that vehicles are equipped with global positioning system
(GPS) devices. The proposed simulation time is 1000 seconds
in a straight road of 4 km. We use 250m transmission range
because this is most efficient transmission range for DSRC
[15]. Hello messages are produced every | second and are
transmitted only on the Control Channel. Other parameters are
summarizes in Table I. We conducted 5 scenario of simulation
and varying the number of vehicles simultaneously present on
the highway between 50 to 100 vehicles. In each scenario
two nodes are selected randomly to exchange data packets.
We implemented our simulation using OMNET++ [16] with

Algorithm 5 Route Discovery (IN Cluster Head CHi).

1: Require: Ci: cluster, CHi: cluster head of Ci, MPRi : is MPR the cluster Ci, CMi

: cluster member of Ci

2: if (CHi receive message Send-Packet from its members) Then
3: If (Routing Table of CHi Contain CMj as destination) Then
4. If (This path responds a QoS Condition) Then
5: Select Suitable Forager of this Path for transmits Send-Packet to CMj
6: end if
7: else
8: CHi Create and launch Forward-Scout (CMj) by send to MPRi
9: end if
10: end if
11: If (CHi receive message Forward-Scout (CMj) from its MPRi) Then
12: If (CMj contain in neighbors list or in routing table) Then
13: CHi Create and launch Backward -Scout (CHi) by send to MPRi
14: else
15: CHi forward this Forward-Scout (CMj) by send to MPRi
16: end if
17: end if
18: if (CHi receive message Backward-Scout (CHi)from its MPRi) Then
19: If (CHi is destination the Backward-Scout (CHi)) Then
20: CHi select suitable forager for transmit Send-Packet to its destination
CMj
21: else
22: CHi forward this Backward-Scout (CHi) by send to MPRi
23: end if
24: CHi recorded information of Backward-Scout (CHi) as entry in own routing
table
25: end if

the VEINS as framework [17] for VANETSs. Communication
between vehicles is based on IEEE 802.11p and IEEE 1609.4
DSRC/WAVE, including multi-channel operation, QoS channel
access, noise and interference effects to make simulation of
VANET as realistic as possible. We used Veins as the basis
for developing CBQoS-Vanet protocol., For vehicle mobility
we use the car following model which is implemented in
SUMO[18] which coupled with a OMNET++ using a TCP
socket developed by [19] to permit bidirectional coupling of
road traffic and communication simulators.

TABLE I: Simulation Parameters

Parametre Value
Length of highway 4 Km
Topology Highway

Number of lanes 3 each direction

Number of Vehicles 50, 60, 70, 80,90, and 100 Vehicles
Maximum node speed 30 m/s

Transmission range 250m

MAC specification IEEE 802.11p

Maximum transmission power 10 mW
Minimum signal attenuation -85dBm
Slot time 13s
DIFS 32s
Simulation time 1000 s
MAC bit rate 18Mbps

A. Performance Metrics

Different performance metrics are used in the evaluation
of our proposed solution CBQoS-Vanet: packet delivery ratio,
network overhead, and end-to-end delay. These metrics are
defined as follows:

1) Packet Deliver Ratio (PDR): : defined as the ratio
between numbers of packets received by the destination over
the total number of packets transmitted by the source node
within a period time.

2) Normalized Overhead Load (NOL): : represents the
ratio between total numbers of routing packets and the total
number of successfully delivered data packets. This metric
provides an indication of the extra bandwidth consumed to
deliver data traffic [5]. Typically, the overhead is due to routing
packets (forward and backward scouts). The less overhead
load, the better performance.

3) The End-to-End Delay (E2ED): : is the average time that
packets take to traverse the network. End-to-End Delay is the
summation of transmition delay (at MAC layer), propagation
delay and queuing time of a packet. E2ED depends on number
of hops and the traffic congestion on the network.

B. Simulation Results

In this section we present and explain the performance
results obtained from the simulation. Figure 6 illustrates the
performance of CBQoS-VANET under the criteria of PDR.
The general trend shows that the PDR decreases when the
density of the vehicles increases. Looking further into the
details we can note that the best performance is obtained when
the routes with the highest bandwidth are selected. Routes with
the highest bandwidth scenario is indicated by the highest
value of the factor «. For instance, we can see that with
a = 0.8 we can obtained 100% PDR with a density of 50
vehicles and a bit less than 85% PDR with a density of 100
vehicles. The scenario of best effort here is obtained without
using QoS-based routing.

Figure 7 illustrates the performance of CBQoS-VANET
from the end-to-end delay perspective and considering the
bandwidth as a QoS parameter. Here again, the results show
that a slight increase of the end-to-end delay when the density
of the vehicles increases. However, there is a clear advan-
tage of using CBQoS-VANET compared to a plain Best-
Effort algorithm (a difference of 10 mili-second delay). Within
CBQoS-VANET, we can notice that there is a slight advantage
in end-to-end delay when selecting routes with the highest
bandwidth (around 2 mili-second difference between o = 0.8
and o = 0.6.)

