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ABSTRACT The impressive evolution of the Internet of Things and the great amount of data flowing
through the systems provide us with an inspiring scenario for Big Data analytics and advantageous
real-time context-aware predictions and smart decision-making. However, this requires a scalable system
for constant streaming processing, also provided with the ability of decision-making and action taking based
on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time
context-aware actions based on predictive streaming processing of data as an evolution of a previously
provided event-driven service-oriented architecture which already permitted the context-aware detection
and notification of relevant data. For this purpose, we have defined and implemented a microservice-based
architecture which provides real-time context-aware actions based on predictive streaming processing of
data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been
supplied with reliable predictions through the use of predictive analytics and complex event processing
techniques, which permit the notification of relevant context-aware information ahead of time. On the other,
it has been refactored towards a microservice architecture pattern, highly improving its maintenance and
evolution. The architecture performance has been evaluated with an air quality case study.

INDEX TERMS Context awareness, context-aware services, service-oriented architecture, decision making,
microservice architecture.

I. INTRODUCTION
The impressive evolution of the Internet of Things (IoT)
over the last years has strongly favored the provision of
information by multiple sensors and other devices connected
to the Internet; not only that, all the information flowing
through the Internet is considered useful and relevant for
multiple domains. This way, the amount of generated data is
huge. As a result, the Big Data term is coined: Big Data [1]
refers to a large amount of heterogeneous data which flow
along the information systems and are analyzed with the
aim of improving decision-making in the domain in ques-
tion [2]. However, the amount of data generated in this
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scope is so huge, and it is generated so fast, that a constant
streaming processing is required so as to obtain real-time
relevant information to actually improve our business
decision-making.

Additionally, such an amount of useful information has
fostered an interest in context-aware applications [3]. These
gather user contexts in order to adapt their behavior to their
users’ needs and situations. The great benefit is that context-
aware applications can adapt and particularize this informa-
tion to the users’ context, through smart decision-making,
definitely improving user experience. Context awareness has
become a fundamental requirement for software engineer-
ing indeed, as highlighted by the European Union, which
identifies research and development for context-aware IoT
computation as an Horizon 2020 challenge [4].
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Based on such a scenario, in the past we proposed
CARED-SOA (Context-Aware Event-Driven Service-
Oriented Architecture), a holistic architecture which per-
mits dealing with context awareness in Service-Oriented
Architecture (SOA), providing the means for context dealing
from reception to delivery of personalized context-aware
services [5], [6].

However, such an architecture is not enough to build a
completely functional system in many predictive scopes.
Moreover, there are some scenarios which require an action
that cannot be taken once the situation has occurred. For
instance, if the goal of the system is to prevent natural dis-
asters, it is useless to make the detection when the disaster
is already happening. For such scenarios, it is necessary to
detect the situations in advance, that is, to be able to predict
them. Predictive analytics (PA) optimizes the IoT’s value in
several scopes and domains: for instance, it favors increasing
productivity and efficiency of predictive maintenance in a
production environment, it permits automating decisions and
improves decision-making to minimize risks, avoid errors
and increase revenues in several domains, it can prevent
health issues and further damages due to natural disasters,
and so on and so forth. However, monolithic traditional PA
systems [7], [8] present several drawbacks: first of all, they
are usually designed to cover a single task, therefore if the
goal changes it is usually necessary to design a completely
new system. Additionally, they are difficult to evolve since
they focus on a specific function and changing any small
feature usually means rebuilding and redeploying the whole
system; besides, the system is usually highly coupled, lacking
a good modular structure, thus if any system component fails
it is very difficult to replace it without modifying other com-
ponents. Moreover, when we need to scale any of the mod-
ules, the whole system must be scaled [9]. Hence, in order to
address this issue our first research question is:

RQ1: Is it possible to evolve our previously proposed
CARED-SOA architecture from real-time context-aware
detection to prediction of situations of interest in the IoT by
enriching the architecture with PA?

CARED-SOA is founded on an Event-Driven Service-
Oriented Architecture (ED-SOA or SOA 2.0) [10] through
the use of Complex Event Processing (CEP) [11] technol-
ogy (see [5] for further details on CARED-SOA). There
are several approaches which aim at integrating CEP with
PA [12], [13]; however, one of the key challenges in this
scope is to maintain reasonably efficient processing [14].
On the other hand, although some approaches have explored
the potential of CEP in the scope of context-aware IoT appli-
cations [15], [16], to the best of our knowledge no current
approach integrates PA in such a field [17].

Thus, due to the existence of previous approaches integrat-
ing CEP and PA successfully, on the one hand, and context
awareness and CEP on the other, we firmly believe that
we can evolve and enhance our mature CARED-SOA with
context-aware predictive functionalities towards a new archi-
tecture, Predictive CARED-SOA. This architecture, which

will be the main contribution of this paper, would permit
to adapt application behavior to the context predictively and
reactively, through the use of several distributed components
and making use of (1) PA for predictions and (2) CEP for
smart decision-making.

Indeed, CEP and PA are very different technologies: with
CEP, it is possible to design automatic decision-making for
situations which are currently happening, whereas PA allows
us to build systems that are able to learn in time. The lat-
ter are frequently used for forecast, classification or recom-
mendation making. Despite the differences between these
technologies, they could be considered as complementary
technologies by integrating them in order to build a sys-
tem with a combined functionality: a system able to predict
situations that will happen in the future and make smart
context-aware decisions depending on these predictions. This
way, it would be possible to have a system which responds to
situations beforehand. Facing the design and implementation
of such a system leads us to the second research question.

RQ2:Would it be beneficial to evolve CARED-SOA archi-
tecture to a microservices architecture model?

Even though the design and development of amicroservice-
based application has some challenges, mainly due to having
multiple distributed independent components, there is no
doubt about its advantages in terms of loose coupling and
scalability of the architectures which these applications are
able to build [18]. Particularly, having the system split into
independent units of software with a clearly defined function-
ality as well as being able to send messages means that such
units are easy to replace, autonomously developed, indepen-
dently deployable, decentralized and built and released with
automated processes [9].

Given the intrinsically distributed nature of context-aware
IoT systems in general, and CARED-SOA in particular,
we strongly believe that evolving our architecture towards
a model based on the microservice pattern would provide
additional advantages to it. Even though in the scope of
microservice architectures, it is often the case that each
service exposes a REST Application Programming Inter-
face (API) and consumes other services’ APIs, we also find
asynchronous message-based communications among dif-
ferent services composing the system. In our event-driven
scenario, some microservices publish events and others sub-
scribe to them through a message broker. This, together with
the feature of deploying each microservice independently,
will facilitate the architecture’s scalability, maintenance and
evolution. Besides, scalability and elasticity are both key
aspects in the IoT domain [19], which are definitely facili-
tated when using a microservice architecture [20].

