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A B S T R A C T

Micro-grids (MGs) are practical solutions for integrating distributed energy resources (DERs) in order to supply elec-
trical and heat demands. In this study, a stochastic model for optimal management of combined heat and power (CHP)-
based MGs considering economic, environmental and reliability aspects have been proposed. Two sources of un-
certainty including forecast errors of electrical load demand and wind power are considered in scenario generation
process using roulette wheel mechanism. Availabilities of units are taken into account to model reliability using ca-
pacity outage probability table (COPT). For solving such non-linear, non-convex and complicated stochastic problem,
exchange market algorithm (EMA) and the weighted sum method are employed for combining three conflicting ob-
jectives and solving multi-objective problem as a single objective problem. Fuzzy satisfying method is applied to choose
best compromise solution. The main goal of the stochastic dynamic reliable economic emission dispatch (SDREED)
problem is to determine output of each generating unit so that fuel cost and amount of emission are minimized while
the electrical demand is provided by more reliable units and operational constraints are met. The output of stochastic
problem gives better sight for generation scheduling of MGs. The obtained results show the effectiveness and ability of
the proposed method in solving SDREED.

1. Introduction

Micro-grids (MGs) are defined as reasonable solutions for combining
distributed energy resources (DERs) for meeting heat and power load de-
mands, which can be operated in grid-connected or islanded modes. Taking
into account a MG combined with DERs, such as conventional thermal
plants, combined heat and power (CHP) units, boilers, and renewable en-
ergy sources, significant improvements in cost saving and pollutant gas
emissions can be attained [1,2]. The application of CHP units in supplying
power and heat demands takes advantages in both economic and en-
vironmental viewpoints, which shows a significant improvement in cost
saving of typical 10–40% [3], and reduction in pollutant gas emissions al-
most 13–18% [4]. Renewable energy sources play an important role in
supplying load demand of MGs as natural and continuous sources, which
are environmentally friendly and show uncertainty and variability [5].

Optimal scheduling problems absorbed remarkable efforts in recent
publications. Solving economic dispatch of CHP-based systems with the aid
of an improved genetic algorithm using novel crossover and mutation (IGA-
NCM) has been studied in Ref. [6]. Authors in Ref. [7] have proposed a new
algorithm by hybridizing Bat Algorithm (BA) and Artificial Bee Colony
(ABC) with Chaotic-based Self-Adaptive (CSA) search strategy (CSA-BA-

ABC) to solve combined heat and power economic dispatch. The proposed
new algorithm eliminates disadvantages of BA and ABC. In Ref. [8], sto-
chastic short-term scheduling of MG, which includes photovoltaic (PV)
system, wind turbine and CHP units, is studied considering uncertainties
associated with power market price and power generation of renewable
energy sources. In this reference, roulette wheel mechanism is used for
generating scenarios, and particle swarm optimization (PSO) method is
employed for obtaining the minimum operational cost of the MG. Stochastic
short-term scheduling of renewable-based MGs is studied in Ref. [9] pro-
posing a new model for battery operating cost, where the efficiencies and
cycle lives of batteries are maximized. A two stage framework is proposed in
Ref. [10] for obtaining optimal solution of stochastic MG economic dispatch
using scenario-based modeling method for uncertainties of wind power, PV
system and power market price. In which, the first stage produces scenarios
using probability distribution function (PDF) and roulette wheel me-
chanism, and the second stage employs an adaptive modified firefly algo-
rithm (AMFA) to solve the problem. A home energy system consisting of
CHP plant, fuel cell (FC), and energy storage system (ESS) is studied in Ref.
[11] in order to provide optimal generation scheduling of the units for
supplying heat and power load demand.

In addition, several researches are concentrated on the solution of
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multi-objective MG economic dispatch with different competing ob-
jectives considering operational cost, pollutant gas emissions and re-
liability aspects. The authors studied multi-objective economic emission
dispatch of MG including micro turbines, PV unit, wind turbine, fuel
cell (FC), and electrical energy storage system in Ref. [12]. In this study,
the normal boundary intersection (NBI) is employed for obtaining
Pareto optimal solutions, and a fuzzy satisfying concept is used in order
to obtain the best compromise solution. Multi-objective combined heat
and power unit commitment problem is studied in Ref. [13]. Economic
and environmental aspects are considered in objective function in the
above mentioned paper. In Ref. [14], a modified bacterial foraging
optimization method is proposed for optimal economic environmental
solution of a MG consisting of DERs, CHP units, energy storage system.

