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A B S T R A C T   

The world has been facing the challenge of COVID-19 since the end of 2019. It is expected that the world will 
need to battle the COVID-19 pandemic with precautious measures, until an effective vaccine is developed. This 
paper proposes a real-time COVID-19 detection and monitoring system. The proposed system would employ an 
Internet of Things (IoTs) framework to collect real-time symptom data from users to early identify suspected 
coronaviruses cases, to monitor the treatment response of those who have already recovered from the virus, and 
to understand the nature of the virus by collecting and analyzing relevant data. The framework consists of five 
main components: Symptom Data Collection and Uploading (using wearable sensors), Quarantine/Isolation 
Center, Data Analysis Center (that uses machine learning algorithms), Health Physicians, and Cloud Infra-
structure. To quickly identify potential coronaviruses cases from this real-time symptom data, this work proposes 
eight machine learning algorithms, namely Support Vector Machine (SVM), Neural Network, Naïve Bayes, K- 
Nearest Neighbor (K-NN), Decision Table, Decision Stump, OneR, and ZeroR. An experiment was conducted to 
test these eight algorithms on a real COVID-19 symptom dataset, after selecting the relevant symptoms. The 
results show that five of these eight algorithms achieved an accuracy of more than 90 %. Based on these results 
we believe that real-time symptom data would allow these five algorithms to provide effective and accurate 
identification of potential cases of COVID-19, and the framework would then document the treatment response 
for each patient who has contracted the virus.   

1. Introduction 

Since its discovery in late December of 2019, there have been more 
than 14.5 million confirmed cases of COVID-19 reported in 185 coun-
tries, as of July 21, 2020 [1], with approximately a 2 % daily increase. 
Among these cases there have been more than 95 thousand deaths, 
which represents an approximate 4.2 % mortality rate. This novel 
coronavirus was characterized on March 11, 2020 as a pandemic by the 
World Health Organization [2]. Unfortunately, there is no successful 
treatment procedure or vaccine yet. It is expected that the development 
of an effective vaccine will take more than a year, especially since the 
nature of the virus has not yet been completely characterized [3]. 

Currently, the only way that the world can deal with this coronavirus 
is to slow down its spread, (i.e. "flatten the curve") by using measures 
such as social distancing, hand washing and face masks. However, 
technology could also help slow its spread, through early identification 
(or prediction) and monitoring of new cases [4,5]. Such technologies 
include big data, as well as cloud and fog capabilities [6], the use of data 
gathered through remote monitoring, such as mHealth, teleHealth, and 
real-time patient status follow-up [7]. 

This paper proposes a COVID-19 detection and monitoring system 
that would collect real-time symptom data from wearable sensor tech-
nologies. To quickly identify potential coronaviruses cases from this 
real-time data, this paper proposes the use of eight machine learning 
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algorithms, namely Support Vector Machine (SVM), Neural Network, 
Naïve Bayes, K-Nearest Neighbor (K-NN), Decision Table, Decision 
Stump, OneR, and ZeroR. This detection and monitoring system could be 
implemented with an IoT infrastructure that would monitor both po-
tential and confirmed cases, as well as the treatment responses of pa-
tients who recover from the virus. In addition to real-time monitoring, 
this system could contribute to the understanding of the nature of the 
virus by collecting, analyzing and archiving relevant data. 

The proposed framework consists of five main components: (1) real- 
time symptom data collection (using wearable devices), (2) treatment 
and outcome records from quarantine/isolation centers, (3) a data 
analysis center that uses machine learning algorithms, (4) healthcare 
physicians, and (5) a cloud infrastructure. The aim of this framework, is 
to reduce mortality rates through early detection, following up on 
recovered cases, and a better understanding of the disease. 

This work conducts an experiment to test these eight machine 
learning algorithms on a real dataset. The results show that five of these 
eight algorithms achieved accuracies of more than 90 %. Using these 
five algorithms will provide effective and accurate prediction and 
identification of potential cases of COVID-19, based on real-time 
symptom data. 

This paper is organized as follows. Section 2 reviews the relevant 
literature. Section 3 details the proposed framework, including the five 
components. Section 4 focuses on the identification (or prediction) of 
new cases, using machine learning algorithms. Lastly, Section 5 con-
cludes the work. 

