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Abstract—The Internet of Things (IoT) integrates billions of 

smart devices that can communicate with one another with 

minimal human intervention. IoT is one of the fastest developing 

fields in the history of computing, with an estimated 50 billion 

devices by the end of 2020. However, the crosscutting nature of IoT 

systems and the multidisciplinary components involved in the 

deployment of such systems have introduced new security 

challenges. Implementing security measures, such as encryption, 

authentication, access control, network and application security 

for IoT devices and their inherent vulnerabilities is ineffective. 

Therefore, existing security methods should be enhanced to 

effectively secure the IoT ecosystem. Machine learning and deep 

learning (ML/DL) have advanced considerably over the last few 

years, and machine intelligence has transitioned from laboratory 

novelty to practical machinery in several important applications. 

Consequently, ML/DL methods are important in transforming the 

security of IoT systems from merely facilitating secure 

communication between devices to security-based intelligence 

systems. The goal of this work is to provide a comprehensive 

survey of ML methods and recent advances in DL methods that 

can be used to develop enhanced security methods for IoT systems. 

IoT security threats that are related to inherent or newly 

introduced threats are presented, and various potential IoT system 

attack surfaces and the possible threats related to each surface are 

discussed. We then thoroughly review ML/DL methods for IoT 

security and present the opportunities, advantages and 

shortcomings of each method. We discuss the opportunities and 

challenges involved in applying ML/DL to IoT security. These 

opportunities and challenges can serve as potential future research 

directions. 

Index Terms— Deep Learning, Machine Learning, Internet of 

Things Security, Security based Intelligence, IoT Big Data. 

I. INTRODUCTION 

HE recent progress in communication technologies, such as 

the Internet of Things (IoT), has remarkably transcended 

the traditional sensing of surrounding environments. IoT 

technologies can enable modernisations that improve life 

quality [1] and have the capability to collect, quantify and 

understand the surrounding environments. This situation 

simplifies the new communication forms among things and 

humans and thus enables the realisation of smart cities [2]. IoT 

is one of the fastest emerging fields in the history of computing, 

with an estimated 50 billion devices by the end of 2020 [3, 4]. 

On the one hand, IoT technologies play a crucial role in 
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enhancing real-life smart applications, such as smart healthcare, 

smart homes, smart transportation and smart education. On the 

other hand, the crosscutting and large-scale nature of IoT 

systems with various components involved in the deployment 

of such systems have introduced new security challenges.  

IoT systems are complex and contain integrative 

arrangements. Therefore, maintaining the security requirement 

in a wide-scale attack surface of the IoT system is challenging. 

Solutions must include holistic considerations to satisfy the 

security requirement. However, IoT devices mostly work in an 

unattended environment. Consequently, an intruder may 

physically access these devices. IoT devices are connected 

normally over wireless networks where an intruder may access 

private information from a communication channel by 

eavesdropping. IoT devices cannot support complex security 

structures given their limited computation and power resources 

[5]. Complex security structures of the IoT are due to not only 

limited computation, communication and power resources but 

also trustworthy interaction with a physical domain, 

particularly the behaviour of a physical environment in 

unanticipated and unpredictable modes, because the IoT system 

is also part of a cyber-physical system; autonomously, IoT 

systems must constantly adapt and survive in a precise and 

predictable manner with safety as a key priority, particularly in 

settings where threatening conditions, such as in health 

systems, might occur [6]. Moreover, new attack surfaces are 

introduced by the IoT environment. Such attack surfaces are 

caused by the interdependent and interconnected environments 

of the IoT. Consequently, the  security is at higher risk in IoT 

systems than in other computing systems, and the traditional 

solution may be ineffective for such systems [7, 8]. 

A critical consequence of the extensive application of IoT is 

that IoT deployment becomes an interconnected task. For 

example, IoT systems should simultaneously consider energy 

efficiency, security, big IoT data analytics methods and 

interoperability with software applications [4] during the 

deployment stage. One aspect cannot be ignored when 

considering advances in another [4]. This integration provides 

a new opportunity for researchers from interdisciplinary fields 

to investigate current challenges in IoT systems from different 

perspectives. However, this integration also introduces new 

security challenges due to the distribution nature of IoT devices, 
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which provide a large and vulnerable surface. This 

characteristic of IoT devices presents many security issues. 

Moreover, the IoT platform generates a large volume of 

valuable data. If these data are not transmitted and analysed 

securely, then a critical privacy breach may occur.  

Applying existing security protection mechanisms, for 

example encryption, authentication, access control, network 

security and application security, is challenging and inadequate 

for large systems with several connected devices, with each part 

of the system having inherent vulnerabilities. For example, 

‘Mirai’ is an exceptional type of botnets that has recently caused 

large-scale DDoS attacks by exploiting IoT devices[7, 9]. 

Existing security mechanisms should be enhanced to fit the IoT 

ecosystem [7]. However, the implementation of security 

mechanisms against a specified security threat is quickly 

conquered by new types of attacks created by attackers to 

circumvent existing solutions. For example, amplified DDoS 

attacks utilise spoofed source IP addresses for the attack 

location to be untraceable by defenders. Consequently, attacks 

that are more complex and more destructive than Mirai can be 

expected because of the vulnerabilities of IoT systems. 

Moreover, understanding which methods are suitable for 

protecting IoT systems is a challenge because of the extensive 

variety of IoT applications and scenarios [7]. Therefore, 

developing effective IoT security methods should be a research 

priority [7, 9]. 

As shown in Figure 1, having the capability to monitor IoT 

devices can intelligently provide a solution to new or zero-day 

attacks. Machine learning and deep learning (ML/DL) are 

powerful methods of data exploration to learn about ‘normal’ 

and ‘abnormal’ behaviour according to how IoT components 

and devices interact with one another within the IoT 

environment. The input data of each part of the IoT system can 

be collected and investigated to determine normal patterns of 

interaction, thereby identifying malicious behaviour at early 

stages. Moreover, ML/DL methods could be important in 

predicting new attacks, which are often mutations of previous 

attacks, because they can intelligently predict future unknown 

attacks by learning from existing examples. Consequently, IoT 

systems must have a transition from merely facilitating secure 

communication amongst devices to security-based intelligence 

enabled by DL/ML methods for effective and secure systems. 