An intelligent energy management system is introduced in this re-
ference for optimal operation of the MG, where a fuzzy satisfying
method is applied to obtain a compromise solution. Daily multi-objec-
tive scheduling of CHP-based MGs is studied by using firefly algorithm
(FA) in Ref. [15], where valve-point effects of thermal plants, ramp-rate
limits, and spinning reserve are considered. The authors studied the
multi-objective economic emission dispatch of MGs consisting of elec-
tric vehicles (EVs) in Ref. [16] using an improved particle swarm op-
timization algorithm. Multi-objective dispatch of CHP-fuel cell (FC)-
based MGs is studied using ε-constraint technique and a fuzzy satisfying
method in Ref. [17]. Authors of Ref. [18] implemented cuckoo search
algorithm (CSA) into multi-objective problem considering fuel cost,
emission and reliability functions. In this reference, capacity outage

Nomenclature

Indices

i j k, , Power-only, CHP and boiler units indices, respectively
i j, Indices for members of first and second group of share-

holders
l Load demand interval index
m Wind power interval index
OF p, Indices for objective functions and Pareto optimal solu-

tions, respectively
r Index related to COPT states
s Scenario index
t Time interval index
nw Wind turbine index

Constants

a b c d e f, , , , ,j j j j j j Cost coefficients of jth CHP unit
aj Emission coefficient of jth CHP unit
a b c, ,k k k Cost coefficients of kth boiler
ak Emission coefficient of kth boiler
C E, Fuel cost and emission functions related to generator units
g g g, ,max min1 1, 1, Market risk value, maximum and minimum limits of

it related to second group, respectively
g g g, ,max min2 2, 2, Market risk value, maximum and minimum limits

of risk value related to third group, respectively
HD t, Heat demand at time t
H H,j

c min
j
c max, , Minimum and maximum output heat of jth CHP unit

H H,k
h min

k
h max, , Minimum and maximum output heat of kth boiler

iter iter,c max Current iteration and maximum iterations, respectively
n n,i j Total number of members of first and second group of

shareholders
N N N, ,p c h Total number of power-only, CHP and boiler units, re-

spectively
Ns Total number of scenarios
nt1 Shares of tth member of second group before trading
n n,t t2 2 Amount of shares after trading and amount of shares must

be sold, respectively
NT Total time intervals
Nw Total number of wind turbines
OC prob,r rOutage capacity and respective probability related to rth

state in COPT
P Total number of Pareto optimal solutions
PD t s, , Load demand at time t in scenario s
PD t

forecasted
, Forecasted load demand at time t

P P,j
c min

j
c max, , Minimum and maximum output power of jth CHP unit

P P,i
p min

i
p max, , Minimum and maximum output power of ith power-
only unit

Pnw t s, , Output power of nwth wind turbine at time t in scenario s

Pnw t
forecasted

, Forecasted output of nwth wind turbine at time t
Pnw

max Maximum output power of nwth wind turbine
pop pop,

i
group

i
group

1,
(1)

2,
(1)

' ' The two members of first group of share-
holders

pop
j
group (2) The j th member of second group of shareholders

pop
k
group (3) The k th member of third group of shareholders

rnd Random number between 0 and 1
Sk Share variations of k th member of third group of share-

holders
Sty Shares of tth member
t n,pop pop Numbers of tth and last member in the market, respec-

tively
V V V, ,nw

CI
nw
CO

nw
R Cut-in, cut-off and rated speed of nwth wind turbine

Vnw t
forecasted

, Forecasted wind speed for nwth wind turbine at time t
w w w, ,1 2 3 Weighting coefficients related to weighted sum method
Wl t s

D
, , Binary parameter related to lth interval of load demand at

time t in scenario s
Wm t s

w
, , Binary parameter related to mth interval of wind power at

time t in scenario s
, , ,i i i i Cost coefficients of ith power-only unit
, , , ,i i i i i
' ' ' ' ' Emission coefficients of ith power-only unit

l t, Probability of lth load demand interval at time t
m t, Probability of mth wind power interval at time t

Information about market that as equal to sum of shares of
second group

,1 2 Risk level for second and third groups members, respec-
tively

µ µ,1 2 Risk increase coefficients for second and third groups,
respectively

s Probability of scenario s
n n,t t1 3 Amount of randomly added shares to second and third

groups, respectively
PD t s, , Forecast error of load demand at time t in scenario s
Pnw t s, , Forecast error of nwth wind turbine at time t in scenario s