2. Literature review 

There is considerable work in the literature regarding the use of the 
Internet of Things (IoT) to deliver health services. Usak et al. conducted 
a systematic literature review of the use of IoT in health care systems. 
That work also included a discussion of the main challenges of using IoT 
to deliver health services, and a classification of the reviewed work in 
the literature [8]. 

Wu et al. proposed a hybrid IoT safety and health monitoring system. 
The goal was to improve outdoor safety. The system consists of two 
layers: one is used to collect user data, and the other to aggregate the 
collected data over the Internet. Wearable devices were used to collect 
safety indicators from the surrounding environment, and health signs 
from the user [9]. 

Hamidi studied authentication of IoT smart health data to ensure 
privacy and security of health information. The work proposed a 
biometric-based authentication technology [10]. 

Rath and Pattanayak proposed a smart healthcare hospital in urban 
areas using IoT devices, inspired by the literature. Issues such as safety, 
security and timely treatment of patients in VANET zone were discussed. 
Evaluation of the proposed system was conducted using simulators such 
as NS2 and NetSim [11]. 

Darwish et al. proposed a CloudIoT-Health paradigm, which in-
tegrates cloud computing with IoT in the health area, based on the 
relevant literature. The paper presented the challenges of integration, as 
well as new trends in CloudIoT-Health. These challenges are classified at 
three levels: technology, communication and networking, and intelli-
gence [12]. 

Zhong and Li studied the monitoring of college students during their 
physical activities. The paper focused on a Physical Activity Recognition 
and Monitoring (PARM) model, which involves data pre-processing. 
Several classifiers, such as decision tree, neural networks, and SVM, 
were tested and discussed [13]. 

Din and Paul proposed an IoT-based smart health monitoring and 
management architecture. The architecture is composed of three layers: 
(1) data generation from battery-operated medical sensors and pro-
cessing, (2) Hadoop processing, and (3) application layers. Because of 
the limited capacity of batteries to power the sensors, the work 
employed an energy-harvesting approach using piezoelectric devices 

attached to the human body [14]. 
Otoom et al. developed an IoT-based prototype for real-time blood 

sugar control. ARIMA and Markov-based statistical models were used to 
determine the appropriate insulin dose [21]. Alshraideh et al. proposed 
an IoT-based system for Cardiovascular Disease detection. Several ma-
chine learning algorithms were used for CVD detection [22]. 

Nguyen presented a survey of Artificial intelligence (AI) methods 
being used in the research of COVID-19. This work classified these 
methods into several categories, including the use of IoT [15]. Maghdid 
proposed the use of sensors available on smartphones to collect health 
data, such as temperature [16]. 

Rao and Vazquez proposed the use of machine learning algorithms to 
identify possible COVID-19 cases. The learning is done on collected data 
from the user through web survey accessed from smartphones [17]. 
Allam and Jones discussed the need to develop standard protocols to 
share information between smart cities in pandemics, motivated by the 
outbreak of COVID-19. For instance, AI methods can be applied to data 
collected from thermal cameras installed in smart cities, to identify 
possible COVID-19 cases [18]. Fatima et al. proposed an IoT-based 
approach to identify coronavirus cases. The approach is based on a 
fuzzy inference system [19]. Peeri et al. conducted a comparison be-
tween MERS, SARS, and COVID-19, using the available literature. They 
suggested the use of IoT in mapping the spread of the infection [20]. 

To our knowledge, no one has developed a complete framework for 
using IoT technology for the identification and monitoring of COVID-19. 

3. Methods 

3.1. IoT background 

The Internet of things (IoT) uses communication and sensor tech-
nologies, as well as ubiquitous and pervasive computing, to upgrade 
physical objects into smart objects [31]. This enables the delivery of 
smart services to users, to improve the quality of their lives [32]. IoT 
architectures consist mainly of three layers: physical, network, and 
application [33]. Physical objects are equipped with sensors to collect 
heterogeneous data. These sensors have a limited computational ca-
pacity, and a limited lifetime. The more data that they collect, the more 
helpful decisions can be made. However, data processing complexity 
becomes a bottleneck [34]. Connectivity can be used to cope with the 
limited computational power of these sensors. Several different 
communication technologies have been employed, including 6LoWPAN, 
Bluetooth, IEEE 802.15.4, RFID and near-field communication (NFC) 
[31]. 

