
Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

Research papers 

A rational performance criterion for hydrological model 
Dedi Liu 
State Key Laboratory of Water Resources and Hydropower Engineering Science, Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan 
University, Wuhan 430072, China  

A R T I C L E  I N F O   

This manuscript was handled by Corrado 
Corradini, Editor-in-Chief, with the assistance 
of Saket Pande, Associate Editor  

Keywords: 
Nash-Sutcliffe efficiency 
Kling-Gupta efficiency 
Model performance criterion 
Sampling statistic 
Hydrological model 

A B S T R A C T   

Performance criteria are essential for hydrological model identification or its parameters estimation. The Kling- 
Gupta efficiency (KGE), which combines the three components of Nash-Sutcliffe efficiency (NSE) of model errors 
(i.e. correlation, bias, ratio of variances or coefficients of variation) in a more balanced way, has been widely 
used for calibration and evaluation hydrological models in recent years. However, the KGE does not take a 
reference forecasts or simulation into account and still underestimates of variability of flow time series when 
optimizing its value for hydrological model. In this study, we propose another performance criterion as an 
efficiency measure through reformulating the previous three components of NSE. Moreover, the distribution 
function of the new criterion was also derived to analyze uncertainties of the new criterion, which is originated 
from the distinction between the theoretical or population statistic and its corresponding sampling properties. 
The proposed criterion was tested by calibrating the “abcd” and XAJ hourly hydrological models at monthly and 
hourly time scales data for two different case study basins. Evaluation of the results of the case study clearly 
demonstrates the overall better or comparable model performances from the proposed criterion. The analysis of 
the uncertainties of the new criterion based on its distribution probability function suggests a rational approach 
to distinguish between the probabilistic properties and behavior of the theoretical statistics and the rather 
different sampling properties of estimators of those statistics when computed from data.   

1. Introduction 

Hydrological model is being increasingly and widely applied in the 
design, planning and management of water resources systems under 
changing climates, land use, and other anthropogenic shifts (Farmer 
and Vogel, 2016). In the context of hydrologic modelling, evaluating 
the performance of the models is essential for guiding model identifi-
cation and also for their parameters estimation (Santos et al., 2018). 
The performance is usually driven by measure of the goodness-of-fit, 
which provides a quantitative and objective assessment of the agree-
ment between observed and simulated hydrological data (Beven, 2001; 
Cramér, 1946; Legates and McCabe, 1999; Pechlivanidis et al., 2012). 
There have been a number of criteria based on the time series error 
metrics. Jackson et al. (2019) had reviewed over 60 different criteria 
along with various common modifications with their strengths and 
weaknesses. The open source HydroErr library of these criteria had also 
been presented by them to facilitate greater use of them. And most of 
these original criteria are a function of the residuals in the modeled and 
measured quantities, and emphasize different systematic and/or dy-
namic behaviors within the hydrological system (Pechlivanidis et al., 
2011, 2012; Jackson et al., 2019; Oreskes et al., 1994). In order to 
reduce the influences of outliers and the impacts of high-flow regimes 

on these criteria, various prior transformations (e.g. a logarithmic, in-
verse or square-root transformation) on the simulated and observed 
flow time series have also been used for calculating their values. This is 
commonly done within the Nash-Sutcliffe efficiency criterion (NSE, 
defined by Nash and Sutcliffe, 1970), which has been one of the most 
popular criteria used in hydrological modelling in the past few decades 
(Krause et al., 2005; Oudin et al., 2006; De Vos and Rientjes, 2010; 
Pushpalatha et al., 2012; Santos et al., 2018). However, Gupta et al. 
(2009) clearly demonstrated that discharge variability is not correctly 
taken into account in the criterion using a decomposition of NSE based 
on the correlation, bias and ratio of variances. Combining these three 
components of NSE (i.e. correlation, bias, ratio of variances or coeffi-
cients of variation) in a more balanced way, the Kling-Gupta efficiency 
(KGE) and its extension KGE′ (Kling et al., 2012) are gaining dominance 
for hydrological model calibration in recent literature (Kling et al., 
2012; Hirpa et al., 2018; Becker et al., 2019; Quintero et al., 2020). 

In the case of the KGE or KGE′ criteria, a tendency towards under-
estimation of flow variability is not severe as with the NSE (Gupta et al. 
2009; Kling et al., 2012; Santos et al., 2018), but there still need im-
provement on this underestimation for its importance of the extreme 
flow simulation. Prior transformations on flow before computing KGE 
had been adopted to put more weight on low flows for increasing 
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variability simulation. The logarithmic transformation are often used 
(Pechlivanidis et al, 2014; Seeger and Weiler, 2014; Beck et al., 2016; 
Quesada-Montano et al., 2018) but logarithmic transformation may 
lead to several numerical flaws, potentially resulting in a biased eva-
luation of model performance (Santos et al., 2018). Garcia et al. (2017) 
found the logarithmic transformation is inadequate to low flow simu-
lation and had applied root-squared, inverse transformations on flows 
and the flow duration curve. In order to take the highly skewed flow 
time series and model simulation errors into account, a modification of 
KGE towards a non-parametric criterion was proposed by Pool et al. 
(2018). As the approach widely employed for satisfying the in-
dependence hypotheses uses one extreme flow event only within a time 
interval (such as a year), the mismatch of the magnitude and timing of 
high or low flows from the non-parametric criterion will bring un-
certainties for estimating hydrological frequency even though their 
proposed modified non-parametric criterion can result in better agree-
ment between simulated and observed flow than the original formula-
tion. 

As the KGE or its extension KGE′ and their modified forms are the 
Euclidian distances to an ideal value in a three-dimensional space de-
fined by their components of the modelling error, there are no reference 
forecasts or simulation, which can make their values or scores more 
reasonable and understandable for modeler. Mizukami et al. (2019) 
further proved the importance of the improvement of flow variability 
for flood magnitude estimates at the return period. An improved cri-
terion is still worth developing to further correct the underestimation of 
variability of flow with taking the advantages of KGE and a reference 
forecasts or simulation into account as time series. 