Variables

F EENS,EENS Amount of expected energy not supplied (EENS)
Femission Amount of pollutant gas emission
Fgeneration Cost of electricity generating
F F,OF

min
OF
max Minimum and maximum values of objective function OF

H H,j t s
c

k t s
h

, , , , Output heat of jth CHP unit and kth boiler unit at time t
in scenario s, respectively

P P,i t s
p

j t s
c

, , , , Output power of ith power-only unit and jth CHP unit at
time t in scenario s, respectively

normalized
p normalized membership function for pth solution
OF
p Fuzzy membership function for objective function OF in

pth point of Pareto set
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probability table (COPT) is used to calculate expected energy not sup-
plied (EENS) as reliability index and Fuzzy set theory is applied to select
the best compromise solution.

A series of uncertainty parameters associated with MGs and CHP-
based systems have been studied in recent publications, which include
electrical energy price, power and heat demands, and power generation
output of renewable energy sources. Stochastic scheduling of CHP-
based MGs is accomplished using scenario-based modeling method in
Ref. [19], where the uncertainties of wind turbine power output, power
price, and MG load are studied. In Ref. [20], information gap decision
theory (IGDT) approach is utilized for solving the unit commitment
problem of CHP units considering the uncertainty of electrical energy
transfer of market. Optimal design of CHP-based energy hubs is studied
in Ref. [21] employing a two-stage stochastic mixed-integer linear
programming based on Monte Carlo simulation method. A new mod-
ified bacterial foraging optimization (MBFO) is applied in Ref. [22] for
studying the stochastic energy management of MGs considering wind
speed uncertainty, where the wind speed is forecasted using artificial
neural network and probabilistic method of confidence interval is used
for using the forecasted parameters. A robust optimization-based fra-
mework is proposed in Ref. [23] to insure optimal operation of a CHP-
based system in the presence of load uncertainties. In addition, robust
optimization has been utilized in Ref. [24] to solve optimal power and
heat generation scheduling of a CHP-based MG considering power
market price uncertainty.

Optimal scheduling of CHP-based MGs with regard to economic,
environmental and reliability aspects by considering uncertainties re-
lated to electrical load demand and wind power is not investigated in
the literature. Due to the importance of uncertainties in MGs, stochastic
dynamic reliable economic emission dispatch (SDREED) of a CHP-based
MG is studied in this paper. Additionally, a scenario-based method is
applied for handling uncertainties associated with electrical load de-
mand and power generation of wind turbine. COPT is employed in
order to deal with availability of CHP units and conventional thermal
plants. Also, it has been used to calculate EENS as reliability index.
Weighted sum method is used to obtain single objective problem.

The SDREED is a large scale, non-linear, non-convex and compli-
cated problem. Due to inability of mathematical methods in solving
such complicated problems [7], Meta-heuristics algorithms have been
proposed. In this paper, exchange market algorithm (EMA), which is
based on the behavior of shareholders in the stock market, is utilized for
optimization purpose due to its approved capability in solving non-
linear, non-convex, non-smooth and complex optimization problems.
EMA is successfully applied for obtaining the optimal solution of power
system problems such as capacitor bank placement [25], CHP economic
dispatch (CHPED) problem [26,27], economic load dispatch [28],
economic and emission dispatch in electrical energy systems [29], op-
timal chiller loading [30] and reactive power dispatch [31]. EMA is
utilized to solve optimization problem including minimization of the
generation cost, pollutant gas emission, and EENS. Pareto optimal so-
lutions are provided using different weighting coefficients. Finally, the
best compromise solution is obtained using Fuzzy satisfying method.
The main contributions of this research are listed as follow:

• Considering generation cost, pollutant gases emission and reliability
terms in the objective function of a CHP-based MG scheduling.
• Solving multi-objective stochastic dynamic reliable economic
emission dispatch for a CHP-based MG.
• Reliability analysis of a CHP-based MG dispatch is accomplished
considering EENS index.
• Taking into account the uncertainties of load demand and wind
power in the multi-objective CHP-based MG scheduling problem.
• Implementing EMA into the SDREED problem.

The rest of this paper is organized as follows: Section 2 introduces
uncertainty model used in this paper. Section 3 studies problem

formulation of SDREED. The proposed solution method is described in
Section 4. Simulation results and discussions are reported in Section 5.
Finally, the paper is concluded in the last section.

2. Stochastic model

In order to implement stochastic model in this paper, scenario
generation and scenario reduction approaches are implemented. The
principles of these techniques are explained in the following.

