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ABSTRACT The increasing integration of renewable resources and electric vehicles (EVs) presents new
requirements for the construction of a current distribution network. As an alternative of conventional
distribution network, active distribution network (ADN) has gained more interest for its flexibility and
interactivity. However, the unpredictable behavior of ADN participants from source-side, network-side,
and demand-side brings more challenges on ADN dispatch. Thus, it is urged to design an ADN optimal
scheduling approach that can comprehensively regulate the ADN participants’ behavior. In this paper,
an ADN performance assessment system is first established to provide a quantitative analysis on ADN’s
scheduling in terms of active controllability, active manageability, and active economy, respectively. Then,
according to the ADN assessment system, a multi-stage optimal scheduling approach for ADN considering
coordinated EV charging strategy is proposed. It is able to not only smooth the fluctuations caused by the
integration of intermittent power sources and EVs but also reconfigure the network topology. Therefore, this
approach can be applied to day-ahead dispatches to help operators effectively manage the ADN. Simulation
results verify the correctness and effectiveness of the proposed approach.

INDEX TERMS Active distribution network scheduling, electric vehicle, coordinated charging strategy,
distributed energy resource.

NOMENCLATURE
The mathematical symbols of this paper are classified as
follows:

A. SETS
ψ Set of EVs in the specific region.
� Set of starting time of charging with the lowest

charging price.
At Set of unavailable charging stations at time t .
Bt Set of available charging stations at time t .

B. VARIABLES
U (t)% Qualified voltage ratio at time t .
NV−over The number of buses with overvoltage.
NV−under The number of buses with undervoltage.
L(t) Primary line load ratio at time t .
Ppri(t) The active power transmitted through primary

lines at time t , (kW).
Pmax
pri The maximum active power transmitted

through primary lines, (kW).
Cavg Average charging cost of EVs in the specific

region, (CNY).
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Cj Charging cost of the jth EV, (CNY).
Efull% EV fully-charged ratio in the typical day.
Ntf ull The number of fully-charged EVs.
D0(t) The traditional load at time t , (kW).
De(t) The equivalent load at time t , (kW).
D̄e The mean value of equivalent load, (kW).
5IL(t) Total cost of the interruptible load compensa-

tion at time t , (CNY).
PIL,i(t) Active power of interruptible load on bus i at

time t , (kW).
5loss(t) Total distribution system loss cost at time t ,

(CNY).
Ploss(t) Distribution system loss at time t , (kW).
PW (t) Output of wind power at time t , (kW).
PPV (t) Output of solar power at time t , (kW).
PEV (t) EV charging power at time t , (kW).
PMT (t) Output of microturbine at time t , (kW).
P0(t) Purchased electricity from transmission grid

at time t , (kW).
Si(t) The status of ith switch at time t(Si(t) =0,

switch off and Si(t) =1, switch on).
l(t) The overload level of primary line at time t .
Pi Injected active power to bus i, (kW).
Qi Injected reactive power to bus i, (kVar).
θij Phase angle difference between bus i and

bus j.
Ui Voltage amplitude of bus i, (kV).
Pshed (t) Shedding load at time t , (kW).
Pi(t) The load on bus i at time t , (kW).

C. CONSTANTS
Nall The number of total buses.
Nψ The number of total EVs.
πswitch The price of switch operation, (CNY).
πi The compensation price of interruptible load on

busi, (CNY/kW · h).
πloss The price of distribution system loss,

(CNY/kW · h).
πW The price of wind power integration,

(CNY/kW · h).
πPV The price of solar power integration,

(CNY/kW · h).
πMT The price of microturbine integration,

(CNY/kW · h).
π0 The price of electricity purchased from the

transmission grid, (CNY/kW · h).
πCO2 Penalty factor of CO2 emission, (CNY/g).
πSO2 Penalty factor of SO2 emission, (CNY/g).
QCO2
MT CO2 emission quantity of microturbine,

(g/kW · h).
QSO2
MT SO2 emission quantity of microturbine,

(g/kW · h).
QCO2
0 CO2 emission quantity of traditional power

plant, (g/kW · h).
QSO2
0 SO2 emission quantity of traditional power

plant, (g/kW · h).