 
Figure 1 Illustration of the potential role of ML/DL in IoT security
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Figure 2 shows a thematic taxonomy of ML/DL for IoT 

security. The remaining parts of the paper adopt the 

classification presented on the thematic taxonomy.  The present 

survey comprehensively reviews ML/DL algorithms (Even 

though DL is a ML sub-field, in this paper ML algorithms is 

referred to that require engineered features, while DL 

algorithms refer to recent advances learning methods that utilise 

several non-linear processing layers for discriminative or 

generative feature abstraction and transformation for pattern 

analysis [10]) for IoT security that can provide researchers and 

developers a manual guide to developing an effective and end-

to-end security solution based on intelligence. This survey also 

aims to highlight the list of challenges of using ML/DL to 

secure IoT systems. Section II provides an overview of general 

IoT systems, but the purpose of such an overview is to 

summarise the method used by the IoT model and its 

characteristics for increasing security risk. The summary points 

are provided at the end of Section III. Section IV presents the 

IoT security properties and threats and discusses the potential 

vulnerabilities and attack surfaces of IoT systems (IoT attack 

surfaces are categorised into physical device, network service, 

cloud service and web and application interfaces). Moreover, 

we discuss a new attack surface caused by the IoT 

environment. In Section V, we discuss the most promising ML 

and DL algorithms, their advantages, disadvantages and 

applications in the IoT security and then present the comparison 

and summary table for the reviewed ML/DL methods at the end 

of each section. Section VI discusses and comprehensively 

compares the application of ML/DL methods in securing each 

IoT layer, and a summary table of the studies that used ML and 

DL for IoT security is presented. In this section, we also present 

the enabling technology of ML/DL deployment for IoT 

security. In Section VII, the issues, challenges and future 

directions in using ML/DL for effectively securing IoT systems 

are presented and classified; the challenges are related to IoT 

data issues, learning strategies, operations under the 

interdependent, interconnected and interactive 

environments, possible misuse of ML and DL algorithms by 

attackers, inherent privacy and security issues of ML and DL 

and inherent properties of an IoT device. These challenges 

prevent the implementations of effective ML/DL methods for 

IoT system security (i.e. computational complexity or security 

vs. other trade-offs) and are presented as future directions. 

Furthermore, we present other future directions, such 

as integrating ML/DL with other technology (e.g. edge 

computing and blockchain) to provide reliable and effective IoT 

security methods. Section VIII presents the conclusions drawn 

from this survey. The key contributions of this survey are listed 

as follows: 

 Comprehensive discussion on the potential 

vulnerabilities and attack surfaces of IoT systems: We 

discuss various threats and attack surfaces in IoT 

systems. The attack surfaces are categorised into 

physical device, network service, cloud service and 

web and application interfaces, with several examples 

of security threat and potential vulnerabilities for each 

attack surfaces. We also discuss a new attack surface 

caused by the interdependent, interconnected and 

interactive environments of IoT systems. 

 In-depth review of the ML and recent advances in DL 

methods for IoT security: The most promising ML and 

DL algorithms for securing IoT systems are reviewed, 

and their advantages, disadvantages and applications 

in IoT security are discussed. Furthermore, 

comparisons and summary tables for ML and DL 

methods are presented to provide learned lessons.  

 Application of ML/DL for each IoT layers: The 

application of ML/DL for securing perception, 

network and application layers is reviewed. The works 

reviewed are compared on the basis of the type of 

learning method used,  the type of attack surfaces 

secured and the type of threats detected. The enabling 

technologies of ML/DL deployment for IoT security 

are discussed. 

 Challenges and future directions: Several potential 

research challenges and future directions of ML/DL 

for IoT security are presented. 

The following subsection discusses related works to 

highlight the major differences of this survey from the previous 

survey on IoT security. 

A.  Related Work 

Several researchers have conducted surveys on the IoT 

security to provide a practical guide for existing security 

vulnerabilities of IoT systems and a roadmap for future works. 

However, most of the existing surveys on IoT security have 

not particularly focused on the ML/DL applications for IoT 

security. For example, Surveys [11-17] reviewed extant 

research and classified the challenges in encryption, 

authentication, access control, network security and application 

security in IoT systems. Granjal, Monteiro and Silva [18] 

emphasised the IoT communication security after reviewing 

issues and solutions for the security of IoT communication 

systems. Zarpelão et al. [19] conducted a survey on intrusion 

detection for IoT systems. Weber [20] focused on legal issues 

and regulatory approaches to determine whether IoT 

frameworks satisfy the privacy and security requirements. 

Roman, Zhou and Lopez [21] discussed security and privacy in 

the distributed IoT context. These researchers also enumerated 

several challenges that must be addressed and the advantages of 

the distributed IoT approach in terms of security and privacy 

concerns. Survey [22] reviewed evolving vulnerabilities and 

threats in IoT systems, such as ransomware attacks and security 

concerns. Xiao et al. [23] briefly considered the ML methods 

for protecting data privacy and security in the IoT context. Their 

study also indicated three challenges in future directions of ML 

implementation in IoT systems (i.e. computation and 

communication overhead, backup security solutions and partial 

state observation).  

Other survey papers such as [24, 25] focused on the uses of 

data mining and machine learning methods for cybersecurity to 

support intrusion detection. The surveys  mainly discussed the 

security of the cyber domain using data mining and machine 
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learning methods and mainly reviewed misuse and anomaly 

detections in cyberspace [24, 25].  

Various classes of artificial intelligence approaches were 

studied [26] in the perspective of a context-aware framework, 

and the possibilities of implementing those strategies in IoT 

systems were examined. Nevertheless, the study did not focus 

on the role of DL in context reasoning. A survey of ML 

techniques for WSNs was provided [27]. The main focus was 

to study ML approaches in the practical aspect of WSNs, such 

as routing, localisation and clustering, as well as impractical 

aspects such as security and QoS. The application of DL in the 

design of WSNs were discussed in [28]. DL approaches were 

emphasised [29] with respect to network traffic control 

systems. However, this effort focuses on network organisation 

and varies from our work that emphasises on ML and DL 

approaches for IoT security. 