Therefore, the main contributions of this paper in rela-
tion to our previously proposed architecture CARED-SOA
are, on the one hand, the migration of the full monolithic
architecture to a micro-service based one, with the inherent
advantages just mentioned. For this purpose, it will be neces-
sary to extract the context broker, the notification system and
the system REST services from the monolithic architecture
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to decouple them from the Enterprise Service Bus (ESB),
ensuring that communications are established according to
the micro-service paradigm and guaranteeing that the system
continues to respond efficiently. On the other hand, the sec-
ond main contribution of this paper is the ease of integrating
PA into the evolved CARED-SOA, through the integration of
a prediction module, adaptable to different models, without
the need to adapt or modify the rest of the components of the
detection architecture. This way, if we design our detection
architecture in any IoT domain following this paper’s pro-
posal, we can extend it with any prediction model, according
to arising needs without costs of evolution for the existing
architecture. It is not the aim of this paper to provide new pre-
diction algorithms neither compare several PA techniques, but
to provide an appropriate and efficient software architecture,
which can be integrated with several PA models to improve
smart decision-making in IoT domains.

To illustrate how prediction is integrated into the architec-
ture and evaluate the performance of the new micro-service
architecture, we extended our air quality detection and warn-
ing case study to illustrate the novel CARED-SOA architec-
ture, to now predict the different levels of air quality for each
pollutant and location and notify users of potential health
risks based on their specific context.

The rest of the paper is organized as follows. Background
information is explained in Section II and Section III exam-
ines related work in the literature. Afterwards, Section IV
describes the proposed architecture. Then, the prediction
module is detailed in Section V. Finally, performed eval-
uation is presented in Section VI, the proposed architec-
ture and research question findings are further discussed in
Section VII, and conclusions and future work are outlined in
Section VIII.

II. BACKGROUND
In this section, we introducemicroservice architecture pattern
as well as Big Data streaming processing.

A. MICROSERVICE ARCHITECTURE PATTERN
Microservice architecture pattern emerges as an alternative
for monolithic architectures and applications [21], which are
difficult to maintain and evolve due to the high coupling
among their components. The mentioned pattern proposes
splitting applications into small interconnected services [22].
Currently, Richardson [23] provides 44 patterns for microser-
vices architecture. In the following paragraphs we summarize
the key patterns for the architecture proposed in this paper.

The Microservice Architecture Core pattern is based on
the need of having a server-side, which might have several
different clients and might require to expose an API for third-
party consumers. Such a server side will probably have the
need to integrate with other applications and require access
to databases in order to develop the business logic.

The pattern proposed solution is an architecture with
a set of loosely coupled collaborating services. Each ser-
vice should implement an identified function of the server

application and should have access to its own database.
Besides, the communications between services should be
based onHTTP/REST synchronous requests or asynchronous
message queueing protocols. Each service should be designed
to allow independent development and deployment.

If we have followed the previously explained pattern for
core microservice architecture, we will have identified and
implemented a set of independent services, according to the
Single Service Instance per Host pattern.

In such a case, we can benefit from the chance of deploying
them independently in different hosts with the advantage of
enhancing throughput and availability.

Once we have identified and implemented a set of
independent services, we will need to (1) let the clients to
communicate with such services and (2) allow inter-process
communication between services. These requirements can be
satisfied by using theMessaging pattern.
Using message communication patterns, such as request/

reply, notifications or publish/subscribe, we will obtain a
loose coupling architecture with an improved availability
thanks to the use of the message broker buffer mechanism.

The Remote Procedure Invocation (RPI) pattern is an alter-
native for both the communications between the client and the
offered services and for the inter-process one.

Several RPI technologies can be used, being REST one of
the more often used. The main benefit of using such a pattern
is the facility for request/reply protocol implementation keep-
ing the latest simple and avoiding the need to use an inter-
mediate broker. The decision between a messaging broker or
an RPI will depend on the commitment of availability versus
simplicity according to our project requirements.

B. BIG DATA STREAMING PROCESSING
As previously mentioned, big data produces a huge and fast
amount of data, which requires a constant streaming pro-
cessing. Among others, stream processing provides us with
the following advantages: increasing available real-time data,
extracting actionable intelligence as well as smart acting on
real-time. Therefore, traditional data processing infrastruc-
tures are limited to conducting real-time data processing.

There are several alternatives for big data processing, but
among them Hadoop [24] has taken great relevance [25].
Apache Hadoop is an open source project that integrates a
set of tools that make it ideal for working with large amounts
of data. Besides, Hadoop has the ability to be distributed in a
heterogeneous cluster of machines, allowing for economical
use. One further advantage of Hadoop is the integration of
additional tools: on the one hand, Hadoop Distributed File
System (HDFS) allows a distributed storage of information
known by all the nodes taking part of the system; on the
other hand, Hadoop integrates MapReduce tools that permit
information parallel processing, providing the user with the
ability to design their applications in different programming
languages. In fact, one of the main advantage of the ecosys-
tem created by Hadoop is preventing the developer from
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having to code manually the tasks for information parallel
processing.

In 2012, a new approach for data processing was devel-
oped under the Yet Another Resource Negotiator (YARN)
project [26]. It is the evolution of MapReduce to a new way
of working that divides the work of the JobTracker into two
new tasks: (1) the ResourceManager is in charge of resources
self-management in its multiple nodes and (2) the Appli-
cation Master is responsible for negotiating resources with
the Resource Manager, regardless of the resources managed
by the Node Manager. YARN enables Hadoop to support
more varied processing approaches as well as a wider range
of applications. As an example, Hadoop clusters can now
run interactive queries and data application transmissions
simultaneously with MapReduce batch jobs.

It is noteworthy that Hadoop was originally designed for
batch data processing but not for real-time one, since it has
a high latency because of read/write operations. In partic-
ular, Hadoop works primarily with the disk, performing all
read/write functions on HDFS, what results in a decrease
in the speed for information processing. To face this lim-
itation, new tools for working with real-time large vol-
umes of data were made available for its integration with
Hadoop, such as Storm. TheApache Storm project is a system
designed to retrieve real-time data streams from multiple
sources in a distributed, fault-tolerant, and highly available
manner. Moreover, Hadoop can be integrated with other
reliable and efficient CEP engines, as we will see in this
paper.

Even more, a new platform focused on distributed
in-memory data analysis in the field of data science is Apache
Spark [27]. One of the main advantages of Spark is the use of
Resilient DistributedDatasets (RDD). RDDs are ideal for par-
allel operators of computer pipelines and are, by definition,
immutable, making Spark a unique form of fault tolerance.
Any work designed to be run on Hadoop can also be started
up with Spark, but considering the memory requirements
available on the system. Note that a job executed with Spark
can be up to 100 times faster than the same job executed with
Hadoop.