2.1. Scenario generation

Electrical load demand of MG and output power of wind turbine are
two sources of uncertainty. Hence, forecast errors of load demand and
wind power are taken as random variables with specific probability
density functions (PDF). Afterwards, roulette wheel mechanism is used
to generate scenarios [32]. The associated load demand and wind
power for each scenario is as follows:

= + = … = … = …P P P nw N t N s N; 1, , ; 1, , ; 1, ,nw t s nw t
forecasted

nw t s w T s, , , , ,

(1)

= + = … = …P P P t N s N; 1, , ; 1, ,D t s D t
forecasted

D t s T s, , , , , (2)

In this research work, the PDF function of the load forecast error is
considered as normal distribution function, while Weibull distribution
function is selected for the wind power forecast error. The PDF of each
random variable is discretized into seven intervals as shown in Fig. 1 for
normal PDF.

As shown in this figure, intervals are centered on zero mean, width
of each interval is equal to , the standard deviation of forecast error for
each random variable and probability of interval l is equal to l t, .
Probability of each interval is normalized in such a way that the sum of
the probabilities becomes equal to 1. After that, accumulated prob-
ability for each interval is calculated as depicted in Fig. 2.

Therefore, we have a binary vector for each scenario comprising of
binary parameters of intervals for each random variable:

= … … × ×Scenarios W W W W[ , , , , , ]t s
D

t s
D

t s
w

t s
w

N N1, , 7, , 1, , 7, , (14 )s T (3)

In order to generate a scenario, for each random variable a random
number in the interval [0, 1] is generated and the binary parameter of
first interval with accumulated probability less than or equal to the
random number becomes equal to 1 while the others are equal to 0. The
probability of each scenario is calculated using:

=
× ×

× ×
= = =

= = = =

W W
W W

( ( ) ( ))
( ( ) ( ))

s
t
N

l l t s
D

l t m m t s
w

m t

s
N

t
N

l l t s
D

l t m m t s
w

m t

1 1
7

, , , 1
7

, , ,

1 1 1
7

, , , 1
7

, , ,

T

s T (4)

2.2. Scenario reduction

In order to achieve better modeling of uncertainties, a large number

Fig. 1. Discretized PDF for load forecast error.
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of scenarios should be generated that increases the time of computa-
tion. Thus, scenario reduction techniques are employed to decrease
total number of scenarios by omitting repetitive or low probable sce-
narios [10]. In this paper, simultaneous backward method is used as
scenario reduction technique. To explain principles of this method
consider a scenario set s containing Ns scenarios, each with probability
of occurrence ( )s , that distance between two scenario pairs s s( , ) is
indicated by DTs s, [33]. In this method scenarios are omitted until de-
sired number of reduced scenarios are achieved using these steps:

Step 1: Consider d as deleted set of scenarios. The distances be-
tween all scenario pairs should be computed using:

= = ( )DT v vs s i
all scenario pairs

i
s

i
s

, 1
2

Step 2: For each scenario k, find the scenario r that has minimum
distance with scenario k:

= =r DT k s s karg{DT min }; , ,k r k s s, ,
' '

'

Step 3: Calculate = ×PD DTk r k k r, , for all k s and find
= =d PD karg{PD min };d k r s,

Step 4: = d{ }s s , = + d{ }d d , = +r r d.
Step 5: Repeat steps 2–4 until desired number of reduced scenarios

are achieved.

3. SDREED problem formulation

In this section, the formulation of SDREED problem is presented.

3.1. Objective functions

A CHP-based MG is considered comprising of conventional power-
only units, boilers, CHP generators and wind turbines. Generation cost,
pollutant gas emission and EENS related to above mentioned units as
three objectives of this problem can be formulated as follows:

= + +
= = =

F C P C P H C H( ) ( , ) ( )generation i

N
i i t s

p
j

N
j j t s

c
j t s
c

k

N
k k t s

h
1 , , 1 , , , , 1 , ,

p c h

(5)

= + +
= = =

F E P E P H E H( ) ( , ) ( )emission i

N
i i t s

p
j

N
j j t s

c
j t s
c

k

N
k k t s

h
1 , , 1 , , , , 1 , ,

p c h
(6)

=F EENSEENS (7)

3.1.1. Generation cost functions
The cost of the power-only unit i at time t in scenario s is considered

as a function of the generated power [34]:

= + + +C P P P P( ) ( ) ( )i i t s
p

i i t s
p

i i t s
p

i i t s
p

i, , , ,
3

, ,
2

, , (8)