Several classical ML methods were studied [30]  along with 

advanced methods containing DL for handling common big 

data. In particular, the association of different ML approaches 

with signal processing methods were emphasised to process and 

investigate appropriate big data applications. A comprehensive 

review focused on state-of-the-art approaches of DL  [31]. The 

review covered the open research challenges of different 

proposed solutions along with their evolution and uses. The 

fundamental principles of numerous DL models were analysed 

with their uses and advances of DL in certain applications [32], 

such as computer vision, pattern recognition and speech 

processing. A survey of development in DL was conducted for 

recommendation models, which play a vital role in mobile 

advertising [33].   

Numerous effective ML practices were also used in self-

organising networks [34]. The study discussed advantages and 

disadvantages of different approaches, and provided future 

research directions in this domain. Challenges and 

opportunities of integrating artificial intelligence into future 

network designs were likewise discussed [35]. The importance 

of artificial intelligence in 5G environment was emphasised. 

Data mining for network intrusion detection was discussed in 

[36]. Inherited research challenges were also emphasised for 

such applications. Multimedia mobile application was also 

reviewed using DL [37]. State-of-the-art DL practices in speech 

recognition, language translation, mobile ambient intelligence, 

mobile security, mobile healthcare and wellbeing were covered. 

A survey was similarly conducted on recent state-of-the-art DL 

approaches used in different applications for data analytics in 

IoT [38].   

However, in contrast to other surveys, our survey presents a 

comprehensive review of cutting-edge machine and recent 

advances in   deep learning methods from the perspective of IoT 

security. This survey identifies and compares the opportunities, 

advantages and shortcomings of various ML/DL methods for 

IoT security. We discuss several challenges and future 

directions and present the identified challenges and future 

directions on the basis of reviewing the potential ML/DL 

applications in the IoT security context, thereby providing a 

useful manual for researchers to transform the IoT system 

security from merely enabling a secure communication among 

IoT components to end-to-end IoT security-based intelligent 

approaches. 

B. Overviews of IoT 

IoT [39] consists of many context-aware products and 

technologies, ranging from analogue and digital sensors to 

global positioning systems (GPS) and radio frequency 

identification devices (RFID), near field communication (NFC) 

sensors, weather detectors and emergency alarms. All these IoT 

devices collect data, process and communicate in real time. 

Such real-time communication is often subject to monitoring, 

connecting and interacting with many systems. These IoT 

devices store critical information ranging from sound data, light 

intensity, temperature reading, electricity consumption, 

mechanics movements, chemical reaction to impact, biological 

changes and geo-location. IoT devices are employed for 

machine-to-machine connection, machine-to-man interaction, 

and man-to-man activities.  

C. IoT security  

 Various IoT applications have different kinds of industry 

standards and specifications, yet no unified IoT security 

standards have been developed. Various organisations, such as 

IEEE and ETSI, attempt to create IoT standards for security. 

The development of security standards in IoT has been reported 

[4]. Current IoT-based frameworks are standalone in small 

networks, whereas relatively few frameworks are known for 

large-scale networks. As the development of IoT reach 

maturity, small networks converge into a large network. A large 

IoT network requires complex measures for security. Solving 

those security challenges will be crucial towards sustainable 

IoT development.  

IoT structure is broadly categorised into three layers, namely, 

application, network and perception layers. A few IoT solutions 

also utilise different support technologies for networks, such as 

network processing, third-party middleware, and distributed 

technology, as a processing layer. These layers of IoT structure 

were also explained in an analysis of potential threats and 

requirements to secure IoT architecture [5] [6].  
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Figure 2 Thematic Taxonomy of ML/DL for IoT Security 

II.  TAXONOMY OF ML/DL FOR IOT SECURITY  

ML/DL for IoT security can be categorised and compared 

through multiple parameters. Figure 2 represents the taxonomy 

for IoT security using ML/DL. IoT security can be classified 

into the following five categories: IoT system, IoT security 

threats, learning methods for IoT security, ML/DL for layers 

security and finally the issues, challenges and future directions. 

Detailed explanations of each category are given below. 

A. IoT System 

The key attributes that differentiate IoT security issues from 

traditional ones are its ubiquity and wide deployment as a 

distributed network. These attributes of heterogeneity and 

complexity lead to difficulties in ensuring IoT security. This 

study presents challenges and highlights the research 

opportunities in IoT security. New research areas and their 

possible solutions are likewise previously discussed in [40]. 

B. IoT Security Threats 

Each IoT layer is vulnerable to security loopholes and their 

activities. These activities can be active or passive and can start 

from remote systems or internal networks (insider attack [1]). 

An active attack disturbs the operation of running services, 

whereas a passive attack enumerates IoT network information 

without disturbing the live service. All layers of IoT devices and 

services are vulnerable to denial of service (DoS) attacks. As a 

result, the device and network resources become unresponsive 

and degrade customer service. The following paragraphs cover 

a detailed analysis of the security problems corresponding to 

each layer [41]. 

C. Learning Methods for IoT Security 

Learning methods for IoT security have been grouped into ML, 

DL and RL methods. ML methods consist of supervised and 

unsupervised approaches. The supervised approaches are 

further categorised into DT, SVM, NB, KNN, RF, AR and EL. 

Moreover, the unsupervised method only consists of two 

methods, which are K-means and PCA. DL methods are also 

grouped into supervised, unsupervised and hybrid approaches. 

Supervised approaches consist of CNN and RNN methods. 

Unsupervised approaches also consist of AE, RBMs and DBNs 

methods. Lastly, hybrid approaches consist of GAN and 

EDLNs methods. No further categorisation was found under RL 

methods. 
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D. ML/DL for layer security 

In this parameter, the layers are categorised into ML/DL 

perception layer security, ML/DL network layer security, 

ML/DL application layer security, and enabling technology for 

ML/DL deployment for IoT security. 