Although a large volume of literature exists comparing the ad-
vantages and disadvantages of performance criteria (Krause et al., 
2005; Jackson et al., 2019), few studies have sought to evaluate and 
compare the performance criteria as statistics and distinguish between 
the probabilistic properties and behavior of the theoretical statistics and 
the rather different sampling (statistical) properties of estimators of 
those statistics when computed from data (Barber et al., 2019). For 
example, the coefficient of determination R2 and Pearson correlation 
coefficient ρ are distinguished for normal and non-normal distribution 
data (Barber et al., 2019). Sampling (statistical) properties of NSE was 
also noted for data splitting for the calibration and validation (ac-
cording to Oreskes et al. (1994), model “evaluation” will be used in-
stead of “validation” in this paper) of hydrological models even there is 
no a generally agreed probability distribution function of NSE (Liu 
et al., 2018). Therefore, the distinction between the theoretical or po-
pulation statistic and the sampling properties of a performance criterion 
should be taken into hydrological modelling identification or evalua-
tion. 

The aim of this study was therefore to propose a new performance 
criterion by reformulating the previous three components of NSE or 
KGE in a more rebalanced and rational way from the model skill scores 
aspects. And the uncertainties associated with distinctions between the 
theoretical or population statistic and the sampling properties was 
exploited through deriving the distribution function of the proposed 
criterion. In the remainder of the paper, the properties of maximizing 
NSE and KGE are explored firstly. A rational performance criterion with 
improving the optimal values of variabilities of simulation flow time 
series is proposed, and its distribution function is derived. Within the 
context of the “abcd” and XAJ hydrological model, the proposed cri-
teria is tested with case studies. Finally, conclusions and discussion on 
some possible ways forward are stated. 

2. Theoretical framework 

2.1. The conditions for maximizing NSE and KGE 

The previous work had decomposed the NSE into three distinctive 
components that are correlation, the bias, and a measure of relative 

variability in the simulated and observed values (Murphy, 1988; 
Weglarczyk, 1998; Gupta et al., 2009). 
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termined from oberserved data series and are independent of model 
calibration or evaluation. While the r can preserve the shape of the 
hydrograph in time, it is insensitive to the magnitude of flows 
(Pechlivanidis, et al., 2014). The components of k1 and k0 in perfor-
mance criterion are the focus of our study from the hydrological fre-
quency analysis aspect, which is directly estimated by the magnitude of 
flows. Taking the first derivative of NSE with respect to k1 and k0, re-
spectively as shown in the following Eqs. (2) and (3), the maximum 
value of the NSE can be obtained when the Eqs. (2) and (3) equal zero. 
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As the KGE or KGE′ means the Euclidian distance to an ideal value in 
a three dimensional space defined by three components of the model-
ling error: 
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, the maximum value of the KGE can also be easily 
obtained by taking the first derivative of KGE and KGE′ with respective 
k1 and k0 (Details of their first derivatives are given by the Eqs.  
(A.1)–(A.4) in Appendix). Both of them are maximizing when =µ µs o
(resulting β=1) and. =k r1 (resulting α=1), = =k µ rµ µ r(1 )s o o0 . 

For a desirable simulation of Xs, on =X Xs o for all observation. This 
can be written as a regression model = +X k X k ,s o1 0 with a desirable 
model fit for k1 = 1 and k0 = 0 (Murphy, 1988; Gupta et al., 2009). 
Thus, there are two simulation processes. One is the simulation from 
hydrological model, the other is the simulation from the line regression 
model that based on the observation and simulation results from hy-
drological model. As the optimal value of k1 and k0 that maximizes NSE 
and KGE or KGE′ are given by a model simulation for which k1 equals r2 

(for NSE) or r (for KGE and KGE′) and k0 equals µ0 (1−r2) (for NSE) or 
µ0 (1−r) (for KGE and KGE′). As the characteristics of KGE and KGE′ are 
similar, only KGE will be discussed henceforth in this paper). Since r 
will often be smaller than unity, this means that in maximizing KGE we 
will tend to select values (the means simualtion) of for k1 (< 1) that 
underestimating the means observation Xo especially in the high flows. 
The value of r2 is smaller than that of r, the underestimation will be 
more severe for NSE. More precisely, the hydrological models or their 
parameters sets that generate simulated flows that underestimating the 
high flows after the compensation effect k0 (> 0). In other words, If 

= = +X X k k X- ( 1)s o o0 1 and k1  <  1, ε tends to be negative when 
Xo is bigger enough for offsetting the positive compensation effect k0 

(> 0). However, the negative k0 value can also balance the bias to make 
ε to be zero. 

2.2. A rational performance criterion derived 

As the discussed in Section 2.1, the maximum or potential values of 
k1 equal r2 for NSE and r for KGE, respectively. And both of them are 
often less than unity. One way to overcome this issue is by taking the 
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first derivative of a criterion with respect to k1 and k0 that the max-
imum value of the criterion is obtained when k1 is approaching one and 
k0 is approaching zero (It is defined as Requirement I). As a criterion 
can be represented by a skill score that generally defined as measures of 
the relative accuracy of forecasts of interest relative to the accuracy of 
forecasts produced by standard of reference (Murphy and Daan, 1985; 
Murphy, 1988), a standard reference is also important for under-
standing the criterion. And the mean observed data set, which is an easy 
reference forecast and has been adopted in NSE, will be employed in 
this study (It is defined as Requirement II). Taking the above two re-
quirements, a new rational criterion, called Liu-Mean Efficiency (LME) 
referring to NSE and KGE, can be derived as the following Eq. (5) 
(details of the process are given by the Eq. (A.5) in Appendix). 
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s
o
. Note that LME in Eq. (5) is a 

function of the forecasts or simulation results from hydrological model, 
the standard reference forecasts or simulation is the mean value of 
observation μ0. The first term of the LME is the square of the difference 
between the slope of the regression line (k1) and one, where the k1 

describes the relationship between the expected values of the ob-
servations and the forecasts or simulation. The k1 is equal to unity, 
which means an obviously desirable characteristic of regression line in 
the context of forecast or simulation verification. If the k1 is not equal to 
unity, it implies that the conditional expected values of the observations 
are not equal to the corresponding forecasts or simulation. This term 
represents a nondimensional measure of the conditional bias in the 
forecast or simulation. The second term of the LME is the square of the 
difference between the mean simulation or forecasting and the mean 
observation, divided by the mean observation. It is a nondimensional 
measure of the unconditional or overall bias in the forecasts and van-
ishes only for unbiased forecasts or simulations. Moreover, this term is 
related to the constant or intercept term (k0) scaled by the mean ob-
servation in the linear regression model. Thus, it is evident that LME 
consist of the conditional bias in the forecast or simulation, as reflected 
by k1, and the unconditional bias in the forecast or simulation, as re-
flected by the k0 (scaled by the mean observation). 