Figure 8 illustrates the performance of CBQoS-VANET
from the network overhead perspective, and considering the
bandwidth as a QoS parameter. The figure shows a difference
between Best-Effort and the CBQoS-VANET, but there is no
difference between the different « factors. As we may expect,
the results in terms of network overhead are not conclusive
except that the CBQoS-VANET has in general less overhead
than the Best-Effort method. this can be explained by the fact
that in general Best-Effort routing methods provide routes that
are for the best optimal in term of number of hops and not
necessarily in delays or bandwidth. In the other hand, CBQoS-
VANET always looks for the best path in terms of bandwidth
and delay even among the shortest-paths. In addition the results
do not show a clear trend when we vary the density of the
vehicles as if the density does not really influence the network
overhead generated. However, we should not rule out the
possibility that this may be due to the simulation parameters

used in all our scenarios such as the simulation time and the
density limited between 50 and 100 vehicles.

—a— Best Effort

120 4 —e— 0S5 ABE+ (o=0.4)
— —d— Q0S5 ABE+ [o=06)

—v— QOS5 ABE+ [0=0.8)

Facket Delvery Ratio
8

i 1]

T T T T T T T 1
45 5) 55 60 B5 TO. TS5 B0 B85 90 95 100 108
Mumber Of Modes

Fig. 6: Packet Delivery Ratio: CBQOS-Vanet vs. Best Effort
(with different « values)

0,025 4
0,082 4

0,062 4
0082 —=— Best Effort

ped —e— Q0 ABE+ (0=0.4)
i) 0,060] —i— Q05 ABE+ (m=0.6)
B 0,059 | —=— QO3S ABE+ (o=0.8)
L p.ose 4
. 0,057 4
o 0,058
= ﬂlﬂff..
0.054
0,053 |
0,052 |
0,051]

T T T T T T T T T T 1
45 B0 55 @ 65 ™M 75 80 85 90 55 10 105

Mumber Of Modes

Fig. 7: End-to-end delay: CBQOS-Vanet vs. Best Effort (with
different « values)

The second set of simulations concerns the scenarios where
we optimize the paths based on the delay (factor 3.) Similarly
to Figure 6, Figure 9 demonstrates the advantage of using our
method over the plain Best-Effort algorithm. Here again, the
results show clearly that by selecting the path with the lowest
delays (8 = 0.8), better PDR is obtained. Equally for the delay,
Figure 10 shows that the performance of CBQoS-VANET is
way better than that of the Best-Effort algorithm, with the
best performance of CBQoS-VANET obtained with 5 = 0.8.
As for the network overhead with a variation of the /3 factor
illustrated in Figure 11, we obtained similar results in Figure
8.

In summary, the simulation results show that our protocol
is able to be select an optimal path in terms of bandwidth and

= Best Effort
—a (0S5 ABE+ (p=0.4)
—a— 008 ABE+ (p=0.6)

B - Q05 ABE+ (o=0.8)
(1]
=144
o
=
o
213
= A
=
ol2{ w
@
a
m T,
g ey \"‘» 4
[=] Y 4
= \ 3
18 4 F
D|E T T T T T T T T T T T 1
45 5 55 80 B85 T V5 80 B85 W0 95 100 105
Mumber Of Modes

Fig. 8: Normalized Overhead: CBQOS-Vanet vs. Best Effort
(with different « values)

delay and allow for the best PDR, delay, and overhead, and
that the selected paths satisfy the QoS requirements of various
applications.

—a— Heast Effort

100 4 —a— Q03 Delay (B=0.4)
—&— Q03 Delay (B=0.6))
—w— Q03 Delay (p=0.8)

Facket Delvery Ratio
]

a0

T T T T T T T
4 G0 5 @ 65 7T 75 80 85 90 9 0D 105
Mumber Cf Nodes

Fig. 9: Packet Delivery Ratio: CBQOS-Vanet vs. Best Effort
(with different [values)

V. CONCLUSION

In this paper, we presented a new unicast routing protocol
called CBQOS-Vanet which allows vehicles in a VANET
environment to find optimal routes based on QoS requirements.
Our method is applied in a highway environment includes
two components: clustering algorithm and artificial bee colony
algorithm. In this paper, we explained these two components
and presented their algorithms. We also presented the QoS
models for various situations using a aggregated combination
of four types of QoS: bandwidth, delay, jitter, and link stability.
We have presented and explained the simulation results of

|—=— Best Effort

—=— QOS5 Delay (B=0.4)
) —&— QO3 Delay (B=0.6)
—=— QO3 Delay (g=0.8)

0,054 4
0,053 4
0.082 4
0,081 4

MNumizer Of Nodes

Fig. 10: End-to-end delay: CBQOS-Vanet vs. Best Effort (with
different 5 values)