Pch Charging power of EV, (kW).
ω1 Weighting coefficient associated with the

switch operation cost.
ω2 Weighting coefficient associated with the

distribution system loss cost.
ω3 Weighting coefficient associated with the

power source integration cost.
ω4 Weighting coefficient associated with the

environmental pollution penalty.
p1 Penalty factor associated with unqualified

voltage ratio.
p2 Penalty factor associated with primary

line load ratio.
L0 The maximum primary line load ratio.
Gij Real part of each element in the admit-

tance matrix.
Bij Imaginary part of each element in the

admittance matrix.
Umin
i /Umax

i Lower/upper voltage amplitude limit of
bus i, (kV).

Smax
j Maximum transmission capacity of line j,

(kVA).
Pmin
MT ,i/P

max
MT ,i Lower/upper output of i th microturbine,

(kW).
pshed The compensation price of load shedding,

(CNY/ kW · h).
η% The load shedding coefficient required by

the contract.

I. INTRODUCTION
Concerns on energy policies and environmental conditions
lead to a rapid development of renewable energy resources,
such as wind turbine and solar systems, being integrated into
power systems in a global scale [1], [2]. The increasing pen-
etration of these distributed energy resources (DERs) chal-
lenges the power system stability and security. It also imposes
requirements on the traditional distribution networks [3].
To address this issue, the active distribution network has
attracted more attention in recent years because it is capable
of actively managing and controlling the DERs and loads by
utilizing a smart network topology.

In practice, the load scheduling is the key point to distri-
bution network studies. The advancement of communication
and automation technology paves the way for the develop-
ment of ADN, which is developing into a multi-dimensional
system consisting of participants from source-side, network-
side, and demand-side. With more dispatchable participants
such as DERs and interruptible-load in the multi-dimensional
system, the optimal scheduling of ADN experiences different
process from that of the traditional distribution networks [4].

Meanwhile, the electric vehicle is being introduced into
the distribution networks [5]. EV can participate in ADN’s
demand-side scheduling due to the dispatchable character-
istics in the charging process [6], [7]. However, it should
be noted that the uncertainties in EV charging behavior
is unavoidable. In other words, without any appropriate
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guidance and management, the integration of EV probably
widens the gap between the peak and valley load in the
regional ADN, deteriorating the power quality during the
peak-load time.

Hence, it is of great importance to regulate the EV’s
charging mode in the ADN environment, and form an
appropriate ADN optimal scheduling approach that can
comprehensively consider the behavior of participants from
source-side, network-side, and demand-side. Nevertheless,
current research on these issues is rarely done. Most of the
traditional works are focused on the individual behavior of
the ADN participants. Reference [8] provides a distribu-
tion network scheduling framework including wind power
and solar energy based on the complementary features of
DERs. By complementing a coordinated control strategy on
the wind power and photovoltaic (PV) outputs, the fluctu-
ations of these intermittent resources are notably relieved.
In [9], wind/PV hybrid power fluctuations are reduced via
the optimization of the energy storage capacity. However,
these approaches are focused on the source-side scheduling.
Examples of network-side behavior are studied in [10]–[14].
References [10]–[12] aim at utilizing artificial intelligence
algorithms to implement the network reconfiguration and
improving the comprehensive benefits of the distribution
networks. References [13], [14] consider the impacts of
fault restoration on the network reconfiguration. Further-
more, extensive research has been conducted from the per-
spective of demand-side activities [15]–[18]. Reference [19]
proposes an effective load scheduling method based on a
time-of-use (TOU) price model. In addition, as a significant
participant in the ADN’s demand-side, EV behavior has a
notable impact on ADN’s operation. Reference [20] shows
that the integration of a large number of random EV charging
loads can obviously affect the power quality. It presents a
quantitative approach to analyze the increased distribution
system loss due to EVs’ unregulated behavior. By contrast,
a coordinated EV charging strategy is quite helpful in improv-
ing load condition of transmission lines [21]. Furthermore,
[22] and [23] illustrate that the EV’s behavior can be reg-
ulated by energy management strategies, which contributes
to the fuel consumption reduction and the stability of dis-
tribution networks. Besides, research works in which EV
dispatch incorporates with renewable resources can be seen
in [24]–[26]. An optimal integration approach of a hybrid
solar battery power source into smart home grid with EV
is proposed in [24], which significantly reduces the cus-
tomers’ electric cost. Reference [25] analyzes the impacts
of EV charging behavior on load-fluctuation control based
on an incorporated scheduling model including EV and wind
power. Reference [26] verifies the promoting function of EV
charging control in wind power consuming and greenhouse
gas emission limiting.