The criterion can be maximized with respect to k1 and k0 by taking 
the partial derivatives of LME with respect to k1 and k0 and setting the 
resulting equations equal to zero. As the value of µo is bigger than zero, 
the solution of the resulting equations in terms of k1 and k0 are k1 = 1, 
and k0 = µs − µo respectively, which is the smallest among the results 
from NSE and KGE (Eq. (A.6) in Appendix A.). 

The LME can also be represented by the components r, α and β as the 
following Eq. (6): 

= + = +LME k r1 [( 1) ( 1) ] 1 [( 1) ( 1) ] .1
2 2 2 2

(6)  

It is also easy to show, by talking the first derivative of LME (in Eq.  
(6)) with respect to r, α and β that the maximum value of LME is ob-
tained when rα = 1 and β = 1 (the Eqs. (A.6) and (A.7)). 

Taking the slope k1 of the regression line and bias k0 when regres-
sion the simulated against the observed values, we note that when 
βn = 0 or β = 1 (i.e. µs=µo) and k1 = r2 for NSE or k1 = r for KGE and 
k1 = 1 for LME, then the maximum (potential) values for NSE, KGE and 
LME equal their k1 values. Fig. 1 illustrates the relationships of NSE 
(Fig. 1(a)), KGE (Fig. 1(b)) with r and k1, while assuming that βn = 0 or 
β = 1 and k1  >  0. For a given r, the optimal k1 for maximizing these 
two criteria equals maximizing their k1 values. The relationship of LME 
with k1 and k0/µo can be shown as Fig. 1(c), the maximum values of 
LME can only be achieved by k1 is approaching to unity as β is ap-
proaching to zero. Since r will often be smaller than unity, this means 
maximizing NSE and KGE we tend to select a value for k1 that 

underestimate the slope. The high values (peak flows) and the low 
values are always the most concerned in hydrological practice. How-
ever, the maximum values of NSE and KGE (i.e. equal their k1 values) 
are less than unity (even KGE has been improved from r2 to r), and this 
smaller slope value k1 tends to underestimate the mean of high values 
(peak flows) and overestimate the mean of low values. Although the 
optimal k1 value with combining r as shown in Fig. 1 is not always 
possible with a hydrological model due to restrictions imposed by the 
model structure, feasible parameter values and input–output data 
(Gupta et al., 2009), the proposed LME provides a possibility to make k1 

value is unity through improving the α value under the r value is not 
unity condition (Fig. 2). Therefore, maximizing NSE, KGE and LME will 
ultimately maximize the slope k1 of the regression line when its cor-
responding k0 value is assumed or approaching to be their ideal value. 
The optimal LME value will directly equal k1 value and its value might 
be unity, which will reduce the overestimation of the mean of low flow 
and underestimation of the mean of high flow. 

The relationships of NSE, KGE and LME with r and α are also illu-
strated in Fig. 2, while βn = 0 or β = 1 and 2  >  α  >  0, r  >  0.5. For a 
given r the optimal α for maximizing NSE lies on the 1:1 line, although 
the ideal value of α is on a horizontal line at 1.0 (Gupta, et al., 2009). 
The horizontal line (α = 1.0) is also the optimal value and ideal value 
for maximizing KGE while the optimal values for maximizing LME is the 
curve line αr = 1.0 with its ideal value α = 1.0 and r = 1.0. The 
interplay between α and r shown in Fig. 2 is likely to be of importance 
for the hydrological model calibration that is optimized with NSE or 
KGE or LME. The likelihood of underestimating of the variability in the 
flows will happen by taking the NSE criterion. The KGE overcomes this 
underestimation through optimizing the variability error as separating 
criteria, and the optimal solution with αr = 1.0 for LME can inflate the 
variability as the value of r is always smaller than unity while at the 
same time preserving the means of the observations. 

2.3. Confidence intervals of LME 

Since values of LME are often estimated by LME (as Eq. (7)), which 
ignores the distinction between the theoretical or population statistic 
and the sampling properties of its various possible estimators. 

= +LME k1 [( 1) ( 1) ] .1
2 2 (7)  

In order to distinguish between probabilistic properties from sam-
pling data and behavior of the theoretical statistics, an interval estimate 
may be more desirable. If the differences εi between Xs i, (results of the 
regression model = +X k X k ,s i o i, 1 , 0 ) and Xs,i (results of the hydrological 
model) are assumed to be identically and independently distributed as 
normal distribution with a mean of zero and a variance of σε (A 
shorthand way of writing this is εi ~ N(0, σε)). If 
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(0 2 ), the differences between the the-

oretical or population statistic k1 and the sampling properties k1 are 
expressed by =k k Z sin1 1 , = = + Z k(sin cos )k

µ 1
0
0

. 
According to the Eq. (6), the theoretical or population statistic LME 

can be estimated by 

= + +LME Z k Z Z k( ) 1 [( 1 sin ) ( (sin cos ) 1) ] , 0 21 2 1 2

(8)  

The interval estimate of LME is dependent on the interval of Z with 
confidence level (1−κ). The density distribution function of Z function 
is obtained as 
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Appendix B). Probability density function of Z with various values of a′ 
and b′ are illustrated in Fig. 3. Note that for the small a′ or b′, the 
probability is very high that the largest value of Z. 

If = f z dz1 ( )z
Z0 , Zκ can then be determined on the priori 

chosen probability κ. As the first derivative of LME (in Eq. (8)) with 
respect to Z that the maximum value of LME is obtained when 

= + +
+

ZLME
k k

max
sin ( 1) (sin cos )( 1)

sin (sin cos )
1 1

2 2 . If Z Zk LMEmax, the lower and 
confidence limits are determined by LME(−Zκ), LME(Zκ), respectively. 
If > >Z Z Zk LME max , the lower and confidence limits are determined 
by LME(−Zκ), LME(ZLMEmax), respectively. If > >Z Z Zk LMEmax, the 
lower and confidence limits are determined by LME(Zκ), LME(−Zκ), 
respectively. 

However, the distribution of NSE has not been known exactly 
(McCuen et al., 2006; Ritter and Muñoz-Carpena, 2013; Liu et al., 
2018), and the distribution of KGE seems to be impossible to be derived 
except by the “bootstrap” method. The critical values of these criteria 
for the goodness-of-fit evaluation are often selected through experience 
rather than the rigorous derivation. For example, Moriasi et al. (2007) 
present an excellent review of the ranges of values for NSE in 

Fig. 1. Theoretical relationships of NSE (a), KGE (b) with k1 and r (βn is assumed to be zero) and LME (c) with k1 and k0/μo.  