18 4 —a— Best Effort
—e— Q03 Delay (B=0.4)
15 4 —d— Q0S5 Delay (B=0.6)
E —— (0S Delay (p=0.8)
= 14
QD
3 ;
2132 ¥
S124 &
i)
b
E 1 \". ,”
2 \
< 10 i __.'{
¥
D,B T T T T T T T T T T T 1
45 H) 55 @0 65 70 75 E0 B85 90 S5 100 105
Mumber Of Modes

Fig. 11: Normalized Overhead: CBQOS-Vanet vs. Best Effort
(with different [values)

our technique in various scenarios, and showed its advantage
over the Best-Effort routing method. Although we have imple-
mented all the four types of QoS, we only presented simulation
results for the bandwidth and the delay. The results show that
selecting a route based on these two QoS requirements does
improves the PDR, the end-to-end delays and the network
overhead. As a future work, we plan to complete the simulation
of CBQoS-VANET by providing results for both jitter and
link stability. In addition, we plan to study the right values
for the QoS factors for a specific applications such as real-
time applications, bulk transfer applications, and multimedia
applications.

ACKNOWLEDGMENT

This work was partially supported by the The Roadway,
Transportation and Traffic Safety Research Center (RTTSRC)
at the United Arab Emirates University (Grant No. 31R012).

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

REFERENCES

A. M. Vegni and E. Natalizio, “Forwarder smart selection protocol
for limitation of broadcast storm problem,” Journal of Network and
Computer Applications, vol. 47, pp. 61-71, January 2015.

A. Mostafa, A. M. Vegni, and D. P. Agrawal, “A probabilistic routing
by using multi-hop retransmission forecast with packet collision-aware
constraints in vehicular networks,” Ad Hoc Networks, vol. 14, pp. 118—
129, March 2014.

O. A. Wahab, H. Otrok, and A. Mourad, “Vanet qos-olsr: Qos-based
clustering protocol for vehicular ad hoc networks,” Computer Commu-
nications, vol. 36, no. 13, pp. 1422-1435, 2013.

S.-S. Wang and Y.-S. Lin, “Passcar: A passive clustering aided routing
protocol for vehicular ad hoc networks,” Computer Communications,
vol. 36, no. 2, pp. 170-179, 2013.

S. Bitam and A. Mellouk, “Qos swarm bee routing protocol for
vehicular ad hoc networks,” in Communications (ICC), 2011 IEEE
International Conference on. 1EEE, 2011, pp. 1-5.

S. Bitam, A. Mellouk, and S. Zeadally, “Bio-inspired routing algorithms
survey for vehicular ad hoc networks,” Communications Surveys &
Tutorials, IEEE, vol. 17, no. 2, pp. 843-867, 2015.

——, “Hybr: A hybrid bio-inspired bee swarm routing protocol for
safety applications in vehicular ad hoc networks (vanets),” Journal of
Systems Architecture, vol. 59, no. 10, pp. 953-967, 2013.

H. Rana, P. Thulasiraman, and R. K. Thulasiram, “Mazacornet: Mo-
bility aware zone based ant colony optimization routing for vanet,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on. 1EEE,
2013, pp. 2948-2955.

H. Kaaniche, F. Louati, M. Frikha, and F. Kamoun, “A qos routing
protocol based on available bandwidth estimation for wireless ad hoc
networks,” arXiv preprint arXiv:1101.4034, 2011.

C. Tripp-Barba, M. Aguilar Igartua, L. Urquiza Aguiar, A. M. Mezher,
A. Zaldivar-Colado, and I. Guérin-Lassous, “Available bandwidth es-
timation in gpsr for vanets,” in Proceedings of the third ACM inter-
national symposium on Design and analysis of intelligent vehicular
networks and applications. ACM, 2013, pp. 1-8.

V. Patil, “Effect of traffic type on the performance of table driven
and on demand routing protocols of manet,” International Journal Of
Computational Engineering Research (ijceronline. com) Vol, vol. 2.

M. Boban, G. Misek, and O. K. Tonguz, “What is the best achievable
qos for unicast routing in vanets?” in GLOBECOM Workshops, 2008
IEEE. 1IEEE, 2008, pp. 1-10.

L. Zhang and H. El-Sayed, “A novel cluster-based protocol for topology
discovery in vehicular ad hoc network,” Procedia Computer Science,
vol. 10, pp. 525-534, 2012.

B. Salim, M. Batouche, and E.-G. Talbi, “A survey on bee colony
algorithms,” in NIDISC’2010 Nature Inspired Distributed Computing
Workshop in conjunction with IEEE Int. Symposium on Parallel and
Distributed Processing IPDPS’2010, 2010.

G. Yan, D. B. Rawat, and B. B. Bista, “Provisioning vehicular ad hoc
networks with quality of service,” International Journal of Space-Based
and Situated Computing, vol. 2, no. 2, pp. 104-111, 2012.
“http://omnetpp.org/.”

“http://veins.car2x.org/.”

“http://sumo.sourceforge.net.”

C. Sommer and F. Dressler, “Progressing toward realistic mobility mod-

els in vanet simulations,” Communications Magazine, IEEE, vol. 46,
no. 11, pp. 132-137, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