To enhance the security, economic and environmental ben-
efits of ADN under the incorporated source-network-load
condition, we focus on the ADNoptimal scheduling approach
through regulating the behavior of ADN participants from

source-side, network-side, and demand-side in this paper. The
contributions include: 1) A quantitative assessment system on
ADN performance is proposed, according to the characteris-
tics of ADN. 2) A coordinated EV charging strategy is estab-
lished. Then, a multi-stage ADN optimization consisting of
controllable distributed generator (DG), network topology,
and interruptible load is considered.

The rest of the paper is organized as follows. Section II
establishes an assessment system for ADN considering active
controllability, active manageability, and active economy.
Section III provides a coordinated EV charging approach,
and then models a multi-stage optimal scheduling strategy.
Section IV verifies the effectiveness of the proposed strat-
egy with simulations. Finally, Section V draws conclusions
for the presented studies and provides directions for future
research.

II. ASSESSMENT SYSTEM FOR ADN PERFORMANCE
In this section, we model the ADN performance assessment
system in which the characteristics of ADN in three aspects
(active controllability, active manageability, and active
economy) are integrated. Accordingly, multiple indices
reflecting the security, economic, and environmental cost in
the power system operation are proposed.

A. ACTIVE CONTROLLABILITY
Active controllability reflects the impacts of power system
dispatch scheme on ADN stability and security, which can be
represented by qualified voltage ratio, primary line load ratio,
and reconfiguring switch frequency. These indices are related
to distribution feeders.

1) QUALIFIED VOLTAGE RATIO
Qualified voltage ratio is the percentage of the qualified
voltage bus amount in total buses, reflecting the controllable
effectiveness. It is expressed as:

U (t)% = 1−
NV−over + NV−under

Nall
× 100% (1)

2) PRIMARY LINE LOAD RATIO
Primary line load ratio, expressed in (2), reflects the margin
level of transmission line capacity in a regional power grid,
which can be utilized to verify the extensibility of regional
grid. Note that a larger value of the index indicates that the
regional grid cannot probably satisfy the future load demand.

L(t) =
Ppri(t)
Pmax
pri
× 100% (2)

3) RECONFIGURING SWITCH FREQUENCY
The reconfiguring process in ADN optimization aims at
reducing distribution system loss, enhancing load balance
level, and improving the economy of power grid operation.
Thus, reconfiguring switch frequency is taken account into
this process as a significant index. It is inadvisable to be
much high in terms of requirements on switch service life and
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power system stability. Also, the switch operation cost can be
expressed as:

5switch(t) = πswitch ×
Ns∑
i=1

|Si(t)− Si(t − 1)| (3)

B. ACTIVE MANAGEABILITY
Active manageability mainly reflects the contribution of
demand-side optimal approaches in ADN scheduling. In this
paper, we focus on the coordinated EV charging guidance
and load shedding. Therefore, we establish three indices
including EV customer satisfaction level, equivalent load
curve standard deviation, and interruptible load compen-
sation. These indices are related to distribution system
load.

1) EV CUSTOMER SATISFACTION LEVEL
Actually, the EV charging strategy is bidirectional since it
is related to not only the electricity companies’ benefits but
also the EV customers’ benefits. From the perspective of
EV customers, the charging cost and charging capacity are
the most important factors. Thus, the two factors are taken
account into the EV customer satisfaction level indices.

With the help of EV scheduling system, the customers
are more inclined to adjust their charging time to reduce the
charging cost. Here, for consideration of all the customers’
satisfaction levels in a specific regional grid, the average
charging cost of EVs is chosen as one of the EV customer
satisfaction level indices, which can be expressed as:

Cavg =

∑
j∈ψ

Cj

Nψ
(4)

In addition, the charging schemes can change the charg-
ing capacity of each electrical vehicle, and then impact the
customer satisfaction level, i.e. if an electrical vehicle is not
fully charged during the parking period, the satisfaction level
of its owner will be definitely reduced. Thus, we use EV fully-
charged ratio in (5) to represent the charging capacity factor
in customer satisfaction level indices. Note that the battery
capacity of each EV is assumed to be the same.