Fig. 2. Theoretical Relationships of NSE, KGE and LME with α and r (βn is assumed to be zero or β is assumed to be unity).  
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hydrologic model applications based on the studies published before. 
However, the critical values of the NSE are constant and not changed 
with the number and variation of the observed sample data. Although 
higher value of NSE represents the high confidence level of the model 
performance, its significant level is still not known, which is important 
to convince the decision maker. In this study, the critical values of the 
proposed LME for a model performance can be determined by LME 
(−Zκ), LME(Zκ), LME(ZLMEmax). 

3. Case study 

To examine and illustrate the implications of the proposed LME in 
hydrological model for water planning or design, we have chosen 
“abcd” model as the monthly flow prediction for water utilization, and 
the Xinanjiang (XAJ) model for the flood forecasting. Using LME (Eq.  
(7)) as model performance criteria, two different sets data series were 
adopted into calibration and evaluation of the models. In order to 
compare the effects of LME on the discharge simulation, NSE and KGE 
are also used as model performance criteria. The confidence intervals of 
LME estimated by sample set were also analyzed through the Eqs. (8) 
and (9). 

3.1. Study area 

Two basin were used for test the criteria in our study. One is the 
Xunhe River basin, a tributary of the Hanjiang River, and the other is 
the Chongyang River basin, a main upstream tributary of Minjiang 
River basin. They locations are shown in Fig. 4. The Xunhe River basin 
has an area of 6314 km2, with elevation ranging from 200 to 3000 m 
above sea level. The average annual precipitation and temperature are 
850 mm and 15℃, respectively. The Chongyang River basin has an area 
of 4848 km2 and a river length of 126 km, with the highest percentage 
of forest cover in China (Hu et al., 2014). 

The mean annual precipitation is 1700 mm, of which 70–80% oc-
curs in the rainy season from April to September due to the typhoon 
rain and convection rain of short duration and high precipitation in-
tensity (Jie, et al., 2016). The basin consists of highly dissected topo-
graphy with steep slopes and high stream densities. Therefore, this 
geography and climate make the basin to be high flood risk, which 
often greatly threatens the safety of life and property. 

3.2. Data sets 

There are 23 precipitation gauge stations and runoff gauging station 
to be used in Xunhe River basin, whose locations are shown in Fig. 4. 
The precipitation gauges provide a data series comprising 31 years 
(1980–2010) of monthly precipitation and pan evaporation (taken as 
potential evaporation) measurements. The Xiangjiaping runoff gauge 
station, which is located at the outlet of the basin, provide the monthly 

streamflow from 1980 to 2010. 
The hourly precipitation data from 2001 to 2013 were obtained 

from six precipitation gauge stations in the Chongyang River basin. The 
hourly potential evaporation measurements and runoff data series at 
the outlet location of the basin were also applied to drive the hydro-
logical model (shown in Fig. 4.). 

3.3. Hydrological models 

The “abcd” model was originally proposed by Thomas (1981) for 
national water assessment and was used as monthly runoff model in the 
Xunhe River basin. Liu et al. (2018) previously applied this model to the 
same basin. Inputs to the model are rainfall and potential evaporation. 
The “abcd” model defines two state variables: Wt as available water and 
Yt as evaporation opportunity. Yt is postulated as a nonlinear function 
of Wt: 

= + +Y W b
a

W b
a

W b
a2 2t

t t t
2

(10)  

The parameter a represents the propensity for runoff to occur before 
the soils are fully saturated; the parameter b is the upper bound of 
storage in the unsaturated zone above the groundwater table (Thomas, 
1981; Wang and Tang, 2014). The total streamflow is computed as 

= + +Q c W Y dG(1 )( )t t t t t (11)  

The parameter (1−c) represents the portion of (Wt-Yt) into direct 
runoff. The parameter d is the linear recession coefficient of ground-
water storage (Gt) to Groundwater discharge to the stream channel. ξt 

represents model error in month t. 
The XAJ model is a conceptual rainfall-runoff model proposed by 

Zhao in the 1970s (Zhao et al.1980) and was used for our flood simu-
lation in the Chongyang River basin. The runoff generation of the model 
is based on the concept of repletion of storage and storage capacity 
curve, which can solve the problem of the unevenly distributed soil 
moisture deficit (Zhao, 1992; Zhao et al., 1995). Unit hydrograph and 
Muskingin methods are used to simulate the runoff routing processes. 
The model has been widely and successfully implemented for flood 
forecasting over the globe (Li et al., 2012; Zhuo et al., 2014; Yan et al., 
2016; Zhang et al., 2019). The structure of the model can be found in  
Zhao (1992) and Zhao et al. (1995). 

The “abcd” model has four parameters a, b, c, and d (Fernandez 
et al., 2000) and the XAJ model contains 15 parameters (Jie et al., 
2016). The parameters in two models are calibrated using the SCE-UA 
(Shuffled Complex Evolution method developed at the University of 
Arizona) algorithm that has a high probability of succeeding in finding 
the global optimum (Duan et al., 1992, 1993; Jeon et al., 2014). All the 
codes of two hydrological models are written in Fortran 90, they can be 
shared by request for no commercial purposes. 

Fig. 3. Probability density function of Z (n = 200).  

D. Liu   Journal of Hydrology 590 (2020) 125488

5



4. Results and discussion 

4.1. Calibration and evaluation of the “abcd” and XAJ hydrological models 

The parameters of hydrological models are calibrated by the run-
ning optimization objective functions methods. The “optNSE” method is 
maximizing NSE and yields its optimal runoff simulations, while 
“optKGE” and “optLME” are maximizing KGE and LME that yield their 
optimal runoff simulations, respectively. The available record was 
equally split into two segments one of which should be used for cali-
bration and the other for evaluation (Klemeš, 1986). As there are 
372 months (31 years) data sets in Xunhe River basin, the first 
186 months data were used for calibrating the “abcd” hydrological 
model while the last 186 months data were used for evaluation. In order 
to test the performance of NSE, KGE and LME on the flood simulation, 
30 flood events with different magnitudes were selected and abstracted 
from the continuous 75, 560 hourly data sets from 2001 to 2013 in 
Chongyang River basin. These flood events represent various hydro-
logical behaviors and display a wide range of durations and rainfall 
intensity (Jie et al., 2016). The first 20 flood events were used for XAJ 
hydrological model calibration and the left 10 flood events were used 
for evaluation. 