The generation cost of CHP units is a function of generated heat and
electrical powers. The operation cost function of CHP unit j at time t
considering the sth scenario is as follows [34]:

= + + + + +C P H a P b P c d H e H f P H( , ) ( ) ( )j j t s
c

j t s
c

j j t s
c

j j t s
c

j j j t s
c

j j t s
c

j j t s
c

j t s
c

, , , , , ,
2

, , , ,
2

, , , , , ,

(9)

The cost function of boilers can be formulated as [34]:

= + +C H a H b H c( ) ( )k k t s
h

k k t s
h

k k t s
h

k, , , ,
2

, , (10)

3.1.2. Emission functions
Pollutant gas emission functions for power-only, CHP and boiler

units can be respectively formulated as:

= + + +E P P P P( ) ( ) exp( )i i t s
p

i i t s
p

i i t s
p

i i i i t s
p

, ,
'

, ,
2 '

, ,
' ' '

, , (11)

=E P H a P( , )j j t s
c

j t s
c

j j t s
c

, , , ,
'

, , (12)

=E H a H( )k k t s
h

k k t s
h

, ,
'

, , (13)

3.2. Expected energy not supplied

In this research work, EENS is considered as reliability index to
study the effect of availability of units in the dispatch problem. In order
to calculate amount of EENS, COPT is computed and the amount of
reliability index is obtained using (14) [18]:

= ×EENS OC prob
r COPT

r r
(14)

3.3. Constraints

The total generated electrical and heat powers should satisfy the
electrical and heat power balance constraints as in (15) and (16), re-
spectively:

+ + =
= =

P P P P t s( ) ( ) ,
i

N
i t s
p

j

N
j t s
c

w t s D t s1 , , 1 , , , , , ,
p c

(15)

+ =
= =

H H H t s( ) ( ) ,
j

N
j t s
c

k

N
k t s
h

D t1 , , 1 , , ,
c h

(16)

Moreover, the minimum and maximum limits for output electrical
and heat powers related to power-only, CHP and boiler units should be
considered:

P P Pi
p min

i t s
p

i
p max,

, ,
, (17)

P H P P H( ) ( )j
c min

j t s
c

j t s
c

j
c max

j t s
c,

, , , ,
,

, , (18)

H P H H P( ) ( )j
c min

j t s
c

j t s
c

j
c max

j t s
c,

, , , ,
,

, , (19)

H H Hk
h min

k t s
h

k
h max,

, ,
, (20)

It should be noted that the produced power and heat by the CHP
units have mutual dependency. Fig. 3 shows and example of dual de-
pendency between generated power and heat by a CHP unit.

3.4. Wind turbine modeling

Power generation of wind turbine is a function of wind speed, which
is formulated as follows [35]:

=

> <

× <

<

P

V V or V V

P
V V

V V
V V V

P V V V

0

( )nw t
forecasted

nw t
forecasted

nw
CO

nw t
forecasted

nw
CI

nw
max nw t

forecasted
nw
CI

nw
R

nw
CI nw

CI
nw t
forecasted

nw
R

nw
max

nw
R

nw t
forecasted

nw
CO

,

, ,

,
,

,

(21)

Fig. 2. Accumulated normalized probabilities for roulette wheel mechanism.

Fig. 3. Heat-power feasible operation region for a CHP unit.
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4. Solution methodology

The SDREED is a multi-objective optimization problem. Among
different proposed methods for solving multi-objective problems, the
weighted sum method is used in this paper. Due to different range of
objective functions variations, all of them should be normalized [36].
The objective function of SDREED problem can be stated as:

= × + × + ×
= =

OF s w F w F w Fmin ( ) ( )
s

N

t

N
generation emission EENS1 1 1 2 3

s T

(22)

where the multi-objective SDREED problem is converted to single ob-
jective problem using weighted sum method and is solved by Exchange
market algorithm. It should be noted that sum of the weighting coef-
ficients is equal to 1:

+ + =w w w 11 2 3 (23)

In the next step, different Pareto optimal solutions are obtained for
different weighting coefficients. To select the best compromise solution
among all Pareto optimal solutions, the Fuzzy satisfying method is em-
ployed.