E. Issues, Challenges and Future Directions 

Under this parameter, we present a list of issues, challenges and 

future directions for using ML and DL methods to mitigate 

security weaknesses in IoT systems. The issues are classified 

based on data, learning strategies for effective IoT security, ML 

and DL challenges, integrating ML/DL with other technologies 

for IoT security, ML/DL for securing IoT interdependent, 

interconnected and social environments, computational 

complexity and security versus trade-offs in IoT application. 

III. OVERVIEW OF THE IOT SYSTEM  

This section provides an overview of the general IoT 

systems. However, the objective of this section is to highlight 

the characteristics of IoT systems that may increase security 

risk. The summary points are provided at the end of this section. 

IoT converts a physical object from a conventional object to 

a smart object by utilising technologies, such as communication 

technologies, Internet protocols and applications, sensor 

networks and ubiquitous and pervasive computing [42]. The 

implementation of a flawless IoT system is crucial in the 

academe and industry due to the wide range of applications that 

can enable the execution of smart city concepts through billions 

of connected smart devices [43]. The IoT model can be defined 

as the interconnection of massive heterogeneous devices and 

systems in diverse communication patterns, such as thing-to-

thing human-to-human or human-to-thing [13, 42]. The IoT 

architecture consists of physical objects that are integrated into 

a communication network and supported by computational 

equipment with the aim of delivering smart services to users. 

The IoT architecture generally has three layers, namely, 

application, network and perception [14]. This architecture can 

be further taxonomized for simplicity and improved analysis, as 

shown in Figure 3. Each level is described in the following 

subsections. 

 
Figure 3 IoT architecture

Authorized licensed use limited to: McMaster University. Downloaded on May 03,2020 at 01:08:58 UTC from IEEE Xplore.  Restrictions apply. 



1553-877X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2020.2988293, IEEE
Communications Surveys & Tutorials

 

 

7 

A.  Physical objects 

The physical object level involves IoT physical sensors. The 

main function of physical objects is to sense, collect and 

possibly process information. This level adopts sensors and 

actuators, such as temperature, humidity, motion and 

acceleration sensors, to implement diverse sensing 

functionalities. The plug-and-play mechanism must be 

applicable at this level to configure heterogeneous sensors [42, 

44, 45]. IoT sensors are resource-constrained devices because 

they have limited battery capacity and computational 

capability. Understanding the sensor data delivered by these 

objects is a key step in achieving a context-aware IoT system 

[46, 47]. A large part of the big data of IoT is generated at this 

level. The increase in IoT devices and the extensive increment 

in data volume indicate a positive correlation between the 

growth of big data and of IoT devices. Effective analysis of the 

big data of IoT can result in improved decision making for a 

highly secure IoT implementation. 

One of the promising applications of ML/DL methods is 

perception-layer authentication. Traditional physical-layer 

authentication techniques apply assumption checks and relate 

the randomness and exclusiveness of the radio channel between 

‘Alice’ and ‘Bob’ to detect spoofing attacker ‘Eve’ in a wireless 

network. Nonetheless, such an approach is not always practical 

specifically in dynamic networks [48].  

B.  Connectivity  

One of the main objectives of the IoT platform is to connect 

heterogeneous sensors cooperatively and subsequently provide 

smart services [42]. The sensors implemented in the IoT 

platform are resource-constrained because they are powered by 

batteries and have a limited computation and storage capability 

[47, 49]. Therefore, IoT sensors must work with low-power 

resources under a lossy and noisy communication environment 

[42]. The following connectivity challenges are encountered in 

the deployment of IoT devices.  

 The first one is providing unique IPs to billions of 

devices connected to the Internet. This challenge can 

be mitigated by incorporating 6LoWPAN that uses 

IPv6.  

 The second challenge is developing low-power 

communication for transmitting data generated by 

sensors.  

 The third challenge is implementing effective routing 

protocols that consider the limited memory of sensors 

and support the flexibility and mobility of smart 

objects. 

 The recent communication technologies employed in IoT 

are 6LoWPAN, Bluetooth, IEEE 802.15.4, WiFi, ultra-wide 

bandwidth, RFID and near-field communication (NFC) [42].  

C. Middleware  

A middleware aims to effectively represent the complexities 

of a system or hardware, thus allowing developers to focus only 

on the issue to be solved without interruption at the system or 

hardware level [50, 51]. These complexities are commonly 

related to communication and computational issues. A 

middleware offers a software level amongst applications, the 

operating system and the network communication levels; it 

enables cooperative processing. From the computational 

perspective, a middleware offers a level between an application 

and the system software [47, 50, 52]. Its main functions can be 

summarised as follows. First, it enables cooperation between 

heterogeneous IoT objects so that the diverse categories of IoT 

can interact with one another effortlessly through middleware 

assistance [47, 50, 52]. One of key roles of middleware is to 

provide interoperability between the IoT devices. Second, a 

middleware must provide scalability amongst several devices 

that are likely to interact in the IoT realm. The future growth of 

IoT devices should be handled by the middleware by providing 

vital modifications when the organisation scales [47]. The third 

function is device discovery [47] and context awareness, which 

should be provided by a middleware to support the objects’ 

awareness of all other surrounding IoT objects. A middleware 

should provide context-aware computing to understand sensor 

data. Sensor data can be utilised to obtain the context, and the 

obtained context can be used to provide smart services to users 

[53]. The last function is to provide security and privacy to IoT 

devices because the data collected by IoT devices are generally 

related to humans or an industry. Security and privacy concerns 

must be addressed in such circumstances. A middleware must 

construct mechanisms to provide a secure IoT system [47]. 