The “abcd” hydrological model has been calibrated through 
“optNSE”, “optKGE” and “optLME” methods, respectively. As the 
available record is sample rather than population, all the three per-
formance criterion can only be estimated by sample and are denoted as 
NS E , KGE and LME. Fig. 5 illustrates the scatter plots for monthly 
runoff simulation. The simulated and observed runoff data fall along 
the 1:1 line. The optimal runoff simulations by “optNSE” method seem 
smoother than those by “optKGE” and “optLME” methods. And the 
LME has the highest variation for both calibration (Fig. 5(a)) and 
evaluation (Fig. 5(b)) data sets. As the monthly model is always used for 
low flow simulation, the 10% lowest runoff during the calibration and 

evaluation period are zooming in the Fig. 5. Most of simulation runoff 
(≤20 m3/s) is less than the observation. And the results from “optLME” 
method is the lowest for underestimation. As the three components , 
and r can also show the features in the simulated and observed runoff 
values, they are presented by Radar Chart in Fig. 6. The values of , 
from the “optLME” method are bigger than those from the “optNSE” 
and “optKGE”methods while the values of r from the three method are 
slight differences. As the every objective functions have their own 
merits for the performances of the model, optimization on KGE and 
LME strongly controls the values that the , components can achieve, 
where optimization on NS E constrains these two components only 
weakly (shown in Fig. 6). Even the r is the biggest from the “optNSE” 
method, the differences of , from every objective functions are more 
than that of r . Therefore, the relative contribution of the criterion 
components r to the final value of the (optimized) model performance 
is insensitive. When moving from calibration to evaluation period, 
there are also slight differences of and r between the two periods. 
And the bias between all the criterion (NS E , KGE and LME value) and 
their corresponding ideal value (i.e. unity) are mainly deteriorated by 
their . As the slope k1 of the regression lines from every optimal 
methods results is determined by r , the bigger value (more than 
unity) can make the k1 more close to unity where the r always is smaller 
than unity. Thus, the results from the “optLME” method with bigger 
value will improve the underestimation and the variability of flows 
model simulation. While the value of NS E obtained by optNSE is larger 
than that with optKGE and optLME, the differences are small (show in  
Fig. 6.). This indicates that by calibrating on KGE and LME, we have 
obtained only a slight deterioration in overall performance as measured 
by NS E . The KGE obtained by optKGE and LME obtained by optLME 
are also largest among the three optimizing methods, respectively. 
Their differences with the measurement of KGE and LME are bigger 
than with the measurement of NS E . These indicate calibrating on KGE
and LME can bring deterioration in overall performance as measured 

Fig. 4. Locations of the study area and gauges.  
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by KGE and LME. There are significant reduction in all the three 
performance measurements from calibration to evaluation period, the 
reductions of NS E are smaller than those of KGE and LME by all 
optNSE, optKGE and optLME. 

As theoretical discussed in Section 2.2, the value of is indeed close 
to r and the value of k1 is less than unity when optimizing with NS E
(shown in Table 1.). When optimizing with KGE , the values of are 
more close to its ideal value of unity, which will make the k1 close to 
unity. In contrast, when optimizing with LME, the values of k1 are di-
rectly more close to its ideal value of unity, which will help to improve 
low flow simulation (shown in Fig. 5). 

The XAJ hydrological model has also been calibrated and evaluated 
by “optNSE”, “optKGE” and “optLME” methods based on the 30 flood 
events. The scatter plots for hourly runoff simulation are shown in  
Fig. 7. The simulation for runoff is scattered along the 1:1 line. It is 
obvious that the variance of runoff simulation from “optLME” method is 

much bigger than those from the “optNSE” and “optKGE” methods 
(shown in Fig. 7(a)). Even the means of high flows seems to be over-
estimated in evaluation period (Fig. 7(b)), the simulation from the 
“optLME” method are the largest one. And the means of high flow si-
mulation from the “optNSE” method is the smallest one while the re-
sults from “optKGE” method are among them. The performances of 
different optimizing methods are also shown by Radar Chart in terms of 
criteria (Fig. 8). The values of from the “optLME” method are the 
biggest during the both calibration and evaluation periods, which re-
present the highest variability in simulation. However, the values of r
are smallest. There are no significant differences among the values of r
from the “optNSE” and “optKGE” methods while the differences among 
the values of are in the middle of and r . The value of k1 from 
“optLME” method for the XAJ hydrological model is also the most close 
to unity, which indicates the probability of underestimating the means 
of extreme high flow is the lowest (shown in Table 2). 

Fig. 5. Scatter plots depicting observed and simulated runoff by the “abcd” hydrological model in Xunhe River basin: (a) calibration period and (b) evaluation period, 
with the zooming in the 10% lowest values at their left figures. 
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4.2. The confidence intervals estimation of LME 

If the significant level κ is 0.05 (i.e. confidence level is 1−κ = 0.95), 
the confidence intervals [−Zκ, Zκ] of Z can be determined by the 
equation f z dz( )z

Z0 = 0.95. As the parameters a′, b′ and the sample 
sizes n of fz(z) were obtained from the results of “abcd” and XAJ hy-
drological models, their density and cumulative distribution functions 
of Z can be determined as shown in Fig. 9. If the parameters a′, b′ are 
bigger, the distribution of function will be denser, otherwise will be 
more dispersive. All the distributions of Z from “optLME” method are 
the most dispersive while those from “optNSE” method are the densest 
one in Fig. 9. The distributions during the evaluation periods are more 
dispersive than those during the calibration periods. Their 

corresponding cumulative distributions are also shown in Fig. 9 with 
the subscripts “2”. As the density distribution function from the 
“optLME” method is the most dispersive one, its quantile value Zκ of the 
confidence level (1−κ) is the largest. In other words, there is the big-
gest differences between the theoretical or population statistics (i.e. k1 

and β1) and the sampling properties for the results from the “optLME” 
method with the same confidences level or significant level. When 

>Z Zk LMEmax, < 0LME
Z , and when <Z Zk LMEmax, > 0LME

Z . As the 
ZLMEmax, is the function of variable θ with a period of π, the value of LME 
is monotonous of variable Zκ on the condition of θ value. As the first 
derivative of LME (in Eq. (8)) with respect to θ that the extreme value of 

LME is obtained when = +( ) ( )arctg or arctg Kk k
extreme

1
1

1
1

1 1 (K 

is an integer). The positions θ of the maximum or the minimum LME is 
only related to the k1 and , which are not directly depended on the Zκ. 
And the confidence interval of LME is not an even distribution function 
with Zκ and θ due to the relationship is nonlinear except Zκ = 0. 