4.1. Exchange market algorithm

EMA is an effective optimization method that is inspired of selling and
purchasing shares in the stock market [37]. EMA is widely used in the
literature [26,28] due to better performance compared to other heuristic
methods. In this algorithm, the decision variables of the problem are as-
sumed as shares of shareholders. There are three groups of shareholders that
participate in the market by purchasing and selling their shares using spe-
cific equations. First group consists of 10–30% of total shareholders.
Members in this group are the best solutions and do not trade their shares.
Second group comprises 20–50% of total population. These shareholders try
to improve their shares considering share values of members of the first
group. Hence, they are responsible for finding local optimal points. Finally,
the rest of shareholders are placed in the third group. Members in this group
take more risks to search in a wider space. Thus, they are looking to find
global optimal points.

Two market modes are considered that increase the efficiency of the
algorithm and its convergence speed. First, the oscillations are not
considered in the market. So, shareholders of the second group try to
change their shares using:

= × + ×
= … = …

pop rnd pop rnd pop
i n j n

(1 )
1, , , 1, ,

j
group

i
group

i
group

i j

(2)
1,

(1)
2,

(1)

(24)

According to this equation, each member of the second group tries
to improve its fitness value by using experiences of two members of the
first group. The equations for share trading in the third group can be
stated as:

= × × + ×

×

S rnd pop pop rnd

pop pop

2 ( ) 2

( )

k i
group

k
group

i
group

k
group

1 1,
(1) (3)

2

2,
(1) (3)

' ' '

' ' (25)

= + ×pop pop S0.8
k
group new

k
group

k
(3), (3)

' ' ' (26)

Members in the third group use the differences of theirs shares with
the shares of two members of the first group. Additionally, as stated in
(26), they utilize their own shares to improve their fitness values.

In the second market mode, oscillations are taken into account. In
this situation, members try to take more risks. Equations for the second
group members are as follows:

= + × × ×n n rnd µ(2 )t t 1 11 1 (27)

=µ
t
n

pop

pop
1 (28)

=
=

n S| |t
y

n

ty
1

1
(29)

= ×n gt1 11 (30)

= ×g g
g g

iter
iterk

max
max min

max
c1 1,

1, 1,

(31)

=n nt t2 2 (32)

According to these equations, risk is taken into account in the oscillation
mode. In (28), µ1 is a constant for each shareholder which increases as the
algorithm moves toward lower ranked shareholders. As a result, these
shareholders take more risks to improve their rank. In addition, as the
iteration number increases, the market risk value (g1) decreases and
shareholders take less risks. It should be noted that total shares of members
in the second group are constant as mentioned in (32). Members in the third
group also try to buy and sell shares using following equations:

= × × ×n rnd µ4 (0.5 )t 2 23 (33)

= ×n gt2 21 (34)

= ×g g
g g

iter
iterk

max
max min

max
c2 2,

2, 2,

(35)

In (33), µ2 is the risk coefficient related to each member in the third
group and it is defined similar to (28). In contrast to the second group,
share values of members of the third group are not constant.

4.2. Fuzzy satisfying method

As mentioned before, Fuzzy satisfying method is used as decision
maker to select best compromise solution among all Pareto optimal sets
in this paper. Fuzzy membership function for objective function OF in
pth point of Pareto set is formulated as [38]:

Fig. 4. Schematic of case 1.
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The normalized membership function for pth solution is calculated
using:

= =

= =
normalized
p OF OF

p

p
P

OF OF
p

1
3

1 1
3

(37)

Considering the definition of membership function in (36), the best
compromise solution will have the maximum amount of normalized

p .

5. Case studies and simulation results

The proposed method has been implemented on three case studies.
Test systems are adopted from literature and modified in order to show
the performance of the method. For the first case study, deterministic
dynamic reliable economic dispatch (DDREED) is solved and after that,
SDREED problem which is the main goal of this paper is investigated in
order to compare with deterministic problem. In the second case study,
the impact of reliability index is studied and in the third case, the
proposed method is implemented into a large scale test system. The
range of adjustable parameters of EMA are chosen from Ref. [26].
Afterwards, numerous simulations have been executed to select the best
values of them to find optimum solution in minimum iterations. The
chosen parameters of EMA are as follows for all case studies:

= = = =g g g g0.05, 0.04, 0.04 and 0.03max min max min1, 1, 2, 2,

It should be mentioned that choosing higher values for the risk
parameters, cause convergence problems. On the other hand, lower risk
values decrease convergence speed of the algorithm. Thus, a trade-off
should be made.

5.1. Case study 1

The test system is taken from Ref. [34] and modified that comprises
of one thermal unit, three CHP units and one boiler. Schematic of this
case study is presented in Fig. 4. Cost and emission coefficients are

Table 1
Cost coefficients for test system 1.