Efull% =

(
n∑
t=1

Nt_full
Nψ

)
× 100% (5)

2) EQUIVALENT LOAD CURVE STANDARD DEVIATION
When EVs are integrated into the grid without any coordi-
nated charging strategy, a new peak load probably overlays
on the peak point of the initial load curve, which can widen
the gap between the peak and valley load. By contrast, with
the help of a coordinated management of EV charging mode,
the peak shaving and valley filling functions can be better
implemented. To quantify the effectiveness of active man-
ageability in the integral ADN load curve, we first define the
equivalent load in (6), and then establish the equivalent load

curve standard deviation index in (7).

De(t) = D0(t)− PW (t)− PPV (t)+ PEV (t) (6)
D̄e =

1
T

T∑
t=1

De(t)

Se =

√√√√ 1
T

T∑
t=1

(
De(t)− D̄e

)2 (7)

3) INTERRUPTIBLE LOAD COMPENSATION
Generally, after signing a contract with customers, the elec-
tricity company is allowed to interrupt the normal load when
system overload occurs. Also, the electricity company is
supposed to provide compensation to customers at a con-
tract price. The interruptible load compensation index can be
expressed as:

5IL(t) =
∑
i

πi × PIL,i(t) (8)

C. ACTIVE ECONOMY
The operation economy is always a key index in power sys-
tem optimal scheduling. With the enhancing awareness of
environmental protection, the environmental benefit is also
brought into the power grid, especially the ADN economic
dispatch. Thus, we establish the active economy indices in
three aspects, including distribution system loss cost, power
source integration cost, and environmental pollution penalty.

1) DISTRIBUTION SYSTEM LOSS COST
Distribution system loss cost reflects not only the reasonabil-
ity of grid structure but also the economy of grid operation.
With a lower distribution system loss cost, the electricity
company can gain more profits.

5loss(t) = πloss × Ploss(t) (9)

2) POWER SOURCE INTEGRATION COST
In this paper, the index includes in part of wind power, PV,
and microturbine integration cost and in part of the purchased
electricity cost.

5source(t)=πWPW (t)+πPVPPV (t)+πMTPMT (t)+π0P0(t)

(10)

3) ENVIRONMENTAL POLLUTION PENALTY
The environmental impact is converted to the economy index
in the ADN scheduling model. In addition, we choose CO2
and SO2 as two typical pollutants to establish the environ-
mental pollution penalty index.

5penalty(t) = πCO2
∑(

PMT (t)Q
CO2
MT + P0(t)Q

CO2
0

)
+πSO2

∑(
PMT (t)Q

SO2
MT + P0(t)Q

SO2
0

)
(11)
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FIGURE 1. Overview of the multi-stage ADN optimal scheduling strategy.

III. MULTI-STAGE OPTIMIZATION MODEL FOR ADN
SCHEDULING
The ADN optimal scheduling experiences three stages con-
sidering all the resources in source-side, network-side, and
demand-side. The overview of the scheduling process is pre-
sented in Fig. 1 and the scheduling in each stage is based on
the aforementioned indices in Section II.

A. STAGE A: COORDINATED ELECTRICAL VEHICLE
CHARGING
The coordinated EV charging scheduling aims at improving
the conventional EV charging mode. It is established accord-
ing to EV’s driving and charging characteristics. Also, the EV
charging time, location, and scheme are all considered in the
coordinated EV charging model.

1) CONVENTIONAL EV CHARGING MODEL
The main purpose of the EV charging model is to obtain the
charging load when EVs in a specific scale are integrated into
the grid. The conventional approaches can be classified into
three categories: deterministic demand-based method [27],
Monte Carlo simulation (MCS) method [28], and proba-
bilistic charging-station-load–based analytical method [29].
MCS is utilized in this paper since it has the highest precision
among the three methods. The total charging load can be
calculated according to the MCS data which contains each
EV’s driving status, charging time, charging location, and
charging scheme within a typical day.