D. Big Data Analytics  

The huge amounts of data produced or captured by IoT are 

extremely valuable. ML can play an analytical role in building 

intelligent IoT systems to deliver smart services in the IoT 

realm [54]. Big data are created [55] by several physical objects 

that are used in various IoT applications. However, physical 

devices produce volumes of data that should be analysed in real 

time to acquire useful knowledge. To obtain insights from these 

data, researchers [54-60] have discussed different methods of 

integrating big data analytical methods with IoT design. Unlike 

traditional analytical methods, ML and DL can effectively 

derive unobserved insights from big data and convert big data 

into useful data with minimal human assistance [55]. Analytical 

methods can be categorised into three: descriptive, predictive 

and perspective analytics [55]. Descriptive analytics is used for 

analysing data to describe current or past events. Predictive 

analytics is used for analysing data to predict the future based 

on the patterns that occur in current events. Prescriptive 

analytics is used for analysing data to make decisions by 

examining various real scenarios and providing a set of 

recommendations to decision makers. The big data related to 

the behaviour of IoT systems are vital in building ML/DL to 

secure IoT systems. 

E. Applications  

IoT has several applications. The commonly known 

applications include smart healthcare, smart transportation, 

smart grid and smart building. These applications are briefly 

discussed in the following subsections. 

1)  Smart healthcare  

IoT devices have become popular in health applications in 
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recent years. The IoT system is rapidly becoming a key 

instrument in healthcare [61]. IoT devices are used in healthcare 

sectors to closely observe and record patient conditions and 

send warnings to the concerned healthcare system in critical 

circumstances to provide a rapid and timely treatment to 

patients. Internet of medical things (IoMT) devices have been 

adopted in approximately 60% of the healthcare sector [62]. 

IoMT is believed to have a significant role in transforming the 

healthcare field by empowering the evolution from 

disorganised healthcare to synchronised healthcare. In 2015, 

30.3% of 4.5 billion IoT devices are IoMT devices. This 

number is estimated to rise to 20–30 billion IoMT devices by 

2020.  

However, in contrast to other applications, the IoT in 

healthcare systems must be secured whilst providing flexible 

access to devices to save lives in emergency cases. For example 

[63], an individual who has an implanted IoT-based medical 

device has experienced an emergency situation where he/she 

suddenly must be admitted into a hospital rather than only 

regularly visiting. In this case, the staff at the new hospital must 

be able to access the implanted IoT-based medical device 

easily. Therefore, a complex security requirement may be not 

acceptable, and the security method must consider and balance 

between security and flexible access during emergency 

situations. 

Moreover, IoT sensors are widely used to monitor daily 

health-related activities. A smartphone is usually employed to 

monitor health-related activities, such as daily activity (number 

of steps, walking and running distance and cycling distance), 

and sleep analysis. IoT has prodigious opportunities to 

potentially advance healthcare systems and a wide range of 

applications [64]. The recent development in traditional 

medical devices towards interactive environment medical 

devices can be further advanced by the IoT system by 

connecting implanted, wearable and environmental sensors 

collaboratively within the IoT system to monitor users’ health 

effectively and ensure real-time health support [61]. However, 

securing IoT systems remains a critical issue [65, 66], and 

further investigation is required to securely implement IoT 

devices in healthcare. 

2)  Smart transportation  

Smart or intelligent transport systems have become attainable 

with the help of IoT systems. The main objective of smart 

transport is to manage daily traffic in cities intelligently by 

analysing data from well-connected sensors located in different 

places and implementing data fusion (data from CCTV, mobile 

devices, GPS, accelerometers, gyroscope-based applications 

and weather sensors). The data are then explored and integrated 

to provide smart choices to users [67]. Moreover, the data 

analytics of smart transport can implicitly enhance shipment 

schedules, advance road safety and improve delivery time [55]. 

3)  Smart governance  

IoT can facilitate smart governance. Integrating data from 

different governmental sectors can provide authorities with 

abundant information from a wide range of sensor data (from 

weather-related data to security-related data). The huge amount 

of data generated by IoT sensors can overcome the limitations 

of conventional monitoring systems in an exceptional manner, 

thereby presenting a knowledge-based system from information 

fusion sources that compiles and correlates data from different 

sectors to deliver an optimal decision considering multiple 

perspectives. 

4)  Smart agriculture 

 IoT systems can be applied to improve the agriculture sector. 

IoT sensors can be implemented to enable real-time monitoring 

of the agriculture sector. IoT sensors can collect useful data on 

humidity level, temperature level, weather conditions and 

moisture level. The collected data can then be analysed to 

provide important real-time mechanisms, such as automatic 

irrigation, water quality monitoring, soil constituent monitoring 

and disease and pest monitoring [68]. 

5)  Smart grid  

The latest development in power grids was achieved by using 

the IoT platform to construct a smart grid in which the 

electricity between suppliers and consumers is handled smartly 

to improve efficiency, safety and real-time monitoring[69-71]. 

The IoT platform plays a significant role in effective grid 

management. Applying IoT technology in a smart grid can help 

prevent disasters, decrease power transmission to enhance the 

reliability of power transmission and minimise economic losses 

[72]. Moreover, analysing the data generated by IoT sensors can 

help decision makers select a suitable electricity supply level to 

deliver to customers.  

6)  Smart homes  

IoT components are used to realise smart homes. Home IoT-

based machines and systems (e.g. fridge, TV, doors, air 

conditioner, heating systems and so on) are now easy to observe 

and control remotely [42, 73]. A smart home system can 

understand and respond to surrounding changes, such as 

automatically switching on air conditioners based on weather 

predictions and opening the door based on face recognition. 

Intelligent homes should consistently collaborate with their 

internal and external environments [74]. The internal 

environment involves all home IoT devices that are managed 

internally, and the external environment involves objects that 

are not managed by the smart home but play important roles in 

the construction of the smart home, such as smart grids [42, 74]. 

7)  Smart supply chain  

An important application of IoT technology in real life is the 

development of easier and more flexible business processes 

than before. The development in IoT-embedded sensors, such 

as RFID and NFCE, enables the interaction between IoT 

sensors embedded on the products and business supervisors. 

Therefore, these goods can be tracked throughout production 

and transportation processes until they reach the consumer. The 

monitoring process and the data generated through this process 

are crucial in making appropriate decisions, which can in turn 

improve machine uptime and the service provided to customers 

[71]. 

