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A key sharing graph is one in which each vertex corresponds to a player, and each edge
corresponds to a secret key shared by the two players incident with the edge. Assume that,
given a key sharing graph which contains a spanning tree, any designated player wishes to
broadcast a message to all the other players securely against an eavesdropper. This can be
easily done by flooding the message on the tree using the one-time pad scheme. However,
the number of communication rounds in such a protocol is equal to the height of the
tree. This paper provides another efficient protocol, which has exactly one communication
round, i.e., we give a non-interactive protocol.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Assume that there are n players P1, P2, . . . , Pn where
n � 2, and that there is an eavesdropper, Eve. Consider a
situation in which several pairs of players have shared one-
bit secret keys. We regard each player Pi as a vertex i in
a graph G , and regard each one-bit secret key kij ∈ {0,1}
shared by players Pi and P j as an edge i j in the graph G .
(Refer to [5] for the graph-theoretic terminology.) Such a
graph G is called a key sharing graph (e.g. [3,8]).

We assume that, given a key sharing graph G , all play-
ers and Eve know the shape of G , while (the value of)
every secret key is private only to the two players who
share it. Furthermore, assume that there is only a pub-
lic authenticated channel (and hence there is no private
channel); therefore, all communication among players is by
public broadcast and is overheard by Eve.

The problem considered in this paper is quite simple
and commonplace: we want to design a protocol which,
given a key sharing graph G , can make any designated
player broadcast a one-bit message m ∈ {0,1} to all the
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other players securely against Eve. In other words, we want
to make use of a key sharing graph G in order for all
players to securely exchange a one-bit message m. Such a
obtained message can be used for various purposes such as
a conference key [2]. Also, the problem above often arises
and becomes important, when one wants to extend some
2-player secret key exchange protocol to an n-player se-
cret key exchange protocol for n � 3, namely a multiparty
protocol (e.g. [6–8]).

If a given key sharing graph is not connected, then one
can easily notice that secure message broadcasting is im-
possible; thus, we assume hereafter that any key sharing
graph G appearing in this paper is connected, i.e., there
exists a path between every pair of vertices in G .

1.1. The flooding protocol

The problem mentioned above is easy to solve by
the following flooding protocol, which has been extensively
used as a subprotocol when multiparty secret key ex-
change protocols were built (e.g. [6–8,13,14,18]).

Without loss of generality, we assume that the desig-
nated player is P1, i.e., player P1 wishes to broadcast a
message m to all the other players P2, P3, . . . , Pn (through-
out the paper). Given a key sharing graph G , player P1 can
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Fig. 1. Examples of key sharing trees.
securely send a one-bit message m to all the other play-
ers by flooding on the graph G (using the one-time pad
scheme [15]), as follows.

1. Player P1 sends the message m securely to each neigh-
bor Pi of P1 using the secret key k1i shared by P1 and
Pi as a one-time pad. More precisely, P1 announces
m ⊕ k1i publicly for each neighbor Pi of P1, and then
each neighbor Pi obtains the message m by computing
(m ⊕ k1i) ⊕ k1i .

2. Every player Pi who has now obtained the message m
sends it to each neighbor of Pi not yet obtaining m in
the same way as above.

3. Repeat step 2 until all the players obtain the message
m (remember that the key sharing graph G was as-
sumed to be connected).

Thus, the message m is spread over along a spanning tree
T rooted at P1, which is an induced subgraph of G . There-
fore, the number of communication rounds in the flooding
protocol is equal to the height of the tree T .

Since a spanning tree suffices for secure message broad-
casting as above, we hereafter consider only a key sharing
graph which is just a tree, i.e., we address only such a
key sharing tree for simplicity in exposition. (Thus, a key
sharing tree is a “minimal” model in a sense because any
non-connected key sharing graph never establishes secure
message broadcasting as mentioned before.)

1.2. Our result

As seen above, the flooding protocol is simple and use-
ful; furthermore, its round complexity equals the height
of a given key sharing tree. Now, take three key sharing
trees T1, T2 and T3 depicted in Fig. 1 as examples. When
the flooding protocol is executed, one can easily see that
the numbers of communication rounds required for T1, T2
and T3 are equal to one, two and four, respectively. Thus,
one might feel that the key sharing tree T1 is preferable to
T2 and T3. However, we will show that it is not the case,
concerning round complexity, as mentioned below.

In this paper, we will provide another new protocol,
which is also simple and quite efficient. Specifically, our
protocol has exactly one communication round, i.e., it is a
non-interactive protocol. Therefore, for instance, whichever
key sharing tree T1, T2 or T3 is given, our protocol termi-
nates after only one communication round. In this sense,
these three key sharing trees T1, T2 and T3 are equivalent;
round complexity does not depend on the shapes of key
sharing trees.

Our one-round secure message broadcasting protocol
will be shown in Section 2.