2) COORDINATED EV CHARGING MODEL
With the advancement of communication technology, the EV
charging scheduling system can provide a favorable sup-
port platform for the coordinated EV charging strategy.
Fig. 2 shows a typical EV charging scheduling system.

Customers prefer the EV charging scheduling system
that can respond to the peak-and-valley electricity price.
In addition, EV charging locations are optimized under the
guidance of a coordinated scheduling strategy. It can not
only enhance the charging efficiency but also improve the

FIGURE 2. The typical EV charging scheduling system.

EV customers’ satisfaction level. Thus, we establish the coor-
dinated EV charging scheduling model considering charging
time, charging location, and charging scheme.

¬ Optimization of Charging Time: In the conventional EV
charging process, the customers charge their EVs as soon
as they arrive at the charging location. By contrast, in the
coordinated EV charging process, customers can input the
arrival time, departure time, and the expected charging capac-
ity. Then, the EV charging scheduling system will provide a
coordinated charging strategy based on the peak-and-valley
electricity price.

Assume that an EV’s arrival time and expected departure
time are tarr and tdep, respectively. The corresponding battery
capacities are W1 and W2, respectively. Thus, the expected
parking time Tp can be expressed as:

Tp = tdep − tarr (12)

The expected charging capacity Wch is:

Wch = W2 −W1 (13)

Then, the fully-charged required time Tr is:

Tr =
Wch

Pch
(14)
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During the parking period, the EV charging scheduling
system is to ensure that the customers obtain the earliest
charging service at the lowest cost, which not only reduces
the gap between the peak and valley equivalent load, but also
improves the EV customers’ satisfaction level. The actual
starting time of charging tch and the charging cost p are
expressed as (15) and (16), respectively.

tch =

{
tarr , Tr ≥ Tp
min �, Tr ≤ Tp

(15)

p = min
ts+tdep−tch∑

ts

(PchπEVt )1t, ts ∈ � (16)

where πEVt is the EV charging price at time t , ts is the
simulated starting time of charging, and t is the interval time
which is equal to 1 h.

 Optimization of Charging Location: In the conven-
tional EV charging mode, customers have to wait for the
next charging chance when the current charging station is
completely occupied. By contrast, with a coordinated EV
charging scheduling strategy considering the optimization of
charging location, the EV customers can be guided to the
nearest available charging station.

q =

{
(j|j ∈ Bt) , i ∈ At
i, i ∈ Bt

(17)

where q is the charging location ID at time t provided by the
coordinated EV charging scheduling strategy.

® Optimization of Charging Scheme: Although the slow
charging scheme is friendly to EV battery, it is a time-
consuming process which generally requires 6-8 hours to
fully charge the EVs [30]–[32]. In addition, it is harder for
the charging stations to serve the coming EV customers
when most slow charging piles are occupied. In recent years,
more charging stations have assembled fast charging piles
with the advancement of charging technology, which com-
plementally supports the charging service for the increasing
EV customers’ demand. However, compared with the slow
charging scheme, the EV battery life will be harmed by the
fast charging scheme.

Thus, in this paper we design a comprehensive charging
mode in which the fast charging scheme is considered as
a complementary approach for the dominant slow charging
scheme. The following assumptions are made:
• The EV customers are inclined to choose the fast charg-
ing scheme when they arrive early at the stations nearby
office zone during the day time.

• Customers choose the slow charging scheme when they
park their EVs at the stations nearby residence zone
during the night time.

3) DISCUSSIONS ON MODELS AND ASSUMPTIONS
Tomodel the EV charging behavior in the ADN environment,
we adopt simplified component models and make corre-
sponding assumptions.

For the uncertainties of the EV charging model, we focus
on the temporal uncertainties and model it in statistical terms.
Four probabilistic parameters regarding EV’s charging time
are selected. Also, we assume that each parameter follows
a typical Gaussian distribution listed in Appendix. The EV
charging status is then obtained by Monte Carlo simulation
sampling. For spatial uncertainties [35], this paper does not
explore too much due to the complexity of model as the
uncertain spatial effects are considered.