In order to illustrate the confidence intervals of LME resulted from 
“abcd” and XAJ hydrological models under different optimizing 
methods (referring the three performance criteria), the performance 
criterion values had been determined as presented in Table 1 and 2. 
And the confidence intervals of LME are estimated by the nonlinear Eq.  
(8) through discretizing the [−Zκ, Zκ,] or [−Zκ, ZLMEmax] in the first two 
periods of θ [0, 2π] (shown in Fig. 10.). The performances of the 
“optLME” method for the two hydrological models are the best one in 
term of the value of LME, but their confidence intervals of LME might 
overlap. The ranges of LME confidence interval in the evaluation per-
iods (Fig. 10(b) and (d)) are bigger than those in the calibration period. 
The maximum and minimum values of LME are also figured out from 
the Fig. 10. And are listed in the Table 1 and Table 2 as LMEmin and 
LMEmax. In other words, the uncertainties of LME are larger in the 
evaluation periods for the both models. It should be noted that the 
ranges of LME confidence interval or uncertainties are varied with the 
variable θ rather than constant value except the confidence interval of 
LME determined by the “optLME” method (Zκ = 0) in Fig. 10(c), which 
is different from the common fixed confidence interval (e.g. [−Zκ, Zκ]). 
Their maximum and minimum values of LME from the different opti-
mizing methods are also found to be at different θ values presented in  
Tables 1 and 2 as θextreme. Due to the larger value of a′, b′ from the 
objective functions of LME , the density distribution of Z are dispersive 
and the value of Zκ are larger (shown in Fig. 9.) And their uncertainties 
are larger even they have bigger LME ; however, the uncertainties are 
varied with the variable θ. 

4.3. Discussion 

The proposed rational performance criterion LME is represented in 
terms of two components, which measure the slope of the regression 
line when regressing the observed against the simulated values, and the 
ratio between the mean simulated and mean observed flows. And LME 
is reformulated by the previous three components containing in the NSE 
and KGE. When optimizing the LME, the optimal values of the slope and 
the ratio (i.e. the bias) are their ideal values, respectively. In contrast, 
both the optimal values of the slope from the optNSE and optKGE 
methods are smaller than their ideal values (i.e. unity), which indicates 
that the means of peak flows will tend to be systematically 

Fig. 6. The criterion values of “abcd” monthly model results by “optNSE”, 
“optKGE” and “optLME” methods: (a) Calibration; (b) evaluation. 

Table 1 
Performance criterion values resulted from “abcd” hydrological model under different optimal methods.                      

Method   calibration     evaluation  

k1 NS E KGE LME Zκ LMEmin LMEmax extreme k1 NS E KGE LME Zκ LMEmin LMEmax extreme

optNSE  0.894  0.970  0.892  0.917  0.890  0.0623  0.828  0.952  0.412π   0.746  0.891  0.751  0.778  0.723  0.0876  0.636  0.811  0.371π 
optKGE  0.943  0.998  0.880  0.940  0.943  0.0683  0.875  0.989  0.489π   0.813  0.928  0.734  0.834  0.800  0.0993  0.701  0.898  0.383π 
optLME  1.023  1.004  0.846  0.884  0.976  0.0783  0.899  0.946  0.445π   0.894  0.938  0.681  0.830  0.877  0.1150  0.762  0.992  0.332π 
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underestimated and the means of low flows will tend to be over-
estimated. The optimal values of the variability of flow (α) from the 
optNSE method is the correlation coefficient (r), which always is 
smaller than its ideal values (i.e. unity). Even the optimal value of α 
from the optKGE method is unity, the optimal value of α from the 
optLME method tend to be bigger than its ideal values where its optimal 
equation αr = 1 and r ≤ 1. By simple theoretical analyzing, the ten-
dency for underestimation in the hydrological model simulation from 
the optimizing the performance criterion will be improved by our 
proposed LME. These theoretical analyzing were all supported by the 
results of “abcd” and XAJ hydrological model simulation in our case 
study. In order to test the impacts of the optNSE, optKGE and optLME 
methods on the designed flows, Pearson type III distribution was used 
for low flow and flood hydrologic frequency analysis. And the Linear 
moment method is used to estimate the parameters of the Pearson type 
III distribution function based on the simulation results from the two 
hydrological models and the observed data. The 31 years annual 
minimum monthly low flow data sets in Xunhe River basin were used 
for the designed low flow (shown in Fig. 11(a)) while the 12 year an-
nual maximum flood data sets in Chongyang River basin were used for 
the designed flood (shown in Fig. 11(b)). The designed low flows from 
the optNSE are bigger than that from those from optKGE. And the re-
sults from optLME are the lowest one. In contrast to the results from the 
observed data, the designed low flows from the optNSE are bigger in 

both the lower and higher frequencies (e.g. ≤5% and ≥95%). The 
designed low flows from the optKGE seems to be bigger only in the 
lower frequencies (e.g. ≤2%) while the designed low flows from the 
optLME are also smaller than those from observed data. Thus, it might 
be more reliable for the designing water supply project by the results 
from the optLME. The designed floods from the optLME are highest 
when the frequencies are less 25% (shown in Fig. 11(b)), and these 
designed flood are often adopted for designing the sizes of flood control 
project or their operation rules. Although there are many uncertainties 
from the sample size for the hydrological frequency analysis in our case 
study, the results from the optLME will be much safer or reliable for 
water project designing or operation. Therefore, the variability of the 
flow simulation improved by the optimizing objective functions might 
decrease the rise or increase the reliability of the designed extreme flow 
from the hydrological frequency analysis aspect. However, it should be 
note that the variability of the annual maximum or minimum flow 
series for the hydrological frequency analysis is different from the 
variability of the flow simulation. The impact of improvement of 
variability of the flow simulation on the variability of the annual 
maximum or minimum flow series is still not clear and also not easily to 
be deduced. More case studies with different magnitude and sample 
size flow series might help to figure it out in the future works. 

