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Abstract 

Blur kernel size estimation significantly affects the quality 

of image deblurring. However, existing methods have a 

large limitation in estimation accuracy as well as in the 

adaptability to large kernel sizes. In this paper, we propose 

a novel blur kernel size estimation method using CNNs. 

We first convert the 2-D kernel size estimation to a 1-D 

classification problem. A cascaded network model using 

homogeneous networks is then designed to cut the entire 

estimation space into 38 small intervals to have a more 

accurate kernel size estimation in a coarse-to-fine manner. 

Experiments show that the proposed method has reached 

a satisfying performance of kernel size estimation with a 

largely improved adaptability to various blur kernels. 

 

1. Introduction  

A blurry image can be mathematically modeled as a 

convolution of a latent sharp image and a blur kernel: 

 𝐵 = 𝐿 ⊗ 𝑘 + 𝑛 (1) 

where B, k, L and n denote blurry image, blur kernel, 

latent sharp image and white noise respectively. 

Traditional deblurring algorithms usually use maximum a 

posteriori (MAP) as their typical framework, where priors 

are utilized to impose constraints to simplify calculations 

[1][2][3]. Meanwhile, there are also other methods that 

use different optimization schemes, such as Bayesian 

estimation [4] or specific edge prediction [5]. Generally, 

all these methods have to use blur kernel size as their 

indispensable input parameter. To get rid of this high 

dependency, some recent researches turn to use another 

approach of applying newly-arising machine learning 

methods to image deblurring, whereas those early neural 

networks [6][7] still needs a pre-selected range of kernel 

sizes in order for a satisfying deblurring performance. 

With more advanced and complicated models be 

developed, the newest deep learning methods [8][9] do 

not rely that directly on image’s prior information about 

the blur kernel, but the average PSNR of their restored 

images (31dB) is still much lower than traditional 

methods can provide (33dB or even higher), which makes 

them not applicable to those quality sensitive applications. 

An accurate estimation of blur kernel size is still a critical 

problem that affects the image’s deblurring quality. 

There are already many researches on blur kernel size 

estimation [10-12]. Liu et al. [10] propose to use two sets 

of SVMs (support vector machines) to leverage the 

histogram of oriented gradients (HOGs) at higher levels 

of an image pyramid. Liu's method is able to fulfill the 

estimation of blur kernel size but its estimation accuracy 

still needs to be improved. The same group then proposes 

another method [11] to use the automap (autocorrelation 

map of image gradients) for extraction of motion blur 

information, which largely improves the ability of 

automap in kernel size estimation. However, its 

parameters in line detection and recursive filtering have to 

be set manually according to experience, which makes it 

difficult to adapt to images with different blur kernels. Li 

et al. [12], by using the new machine learning method, 

propose to construct a CNN model to predict the width 

and the height of the motion trajectories as a regression 

problem. Li’s method can help to obtain a pretty good 

estimation result when the images’ blur kernel sizes are 

smaller than 35 × 35, but still has limitation to be applied 

on large and variable kernel sizes. 

In this paper, we propose a new blur kernel size estimation 

method. With a cascaded structure of homogeneous neural 

networks, the new method is able to provide with an 

accurate estimation of the blur kernel size in a coarse-to-

fine manner and has a wide-range adaptability to various 

blur kernels. Our key contributions are as follows: 

⚫ We propose to use a patch-selection method to 

convert the 2-D kernel size estimation to a 1-D 

classification problem. 

⚫ We propose to use a cascaded structure to cut the 

entire classification space into small intervals to 

make the estimation more accurate and more 

adaptable to various blur kernels with different sizes. 

 

2. The proposed method 

2.1 Cascaded classification 

Since a blur kernel must have its size be an integer, we can 

consider the kernel size estimation as a classification 

problem. Moreover, since a blur kernel of a blurry image 

has most likely its size smaller than 95 × 95, we further 

restrict this classification problem to be within the space 

from 3 × 3 to 95 × 95. However, it is still a large range 

for a quick and efficient classification. So, in this paper, a 

cascaded classification is introduced to fulfill the blur 

kernel estimation in a coarse-to-fine manner, in which we 

divide the entire space into several sub-spaces (or 

“categories”) and then conduct a detailed classification in  
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Figure 1. Cascaded classification framework 

 

a smaller sub-space. A cascaded two-stage network is 

therefore designed. 

In the first coarse classification stage, we divide the entire 

classification space of (3,95] into 5 sub-spaces: (3,19], 

(19,35], (35,49], (49,63] and (67,95], corresponding to 5 

categories of the kernel sizes. In the second fine 

classification stage, the above 5 sub-spaces are further 

divided into smaller fine intervals by step size of 2 (4 for 

the last sub-space) for a detailed address of various kernel 

sizes. 