In addition, the EV battery degradation [36], [37] is not
considered. Since this paper is focused on optimizing the
EV charging behavior in a G2V implementation scenario,
obtaining the EV load demand has higher priority.

Thus, with the consideration of model complexity and
computation efficiency, we simplify the EV charging model.
However, these two concerns are definitely significant exten-
sions for this work.

B. STAGE B: OPTIMIZATION OF CONTROLLABLE DG
AND NETWORK TOPOLOGY
In Stage B, we synchronously optimize the controllable DG
and network topology. Also, the optimal objectives consist of
the economy benefit and the environmental benefit. The dual-
objective problem is converted to a single-object problem by
integrating weight coefficients.

The recast optimal objective in Stage B contains the main
function represents economy and environmental objectives,
and the penalty function representing security objective.

The main function:

minM (t) = ω1 ×5switch(t)+ ω2 ×5loss(t)+ ω3

× 5source(t)+ ω4 ×5penalty(t) (18)

where 5switch(t), 5loss(t), 5source(t), and 5penalty(t) can be
obtained according to (3), (9), (10), and (11), respectively.

The penalty function:

P(t) = p1 × (1− U (t)%)+ p2 × l(t)

l(t) =

{
0, L(t) ≤ L0
L(t)− L0, L(t) ≥ L0

(19)

where both p1 and p2 are big values.
Thus, the integrated optimal objective problem can be

formulated as:

min M (t)+ P(t) (20)

subject to:
Pi = Ui

n∑
j=1

Uj(Gij cos θij + Bij sin θij)

Qi = Ui
n∑
j=1

Uj(Gij sin θij − Bij cos θij)

(21)

Umin
i ≤ Ui ≤ Umax

i (22)

Sj ≤ Smax
j (23)

Pmin
G,i ≤ PG,i ≤ P

max
G,i (24)
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Constraint (21) represents the active and reactive power
flow balancing. Note that the AC power flow model is
selected in this paper and the backward-forward sweep
method [33], [34] is utilized in the optimization process
regarding the power flow computation. Also, the aforemen-
tioned distribution system loss is derived from the power flow
results. Constraint (22) impose the upper and lower limits
of the voltage amplitude on bus i. Constraint (23) requires
that the power flow of each transmission line must be less
than the rated value. Constraint (24) ensures that the outputs
of microturbines are limited by their maximum andminimum
outputs. In addition, the optimization process must satisfy the
general distribution network constraints such as connectivity
constraint and radial constraint.

C. STAGE C: OPTIMIZATION OF CONTROLLABLE LOAD
The optimization of controllable load is the last stage in
the total ADN optimal scheduling strategy. It works after
that both the aforementioned optimization approaches cannot
appropriately deal with problems like low voltage and over-
load in the system operation.

The optimal scheduling on this stage includes two parts:
1) EV load shedding; and 2) Interruptible load dispatch. In the
first step, EV charging piles will shut down after receiving
instruction from the EV charging scheduling system and keep
the off-status until receiving a restart instruction.

If the grid voltage level cannot recover to the normal level
with EV load shedding, then the interruptible load dispatch
will be implemented. The objective function is formulated as:

min pshed×Pshed (t)+p1×(1−U (t)%)+p2×l(t) (25)

subject to: constraints in (21)− (23) (26)

Pshed,i(t) ≤ Pi(t)× η% (27)

Detailed process of the multi-stage optimization approach
is illustrated in Fig. 3 and a genetic algorithm is utilized in
the optimization.

IV. CASE STUDY
To demonstrate the effectiveness of the proposed approach,
the verification study has been donewith amodified IEEE 33-
bus distribution system, as shown in Fig. 4. All simulations
are based on MATLAB environment. The simulation period
is set to 24 h time horizon and the interval time is set to 1 h.

Assume that the resident loads are assigned on bus 22, 23,
24, 28, 29, 30, 31, and 32, respectively, and the commercial
loads on the other buses. Locations of the 20 EV charging sta-
tions are also shown in Fig. 4 and each station has 35 charging
piles. The total amount of EVs is set to 500 and the battery
capacity of each EV is 32 kW ·h. The charging power is set to
3.2 kW in slow charging scheme and 15 kW in fast charging
scheme. The time-of-use (TOU) price policy is implemented
in this paper. It is designed according to the load fluctuations
in the typical day, as shown in Appendix. In addition, two
wind farms are connected to bus 17 and 21, respectively, and
two PV stations are located on bus 24 and 32, respectively.