As described above, Apache Spark allows us to process
information faster since the work is done in memory, rather
than on disk. This is a noteworthy advantage in this ecosystem
where the fundamental idea is the abstraction of the user from
the data with which he works. Indeed, thanks to the use of
the tool Spark SQL [28], we can take great advantage of
Spark’s strengths and the project’s abstraction philosophy as
we explain in the following lines. In a big data system, we find
structured and semi-structured data, which makes it difficult
to process as a whole. By using the so-called DataFrames
provided by Spark SQL, the user benefits from the structured
data processing logic, allowing the management of data from
different sources as structured data, similarly to having them
in a relational database table. Spark SQL has three main
capabilities for processing structured and semi-structured
data: (1) dataframe abstraction in different languages, such

as Python, Java and Scala; (2) data processing from different
sources, such as JSON,Hive Tables, Cassandra; and (3) work-
ing with data using traditional SQL connectors, such as
JDBC/ODBC.

Additionally, another tool used for real-time data process-
ing is Apache Spark Streaming [29]. This tool works in
conjunction with Spark and provides continuous data pro-
cessing capability. That way, Spark Streaming can process
both real-time data from a wide range of sources (streams
frommessage brokers, and sensors and devices connected via
TCP sockets), and data stored on file systems, such as HDFS
or Amazon S3. Moreover, Spark Streaming can process data
using a variety of algorithms and high-level functions such
as map, reduce, join and window [30]. Even more, there are
plenty of libraries for analyzing time series data, such as
Spark-TS. In particular, this library helps developer to focus
on the business processes, rather than on the algorithm imple-
mentation. Once processed, the data is sent to file systems
(being data saved as files) or to real-time dashboards. So, the
integration of Apache Hadoop together with Spark Streaming
becomes a perfect candidate for applying PA algorithms in
streaming processing [25].

III. RELATED WORK
The study of time series allows us to analyze a given situation
or a set of situations over time. Currently, this study can be
performed on a large number of IoT domains by sensing
the device. The Big Data boom allows us to analyze a large
amount of data, but classical techniques do not permit the
analysis of such amounts of information we can generate
today in the IoT, so we are forced to implement new methods
of processing these data, among which are the type of data
presented in this paper, the time series. The study of time
series is based on models such as ARIMA, ARIMAX, Expo-
nential Weighted Moving Average, Holt-Winters method,
GRACH and ARGRACH. This new demand gives rise to
a significant number of libraries that can be integrated into
Apache Spark, such as Econometrics [31], Pandas, Mat-
lab, R’s zoo and xts packages [32], ChronixDB [33] and
FLINT [34], [35]. Thus, these libraries allow the analysis of
time series through Apache Spark, using the classic models
under the Big Data paradigm. Many researchers have used
these models and libraries to solve problems in which it is
necessary to analyze time series. For example, in [36] the
authors study the financial problem in data from the National
Stock Exchange of India (NSE) for a period of one year,
using ARMA, ARIMA, ARCH and GARCH models, using
Apache Spark for processing. Works such as [37] predict
traffic flow through time series with Spark and in others, such
as in [38], the authors work with time series related to health
care data. However, most of the literature we find are limited
to the analysis of time series, but do not provide an archi-
tecture that integrates the entire flow of data from sending
the data from the IoT to providing a result to the user or
interested entity. Indeed, it is not easy to find publications that
cover all areas of our proposal: CEP and streaming data, PA,
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context-awareness, and microservices in the scope of the IoT.
For this reason, we are going to analyze papers in which at
least 2 of the most relevant technologies or domains of the
article converge.

Recently, some works have been proposed in order to ben-
efit from the integration of CEP and PA. Krumeich et al. [39]
highlight the advantages of using CEP together with PA in
the industry. Additionally, Flouris et al. [14] emphasize the
efficiency of such a combination. Nevertheless, both studies
are very theoretical, and they fail to propose a particular archi-
tecture to combine CEP and PA. Taher and Zeitouni et al. [40]
describe a framework named autoCEP, which is used to
build CEP patterns in a predictive way by using time series;
again, they do not present a full architecture which inte-
grates CEP with PA. The same authors have extended their
previous work by combining the autoCEP and the Butterfly
frameworks to build a system that allows us to make early
predictions of security violations during the transport of art
works [41]. While predictions are made uniquely during the
CEP process in that work, in our proposal predictions take
place before this process, so these predictions feed the events
stream income in the CEP engine, therefore enriching the
decision-making process in real time. Moreover, there are
other proposals that implement the integration of PA and CEP
separately. Christ et al. [42] implement the PA component
by using conditional density estimations applied to the steel
manufacturing, while Wang et al. [43] make use of Bayesian
Networks and Akbar et al. [12], [44] use adaptive moving
window regression, both applied to road traffic. The main
difference between these approaches and our proposal is that
we propose a flexible and scalable architecture distributed
over multiple machines in which each component is respon-
sible for a specific task. This architecture design, therefore,
allows us to customize every part of the system and keep
them uncoupled, facilitating the system’s maintenance and
evolution. In addition, we use the Autoregressive Integrated
Moving Average (ARIMA) prediction model [45], which is
not used in any of the mentioned approaches. ARIMA works
adequately with time series, making real-time predictions
reliable.

On the other hand, there are works that make predictions
based on context awareness. Xia and Tinjie [46] make use
of the Hidden Markov Model to predict business informa-
tion, and Zhao et al. [47] use the same model to predict
antibody-specified epitopes. In addition, Xin et al. [48] pro-
pose a framework, which is based on location context and
user preferences, to predict demanded services such as hotel
reservations, while Chuang et al. [49] have built a method to
predict learning situations. Even though all of these proposals
make predictions using information from the environment,
such as the location or the learning environment, none of them
uses the predicted information to automatically make deci-
sions or take action. Moreover, these works do not describe
the physical architecture supporting the proposed method.
Remarkably, these limitations are overcome in our architec-
ture’s proposal.

Distributed computing of data for the IoT is yet a field
with open research challenges and opportunities [50], [51];
even though many proposals focus on how to process data in
the fog/edge [52], there is still a clear need for processing
IoT big data streams, which cannot be dealt with in the
fog [53], [54]. Isah and Zulkernine [54] propose a scalable
framework for data stream ingestion that feeds the data arriv-
ing at the server to Spark streaming through the Nifi-Kafka
data ingestion software and sends the processed data into
the message queue for subscription by the clients. However,
event prediction is not addressed in this work. While they
make use of Nifi-Kafka software, we use a message broker
service connected to both the microservice component for
event detection and the microservice component for event
prediction. On the one hand, the event detection compo-
nent, through an ESB, is in charge of homogenizing raw
data into a common format required by the CEP engine.
On the other, the event prediction component is capable of
sending prediction events to the CEP engine, through the
message broker service, thus improving the decision-making
process in real time. Similarly to our approach, Truong [55]
proposes an architecture that makes use of a message bro-
ker as the gateway between the sensor data and the predic-
tive analytics module, but it only focuses on prediction and
not on its combination with real-time pattern detection and
is not based on a microservice architecture. In contrast to
Isah and Zulkernine’s work, Truong’s architecture includes
an Apache Nifi software inside the predictive analytics mod-
ule and not as the gateway between sensor data and the
processing module. Also, the work from Bashir et al. presents
an IoT data analysis framework (IBDA) [56] which deals with
the storage and analysis of real-time data generated by IoT
sensors in intelligent buildings through the use of Apache
Spark and Apache Flume. However, this work only focuses
on detecting events of interest and does not integrate any
prediction algorithm.