With such a two-stage structure, we are able to perform an 

accurate estimation of blur kernel sizes more efficiently 

by using smaller networks.  

 

2.2 Coarse-to-fine kernel size estimation 

The whole estimation contains three steps: data pre-

processing, coarse classification and fine classification, as 

shown in Figure 1. 

In data pre-processing, we clip a distinct patch from the 

blurry image so that all the training data are of the same 

size. The distinct patch is then selected as follows: 

1) We calculate the gradient map Bx and By of each 

input image in both its x and y directions. Bx and By 

will be used to estimate the height and the width of 

the image’s blur kernel; 

2) In the x direction, with the patch size set to be 

128x128, we scan the gradient map Bx patch by 

patch with a stride of 10 pixels, calculate the 

standard deviation of each patch, screen out the one 

with maximum standard deviation and mark it as the 

distinct patch of this input image. The distinct patch 

will be used as the input data for training. Note that 

a patch with large standard deviation indicates its 

rich retaining of blur kernel information. 

3) In the y direction, to simplify the processing and 

share the network resources, we transpose the blurry 

image so as to use the same processing as we do in 

the x direction. In this way, we convert the 2-D 

classification problem to 1-D classification problem 

and can use the same network to estimate both the 

width and the height of the image’s blur kernel. 

In our cascaded model, we use one residual network 

(𝑟𝑒𝑠𝑛𝑒𝑡0) to coarsely classify the blur kernel into 5 sub-

spaces, and use 5 residual networks (𝑟𝑒𝑠𝑛𝑒𝑡1−5) to divide 

the 5 sub-spaces into 38 small intervals to finely give the 

detail address of the kernel size, with details shown in 

Figure 2. 

 

 
Figure 2. Coarse-to-fine cascaded classification 

 

2.3 Training, validation, and test datasets 

The training and validation datasets are generated by 

convolving blur kernels and sharp images. The blur 

kernels and sharp images are obtained as follows: 

⚫ Sharp images: The MIRFLICKR-25000 image 

collection contains 24 categories (sky, clouds, water, 

and etc.). We randomly select 100 images from each 

category to get our sharp image set L = {𝑙𝑖 , 𝑖 =
1,2,3…2400}; 

⚫ Blur kernels: We use the method from [13] to 

generate all our blur kernels. There are totally 38 

different kernel sizes. For each kernel size, we 

generate 20 different kernels. So the total number of 

blur kernels is 20 × 38 = 760. They form our blur 

kernel set K = {𝑘𝑖, 𝑖 = 1,2,3 …760}; 
A blurry image is then generated by convolving a sharp 

image with a blur kernel. For each blurry image, we 

extract a distinct patch to obtain the patch-size pair (𝑝, 𝑠). 
By convolving sharp images in L and kernels in K, we 

get 2400 × 760 = 1824000  patch-size pairs. We use 

70% of them for training and 30% of them for validation. 

The test dataset is used to confirm the estimation results 

of our model. It is generated by convolving 80 natural 

images from [14] with 8 simulated blur kernels from [1], 

which contains 640 blurry images. 
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(3,19]:      5,7,9,11,13,17,19            (resnet1)

fine classification

(19,35]:  21,23,25,27,29,31,33,35   (resnet2)

(35,49]:  37,39,41,43,45,47,49        (resnet3)

(49,63]:  51,53,55,57,59,61,63        (resnet4)

(63,95]:  67,71,75,79,83,87,91,95   (resnet5)



2.4 Training details 

All the residual networks ( 𝑟𝑒𝑠𝑛𝑒𝑡0−5 ) used in our 

cascaded model are of the same structure as the original 

residual network [15]. Cross-entropy is used as their loss 

function: 

 Loss  =   −∑𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)

𝑖

 (2) 

where 𝑦𝑖  is the ground truth and 𝑝𝑖  is the prediction. 

In order for an assessment of our cascaded structure, we 

compare its performance with two other native residual 

networks (18-layer and 101-layer) using the same loss 

functions. All the networks are trained with the Adam 

optimizer and the learning rate is 10−4. Figure 3 depicts 

the convergence of the 3 networks. From Figure 3 we can 

see that they all converge quickly in several epochs. 