The network layer is not just used to upload collected data, for 
analysis. It is also used to facilitate communication between heteroge-
neous IoT objects, at the physical layer. In doing this, the network layer 
should support scalability, as the number of the objects increases, as well 
as device discovery, and context awareness. Significantly, it should also 
provide security and privacy for IoT devices [35]. The data uploaded 
from the IoT devices can be deeply analyzed, to generate insights and 
help make decisions. Currently, Machine Learning and Deep Learning 
(ML/DL) algorithms are used for this purpose, and are replacing more 
traditional methods because of their ability to deal with big data [36]. 
Al-Garadi et al. provided a thematic taxonomy of ML/DL used for IoT 
Security [37]. 

There are a wide range of applications where IoT can be effectively 
used, including healthcare, smart cities, smart buildings, agriculture, 
and power grids. In healthcare, IoT is sometimes called Internet of 
Medical Things (IoMT) [38]. It has largely displaced traditional 
ICT-based methods, such as telemedicine or telehealth. IoMT can pro-
vide more advanced features than these traditional methods. For 
example, while traditional methods can connect patients with medical 
doctors remotely, IoMT also supports machine-human and 
machine-machine interactions, such as AI-based diagnosis. 

One important issue in designing IoMT is the balance between data 
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privacy/security and patient safety [39]. Examples of cyber threats that 
challenge such designs are eavesdropping on communication channels 
(to sell the collected data), intervention, disruption, or even modifica-
tion of the service. However, in cases where the patient’s life is at risk, 
breaking some security measures to access the IoMT might be needed to 
save the patient’s life [40]. ML/DL methods can be used to support this 
balance. 

3.2. The proposed IoT framework 

This section depicts and discusses our envisioned IoT-based frame-
work, which could be used to monitor and identify (or predict) potential 
coronaviruses cases, in real time. Equally important, this framework 
could be used to predict the treatment response of confirmed cases, as 
well as to better understand the nature of the COVID-19 disease. 

Fig. 1 shows the framework of our proposed IoT architecture. It 
consists of five main components: Symptom Data Collection and 
Uploading, a Quarantine/Isolation Center, a Data Analysis Center, an 
interface to Health Physicians, all of which are interconnected through a 
Cloud Infrastructure. 

3.2.1. Symptom data collection and uploading 
The aim of this component is to collect real-time symptom data 

through a set of wearable sensors on the user’s body. In our earlier study 
[41], the most relevant COVID-19 symptoms were identified, based on a 
real COVID-19 patient dataset. These identified symptoms were: Fever, 
Cough, Fatigue, Sore Throat, and Shortness of Breath. 

There are several biosensors available to detect these symptoms. For 
instance, temperature-based sensors can be used for the detection of 
Fever [23]. Cough and its classifications for different ages can be 
detected using audio-based sensors with acoustic and aerodynamic 
models [24]. Motion-based and heart-rate sensors can be used to detect 
Fatigue [25]. Sore Throat can be detected using image-based classifi-
cation [26]. Finally, oxygen-based sensors can be used to detect Short-
ness of Breath [27]. 

Other relevant data – such as travel and contact history during the 
past 3–4 weeks, can be collected in an ad-hoc manner through mobile 

applications. 

3.2.2. Quarantine/isolation center 
This component collects data records from users who have been 

quarantined or isolated in a health care center. These records include 
both health (or technical) and non-technical data. For health (or tech-
nical) data, each record includes time-series data of the above- 
mentioned symptoms, while for non-technical data, each record in-
cludes travel and contact history during the past 3–4 weeks, chronic 
diseases, age, gender, and any other relevant information, such as family 
history of illness. Each record would eventually also include the treat-
ment response for each case. 

3.2.3. Data analysis center 
The Data Center hosts data analysis and machine learning algo-

rithms. These algorithms are used to build a model for COVID-19, and to 
provide a real-time dashboard of the processed data. The model could 
then be used to quickly identify or predict potential COVID-19 cases, 
based on real-time data collected and uploaded from users. The model 
can also predict the patient’s treatment response. Over time, the disease 
models developed from this data will provide useful information about 
the nature of the disease. 