When focusing on microservices for the IoT, we find
several relevant works. For instance, Butzin et al. [57] ana-
lyze the advantages of using a microservice architecture
in the field of the IoT versus a monolithic architecture
and propose the most useful microservices pattern in such
a scope. Also, in [58] a microservice-based approach to
support service scalability, modularity, and reusability web
objects in the IoT environment is proposed. The proposal
from Krylovskiy et al. [59] is also of great interest, where
microservice architecture is put forward as the architec-
tural style to design a Smart City IoT platform. This work
is still in its early stages, but they plan to include a
context-awareness module and discuss the main advantages
of basing the architecture in the microservice style. The work
from Sun et al. [60] also deserves a special mention. They
propose a new microservice IoT framework that improves
features from other existing ones; we can highlight they
contemplate the inclusion of a machine learning and artifi-
cial intelligence module in the proposed framework, but the
proposal is still in the early stages of design.
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FIGURE 1. Predictive CARED-SOA architecture.

Therefore, we can wrap up this section with two main
conclusions: on the one hand, the topic we are dealing with in
this paper is of great interest and there are several approaches
that tackle it from different perspectives, although these are
incomplete from our point of view as they do not contemplate
the basic axes of our proposal in an all-in-one solution —
event pattern detection, real time prediction, context aware-
ness and a microservices architecture— with the advantages
that these entail. On the other hand, most of the existing
proposals are at an incipient stage of development, remaining
inmost cases at the architecture design stage; not surprisingly,
Roda et al. report the lack of empirical evaluation in existing
proposals for microservice architectures [17], which we do
face in this article.

IV. ARCHITECTURE
In this section, we describe the architecture proposed to face
the previously motivated challenge and research questions.

A. ARCHITECTURE REQUIREMENTS
In order to build a real-time context-aware microservice
architecture for smart PA, the following essential architec-
tural requirements and functionalities must be fulfilled:

1. Being able to process a huge amount of heterogeneous
data very fast in order to make useful predictions in
time.

2. Facilitating the detection of potentially dangerous sit-
uations for a particular domain depending on these
predictions.

3. Providing a way to automatically make smart decisions
and send alert notifications to end users.

Designing the architecture in a distributed way to make it
scalable, extensible, maintainable and reusable.

B. ARCHITECTURE COMPONENTS AND MICROSERVICES
We propose a decoupled and reusable architecture based on
the microservice architecture pattern that fulfils all the estab-
lished requirements [61]. It is noteworthy that while small
services are preferable, we always have to bear in mind that
the main purpose is to decompose the architecture to facilitate
its development and deployment, and the grain of the services
might be finer or grosser depending on the architecture spe-
cific requirements [22]. This architecture is composed of the
following independent services and additional components
(see Figure 1):

1. Sensors. There are several domain-specific physical or
virtual sensors in different locations (virtual sensors
are data sources for a particular domain, even though
they do come directly from a physical sensor). The
measurements provided by the sensors are sent to a
message queue in a message broker located in a ded-
icated server, so that such measurements can feed the
prediction algorithm.

2. Message Broker Service. Message brokers implement
an asynchronous mechanism which allows source and
target messages to be completely decoupled, as well
as allowing the messages to be stored in the broker
until they can be processed by the target element.
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These brokers may use standard message queues or be
combined with a publish/subscribe mechanism. In our
architecture, we implemented a publish/subscribe
mechanismwith 2 subscribers: a predictionmodule and
an ESB, both of which will be later explained. Sharing
the data by using a message broker microservice allows
us to easily include and remove components in a decou-
pled way, without forcing the data provider to have
to adapt to different communication protocols or data
format depending on whether the data will be used for
detection and/or prediction. This way, we have a single
entry to the system, simplifying the submission of data
to it and its integration with possible new modules
which might be added depending on arising needs.

3. Domain Database. The domain database provides his-
torical data of sensor measurements, values for made
predictions and values for detected complex events.

4. Context Database. The context database stores infor-
mation about users and their contexts and subscrip-
tions, as well as recommendations according to the
domain and contexts.

5. Domain REST Service. The domain REST service
provides an API. In particular, this API facilitates
accessing to information such as current, predicted or
historical sensed values. The domain REST service
accesses the domain database.

6. Context REST Service. The context REST service
provides an API which users can use to interact with
the system. The REST service makes recommenda-
tions according to the domain and context. The context
REST service accesses the context database. This way,
when the user fills in his/her personal data and/or the
app detects the location or physical activity, such con-
text information is submitted to the server-side through
a request to the context REST service, transparently to
the user. Further details on such a service and the types
of contexts dealt with by it can be found at [6]. Simi-
larly, when an alert is detected on the server, a request
is made to the context service to provide the user with
the most appropriate recommendations based on such
an alert, depending on the user context.

7. Prediction Module Service. This is one of the most
important components of the architecture. This service
is in charge of analyzing the data received from the sen-
sors through the message queue and processing them
to predict future data. It stores and obtains informa-
tion from the domain database, through the domain
service, to read the historical data stored in order to
enrich the model. It is also connected to the message
broker service to receive the streaming data from the
sensors in real time, then it uses these data to build
the prediction model. In the case study proposed in
this paper, we have implemented and tested the archi-
tecture with an ARIMA prediction model, since it is
a suitable model for time series as is the case here.
Once predictions are obtained, they are submitted to

a second message queue to which the ESB is also
subscribed. This module and the ARIMA prediction
model are further explained in Section V. As we can see
in Figure 1, the remaining elements were part of our
CARED-SOA architecture. We briefly describe them
below; further details can be found at [5].

8. Enterprise Service Bus. In CARED-SOA, the ESB
processes the information received from the sensors
in order to detect situations of interest. In this work,
the ESB also receives the data predicted in the predic-
tion module through subscribing to the corresponding
message queue. The data in the ESB follows the same
process as in CARED-SOA: data are transformed in the
required format, stored in the database, processed by
the CEP engine and, in case of alert detection, notified
to the user through a mobile notification.

9. CEP Engine. By using CEP, we can analyze and cor-
relate huge amounts of data which flow through infor-
mation systems in real time. Through the definition
of event patterns, we specify the conditions to be met
in order to detect situations of interest for a particular
domain based on some input data events.

10. Context Broker Service. The context broker service,
based on the alerts detected in the ESB and the con-
text information available in the context database, will
determine which notifications are to be sent to reg-
istered users. The context broker service is separated
from the Context Rest Service to facilitate its extension
to provide notifications to other services, not only to
Firebase, such as a dashboard and an actuator. Further
details about the context broker can be found at [5].