Power-only unit
Unit i

( )MW$ 3

i

( )MW$ 2
i

( )MW$
i

($)
Pmin

p

MW( )
Pmax

p

MW( )
1 0.000115 0.00172 7.6997 2.5489 0.35 1.35

CHP units
Unit aj

( )MW$ 2

bj

( )MW$

cj

($)
dj

( )MWth$ 2

ej

( )MWth$

f j

( )MW MWth$ .

Feasible operation region P H[ , ]c c

2 0.0435 36 12.5 0.027 0.6 0.011 [0.44, 0], [0.44, 0.159], [0.4, 0.75], [1.102, 1.356], [1.258, 0.324], [1.258, 0]
3 0.1035 34.5 26.5 0.025 2.203 0.051 [0.2, 0], [0.1, 0.4], [0.45, 0.55], [0.6, 0]
4 0.072 20 15.65 0.02 2.3 0.04 [0.35, 0], [0.35, 0.2], [0.9, 0.45], [0.9, 0.25], [1.05, 0]

Boiler unit
Unit ak

( )MWth$ 2

bk

( )MWth$
ck
($)

Hmin
h

MWth( )
Hmax

h

MWth( )
5 0.038 2.0109 9.5 0 0.6

Table 2
Emission coefficients for test system 1.

Power-only unit
Unit i ( )kg MW2 i ( )kg MW i kg( ) i i
1 ×10 6.4904 ×10 5.5544 ×10 4.0916 ×10 24 0.02857

CHP units
Unit a ( )j

kg MW

2 0.00165
3 0.0022
4 0.0011

Boiler unit
Unit a ( )k

kg MWth
5 0.0017

Table 3
Wind turbine characteristics.

Rated power (MW) Cut-in speed
(m/s)

Rated speed
(m/s)

Cut-off speed
(m/s)

0.5 3 13 25

Fig. 5. Generated and reduced scenarios for electrical load demand in cases 1
and 2.

Fig. 6. Generated and reduced scenarios for wind power in cases 1 and 2.
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provided in Tables 1 and 2, respectively. Also a wind turbine is added to
this test system. The wind turbine characteristics is provided in Table 3
and forecasted wind speed profile can be found in Ref. [35].

Electrical power and heat demand profiles as forecasted values are
taken from Ref. [17] and scaled to 3MW and 1.5MWth at the max-
imum. The availability of units are equal to 95% in this case. First, 1000
scenarios have been generated and after scenario reduction process, 10
scenarios have been selected. Figs. 5 and 6 show the generated and
reduced scenarios for load demand and wind power, respectively.

Results of generation cost, emission and EENS for different determi-
nistic problems are provided in Table 4. According to this table, the
minimum amount for each objective function is obtained in the related
dispatch problem. As an example, the minimum amount of pollutant
gases emission for this case study is 0.0433 kg which is obtained by
solving the deterministic dynamic emission dispatch (DDED) problem.
By considering generation cost and reliability term in the objective
function and solving deterministic dynamic reliable economic emission
dispatch (DDREED), the amount of emission is slightly increased and a
compromise solution is obtained. In the following, results for the sto-
chastic problems are reported in Table 5. As reported in this table, the
proposed method is able to find best solution for each dispatch problem.
In addition, it is capable to find a compromise solution for the multi-
objective problem. As an example, in the SDREED, the mean of gen-
eration cost is increased by $23.4 in comparison with the stochastic
dynamic economic dispatch (SDED) problem. Results show that by in-
cluding emission and EENS in economic dispatch problem, greater
achievements can be reached for longer dispatching horizons.

By comparing the results of deterministic and stochastic problems, it
can be inferred that modeling the intermittent nature of load demand
and wind power increases the generation cost, amount of emission and
EENS. For more explaination, the best value of each objective function
in the SDREED has been increased in comparison to the solutions of the
DDREED problem. On the other hand, stochastic programming provides
more precise solutions encountering different unpredicted situations.
Solving stochastic problem gives better sight to system operators by
considering the most probable scenarios in comparison with determi-
nistic approach.

5.2. Case study 2

In order to investigate the impact of the reliability index on the
outputs of the units, availability coefficients should be changed. Thus,
the outputs of the units with lower availability coefficients will decrease
and the algorithm must supply load demand with more reliable units.
To investigate the effect of availability coefficients, the test system of
case 1 is modified and the availability coefficient of unit 2 is decreased

Table 4
Results of deterministic problems for case 1.