3.2.4. Health physicians 
Physicians will monitor suspected cases whose real-time uploaded 

symptom data indicates a possible infection by our proposed machine 
learning based identification/prediction model. The physicians will then 
be able to respond swiftly to these suspected cases by following up with 
any further clinical investigation needed to confirm the case. This allows 
the confirmed cases to be isolated and given appropriate health care. 

3.2.5. Cloud infrastructure 
The cloud infrastructure is interconnected through the Internet, and 

(1) allows upload of real-time symptom data from each user, (2) main-
tains personal health records, (3) communicates prediction results, (4) 
communicates physician recommendations, and (5) provides for storage 
of information. 

Fig. 1. Overall IoT-based Framework for Early Identification and Monitoring of Novel Human Coronaviruses.  
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Fig. 2 presents the scenario (or workflow) employed by the frame-
work, which can be described as follows.  

1 The system non-invasively collects real-time user symptom data 
through wearable devices and sensors. Again, these symptoms are: 
Fever, Cough, Fatigue, Sore Throat, and Shortness of Breath. Further, 
the user submits information via a mobile application about living in 
(or travel to) infected areas, as well as possible contact with COVID- 
19 infected persons. The Quarantine/Isolation Center also periodi-
cally submits data from their isolated and quarantined patients who 
are housed in the center. The content of that data is similar to the 
real-time data collected from users.  

2 The sensed symptom data are uploaded to the Data Analysis Center 
using a smartphone, through the Cloud Infrastructure. Digital re-
cords from the health care center are also regularly sent to the Data 
Analysis Center through the Cloud Infrastructure. The Data Analysis 
Center hosts machine learning algorithms, which use the data 
received from the health care center to continuously update its 
models. The models are then used to identify potential cases, based 
on the real-time symptom data from each user. The data center also 
analyzes all its data, and presents the results on a real-time dash-
board. That dashboard can be informative to physicians about the 
nature of the virus.  

3 If a potential case is identified, it will be sent to the relevant physician 
to follow up with the patient. The patient will then be called and 
encouraged to visit the health care center for clinical tests, such as 
the Polymerase Chain Reaction (PCR) test, which is used to identify 
positive cases. If it turns out that the case is confirmed, the patient 
can be isolated, and all contacts will be contacted and quarantined. 

A complementary and integral component to this framework is the 
use of the same mobile application to educate users, by including useful 
information on how they can avoid illness, and how to avoid being 
exposed to the virus. 

3.3. Prediction of potential cases 

This section further discusses the predictive models, and the machine 
learning algorithms that will be employed in the Data Center component 
of the proposed IoT-based framework. 

In particular, an experiment was conducted to investigate the 

possibility of using machine learning algorithms for quick identification 
(or prediction) of potential COVID-19 infections. The rest of this section 
describes that experimental setup, and presents and discusses the 
results. 

3.3.1. Dataset 
A dataset of 14251 confirmed COVID-19 cases from the COVID-19 

Open Research Dataset (CORD-19) repository [28] was used. The data 
contains different types of information about each case. Our work 
focused on symptoms, travel history to suspicious areas, and contact 
history with potentially infected people. However, some of this infor-
mation was missing for many of the cases documented within the 
database. Moreover, the data was not well structured for use by machine 
learning algorithms. 

3.3.2. Data preprocessing 
In our previous work [41], the data was preprocessed and structured 

to be better suited for machine learning. The cases with documented 
symptoms were collected. This resulted in a list of 80 symptoms. How-
ever, many of these symptoms were judged to be synonyms. Thus, the 
number of symptoms was reduced to 20. This merging of synonymous 
symptoms was done in an ad-hoc manner by two medical doctors, who 
are co-authors of this work. For example, “anorexia” and “loss of 
appetite” were merged together. 