11. Mobile Notification Service. A notification service is
invoked in order to alert users subscribed through a
mobile notification.

12. Mobile App. We have implemented a mobile client
with a twofold functionality: firstly, the user can check
current sensed data or other relevant domain data,
such as domain recommendations depending of the
user’s personal context, etcetera, through the invoca-
tion of the domain REST service from the app. Sec-
ondly, they can receive context-aware detected domain
alerts in form of notifications, as well as predicted
ones.

Regarding the particular technologies, we have imple-
mented the system using ActiveMQmessage broker, MySQL
database, JAX-RS REST services deployed in an Apache
Tomcat server, Apache Hadoop and Apache Spark for the
prediction module, Mule ESB, Esper CEP engine, Firebase
Notification Service and Android mobile application. Thus,
Apache Spark —used for predictive analytics— and Esper
CEP —for real time pattern detection— are complementary.

C. COMPONENT INTEGRATION AND COMMUNICATION
Please note that for the prediction module to make accurate
predictions it is necessary to train the PA model. If we do
not have domain real data in advance, the module has to be
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trained for a period of time with the domain data reaching
the architecture in real time; however, if we have historical
data from the domain in question, we can train the prediction
module in advance and have it ready to predict from the
system start-up. This is why we represented the connection
of the prediction module with the database service with a
dotted line in Figure 1, since it reads the historical data once
in order to enrich the model. If there are enough data to train
the model, it is trained, otherwise it will be trainer later. When
this step is completed, the predictionmodule subscribes to the
message queue where the sensors are sending current sensed
data. At the same time, the ESB subscribes to the message
queue where the predicted data will be sent, and the CEP
engine registers the defined patterns to be detected. Then,
the system remains waiting for the inputs and the following
steps, identified in Figure 1, are executed:

a) Once the system is started, data from the sensor
measurements are constantly received in the message
queue.

b) Then, the prediction module (see Section V), which is
connected in streaming to the message queue, receives
the data immediately and the system starts to make
predictions.

c) When the systemmakes a prediction, it sends predicted
data to a second message queue.

d) The ESB connected to the message broker receives the
data immediately from both message queues (our focus
in this paper is on the predicted data message queue).

e) Such data are sent to the database server for inclusion
in the historical database with predictions.

f) The data are transformed into the appropriate event for-
mat to be processed by the CEP engine and submitted to
the mentioned engine. The CEP engine processes such
data and detects if any of the complex events described
by the implemented patterns is triggered.

g) When an alert pattern is detected, it is both (g1) stored
through the domain server in the domain database and
(g2) sent to the context broker service.

h) Once the context broker receives an alert from the
ESB, it checks in the context database, through the
context REST service, which notifications have to be
sent according to the alert and user contexts.

i) With such information, a notification is created and
posted from the context broker to the mobile notifica-
tion service.

j) The mobile notification service sends the correspond-
ing notifications, to the system’s registered users with
the mobile app installed in their devices.

At any time, in parallel, the REST public services can be
invoked from the mobile app or from other clients

k) To allow users to know domain values and
l) To subscribe to several topics in order to receive noti-

fications informing users about values and predictions
for the domain in question, when appropriate.

Let us remember that this architecture is an evolution and
enhancement of CARED-SOA [5]. CARED-SOA receives

FIGURE 2. Comparison of CARED-SOA and predictive CARED-SOA.

sensing data, can detect alerts in real time by using the CEP
technology, and is able to send context-aware notifications as
shown in the left-hand side of Figure 2. However, Predictive
CARED-SOA receives sensing and historical data, thanks to
which it can predict future data by using PA. Then, based
on several predicted future data, it can predict more complex
alerts by using CEP and finally notify context-aware predic-
tions, as shown in the right-hand side of Figure 2.

V. PREDICTION MODULE
In this section, we will firstly explain the internal logical
architecture of the prediction module and secondly the PA
model used for the predictions.

A. PREDICTION MODULE ARCHITECTURE
AND TECHNOLOGIES
The prediction module has to be fast enough to make the
predictions in real time, as well as being scalable and
fault-tolerant. For these reasons, we decided to implement
the module in a distributed way by using the following
two frameworks: Hadoop [24] and Spark [27] with Spark
Streaming [29].

Figure 3 shows a diagram describing how Hadoop and
Spark work together in the system through the master-slave
paradigm. While Hadoop offers many features for distributed
systems, we essentially used one of them: YARN for resource
distribution (memory assignation and permission manage-
ment); HDFS was not necessary in this case since we kept
all the data in memory. To summarize, Hadoop has been
used to build the base of the distributed system, controlling
the resources and facilitating communications between the
master node and the slave ones.

Spark is the executor that processes the different tasks in
the distributed system, i.e. it is in charge of database readings
making use of SparkSQL, of message queues connections
using Spark Streaming and of data processing such as training
of the learning model and predictions with Spark TS [62].
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FIGURE 3. Prediction module architecture.

Although Hadoop has its own executors, we decided to use
Spark because, as previously explained, it provides additional
useful tools [63] and its processing speed is higher than with
Hadoop alone [64], [65].

B. PREDICTION MODEL
Depending on the particular application domain, different
prediction models can be more or less efficient. In order to
check how the system behaved, we focused on an extension
of the specific case study presented in [5] with CARED-SOA.
This case study deals with detecting air quality alerts based
on pollutant measurements. As explained in [5], [6], the alerts
are based on the different pollutant concentration levels: each
pollutant concentration, depending on the measured value,
is classified into different levels depending on the reference
index used (for instance, good, moderate, unhealthy and very
unhealthy, according to the Andalusian local government
index [66]). The case study has been extended by predict-
ing the different levels for the most relevant pollutants and
notifying users of the expected air quality levels which are
dangerous to their health based on their particular context.

In particular, we used the measurements taken by the
Andalusian local government’s air sensor network. Every net-
work station may measure more or fewer pollutants depend-
ing on the particularities of the geographical area where the
station in question is located. We will only focus on the
most common pollutants Carbon Monoxide (CO), Nitrogen
Dioxide (NO2), Ozone (O3), Particulate Matters (PM2,5 and
PM10) and Sulphur Dioxide (SO2), even though the sys-
tem can be extended with further pollutants at any time.
The Andalusian regional government provides us with an
on-demand service to receive the whole region’s air pollu-
tant sensing data in our dedicated server every 10 minutes,
which we redirect to the message queue service. Further
details on air quality measurement and classification can be
found at [67].

Therefore, the system’s input data are several pollutant
values measured every ten minutes; that means the system
works with time series; a time series is a sequence of data
taken at successive, equally spaced points in time.