F. Collaboration and Business Objective  

At this level, IoT service is delivered to users, and the data 

captured and analysed at the lower levels are integrated into the 

business objective. This level mainly involves human 

interaction with all of the levels of the IoT model. The aim at 
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this level is to effectively utilise the data captured, transmitted 

and analysed at different levels of the IoT model to improve 

social and economic growth. The analysis of big data generated 

by IoT devices can be incorporated into the business objective 

at this stage to identify factors that can improve the business 

outcome and create optimal strategic business plans.  

G. Lessons learned  

The major contribution of Section III is an overview of IoT 

systems by generally describing an IoT system, highlighting its 

characteristics and systems that may increase security risks. 

Furthermore, from the above discussions, we can conclude that 

the nature of IoT systems can increase security risks because of 

the following reasons. 

 By nature, IoT is a multipart model with various 

applications that have diverse requirements. This 

nature demonstrates the massive complexity of such 

systems through extensive IoT applications, from 

smart homes, smart cars, to smart healthcare. These 

drivers and various IoT applications can present a 

challenge whilst developing an effective security 

scheme. An effective security method proposed for a 

specific application or requirement may be unsuitable 

for others with different requirements. 

 IoT systems are vastly heterogeneous in protocols, 

platforms and devices that are accessible worldwide 

and consist mainly of constrained resources, 

construction by lossy links [7, 8] and lack of 

standardisation. Such features of IoT systems become 

bottlenecks that prevent the development of effective 

and generalised security schemes. 

 IoT devices can be designed to autonomously adapt to 

the surrounding environment. Consequently, IoT 

devices can be controlled by other devices [7]. In such 

cases, an effective IoT security must not only be 

proposed to secure each device independently but also 

to provide an end-to-end security solution. 

 IoT generates valuable data, which can be analysed to 

understand the behaviour of individuals and their daily 

activities. Therefore, policymakers can use such 

information to adjust their products smartly and satisfy 

individual preferences and requirements. However, 

this result can turn IoT devices into eavesdropping 

devices that capture user information including 

biometric data, such as voices, faces and fingerprints 

that can aid in IoT device intrusion. 

 Physical attacks can increase by implementing IoT 

systems because most of the physical things of IoT 

(e.g. sensors) may be ubiquitously and physically 

reachable [21, 75]. Physical threats may likewise be 

caused by unintended damage from natural disasters, 

such as floods or earthquakes, or disasters caused by 

humans, such as wars [76, 77]. Therefore, an effective 

security solution must be context-aware and consider 

such characteristics of IoT systems. 

 IoT systems do not have exact boundaries and are 

constantly adjusted whilst new devices are added due 

to user mobility. Such characteristics allow the IoT 

model to continually expand possible attack surfaces 

and introduce several vulnerabilities. 

Therefore, methods that can comprehensively understand 

and gain knowledge on the behaviour of things and other IoT 

components within such large systems are required. However, 

ML/DL methods can predict the expected behaviour of a system 

by learning from previous experiences. Therefore, applying 

ML/DL methods can significantly advance the security 

methods by transforming the security of IoT systems from 

simply facilitating secure communication between devices to 

security-based intelligence systems. 

IV.  IOT SECURITY THREATS 

IoT integrates the Internet with the physical world to provide 

an intelligent interaction between the physical world and its 

surroundings. Generally, IoT devices work in diverse 

surroundings to accomplish different goals. However, their 

operation must meet a comprehensive security requirement in 

cyber and physical states [76, 78]. IoT systems are complex and 

contain multidisciplinary arrangements. Therefore, maintaining 

the security requirement with the wide-scale attack surface of 

the IoT system is challenging. To satisfy the desired security 

requirement, the solution should include holistic 

considerations. However, IoT devices mostly work in an 

unattended environment. Consequently, an intruder may 

physically access these devices. IoT devices are normally 

connected over wireless networks where an intruder might 

expose private information from the communication channel by 

eavesdropping. IoT devices cannot support complex security 

structures because of their limited computation and power 

resources [5]. Therefore, securing the IoT system is a complex 

and challenging task. Given that the main objective of the IoT 

system is to be accessed by anyone, anywhere and anytime, 

attack vectors or surfaces also become accessible to attackers 

[21, 79]. Consequently, causing potential threats to become 

more probable. A threat is an act that can exploit security 

weaknesses in a system and exerts a negative impact on it [5, 

80]. Numerous threats, such as passive attacks (e.g. 

eavesdropping) and active threats (e.g. spoofing, Sybil, man-in-

the-middle, malicious inputs and denial of service (DoS)), 

might affect the IoT system. Figure 4 shows the potential 

attacks that can affect the main security requirements 

(authentication, integrity non-repudiation, confidentiality 

availability and authorisation).  
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Figure 4 Potential threats in the IoT system

The following main security properties should be considered 

while developing an effective IoT security method. 

Confidentiality: Confidentiality is a vital security 

characteristic of IoT systems. IoT devices may store and 

transfer sensitive information that should not be revealed by 

unauthorised individuals. Medical (patient related), personal, 

industry and military data are highly confidential and must be 

secured against unauthorised access [5, 81]. However, in 

specific scenarios, such as IoT medical devices, although 

communications are encrypted and data are confidentially 

stored and transferred, attackers can still sense the existence of 

the physical device and can even track the holder. In such a 

situation, the location confidentiality of the holder is exposed 

and put at risk [63].  

Integrity: Data from IoT devices are generally transferred 

through wireless communication and must be changed only by 

authorised entities. Integrity features are thus fundamental in 

ensuring an effective checking mechanism to detect any 

modification during communication over an insecure wireless 

network. Integrity features can secure the IoT system from 

malicious inputs that might be used to launch structured query 

language (SQL) injection attacks [82]. A deficiency in integrity 

inspection can allow for modification of the data stored on the 

memory of IoT devices, which can affect the main operational 

functions of the physical devices for a long time without being 

detected easily. IoT systems have various integrity 

requirements. For example, IoT implantable medical devices 

require effective integrity checking against random errors 

because they affect human lives directly. Loss, errors or 

modification of information in several circumstances can lead 

to loss of human lives [63, 83, 84]. 