 
Figure 3. Models converge quickly in several epochs 

 

Table 1. Average absolute error on the test dataset 

Type 
Native 

18-layer 

Cascaded  

18-layer 

Native 

101-layer 

parameters 
(each) 

1.4 × 107 1.4 × 107 4.3 × 107 

parameters 

(total) 
1.4 × 107 8.4 × 107 4.3 × 107 

AbE 5.59 4.49 4.04 

 

The average absolute error (AbE) on the test dataset are 

shown in Table 1. From Table 1 we can see that the 

cascaded model has its performance of accuracy much 

higher than the native 18-layer residual network and very 

close to the 101-layer residual network which is much 

deeper in network structure. Our cascaded network design 

is a good balance between the effectiveness and the 

efficiency. Moreover, because of the use of homogeneous 

residual network with shallow structure, it is easier to 

implement the whole cascaded model by hardware. 

 

3. Experiments and analysis 

We compare our estimation result on the test dataset with 

state-of-the-art works [10-12], where [12] gives the best 

quantitative results. Table 2 presents a comparison of our 

estimation results with [12]. We can see that our method 

has obtained a better estimation result (closer in value) 

against the ground truth (noted as “GT”). And even for the 

large blur kernels, our method can still have a stable and 

satisfying estimation performance. 

  

Table 2. Estimation results on test dataset 
Kernel Direction [12] Ours GT1 

1 
Height 21.14 14.13 17(15) 

Width 14.98 8.55 9(10) 

2 
Height 20.16 16.15 15(16) 

Width 17.32 11.00 13(14) 

3 
Height 17.07 12.15 12(11) 

Width 14.29 12.35 10(10) 

4 
Height 27.19 15.38 24(24) 

Width 25.19 17.30 22(23) 

5 
Height 15.15 7.45 11(12) 

Width 13.28 7.05 11(12) 

6 
Height 19.15 12.25 19(20) 

Width 16.40 11.95 16(17) 

7 
Height 22.00 11.65 20(22) 

Width 17.94 18.15 16(17) 

8 
Height 24.83 21.70 21(21) 

Width 19.68 16.25 16(17) 

9 
Height - 65.93 64 

Width - 82.40 78 

10 
Height - 72.45 75 

Width - 36.15 39 

  1GT(Ground Truth): the data in the column "GT" in parentheses is 

provided by [12], which is a little different from the sizes measured 

by us. We have rechecked the sizes and use the data from its original 

source [1]. 
 

Table 3. PSNRs of the recovered images by method [2] 

Kernels 
Scene 1 Scene 2 Scene 3 Scene 4 

O H O H O H O H 

1 31.2 33.8 28.4 28.4 32.6 33.5 30.3 30.5 

2 33.0 33.7 28.6 29.9 34.0 32.5 29.1 28.2 

3 36.2 34.6 29.6 28.5 35.8 34.5 30.9 29.0 

4 32.6 33.1 28.1 27.9 32.1 32.2 30.6 29.9 

5 30.8 30.0 22.1 24.4 34.3 34.2 33.8 33.7 

6 27.5 27.7 22.9 22.3 25.8 25.8 21.8 22.5 

7 28.1 28.2 24.2 22.9 29.9 29.2 23.6 22.9 

8 22.2 16.0 16.5 13.2 22.2 17.5 17.0 14.7 

9 24.9 24.7 19.1 20.1 23.3 22.8 21.2 21.0 

10 24.7 23.2 17.5 18.1 23.8 21.3 19.6 17.9 

11 26.1 24.7 20.6 19.7 25.0 22.9 20.4 19.5 

12 25.7 26.8 20.3 20.0 25.4 24.7 22.1 21.8 

1. O: Ours   2. H: Human 

 

We then test our model on 48 real blurry images (4 scenes 

with 12 blur kernels, sizing from 5 to 80) from [16], where 

the results of most state-of-the-art blind deblurring 

algorithms are provided by manually adjusting the 

parameters including the blur kernel sizes. Among them, 

we select method [2] and [3] for our comparison as they 

provide executable programs. The restored results are 

shown in Table 3 and the visualization result is shown in 

Figure 4. Our model has apparently improved the 

performance of existing deblurring methods. 

 

4. Summary 



   
Figure 4. Restoration of the blurry image by using deblurring method from [3]. From left to right: blurry input image, 

deblurring result by tuning kernel size manually [16], deblurring result by obtaining the kernel size using our method. 

 

In this paper, we propose a new blur kernel size estimation 

method. Throughout the use of a patch-selection method, 

we convert the 2-D kernel size estimation to a 1-D 

classification problem. A cascaded network model, using 

6 residual networks with the same structure, is then 

designed to cut the whole estimation space into 38 small 

intervals and perform the kernel size estimation with a 

coarse-to-fine manner. Experimental results show that, in 

comparison with the state-of-the-art works, our new 

method can provide a better estimation with a more wide-

range adaptability to various blur kernel sizes ranging 

from 3 × 3 to 95 × 95, and is able to provide with an 

efficient and automatic kernel size estimation solution to 

the existing deblurring algorithms. 
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