There are several different models that can work with time
series for forecasting, as mentioned in Section III. In this
paper, themodel used for the predictions is ARIMA [68], a PA
model which works appropriately with time series. ARIMA
is composed of three different models that work together
in order to make very reliable predictions: autoregression,
integration and moving average. The main benefit of using
ARIMA is the model’s flexibility. However, ARIMA does
not work properly with non-stationary time series. This is
not a limitation to our work, since the presence of the pol-
lutants analyzed by the system is stationary. In particular, to
measure the seasonality of the data, the Augmented Dickey-
Fuller Test [69]was used; this test returns the so-called
p-value. When very low values are obtained, less than 0.05,
we conclude that the data are stationary, which is our case.

1) AR: AUTOREGRESSION
An autoregressive model describes a process in which every
observation is predictable using the previous observations
in time. The most basic scenario would be using only the
last observation; in this case, the observation Ot could be
calculated from the observation Ot−1 and a constant C , as
shown in (1):

Ot = X1 · Ot−1 + C (1)

In a generic formula, using p order is described by using (2):

Ot = X1 · Ot−1 + X2 · Ot−2 + . . .+ Xp · Ot−p + C (2)

2) I: INTEGRATION
The integration part works with the stationarity of the time
series which is being analyzed. Stationarity can be defined as
the variation of the distribution of the time series. It allows
us to detect if the sequence is cyclic or contains loops.
Stationarity in a range of the sequence from instant t-k to
instant t can be calculated as the division of the covariance
of both observations by the square root of the product of both
variances; as shown in (3):

COV (Ot ,Ot−k)
√
VAR (Ot) · VAR (Ot−k)

(3)

3) MA: MOVING AVERAGE
The moving average models allow us to predict the value of
an observation in an instant from a random variable and the
random variables of the previous observations. These models
are used to minimize other models’ errors due to unexpected
situations. As with the autoregressive models, by using only
the last observation, we could predict the observation Ot ,
using the random variables At and At−1, as shown in (4):

Ot = At − V1 · At−1 (4)

In general, when using p observations the formula is as in (5):

Ot = At − V1 · At−1 − V2 · At−2 − . . .− Vp · At−p (5)
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FIGURE 4. CO real and predicted values for a given week.

VI. EVALUATION
Since former CARED-SOA performance (without predic-
tion) has already been evaluated in [5], [16], in this section,
first of all we pay special attention to evaluating the accu-
racy of the prediction model used in the prediction module
and, then, the prediction module and the full architecture —
Predictive CARED-SOA— performance, separately.

A. PREDICTION MODULE ARCHITECTURE
AND TECHNOLOGIES
As previously explained, we have implemented the archi-
tecture in Figure 1 for the air quality case study and the
ARIMA model has provided us, in the prediction module
(see Figure 3), with the predictions for CO, NO2, O3, PM2.5,
PM10 and SO2 pollutant values for all the Andalusian stations
for the coming 24 hours. With our enhanced architecture we
predict the expected levels of air quality for each pollutant
and location, and users are warned in advance depending on
their context.

In this sub-section, we focus on evaluating the accuracy
of the prediction module. Following well-known Kohavi’s
recommendation we have used a 10-fold cross-validation
technique [53] due to the method’s stability. In particular,
a collection of data composed by 118370 registers provided
by the Andalusian local government from 2014/01/01 to
2016/03/31 was used in the cross-validation technique [53]
using 70% of data for training and the remaining 30% for
validation purposes. Besides, in order to calculate the most
suitable window size for ARIMA history, the error has been
calculated for windows between 1 and 14 days, with 144 sam-
ples per day for each gas, and in each case we have selected
the window with a lower error. The selected windows have
been included in Table 1.

Table 1 shows the prediction absolute error obtained after
testing the system for each pollutant, as well as the value

TABLE 1. Prediction absolute error and range values of each pollutant.

range which the pollutant can take and the standard deviation
of the prediction made. We can observe significant differ-
ences between the errors, since each pollutant has a different
value range. As an example, CO has a wide range with a
minimum registered value of 41 and a maximum of 1541,
whereas SO2 has a small one with a minimum value of 0 and
a maximum of 17. Of course, the error does not only depend
on the range value, but having taken it into account, we can
consider the errors are low enough to regard the predictions as
valid. Further error metrics have been calculated and included
in Appendix. Section A.

In addition, Figure 4 depicts a chart showing CO predic-
tions (continuous line) for a particular station —Mazagon—
for seven days in a week against the real values (dotted line)
of the same pollutant in the same week. We have included
blue/dark shadow when the real value is higher than the
predicted one, and orange/light shadow when the predicted
value is higher than the real one. We can check that both the
real and the predicted values follow the same pattern. Even
though there are some differences (for instance from day 4th
to 6th in Figure 4), the error is not large enough tomake a false
prediction alert, since most of the predicted levels for every
pollutant (good, moderate, unhealthy and very unhealthy)
matched the actual levels at which the measured concentra-
tions were categorized; therefore, the predictions are accurate

183186 VOLUME 7, 2019



G. Ortiz et al.: Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

enough to be taken into consideration. In addition, over a
period of 2 months we monitored the actual and predicted
data measured for pollutants CO, NO2, O3, PM2.5, PM10 and
SO2 in the city of Mazagon (Andalucía, Spain).1 We selected
Mazagon because it provides measurements for the 6 pollu-
tants and it has variability in the levels reached within the
said 2 months. Although it does not provide 144 samples
per day, there are enough daily samples. From these data we
have checked the actual and predicted level of air quality
for each pollutant according to the Andalusian government
index [66] (see Table 6 in Appendix. Section B): the results
have been particularly good for pollutants CO and NO2
(100% success) and perhaps not so good for O3, PM2.5, SO2
and PM10 (48.64 to 93.81 % success). Further analysis on
the predictions can be found in Appendix. Section B. It is
important to remember that in this paper we are not trying
to provide the best prediction model for air quality, but a
software architecture in which we could replace our model
with any other without requiring further changes to the rest of
the architecture. There are already many studies that compare
different predictionmodels appropriate for air quality that can
be taken as reference to choose the most suitable one in each
case, such as the one proposed in [70].

Therefore, now the user can not only receive context-aware
alerts about current air quality values on his/her mobile
device, but also reliable context-aware predictions of air qual-
ity alerts. This way, the user can plan in advance his/her daily
activities based on the predicted air quality alerts for his/her
particular context.

B. PREDICTION MODULE PERFORMANCE EVALUATION
In addition to the prediction accuracy evaluation, we have
conducted a performance evaluation of the prediction module
isolated.

We have tested the performance with two configurations.
In both configurations we have simulated synthetic data with
nITROGEN [71], an Internet of Things RandOm GENera-
tor, which permits fast generation of heterogeneous data in
multiple formats and submits it to several target protocols as
soon as they are generated. In particular, we have generated
the same data used in the described case study together with
the prediction model in Section V.B (air quality data). Every
message is composed of the information of the station (iden-
tifier, data about the location and measurement timestamp)
and different values for every of the 6 relevant pollutants
(identifier, value, unit and validation codes), and is sent to
the corresponding Active MQ message queue. The features
of all the machines used in such configurations are specified
in Table 2, which also includes the features of the machines
needed for the evaluation in Section VI.C.