The desirable regression model =X Xs o can only make the means of 
the simulated and observed series the same rather than can guarantee 

Fig. 7. Scatter plots depicting observed and simulated runoff by the XAJ hydrological model from 2001 to 2013 in Chongyang River basin: (a) Calibration period and 
(b) Evaluation period. 
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the perfect simulation of whole processes. Actually, the desirable re-
gression model is based on the assumption of a linear relationship be-
tween the simulation and observed series. The simulation results from a 
hydrological model Xs is expressed by = + = + +X X k X ks s o1 0
where εi ~ N(0, σε). The linear relationship assumption and the normal 
distribution with a mean of zero and homoscedasticity assumption for 
the error or the residuals ε are the two prerequisite conditions for un-
derstanding the proposed LME value and its confidence intervals. The 

=k µ k( )o0 1 and k0 is approaching zero as and k1 are simulta-
neously optimized to their ideal values (i.e. unity). However, the slope 
k1 in LME is the combination of α and r where the errors in α and r can 
compensate each other, the LME metric does not guarantee that higher 
metric values correspond to smaller errors in the hydrological simula-
tion even the ideal value of k1 is unity (e.g. the XAJ model application 

case study as shown in Table 2 and Fig. 7.). Therfore, only high LME 
score cannot reflects smaller simulation error. 

As hydrological model performance criterion are often only esti-
mated by sample data rather than population data, the confidences 
level of criteria should be estimate by its probability distribution. 
Different from a common way to understand the good or bad score of 
current criterion (e.g   > 0.65 or < 0.5 for NSE, Moriasi et al. 2007), a 
criterion value together with its confidential level is recommended as a 
goodness-of-fit measure to express the inherent variability in samples of 
data series. The density distribution function of the criterion can also 
reflect the goodness-of-fit through its parameters. For example, the 
parameters a′ and b′ in Eq. (9) are related to the error or the residual Qe 

of regression model and hydrological model simulations. And the bigger 
value of Qe, the smaller values of a′ and b′, which indicate bigger un-
certainties for Z and LME from the Fig. 3. And vice versa. In XAJ model 
application case study, the values of a′ and b′ from optLME method are 
much smaller than that from optKGE and optNSE, their density func-
tions of Z are more dispersive as shown in Fig. 9(c1) and (d1). Their 
lower bounds of confidential interval might be smaller than that from 
the optKGE or optNSE even their LME scores are bigger (shown in  
Fig. 9(c2), (d2) and Table 2). Only both the LME score and its con-
fidential level can represent the goodness-of-fit measure. 

Two or more performance criteria are often adopted for model ca-
libration and evaluation, in essence, the proposed LME including its 
score value and confidential level or intervals also reflects more than 
one performance criteria through the Eq. (6) and the parameters (a′ and 
b′) of its density distribution function. These two aspects of LME can not 
only integrate different aspects of model performances but also can help 
us understand the meaning of the criterion. 

However, the probability distribution functions of LME has been 
derived when the differences εi between Xs i, and Xs,i are assumed to be 
Gaussian distribution while there are no rigorous or analytical prob-
ability distribution functions for NSE and KGE. The sample size and 
variability will affect the shape of the probability density distribution of 
LME. Different from the common variable with even distribution in its 
domain, LME distribution is varied with an intermedia variable θ that 
has π periods at a confidence or significant level (i.e. a probability). As 
the ranges of LME at a confidence level are mainly dependent on the 
values of LME, there are overlaps for LME estimated from optNSE, 
optKGE and optLME methods. The differences between LME from 
every optimizing objective functions should be taken their confidence 
levels into account. The sample size n can affect the distribution func-
tion of LME through the Eq. (9). As the comparison between the results 
from optNSE, optKGE and optLME methods in our case study, their 
sample sizes for calibration or evaluation are the same in every study 
area. The impacts of sample size on the performance criterion will help 
the sample splitting for the calibration and evaluation of hydrological 
models (Liu et al., 2018). However, the t distribution in Appendix B is 
approaching to normal distribution as the n increase (e.g. n ≥ 120). The 
impacts of sample size for calibration or evaluation on the distribution 
function of LME or its significant level can be ignored if the sample sizes 
are enough. 

There have been a lot of performance criteria for evaluating the 
hydrological model. Every criterion has its own peculiarities, so do LME 
proposed in our study. Evaluation of a model performances always 

Fig. 8. The criterion values of XAJ hourly model results by “optNSE”, “optKGE” 
and “optLME” methods:(a) Calibration; (b) Evaluation. 

Table 2 
Performance criterion values resulted from XAJ hydrological model under different optimal methods.                      

Method   calibration     evaluation  

k1 NS E KGE LME Zκ LMEmin LMEmax extreme k1 NS E KGE LME Zκ LMEmin LMEmax extreme

optNSE  0.976  1.006  0.978  0.982  0.975  0.0078  0.9675  0.9831 0.422π   1.074  1.078  0.957  0.881  0.893  0.0170  0.8755  0.9095  0.242π 
optKGE  0.988  1.000  0.976  0.988  0.988  0.0082  0.9798  0.9962 0.500π   1.093  1.070  0.951  0.869  0.884  0.0177  0.8659  0.9013  0.295π 
optLME  1.000  1.000  0.830  0.889  1.000  0.0220  0.9780  1.000 [0, π]   1.092  1.042  0.829  0.820  0.899  0.0322  0.8667  0.9311  0.364π 
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depends on the purpose of the application of the model. If a perfor-
mance criteria is used to evaluate the hydrological performance model, 
its limitations and advantages of the criteria should be known according 
to the type of hydrological model application. The primary purpose of 
our study was not to replace the NSE or KGE, but to show the ad-
vantages of optLME on improvement of the slope of the regression line 
when regressing the observed against the simulated values and in-
creasing the variability of simulation data series. It is also interesting to 
note that the performance criteria can be taken as a sampling statistic, 
which is different from the population statistic and has sampling error. 
Confidence level of the criteria should be shown or its hypothesis 
testing should be done for evaluating the model performance. 
Ultimately, the decision on the performance of a hydrological often 
depends upon not a single measures but a multiple-criteria framework. 
Our proposed LME not only provides another option of performance 
criteria with its own advantages on extreme simulation but also its 
probability distribution function can quantify reliability or risk of the 
criteria on evaluation. 

Although the structure and feasible parameter values of a hydro-
logical model can make the r value not to be the worst (e.g. 0 or ne-
gative values), more case studies should be done further to investsigate 
the significant linear relationship (i.e. r value is big enough) resulted 
from different hydrological models, time scales, basin charactersitics 
and so on. Beside the density distribution function of proposed cretia 
LME has been derived, the relationship between LME and r (such as 
jointly distributed function, their trade-off through multiobjective ca-
libration function) is worth to explore their confidence intervals or 
hypothesis testings. The homoscedasticity assumption ε has been 
challenged by the heterogeneous non-Gaussian in hydrological simu-
lation (Jiang et al., 2019). Future work can be done to derive a general 
density distribution function of the proposed creteria (e.g. based on the 
heteroscedasticity) and simutanously to minimize the variance value 
during the calibration process. 