The outputs of the two intermittent sources and the load can
be found in Appendix as well.

A. COORDINATED ELECTRICAL VEHICLE CHARGING
SCHEDULING OPTIMIZATION
The charging status of the 20 EV charging stations in the
typical day are simulated, and the impacts of charging time,
charging location, and charging scheme in the coordinated
EV charging scheduling process are compared, as shown
in Fig. 5. The horizontal axis represents the time range
of a typical day with the sampling frequency set to every
15 minutes, and the vertical axis represents the number of
charging EVs (also the number of charging piles in use).
Then, the curves with 20 different colors are obtained by
connecting all the relevant number of charging EVs at each
sampling time, which reflect the charging status of the 20 EV
charging stations. Also, values of the EV fully-charged ratio
in different charging modes are listed in TABLE 1. The con-
ventional charging mode, coordinated charging mode with
time optimization, coordinated charging mode with time and
location optimization, and coordinated charging mode with
time, location, and scheme optimization are represented by
C0, C1, C2, and C3, respectively.

TABLE 1. Values of the EV Fully-charged ratio in different charging modes.

It can be observed that in C1, C2, and C3, the EV charging
period becomes more dispersive. More EV customers receive
the charging service around at 9 a.m. and 12∼4 p.m. in the
official zone, and 1∼6 a.m. in the resident zone, which is
quite different from that in C0. The shift of charging period
significantly alleviates the EV charging congestion. Note
that the EV charging congestion is even eliminated in C3,
which reflects that the coordinated EV charging strategy can
provide an economical guidance on the assembling quantity
of charging piles.

In addition, the fully-charged ratio in C1 is less than that
in C0. It is convincible that EV charging piles are occupied
by the customers early arriving at charging stations. Also,
in order to respond to a preferable charging price, the cus-
tomers at the same charging station tend to start receiving
charging service within a relative concentrated period, which
further degrades the fully-charged ratio. To deal with this
issue, the optimization of charging location and charging
scheme is added to the coordinated scheduling strategy. The
fully-charged ratio is obviously improved with C2/C3.
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FIGURE 3. Flowchart of the multi-stage optimization approach.

In addition to the previous comparison of EV charging
status with different charging modes, the impact of the coor-
dinated EV charging mode on the daily load curve is also
analyzed. As shown in Fig. 6, the peak load is significantly
increased with the conventional charging mode. By contrast,
the charging periods are distributed in the valley-load and

flat-load intervals, which contribute to the peak-shaving and
valley-filling function.

The indices regarding the assessment system for ADN
performance are shown in TABLE 2. After the coordinated
EV charging scheduling, the EV customers’ satisfaction level
is notably enhanced with lower charging cost and higher
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FIGURE 4. Topology of the modified IEEE 33-bus test system.

fully-charged ratio. Also, the daily load curve is more
smoothing, which is consistent with the equivalent load curve
standard deviation.

B. CONTROLLABLE DG AND NETWORK TOPOLOGY
OPTIMIZATION
In this stage, the total load consists of the initial load and the
EV load after the optimization in Stage A. Assume that three
microturbines are connected to bus 12, 23, and 31, respec-
tively. Also, #1-#32 are normal switches and #33∼#37 are tie
switches, locations of the switches can be seen in Appendix.
The switch status, outputs of eachmicroturbine, and qualified
voltage ratio are listed in TABLE 3, TABLE 4, and TABLE 5,
respectively.

TABLE 2. Satisfaction level of EV customer and equivalent load curve
standard deviation in different charging modes.

It can be observed that three network reconfigurations
happen at time 11, 17, and 20, respectively, when the grid
load surges. It indicates that reconfiguration process is likely
to be implemented at these peak-load hours. In addition, the
microturbines act at time 10, and 14∼21, providing a com-
plementary support on the ADN performance. Also, except
for the values of qualified voltage ratio at time 20 and 21,
the others are equal to 100% after the optimization in Stage B.
Besides, the relative indices in terms of the ADNperformance
assessment system are shown in TABLE 6. It is obviously that
all the listed indices (except of the switch operation cost) are
improved.