Problem Generation cost ($) Emission (kg) EENS (MWh)

Deterministic dynamic economic dispatch 2468 0.0576 5.9647
Deterministic dynamic emission dispatch 2494.1 0.0433 6.1775
Deterministic dynamic reliable dispatch 2808.7 0.0735 5.9646
Deterministic dynamic reliable economic emission dispatch 2468.1 0.0434 5.9655

Table 5
Results of stochastic problems for case 1.

Problem Generation cost ($) Emission (kg) EENS (MWh)

Best Mean Worst Best Mean Worst Best Mean Worst

Stochastic dynamic economic dispatch 2564.3 2627.9 2663.2 0.0595 0.0613 0.0629 6.2600 6.8604 8.0891
Stochastic dynamic emission dispatch 2629.3 2663.2 2706.4 0.0479 0.0502 0.0526 6.4125 7.1004 7.7889
Stochastic dynamic reliable dispatch 2756.5 2780.4 2813.2 0.0677 0.0701 0.0718 5.9111 6.1659 6.2922
Stochastic dynamic reliable Economic emission dispatch 2603.5 2651.3 2689.2 0.0490 0.0539 0.0575 6.1148 6.6425 7.6898

Fig. 7. Output power of unit 2 in cases 1 and 2 for different scenarios at
time= 10 h.

Fig. 8. Output power of unit 4 in cases 1 and 2 for different scenarios at
time= 10 h.

Table 6
Results of deterministic problems for case 3.

Problem Total generation cost ($) Amount of emission (kg) EENS (MWh)

Deterministic dynamic economic dispatch 7569.8 0.1617 12.8371
Deterministic dynamic emission dispatch 7652.7 0.1354 14.0838
Deterministic dynamic reliable dispatch 8365.1 0.2086 12.8166
Deterministic dynamic reliable economic emission dispatch 7601.4 0.1353 12.8441
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from 95% to 50%. The output power of unit 2 at time= 10 (h) is shown
in Fig. 7. As mentioned before, it can be seen that output power of this
unit is decreased in must of scenarios due to lower availability coeffi-
cient of this unit. On the other hand, the change in the availability
coefficient of unit 2, affects outputs of the other units. As an instance,
the output power of unit 4 is depicted in Fig. 8. It is shown in this figure
that the output of unit 4 is increased for seven scenarios due to re-
duction in the output power of unit 2.

5.3. Case study 3

The main aim of this case study is to investigate the performance of
the proposed method in a larger problem. The test system for this case
study is obtained by tripling the test system of case 1. Thus, the max-
imum load and heat demands are 9MW and 4.5MWth, respectively.
The availability coefficients are considered 95% for all of the generating
units. 1000 scenarios generated and reduced to 10 scenarios using
scenario reduction algorithm. Table 6 is representing results for de-
terministic problems. As reported in this table, the proposed method is
able to find best solution for each deterministic problem. Also, the
minimum value of each objective is gained by solving the respected
dispatch problem which approves the performance of the proposed
method. Results for stochastic problems are reported in Table 7. As
mentioned in this table, the algorithm is able to find best and com-
promise solutions for large scale and stochastic problems. For the sake
of comparison, the minimum amount of EENS for deterministic problem
is equal to 12.8166MWh. By considering generation cost and amount of
emission in the objective function, in the compromised solution, the
amount of EENS is increased by 0.0275. In addition, by presuming
different probable scenarios for load demand and wind power, the best
amount of EENS in the stochastic problems, which is equal to 21.6327,
is increased by 7.5489 in comparison to the worst EENS value in the
deterministic problems. This comparison shows the importance of the
stochastic programming in planning and operation of power systems.

6. Conclusion

In this paper, scheduling of a CHP-based microgrid considering
three conflicting objectives is investigated. EENS as reliability index as
well as pollutant gases emission and generation cost of the units are
considered in the objective function. The multi-objective problem is
solved using stochastic programming method. Uncertainties of load
demand and wind power are taken into account. Scenarios are gener-
ated using roulette wheel mechanism and weighted sum method is
applied to solve multi-objective problem. By considering non-linearity,
non-convexity and complexity of the problem and incapability of
mathematical methods, an evolutionary optimization method, namely
exchange market algorithm is utilized. Obtained results demonstrate
the effectiveness and capability of the proposed method in solving
SDREED problem. Results of the stochastic problem provide a better
sight for planners and operators of power systems coping with different
possible scenarios. This can lead to better efficiency in using available
energy resources. As future work, the dynamic dispatch problem can be
extended by considering robust and opportunity functions. Also, other

renewable energy sources and energy storage systems can be con-
sidered in the problem.
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