The difference between both configured performance tests
is that, in the first one (see Figure 5), we have a unique incom-
ing message queue and, in the second one (see Figure 6),
there are two incoming message queues (to double the

1Such data can be accessed at http://dx.doi.org/10.17632/4y586x9bhv.1.

TABLE 2. Features of the machines used in the performance evaluation.

FIGURE 5. Configuration 1 for prediction module performance evaluation.

FIGURE 6. Configuration 2 for prediction module performance evaluation.

incoming messages to the predictive module). As shown in
Figure 5, the prediction module, subscribed to the message
queueMQ1, processes the messages received from this queue
and sends the results to MQ3 (MQ2 is not used in this
configuration).

The performance tests have been carried out preloading the
queue with a series of messages to discard the time of arrival
of the messages in the queue and focus on module’s pro-
cessing time. Therefore, MQ1 queue has been preloaded with
1 000, 5 000, 10 000, 20 000, 50 000 and 100 000 incoming
messages in successive tests. Such messages consist of JSON
data including 13 simple fields with information about the
pollutant station as well as timestamp fields used to manage
system response time measurements and a nested JSON field
with information about all the pollutants, 5 fields per pollu-
tant. The average size per message is almost 1Kb. We have to
bear in mind that such processing time includes (1) reading
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the messages reaching the queue, (2) parsing the JSON,
(3) splitting every pollutant to be processed separately —
eachmessage is split into 6 different events—, (4) introducing
each pollutant value in the corresponding temporal series,
(5) introducing each temporal series into the ARIMA model
processing, (6) creating a new JSON object with the predicted
data for the 6 pollutants, and (7) sending the JSON object to
the MQ3 queue.

TABLE 3. Prediction module performance results for configuration 1 and
2.

We also used a second configuration in our set of tests to
ensure the scalability of the system: bothMQ1 andMQ2were
used for sending messages in parallel to the prediction mod-
ule (see Figure 6). Again, we preloaded both queues with
a fixed number of messages, and checked how much time
the prediction module needs to process them, from message
reception —previously explained step (1)— to predictions
submission to MQ3 —previously explained step (7)—. The
system test was performed with 1 000, 5 000, 10 000, 20 000,
50 000 and 100 000 incoming messages with the two incom-
ing queues in parallel. The results of both configurations,
shown in Table 3 and simplified in Figure 7, provide really
successful performance figures. Let us explain the data shown
in the table: when we send 1 000 messages from a queue,
we are able to process those 1 000 messages in 62 seconds,
so each message is processed on average in 62 ms. Since
each message is composed of 6 events, each relating to
6 different pollutants which are split for separate processing,
each of these events requires an average of 10.33 ms for
being processed. When we have 2 queues sending in parallel
1 000 messages to the system from each of them, the system
is able to process the 2 000 messages in 126 seconds, which
translates into an average of 63 seconds per message and
10.50 ms per event. Thus, as we can see in Figure 7 and
Table 3, the average time for processing every message is
under 0.06 seconds and, for each separate event, 0.01 sec-
onds when receiving inputs of up to 300 000 messages
(1 800 000 events, for this case study). So even if we double

FIGURE 7. Message average processing time in the prediction module for
configuration 1 and 2.

the number of incoming messages per second by sending
them in parallel from 2 queues, the message processing time
remains the same.

C. PREDICTIVE CARED-SOA PERFORMANCE EVALUATION
Once confirmed that the prediction module is working suit-
ably in terms of functionality and performance, we proceed
to evaluate the performance for the entire architecture. Bear
in mind that the only added complexity is due to the predic-
tion system training, which has been done in a distributed
framework to reduce the computational costs. As previously
mentioned, CARED-SOA architecture’s performance (with-
out prediction and based on a more monolithic architec-
tural model) was already evaluated in [5], [16]. Assuming
that an architecture based on microservices will be highly
scalable, the main focus of this subsection is to check that
the proposed architecture is reasonably efficient for a set of
mid-range machines (which could always be better) and a
reasonable number of events for an IoT domain. To avoid
overloading a mobile with a high number of notifications,
as in [5], we have avoided making mobile notifications for
intensive performance tests, but emulated them sending final
notifications of interest to a message queue since there is no
significant difference between sending the notification one
way or the other.We proceed again to test the system’s perfor-
mance with 2 configurations, using one entrance queue and
two entrance queues for configurations 1 and 2 respectively
(see Figures 8 and 9, respectively). Please note that now the
evaluated processing time includes not only the prediction
stage, but also the detection stage, from the moment the data
is read at MQ1 until it reaches MQ3.

For the performance tests we have employed the worksta-
tions previously specified in Table 2.

The results of both configurations, shown in Table 4 and
simplified in Figure 10, once again show successful perfor-
mance results: the average time for processing every message
is still under 0.06 seconds and, for every separate event,
0.01 seconds when receiving inputs of up to 300 000 mes-
sages (1 800 000 events, for this case study). As expected,
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FIGURE 8. Configuration 1 for Predictive CARED-SOA performance
evaluation.

FIGURE 9. Configuration 2 for Predictive CARED-SOA performance
evaluation.

FIGURE 10. Message average processing time in predictive CARED-SOA
for configuration 1 and 2.

according to our previous performance results with
CARED-SOA [5], the use of CEP for analyzing the incoming
data is an efficient solution.

As a result, we can affirm that our system provides
an appropriate performance and is highly scalable. Indeed,
Hadoop is a highly scalable and reliable architecture pre-
pared to be distributed in several machines and able to
process large data sets. We can, therefore, conclude that a
microservice-based architecture pattern, used in conjunction
with Hadoop, Spark Streaming and additional queues and
components, is essential to ensure the system’s scalability and
elasticity.

VII. DISCUSSION
This section discusses the main contributions of the paper in
relation to the research questions stated in Section I.

TABLE 4. Predictive CARED-SOA performance results for
configuration 1 and 2.

RQ1: Is it possible to evolve our previously proposed
CARED-SOA architecture from real-time context-aware
detection to prediction of situations of interest in the IoT by
enriching the architecture with PA?

We can definitely say that our approach has improved
CARED-SOA through the inclusion of a PA technique in
the architecture. As previously explained, the ARIMAmodel
has been implemented in the case study as a PA solu-
tion, but it could be replaced by other models. Indeed, our
previously proposed CARED-SOA architecture focused on
context-aware data processing related to the IoT will be
able to offer greater functionality and cover a wider field of
application through the inclusion of PA and the possibility of
offering predictions. Furthermore, since the inclusion of PA
techniques in the architecture has been integrated with CEP,
the architecture allows us to provide predictions of events
of interest in real time, as we not only predict specific data
in a field of application, but also the situations of interest
that those data would imply in the domain in question if the
prediction was fulfilled. On the other hand, given that the
system notifies such predicted situations at the very moment
they are predicted, it allows us to act before such situations
occur and prevent undesirable scenarios. Last but not least,
the fact that the prediction module is decoupled from the
remaining modules and that its communication with the rest
of the architecture is carried out through weak coupling
communication techniques such as REST communications
and/or through a publish/subscribe protocol permits chang-
ing not only the most appropriate algorithm for prediction
according to the application domain, but also the complete
module when necessary. Let us reiterate that CARED-SOA
can process diverse context information. In this case study,
only the location of the air quality sensors remains relevant,
but more details about other types of context can be found
at [5], [6], [16].