Authentication: The identity of entities should be perfectly 

established prior to performing any other process. However, 

due to the nature of IoT systems, authentication requirements 

differ from system to system. For example, authentication 

should be robust in an IoT system where a service needs to offer 

robust security rather than high flexibility. Trade-offs are a 

major challenge in developing an effective authentication 

scheme. For example, the trade-off between security and safety 

in IoT medical devices is that both security and safety must be 

balanced when designing an authentication scheme. Similarly, 

the trade-off can be between an effective authentication scheme 

and battery-based devices or between privacy and security [85]. 

Therefore, an IoT system requires an effective authentication 

that can balance system constraints and provide robust security 

mechanisms [86]. 

Authorisation: Authorisation includes granting users access 

rights to an IoT system, such as a physical sensor device. The 

users may be machines, humans or services. For example, the 

data collected by sensors should only be delivered to and 
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accessed by authorised users (authorised objects and service 

requesters) [13, 87]. In other words, an action must be 

performed only if the requester has satisfactory authorisation to 

command it. The main challenge in authorisation in IoT 

environments is how to grant access successfully in an 

environment where not only humans but also physical sensors 

(things) should be authorised to interact with the IoT system 

[12]. In addition, in handling huge amounts of data in such a 

heterogeneous environment, the data must be protected 

throughout the sensing and transmission process and should be 

made available only to authorised parties [88]. 

Availability: The services delivered by IoT systems must 

always be available to authorised entities. Availability is a 

fundamental feature of a successful deployment of IoT systems. 

However, IoT systems and devices can still be rendered 

unavailable by many threats, such as DoS or active jamming. 

Therefore, ensuring the continuous availability of IoT services 

to users is a critical property of IoT security. 

Non-repudiation: The non-repudiation property is meant to 

provide access logs that serve as evidence in situations where 

users or objects cannot repudiate an action. Generally, non-

repudiation is not considered a key security property for many 

IoT systems [5]. However, non-repudiation can be an important 

security property in specific contexts, such as payment systems 

where both parties cannot repudiate a payment transaction [5]. 

For an effective IoT security scheme, the security properties 

above should be considered. However, these properties can be 

exploited by several security threats, as shown in Figure 4. In 

the following subsection, we briefly discuss potential security 

threats to understand how different security properties should 

be maintained in a secure IoT environment. 

A.  Threats in IoT 

Security threats can be categorised as cyber and physical. 

Cyber threats can be further classified as passive or active. The 

following subsection provides a brief discussion of these 

threats. 

1) Cyber Threats 

Passive threats: A passive threat is performed only by 

eavesdropping through communication channels or the 

network. By eavesdropping, an attacker can collect information 

from sensors, track the sensor holders, or both. Currently, 

collecting valuable personal information, particularly personal 

health data, has become rampant on the black market [78]. The 

value of personal health information on the black market is $50 

compared with $1.50 for credit card information and $3 for a 

social security number [78]. Moreover, an attacker can 

eavesdrop on communication channels to track the location of 

the IoT device holder if its communication channel is within 

range [89, 90], thus causing a violation of privacy. 

Active threats: In active threats, the attacker is not only 

skilful in eavesdropping on communication channels, but also 

in modifying IoT systems to change configurations, control 

communication, deny services and so on. Attacks may include 

a sequence of interventions, disruptions and modifications. For 

example, potential attacks on an IoT system (shown in Figure 

4) may involve the following active attacks: impersonation (e.g. 

spoofing, Sybil and man-in-the-middle), malicious inputs, data 

tampering and DoS. An impersonation attack is intended to 

impersonate an IoT device or authorised users. If an attack path 

exists, active intruders can attempt to partially or fully 

impersonate an IoT entity [21]. Malicious input attacks are 

intended to insert malicious software into the targeted IoT 

system. This software will run a code injection attack. The 

injected malicious software has a dynamic nature, and new 

types of attacks are constantly introduced to violate IoT 

components remarkably because IoT systems have a naturally 

large, well-connected surface [22, 91]. Meanwhile, data 

tampering is the act of intentionally changing (deleting, 

changing, manipulating or editing) information via 

unauthorised operations. Data are commonly transmitted or 

stored. In both situations, data might be captured and tampered, 

which might affect the significant functions of IoT systems, 

such as changing the billing price in the case of an IoT-based 

smart grid [92]. Many types of DoS attacks can be utilised 

against IoT. These types range from conventional Internet DoS 

attacks that are established to deplete the resources of the 

service provider and network bandwidth to signal jamming that 

targets wireless communication. Distributed DoS (DDoS) is a 

severe DoS where several attacks are launched with different 

IPs, which makes discriminating it from normal traffic of 

normal devices challenging compared with the attack with a 

huge traffic form signal or limited number of devices that is 

easier to discriminate from normal traffic and devices. 

Although different forms of DoS attacks exist, they have a 

common aim: to interfere with the availability of IoT services 

[19]. IoT systems have billions of connected devices that can 

be exploited through destructive DDoS, such as Mirai. Mirai is 

an exceptional type of botnets that has recently caused large-

scale DDoS attacks by using IoT devices [7, 9]. 

2) Physical Threats 

Physical threats can be in terms of physical destruction. In 

these threats, the attacker generally does not have technical 

capabilities to conduct a cyber-attack. Therefore, the attacker 

can only affect the reachable physical objects and other 

components of IoT that lead to terminating the service. By 

adopting IoT systems, these types of attacks may become wide-

scale because most of the physical objects of IoT (sensors and 

cameras) are expected to be everywhere and physically 

accessible [21, 75]. Physical threats may also be caused by 

unintended damage from natural disasters, such as floods or 

earthquakes, or disasters caused by humans, such as wars [76, 

77].  