Our previous work also determined the relative importance of these 
20 symptoms. The following six different statistically-based feature se-
lection algorithms were employed in that work, to rank the 20 symp-
toms, based on their importance: Spectral Score, Information Score, 
Pearson Correlation, Intra-Class Distance, Interquartile Range, and our 
Variance Based Feature Weighting [41]. The first five of these methods 
had been proposed earlier in the literature [42]. The sixth method was a 
new one. It not only ranks the symptoms, but also assigns importance 
weights to each of them. It was found that the most important five 
symptoms (ordered from most important to least important) are: Fever, 
Cough, Fatigue, Sore Throat, and Shortness of Breath. 

Based on the findings of that earlier work, this work uses those five 
most important symptoms. In addition, two extra features were added: 
Live and Contact. The first feature (Live) represents whether or not the 
person lived, travelled to, or passed by a potentially infected area. The 
second feature (Contact) represents whether or not the person was 
known to be in contact with a potentially infected person. This resulted 

Fig. 2. Flowchart of the proposed framework scenarios.  
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in a preprocessed dataset of 1476 × 7 data records. Among which 854 of 
those records were from confirmed COVID-19 cases, and 622 records 
were for non-confirmed cases. 

3.3.3. Predictive model 
This work used this preprocessed dataset to build a predictive model 

for our identification (or prediction) system. The function of this model 
is to estimate the likelihood that a given person is infected by COVID-19. 

Several learning algorithms (i.e. classifiers) could have been used for 
this purpose. Those classifiers can be categorized into multiple cate-
gories. WEKA Software [30], (which we used in this work) categorizes 
the classifiers into six categories: (1) function-based classifiers, such as 
Support Vector Machines, (2) lazy classifiers, such K-Nearest Neighbors, 
(3) Bayes based classifiers, such as Naïve Bayes, (4) rule-based classi-
fiers, such as Decision Tables, ZeroR, and OneR, (5) tree-based classi-
fiers, such as Decision Stump, and (6) meta classifiers, such Neural 
Networks. 

In this work, at least one classifier from each category was selected. 
Specifically, this work compares the performance of eight machine 
learning algorithms: (1) Support Vector Machine (SVM), using Radial 
Basis Function (RBF) kernel, (2) Neural Network, (3) Naïve Bayes, (4) K- 
Nearest Neighbor (K-NN), (5) Decision Table, (6) Decision Stump, (7) 
OneR, and (8) ZeroR [29]. 

This work used WEKA Software to run all of these algorithms on our 
dataset [30]. The default parameter values were used for each of the 
eight algorithms. Below is a brief description of the eight algorithms: 

3.3.3.1. Support Vector Machine (SVM). SVM is a supervised learning 
method. Given a set of training examples that are labeled (i.e. each 
instance in the training set either belongs to the positive or negative 
class), SVM learns the hyperplane that best separates the instances from 
each class, and maximizes the margin between the data instances and 
the hyperplane itself. This learnt hyperplane is then used to assign (or 
predict) a class label for any new test instance. 

3.3.3.2. Artificial Neural Network (ANN). ANN is a supervised learning 
method. The learning process tries to mimic the learning that takes place 
inside the human brain. To do so, multiple layers of nodes are connected 
through edges. The edges connecting between the nodes are represented 
as numerical weights. The output of each node is computed as weighted 
sum of its inputs. 

Given a set of training examples that are labeled (i.e. each instance 
either belongs to the positive or negative class), the ANN learns the 
numerical weights that best classify the instances from each class. 

This learnt model is then used to assign (or predict) a class label for 
any given test instance. The test instance drives the inputs to the nodes 
of the first layer. Then a threshold is applied to the outputs of the final 
layer, to determine the label for that test instance. 

3.3.3.3. Naïve Bayes. Naïve Bayes is a supervised learning method. The 
learning process follows a probabilistic approach. It uses Bayes theorem 
to compute the model parameters. 

Given a set of training examples that are labeled (i.e. each instance 
either belongs to the positive or negative class), Naïve Bayes computes 
multiple model parameters, such as the probability of each class label to 
occur. These parameters are then used to assign (or predict) a class label 
for any given test instance. This is done by computing the probabilities 
of the test instance to be assigned to each of the possible class labels. The 
maximum value among these probabilities decides the label of that test 
instance. 

3.3.3.4. K-Nearest Neighbors (K-NN). K-NN is a supervised instance- 
based learning method. The learning process follows a lazy approach. 
It does not compute a model. 