In addition, the evaluation of the prediction module’s
performance, as well as of the prediction architecture as
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FIGURE 11. Predictive CARED-SOA Microservice decomposition component model.

a whole, show that the architecture achieves more than
acceptable performance results for the context-aware data
processing environment in the Internet of Things: note
that the architecture processed 9 events per ms when
receiving 300 000 messages (1 800 000 events) and we
improved our previous performance rate for CARED-SOA,
as explained in Section VI.C. Thus, we can affirm that
decision-making is facilitated in this field, in real time and
efficiently.

RQ2:Would it be beneficial to evolve CARED-SOA archi-
tecture to a microservices architecture model?

We have undoubtedly explained the benefits of evolv-
ing CARED-SOA to Predictive CARED-SOA through the
use of a microservice architecture; in the following para-
graphs we further discuss the software architecture pattern
implemented through assessing the conformance of the pro-
posed architecture to microservice decomposition patterns
to show up the main benefits. According to [21], two main
issues are to be taken into account: (1) constrains based
on independent deployments and (2) constrains based on
shared dependencies. To clarify the architecture assessment,
we have represented in Figure 11 the microservice decom-
position component model of the proposed architecture
in Figure 5.

On the one hand, only loosely coupled interfaces are
allowed to be used for communications among components,
as stated by Zdun et al. [21]: ‘‘From the viewpoint of an
architecture decomposition model, independently deployable
means that no components that are part of a microservice
have in-memory connectors (or subclasses thereof or similar
strongly coupled connectors) to other components that are
part of that microservice’’. Indeed, our architecture’s compo-
nents are deployable independently and deployed in differ-
ent hosts, benefiting from Single Service Instance per Host
pattern advantages. These advantages include: not conflict-
ing resources allocation, avoiding dependency versions and

easy monitoring, management, evolution and redeployment
of each service instance.

On the other hand, according to [21] decomposi-
tions should ‘‘avoid sharing other components or sharing
them in a strongly coupled fashion’’. So, our architec-
ture supports loosely coupled connectors such as event-
driven, publish/subscribe interactions and message queuing.
Additionally, our architecture benefits from the advantages of
theMessaging pattern: loose coupling, improved availability
and a choice of protocols to be used in the communications.
As well as by the definition in the Microservice Architecture
Core Pattern, HTTP resource API requests are considered
lightweight and simple communication mechanisms, follow-
ing the Remote Procedure Invocation pattern.
As it can be seen in Figure 11, all the communications

between the different system components are based on REST-
ful and publish/subscribe connectors. Moreover, each service
has its own database (with the JDBC connector), thus keeping
decoupled from other services, and an API Gateway is not
mandatory. With the aim of fostering loose coupling and
reusability, we preferred to keep access to domain and to
context services independently. Finally, the communication
with external components and elements is also based on
HTTP loosely coupled connections and publish/subscribe
messaging. This provides additional benefits, as explained by
Richarson in [23]:
• Keeping each function located in a microservice easy
and speed the service development and deployment.

• Continuous application delivery and deployment are
facilitated, thanks to the use of small and independent
services.

• Maintenance is improved by using small and inde-
pendent services, which facilitate fault isolation and
scalability.

• Application evolution is addressed since we avoid
long-term commitments to a technology stack. That way,
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we can replace services independently with a new tech-
nology stack, should it be necessary.

VIII. CONCLUSION
In this paper, we have presented a microservices-based
context aware architecture which provides smart real-time
predictions and context-aware notifications based on users’
subscriptions. Therefore, users can now be notified of rele-
vant information beforehand and they can act in advance to
prevent undesirable situations. The proposal goes one step
beyond the state of the art, providing the full architectural
implementation for a real scenario and its empirical evalu-
ation. In particular, we tested the system with an air quality
case study, predicting the different levels for the most relevant
pollutants and notifying users of the expected air quality lev-
els dangerous to their health based on their particular context;
we also evaluated the prediction’s accuracy as well as the
performance of the proposed architecture for a noteworthy
number of incoming data.

In our future work we expect to test our system in sev-
eral domains with different prediction models, benefiting
from the evolution advantages derived from having used a
microservice architecture pattern. In particular, we are cur-
rently working in two new domains: in the domain of allergic
diseases [72] as well as in the field of water supply efficient
management, the latest being one of the key challenges for the
European Commission in the Horizon 2020 program [73] and
expected to be dealt with in future research lines in the scope
of sustainable smart cities [74], [75]. Besides, we are also
working on the implementation of a catalogue of services that
will permit the selection and automatic integration into the
proposed architecture of themost appropriate service, accord-
ing to the type of input data, as well as the preferred protocol
for communication through a publish/subscribe mechanism.

APPENDIX
A. FORECAST METRICS AND RESULTS
We have measured the errors for each of the pollutants
according to the eight metrics specified in [70], which are
defined in Table 5 and whose equation can be found in [70].
For this purpose, we used historical data for all the stations
provided by the Andalusian government over a period of
2 years. The results of the evaluated metrics for each pollutant
are shown in Table 6.

B. LEVELS
To evaluate how accurate the predictions were in accordance
to the number of hits on the alert level for each of the
pollutants, we evaluated whether the pollutants’ predicted
levels for a given air sensor station matched the actual level
at that station over a period of two months. In particular,
we evaluated the predicted levels for June and July 2019 in
Mazagon (Spain), using the initial days of June for training
the algorithm according to the windows in Table 1 (all the
details about obtained values from the link can be seen in
footnote 1). The levels, according to the Andalusian local

TABLE 5. Metrics used to evaluate the difference between forecast and
actual pollutant values [70].

TABLE 6. Results for the case study metrics evaluation.

government index [66], are shown in Table 7. The percentages
of success per pollutant are shown in Table 8. As we can see
in it, we have obtained very good results for CO and NO2; the
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TABLE 7. Andalusian government pollutant concentration levels [66].

TABLE 8. Predictions’ success percentage according to pollutant
concentration levels in Table 7.

reason is that both pollutants maintain fairly stable values.
However, the results are not so good for other pollutants:
we can see that although the predicted value is very close
to the real one, when we move towards values near the level
threshold, one turns out to be in a level and the other in the
immediately superior or inferior one, which is classified as
an error in terms of alert prediction. It should also be born
in mind that we have discarded erroneous predictions due to
anomalies in the prediction algorithm. In the future, we aim
to work on improving our predictions.
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