Fig. 9. Density and cumulative distribution functions of Z: (a) and (b) are resulted from the “abcd” hydrological model during the calibration and evaluation periods; 
(c) and (d) are resulted from the XAJ hydrological model during the calibration and evaluation periods. Subscripts “1” and “2” denote density and cumulative 
distribution functions, respectively. 
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5. Summary 

In this paper a new rational performance criterion LME was derived 
through its theoretical considerations that serve to highlight advantages 
associated with variability of hydrological model simulation. As the 

slopes of the regression lines regressing the observed against the si-
mulated values and the ratio between the mean simulated and mean 
observed flows are the components of the proposed criterion, these two 
components value will be approaching to their ideal values when LME 
is used in optimization the criterion. This means that the 

Fig. 10. Confidence intervals of LME determined by different optimizing methods: (a) “abcd” model in calibration period; (b) “abcd” model in evaluation period; (c) 
XAJ model in calibration period and (d) XAJ model in evaluation period. The blue dash curve represents the results from optNSE, the black dash curve line represents 
the optKGE and the red dash curve line represents the optLME estimated by Eq. (8) with κ = 0.05. And their straight lines represent LME estimated by the Eq. (7). 

Fig. 11. Impacts of the optNSE, optKGE and optLME methods on the Pearson type III distribution: (a) results of abcd model in Xunhe River basin; (b) results of XAJ 
model in Chongyang River basin. 
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underestimation of peak flow or the overestimation of low flow will be 
mitigated comparing with optimizing on NSE and KGE. In order to take 
the impact of sampling error on determining the value of performance 
criterion into account, its confidence level is estimated after deriving 
the probability distribution functions of LME. As the confidence levels 
of LME might be overlapped, the differences between every LME
should be compared by their confidence level or hypothesis testing 
through the probability distribution functions of LME. Therefore, it may 
be appropriate to point out that the advantages of our proposed LME 
improving hydrological extreme flow simulation and quantifying the 
criteria confidence level are general in the sense that it is applicable to 
all types of forecasts. LME was also applied in our case study and had 
supported its theoretical merits. However, although some aspects of 
model performance can be reflected in the LME score and its con-
fidential level through its parameters (e.g. k1, β, a′, b′ and so on), there 
is no a versatile criterion that can reflect all the concerns of hydrologist 
at any time and any place. LME is also no exception. The performance of 
hydrological model must be evaluated by an expert hydrologist ac-
cording to the purposes of hydrological model application, where such 

an evaluation is best based in the advantages of the criteria. Although 
the proposed criteria is primarily tested on hydrological model, it can 
also applicable to dynamic environmental systems models. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper. 

Acknowledgements 

The author gratefully acknowledges the financial support from the 
National Natural Science Foundation of China (Nos. 51879194 and 
51579183). This work is also partly funded by the Ministry of Foreign 
Affairs of Denmark and administered by Danida Fellowship Centre (File 
number: 18-M01-DTU). The author thanks the reviewers who makes 
very constructive comments to improve the quality of this paper.   

Appendix A 

= + + = + + +KGE r r k
r

k
µ

k1 ( 1) ( 1) ( 1) 1 ( 1) 1 12 2 2 2 1
2

0

0
1

2

(A.1)  

= + + + + + =

= + + + + =

= =

( ) ( )
( ) ( )

( ) ( )
( )

k r k

k r k

k r k µ r µ r

1 1 ( 1) 1 1 0

1 ( 1) 1 1 0

, (1 ), 0 and 0

KGE
k r

k
r

k
µ

k
r

k
µ

KGE
k µ

k
µ

k
r

k
µ

o

1
1

2 2
1

2

1
1

2 2
1

2

1 0 0

1
1 0

0
1 0

0

- 1
2

0 0
0
0

1 0
0

- 1
2

(A.2)  

= + + = + +
+

KGE r r k
r

k
r

µ
k k µ

1 ( 1) ( 1) ( 1) 1 ( 1) 1 12 2 2 2 1
2

1 0

0 1 0

2

(A.3)  

= + + + =

= + + =

= =

= =

+ + +

+ + +

+

( ) ( )
( ) ( )

( ) ( )

( )
( )

r

r

k r k µ r µ r

1 1 ( 1) 1 1 0

1 ( 1) 1 1 0

1 0 and 1 0

, (1 ), 0 and 0

KGE
k r

k
r

µ
r

k
k k µ

k
r

µ
k k µ

k
r

k
r

µ
k k µ

KGE
k

µ k
r k k µ

k
r

µ
k k µ

k
r

k
r

µ
k k µ

k
r

µ
k k µ r

k
r

o

1
( )

2 2 2

1
( )

2 2 2

1

1 0 0

1
1 0 0

0 1 0 2
1 0

0 1 0
1 1 0

0 1 0

- 1
2

0
0 1

0 1 0
2

1 0
0 1 0

1 1 0
0 1 0

- 1
2

1 0
0 1 0

1

(A.4)  

= =

= + = +

+ + +LME

k r

1 1

1 [( 1) ( 1) ] 1 [( 1) ( 1) ]

µ k µ µ µ
µ

µ k µ µ k k µ
µ

[( ) ( ) ] [( ) ( ) ]

1
2 2 2 2

o o s o

o

o o o o

o

1 2 2 1 2 1 0 2

(A.5)  

= + + =

= + + =

= = =

+ +

+

µ k µ µ k k µ

µ k µ µ k k µ

k k µ µ

[( ) ( ) ] 0

[( ) ( ) ] 0

1, 0, 0 or 0

LME
k

µ k µ k k µ µ
µ o o o o

LME
k

µ k k µ
µ o o o o

o o

( 1) ( )
1

2
1 0

2

( )
1

2
1 0

2

1 0

o o o o
o

o o
o

1

2 1 1 0 - 1
2

0
1 0 - 1

2

(A.6)  

= + =

= + =
=

= + = =

r r r

r r
r r

r

( 1) [( 1) ( 1) ] 0

( 1) [( 1) ( 1) ] 0
1, 0, 0

( 1)[( 1) ( 1) ] 0 1

LME

LME
r

LME

2 2

2 2

2 2

- 1
2

- 1
2

- 1
2 (A.7)  

Appendix B 

Distribution function of Z: 
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