Given a set of training examples that are labeled (i.e. each instance 

either belongs to the positive or negative class), K-NN computes dis-
tances between a given test instance and all the training instances. These 
distances are then used to assign (or predict) a class label for the test 
instance. This is done by aggregating the class labels of the K closest 
training instances to the test instance. 

3.3.3.5. Decision Table. Decision Table is a supervised learning method. 
Given a set of training examples that are labeled (i.e. each instance 
either belongs to the positive or negative class), this method computes a 
model by building a decision table. That table consists of a set of con-
ditions and corresponding actions. The table is complete if it considers 
every possible combination of input instances for the conditions, and 
prescribes the corresponding actions for each of them. 

3.3.3.6. Decision Stump. Decision Stump is a supervised learning 
method. Given a set of training examples that are labeled (i.e. each 
instance either belongs to the positive or negative class), this method 
computes a model by building a decision tree, with only one internal 
node. In other words, it makes the prediction for any given test instance 
using only one feature of that instance. This feature is determined by 
computing the information gain for all features across all training in-
stances, selecting the one with the maximum information gain value. 

3.3.3.7. One Rule (OneR). OneR is a supervised learning method. Given 
a set of training examples that are labeled (i.e. each instance either 
belongs to the positive or negative class), this method computes a model 
by generating one rule for each feature in the data set. It then selects the 
one with the minimum total error. 

3.3.3.8. Zero Rule (ZeroR). ZeroR is a supervised learning method. 
Given a set of training examples that are labeled (i.e. each instance 
either belongs to the positive or negative class), this method computes a 
model by using only the target feature (i.e. class) while ignoring all other 
features. It is considered the simplest classification method. It assigns 

Table 1 
Confusion Matrix.  

True Positive (TP) False Negative (FN) 
False Positive (FP) True Negative (TN)  

Fig. 3. Confusion matrices. (a) SVM. (b) Neural Network. (c) Naïve Bayes. (d) 
K-NN. (e) Decision Table. (f) Decision Stump. (g) OneR. (h) ZeroR. 
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Fig. 4. ROC curves. (a) SVM. (b) Neural Network. (c) Naïve Bayes. (d) K-NN. (e) Decision Table. (f) Decision Stump. (g) OneR. (h) ZeroR.  
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any new test instance to the majority class. Usually, it is used as a 
benchmark to determine baseline performance. 

3.3.4. Performance evaluation 
To evaluate the performance of the eight learning algorithms, four 

performance measures were used: Accuracy, Root Mean Square Error, F- 
measure, and ROC area. These measures can be computed using a 
confusion matrix and cross validation methods. 

3.3.4.1. Confusion matrix. The confusion matrix is used to visualize the 
performance of a binary (2-class) supervised learning problem by 
creating a 2-by-2 matrix. Each row in the matrix shows the instances in 
the predicted (or computed) class, while each column shows the in-
stances in the actual class. The resulting matrix consists of four values 
(see Table 1).  

o True Positive (TP): are the number of instances that were classified 
(using the predictive model) as positive, and are actually positive.  

o False Positive (FP): are the number of instances that were classified 
(using the predictive model) as positive, but they are actually 
negative.  

o False Negative (FN): are the number of instances that were classified 
(using the predictive model) as negative, but they are actually 
positive.  

o True Negative (TN): are the number of instances that were classified 
(using the predictive model) as negative, and they are actually 
negative. 

3.3.4.2. Cross validation. Cross Validation is a statistical method used to 
measure the performance of learning and classification methods. This is 
done by splitting the available labeled data instances into k folds. One of 
these folds is used for testing, and the rest are used for training. This 
work used 10-fold cross validation. The data instances are divided into 
10 folds. For 10 iterations, one-fold was used for testing and 9 folds for 
training, such that in every iteration a different fold is used for testing. 