1.3. Related works

The most famous appearance of key sharing graphs
is in the dining cryptographers (or DC-nets) problem [3,
11]; given a key sharing graph, all players wish to accom-
plish anonymous message transmission, i.e., they wish to
securely compute the parity of all their secret bits in a
non-committed format. Somewhat related to key sharing
graphs is the concept of the “key graphs” which are used
for group key management systems [17].

As another direction of applying graph theory to cryp-
tography, we point out that a graph often offers an use-
ful model of communication channels. For example, graph
theory plays an important role when one designs crypto-
graphic protocols over partial broadcast channels [9], mul-
ticast channels [10,16], neighbor network channels [4] and
so on. Furthermore, trade-offs between topology of com-
munication channels and performance of secure computa-
tions have been much investigated [1,12].

2. Our one-round protocol

In this section, we provide our secure message broad-
casting protocol, which terminates within one communi-
cation round. In Section 2.1, we give some examples of
execution of our one-round protocol in order to exhibit the
idea behind it. In Section 2.2, we present the description
of our protocol. In Section 2.3, we verify the secrecy of our
protocol.

2.1. Examples

Consider the key sharing tree T3 depicted in Fig. 1(c)
again. Remember that the number of communication
rounds required for T3 in the flooding protocol is exactly
four (which equals the height of T3). Now, instead of us-
ing the flooding protocol, let players P1, P2, P3, P4 do the
followings simultaneously:

• P1 announces c2 = m ⊕ k12;
• P2 announces c3 = k12 ⊕ k23;
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• P3 announces c4 = k23 ⊕ k34;
• P4 announces c5 = k34 ⊕ k45.

Then, players P2, P3, P4, P5 can obtain the message m as
follows:

• P2 computes c2 ⊕ k12;
• P3 computes c2 ⊕ c3 ⊕ k23;
• P4 computes c2 ⊕ c3 ⊕ c4 ⊕ k34;
• P5 computes c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ k45.

Thus, one-round communication achieves secure message
broadcasting for the key sharing tree T3 (its secrecy will
be verified in Section 2.3).

Before going to the second example, we define an “in-
ternal” player. We say that, for a key sharing tree T , a
player Pi , 2 � i � n, is internal if Pi has two or more
secret keys, i.e., two or more edges are connected to the
vertex i. Note that players P2, P3 and P4 (who made an-
nouncements) in the example above (Fig. 1(c)) are internal.
Furthermore, it should be noted that, while P1 announced
the exclusive-or of the message m and the secret key k12
shared with her child P2, every internal player announced
the exclusive-or of the secret key shared with her parent
and one shared with her child.

For the second example, consider the key sharing tree
T2 depicted in Fig. 1(b). Note that P3 is the only internal
player. Furthermore, notice that each of P1 and P3 has ex-
actly two children. Let players P1 and P3 do the followings
simultaneously:

• P1 announces c2 = m ⊕ k12 and c3 = m ⊕ k13;
• P3 announces c4 = k13 ⊕ k34 and c5 = k13 ⊕ k35.

Then, players P2, P3, P4, P5 can obtain the message m as
follows:

• P2 computes c2 ⊕ k12;
• P3 computes c3 ⊕ k13;
• P4 computes c3 ⊕ c4 ⊕ k34;
• P5 computes c3 ⊕ c5 ⊕ k35.

Thus, one-round communication achieves secure message
broadcasting also for the key sharing tree T2. It should
be noted that every player Pi other than P1 obtained the
message m by adding the secret key shared with her par-
ent to the sum of all values announced by the players on
the path between P1 and the parent of Pi (modulo 2).

By carrying the idea further, one can easily build a one-
round secure message broadcasting protocol as in the suc-
ceeding subsection.

2.2. Description of our protocol

Given a key sharing tree T , in order for player P1 to
securely broadcast a message m, our protocol proceeds as
follows.

1. Execute the following (a) and (b) simultaneously.
(a) Player P1 announces ci = m ⊕ k1i for each child Pi

of P1.
(b) Every internal player Pi , whose parent is P� , an-
nounces c j = k�i ⊕ kij for each child P j of Pi .

2. Every player Pi other than P1 obtains the message m
by computing cv1 ⊕ cv2 ⊕ · · · ⊕ cv�

⊕ ci ⊕ kv� i , where
1 → v1 → v2 → ·· · → v� is the path between P1 and
the parent P v�

of Pi .

One can observe that all the players obtain the message
m after the protocol above terminates. Thus, our proto-
col achieves message broadcasting for any key sharing tree
within one communication round. Its secrecy will be veri-
fied in the succeeding subsection.

2.3. Secrecy of our protocol

In the sequel, we use the following notation: p(i) de-
notes the index of the parent of Pi (in a key sharing
tree), and p�(i) with � � 2 means p(p�−1(i)) recursively

where p1(i) = p(i); x
def= 1 − x for a bit x ∈ {0,1}; and X

def=
(x1, x2, . . . , x�) for an �-bit sequence X = (x1, x2, . . . , x�) ∈
{0,1}� .