C. CONTROLLABLE LOAD OPTIMIZATION
It is worth noting that values of the qualified voltage ratio at
time 20 and 21 are still less than 100% after the aforemen-
tioned two-stage optimization. Thus, the controllable load
optimization is simulated in the third stage. Assume that both

FIGURE 5. The status of EV charging stations in different charging scheduling modes. (a) C0. (b) C1. (c) C2. (d) C3.
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TABLE 3. The status of switch and network reconfiguration.

TABLE 4. Outputs of microturbines.

FIGURE 6. The comparison of daily load curves with different EV charging
modes.

the EV load and interruptible load are the controllable load
sources and the load shedding process is prior to be imple-
mented on the EV load. After temporarily shutting down all
the charging piles at time 20 and 21, the total loads decrease
during this period, as shown in Fig. 7. However, values of
the qualified voltage ratio remain unchanged. Then, with the
interruptible load shedding, this index increases from 90.91%
to 100%. The shedding loads at time 20 and 21 are 269.82 kW
and 440.71 kW, respectively.

FIGURE 7. The daily load curve with EV load shedding.

D. COMPREHENSIVE EVALUATION FOR ADN
PERFORMANCE
According to the proposed assessment method, the indices
after the multi-stage optimal scheduling are listed in
TABLE 7.

In terms of active controllability, the average qualified
voltage ratio increases from 82.7% to 100% and the average
primary line load ratio decreases from 41.57% to 38.32%
after the initial network is reconfigured and the controllable
load is dispatched. In addition, from the perspective of
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TABLE 5. Qualified voltage ratio before/after stage B.

TABLE 6. The comparison of indices before/after stage B.

active manageability, the EV customers’ satisfaction level is
enhanced, along with the daily load curve being smoothed
with the help of coordinated EV charging strategy and over-
load shedding. Also, the cost regarding the active economy
are significantly lowered: 1) distribution system loss cost
decreased from 3309.06 CNY to 2118.66 CNY, 2) power
source integration cost decreased from 44771.85 CNY to
43797.34 CNY, and 3) environmental pollution penalty
decreased from 1691.43 to 1606.03 CNY.

V. CONCLUSION
In this paper, a multi-stage optimization approach for ADN
scheduling considering coordinated EV charging strategy
is proposed. First, an assessment system for ADN per-
formance is established from the perspective of active
controllability, active manageability, and active economy.
Second, the multi-stage ADN scheduling approach inte-
grates the optimization of coordinated EV charging schedul-
ing, controllable DG, network topology, and controllable
load, providing an adjustable dispatch scheme based on the
ADN performance assessment system. Finally, the multi-
stage optimization process is simulated and quantitative
assessment for ADN performance is demonstrated with case
studies.

From the work presented in this paper, the following con-
clusions can be made:

1) The coordinated EV charging strategy has a notably
ameliorative impact on EV customers’ satisfaction level.
Meanwhile, it contributes to the function of peak shaving
and valley filling, especially when intermittent sources are
connected into the power grid.

2) The ADN performance assessment system is able to
provide a quantitative analysis on the active controllability,
active manageability, and active economy, which can serve
as a comprehensive criterion of ADN scheduling.

TABLE 7. The indices regarding the assessment system for ADN performance.
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TABLE 8. The probabilistic parameters regarding EV’s charging time.

TABLE 9. The Time-of-Use (TOU) price for EV charging.

TABLE 10. Test system parameters.

TABLE 11. Locations of the switches in the modified IEEE 33-Bus test system.

3) By cooperating with the ADN performance assessment
system, the multi-stage optimization approach is able to
adequately coordinate the scheduling of ADN’s source-side,
network-side, and demand-side.

As future work, we plan to extend the proposed EV dis-
patch model to incorporate the impact of participation in
the V2G smart grid activities, combining with the battery
degradation characteristics. Another important extension is
incorporating the spatial uncertainties of the EV load demand
into our framework, through establishing a probabilistic
EV loadmodel considering both the distribution of assembled

EV charging piles and the electric range of EV. We also
consider adding energy storage deployments in the proposed
ADN framework to cooperate with other DERs.
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