3.3.4.3. Accuracy. The accuracy of a classifier is computed as the 
number of correctly classified instances to the total number of instances. 
It is given by: 

Accuracy =
TP + TN

TP + TN + FP + FN  

3.3.4.4. Root mean square error. The Root Mean Square Error (RMSE) is 
computed as the square root of the average of squared differences be-
tween the predicted classes (or labels) and the actual ones. It is given by: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
FP + FN

TP + TN + FP + FN

√

3.3.4.5. F-measure. The F-measure is computed by combining the two 
measures of precision and recall. It is given by: 

Fmeasure = 2 ×
Precision × Recall
Precision + Recall  

where, 

Precision =
TP

TP + FP 

and 

Recall =
TP

TP + FN  

3.3.4.6. ROC area. The Receiver Operating Characteristic (ROC) is 
another way to measure the performance of a classifier. This is done by 
plotting the True Positive Rate against the False Positive Rate. The area 
under the resulting ROC curve is then used to measure the performance 
of the classifier. The closer the area to 1 is, the better the classifier is. The 
true/false positive rates are given by: 

True Positive Rate =
TP

TP + FN 

and 

False Positive Rate =
FP

FP + TN  

4. Results and discussion 

4.1. Confusion matrices 

Fig. 3 shows the confusion matrices that resulted from applying 10- 
fold cross validation to the eight selected classifiers. (Large numbers in 
the upper-left and lower right boxes of these matrices represent good 
scores. Large numbers in the lower-left and upper right boxes of these 
matrices represent bad scores.) 

4.2. ROC curves 

Fig. 4 shows the ROC curves that resulted from applying 10-fold cross 
validation to the eight selected classifiers. 

4.3. Performance measures 

Fig. 4 shows the ROC curves that resulted from applying 10-fold cross 
validation to the eight selected classifiers. 

Table 2 and Fig. 5 compare the performance of the eight algorithms. 
It shows the Accuracy, Root Mean Square Error, F-measure and ROC 
Area of each algorithm, which were calculated using the well-known 10- 
fold cross validation method [29]. 

The results presented in Table 2 and Fig. 5 suggest that the models 
built using SVM, Neural Network, Naïve Bayes, K-NN and Decision 
Table algorithms are effective in predicting confirmed and potential 
cases of COVID-19. 

Taken together, this suggests that our proposed IoT-based framework 
could use a combination of these five effective models. This could be 
done by aggregating the results of these five learnt models, based on 
majority votes. 

5. Conclusions 

This paper has proposed an IoT-based framework to reduce the 
impact of communicable diseases. The proposed framework was used to 
employ potential COVID-19 case information and health records of 
confirmed COVID-19 cases to develop a machine-learning-based pre-
dictive model for disease, as well as for analyzing the treatment 
response. The framework also communicates these results to healthcare 
physicians, who can then respond swiftly to suspected cases identified 

Table 2 
Summary of performance results.   

Accuracy Root Mean 
Square Error 

F- 
measure 

ROC 
Area 

Support Vector 
Machine (SVM) 

92.95 % 26.54 % 93.0 % 93.9 % 

Neural Network 92.89 % 24.23 % 92.9 % 95.5 % 
Naïve Bayes 90.58 % 30.99 % 90.6 % 94.2 % 
K-Nearest Neighbor 

(K-NN) 
92.89 % 28.06 % 92.9 % 93.9 % 

Decision Table 92.95 % 23.97 % 93.0 % 95.0 % 
Decision Stump 70.73 % 43.86 % 70.6 % 70.1 % 
OneR 68.36 % 56.25 % 68.5 % 68.3 % 
ZeroR 57.86 % 49.38 % 57.9 % 49.7 %  
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by the predictive model by following up with any further clinical 
investigation needed to confirm the case. This allows the confirmed 
cases to be isolated and given appropriate health care. 

An experiment was conducted to test eight machine learning algo-
rithms on a real COVID-19 dataset. They are: (1) Support Vector Ma-
chine, (2) Neural Network, (3) Naïve Bayes, (4) K-Nearest Neighbor (K- 
NN), (5) Decision Table, (6) Decision Stump, (7) OneR, and (8) ZeroR. 
The results showed that all these algorithms, except the Decision Stump, 
OneR, and ZeroR achieved accuracies of more than 90 %. Using the five 
best algorithms would provide effective and accurate identification of 
potential cases of COVID-19. 

Employing the proposed real-time framework could potentially 
reduce the impact of communicable diseases, as well as mortality rates 
through early detection of cases. This framework would also provide the 
ability to follow up on recovered cases, and a better understanding the 
disease. 
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