Fix a key sharing tree T . Then, both a message m ∈
{0,1} and a key-value

(kp(2)2,kp(3)3, . . . ,kp(n)n) ∈ {0,1}n−1

together determine the “conversation” (c2, c3, . . . , cn) an-
nounced publicly in step 1 of the protocol. This can be ex-
pressed by a mapping conv : {0,1} × {0,1}n−1 → {0,1}n−1

such that

conv
(
m, (kp(2)2,kp(3)3, . . . ,kp(n)n)

) = (c2, c3, . . . , cn),

where

ci =
{

m ⊕ k1i if p(i) = 1;
kp2(i)p(i) ⊕ kp(i)i otherwise

for every i, 2 � i � n. We say that an (n − 1)-bit se-
quence (c2, c3, . . . , cn) ∈ {0,1}n−1 is a conversation if there
exist m ∈ {0,1} and K ∈ {0,1}n−1 such that conv(m, K ) =
(c2, c3, . . . , cn). Concerning the mapping conv defined
above, we have the following two lemmas.

Lemma 1. For any m ∈ {0,1} and K , K ′ ∈ {0,1}n−1 with K �=
K ′ , conv(m, K ) �= conv(m, K ′).

Proof. Let

K = (kp(2)2,kp(3)3, . . . ,kp(n)n)

and

K ′ = (k′
p(2)2,k′

p(3)3, . . . ,k′
p(n)n)

satisfy kp(i)i �= k′
p(i)i for some i, 2 � i � n. Let conv(m, K ) =

(c2, c3, . . . , cn), and let conv(m, K ′) = (c′
2, c′

3, . . . , c′
n). Let �

be such that p�(i) = 1.
When � = 1, i.e., p(i) = 1, we have k1i �= k′

1i and hence

ci = m ⊕ k1i �= m ⊕ k′
1i = c′

i .

Therefore, conv(m, K ) �= conv(m, K ′), as desired.
Assume that � � 2. If kp2(i)p(i) = k′

p2(i)p(i)
, then by

kp(i)i �= k′
p(i)i we have

ci = kp2(i)p(i) ⊕ kp(i)i �= k′
2 ⊕ k′ = c′;
p (i)p(i) p(i)i i
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thus one may assume that kp2(i)p(i) �= k′
p2(i)p(i)

. Similarly,

one may assume that kp j+1(i)p j(i) �= k′
p j+1(i)p j(i)

for every j,

2 � j � �− 1, and hence we have k1p�−1(i) �= k′
1p�−1(i)

. Thus,

cp�−1(i) = m ⊕ k1p�−1(i) �= m ⊕ k′
1p�−1(i)

= c′
p�−1(i)

. �
Lemma 2. For any m ∈ {0,1} and K ∈ {0,1}n−1 , conv(m, K ) =
conv(m, K ).

Proof. The statement immediately follows from the iden-
tity x ⊕ y = x ⊕ y. �

Lemmas 1 and 2 immediately imply the following The-
orem 3.

Theorem 3. For any conversation (c2, c3, . . . , cn), there exists
a unique key-value K such that conv(0, K ) = conv(1, K ) =
(c2, c3, . . . , cn).

Theorem 3 ensures that our protocol achieves secure
message broadcasting: although Eve learns the conversa-
tion (c2, c3, . . . , cn) after our protocol terminates, she can-
not obtain any information about whether the message is
m = 0 or m = 1 as implied in Theorem 3.

3. Conclusions

In this paper, we gave a one-round protocol, which
achieves secure message broadcasting for any key sharing
tree. In other words, we provided a non-interactive secure
message broadcasting protocol. Since the previously known
protocol, i.e., the flooding protocol, takes h communication
rounds where h is the height of a given key sharing tree,
our protocol is more efficient than the known one. Fur-
thermore, as seen in Section 2, our protocol is simple. Of
course, non-interactivity of our protocol is attractive; note
that DC-nets [3,11] have attracted much exploration be-
cause of their non-interactivity.

The flooding protocol has been often used as a primi-
tive protocol in multiparty secret key exchange protocols;
replacing it with our one-round protocol would bring im-
provement in such multiparty protocols concerning round
complexity.

Our protocol constructed in this paper is oriented for
the purpose of message broadcasting rather than multi-
party key agreement (multiparty key exchange). Of course,
if the designated player P1 randomly chooses a message
m and all players execute our protocol, then the message
m can be used as a common secret key; however, in this
case, P1 needs to generate one random bit (namely, a ran-
dom message m). Alternatively, if the designated player P1,
one of whose children is set to Pi , regards the secret key
k1i as a message m and all players execute our protocol,
then secret key agreement is achieved without any ran-
domization.

In this paper, we assumed the existence of a public au-
thenticated channel heard by all players. However, in prac-
tice, it suffices that the designated player P1 or each in-
ternal player informs only her corresponding descendants
(instead of all the players) of her announcements during
execution of our protocol. Furthermore, we have consid-
ered in this paper all secret keys and messages to be
one-bit. One can easily extend our protocol to a multi-bit
protocol, provided that all secret keys and messages have
the same length, of course.
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