B. Attack Surfaces 

In this section, we discuss possible IoT system attack 

surfaces and the potential threats related to each surface. As 

shown in Figure 5, IoT attack surfaces can be categorised into 

physical device, network service, cloud service, web and 

application interface. The new IoT environment introduces 

threat surfaces. 
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Figure 5 IoT attack surfaces

 

1) Physical Device Surface  

Physical devices, such as RFID, are a main part of IoT 

systems. In an embedded communication system, RFID plays a 

significant role in implementing microprocessors for wireless 

communication [93]. The key characteristic of RFID tags is 

automatic identification through a unique identifier that 

involves fast information transmission between tags (RFID is 

tagged to an object that can be anything, from human to animal) 

and readers [94]. The main function of RFID technology is to 

supervise the process of objects in real time; this bridges the 

interaction between virtual and actual worlds. Consequently, 

these tiny physical devices can be expended in an exceptionally 

wide range of applications [93]. However, most physical 

devices suffer from many security-related issues. Another unit 

of physical device surface is the sensor node. Sensor nodes 

mainly consist of sensors used for sensing and actuators used 

for actuating devices in accordance with specified instructions. 

Sensors nodes commonly have high latency. 

Most physical devices are resource-constrained and contain 

valuable information, which makes them a potential surface for 

attackers; for example, they can be exploited to track their 

holders, flooding them with many access requests that cause 

DoS or other attacks, such as eavesdropping, spoofing and 

counterfeiting [95, 96]. Moreover, this surface is highly 

vulnerable to physical threats because it is the most physically 

accessible surface for an attacker.  

2)  Network Service Surface  

The IoT system contains physical objects (sensors and 

actuators) that are connected through wired and wireless 

technologies. Sensor networks (SNs) are significant resources 

for realising IoT systems. SNs can be constructed without an 

IoT system. However, an IoT system cannot be constructed 

without SNs [53, 97]. An IoT system consists of SNs and a 

wired network, thus creating a large-scale network surface. 

Such a wide network surface can be potentially vulnerable. 

Moreover, IoT systems face new security threats that are 

inherited from wired and wireless SNs. These new threats are 

introduced when traditional networks are directly integrated 

into IoT networks. The direct integration of a wireless SN into 

an IoT network poses several issues because traditional 

networks are no longer secure within IoT environments; for 
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example, the resilience of WSNs (the sensors within a WSN 

openly provide its information to external parties) makes this 

network completely vulnerable to attacks in IoT environments 

[53, 97]. 

Other threats can be designed by attackers to target the 

routing protocol that may lead to network failure. Accordingly, 

designing a secure routing protocol is important to IoT system 

security [95, 98]. Attacks can also be launched at a port by 

searching and examining open ports. Detection of open ports 

can encourage attackers to launch an attack on the services 

operating on these open ports. Such an attack can extract 

detailed information about the network, such as IP address, 

MAC address, router and gateway [9, 99].  

IoT has expanded network connectivity, mobility and 

collaboration between users. Such features increase network 

service surfaces, leading to frequent security risks and attacks, 

such as hacking, interruption, acknowledgement spoofing, 

DoS, man-in-the-middle attack protocol tunnelling and 

interception [100]. Furthermore, the Internet network, which is 

a key component that connects IoT devices, has different 

players ranging from business subscribers to individual 

subscribers and from a local network area (LAN) to a 

worldwide network area (WAN), thereby connecting a wide 

range of devices and servers [101]. On the one hand, the 

Internet can provide a wide range of services and applications 

that can work in synergy with the information collected from 

sensors to achieve a fully functional IoT system for providing 

intelligent services. On the other hand, the continuous use of 

traditional Internet protocol (TCP/IP) to connect billions of 

objects and devices worldwide is highly vulnerable to 

numerous security and privacy threats, such as viruses, 

intrusion and hacking, replay attack and identity theft [13, 64, 

102]. 

3) Cloud Service Surface  

Cloud computing provides a set of innovative services that 

are introduced to offer access to stores and processes for 

obtaining information from anywhere and at any time; 

accordingly, the requirement for hardware equipment is either 

limited or eliminated [103]. Cloud computing can be defined as 

enabling remote access to shared service resources [104, 105]. 

Cloud computing can serve as a platform that can be used as a 

base technology to realise the vision of IoT [106]. Cloud 

computing has significant characteristics that can benefit IoT 

systems, such as computational and energy efficiencies and 

storage, service and application over the Internet [106]. The 

integration of cloud and IoT offers great opportunities for IoT 

systems. IoT can benefit from the unrestrained resources of the 

cloud, thereby overcoming the main constraints of IoT, such as 

computational and energy capabilities [107]. The integration of 

cloud and IoT offers opportunities for the cloud as well. The 

cloud can use an IoT device as a bridge to be integrated into 

real-life applications through a dynamic and distributed means, 

consequently supplying cloud services to a large consumer base 

[106, 108]. However, with the integration of cloud and IoT 

systems, several security concerns arise because such a 

distributed system is vulnerable to numerous attacks, such as 

(1) malicious attacks that can manipulate flaws in data security 

to obtain unauthorised access (e.g. cross-site scripting (XSS), 

SQL injection flaws, cross-site request forgery (CSRF) and 

insecure storage [109]); (2) insufficient integrity controls at the 

data level that can result in security threats by avoiding the 

authorisation process to directly access the database [109, 110]; 

and (3) a security threat may exist in all virtualisation software 

which can be utilised by intruders (e.g. the vulnerability of a 

virtual server might allow a guest OS to run codes on the host). 

Consequently, the vulnerability of the virtual server could be 

exploited to allow the elevation of privileges [109, 110]. 

Cloud computing has substantial consequences on 

information privacy and confidentiality. Privacy and 

confidentiality risks differ significantly according to the terms 

and conditions between the cloud service provider and the cloud 

service consumers. However, the integration of IoT devices 

with cloud computing introduces several privacy concerns, 

such as exposing highly confidential data (e.g. personal medical 

data of the holder or home-based sensor data). Privacy is a vital 

factor that prevents users from adopting IoT devices. Therefore, 

development should be accompanied with effective privacy 

protection for a successful IoT system deployment [111-113]. 

Moreover, multi-tenancy, which is one of the main features of 

cloud computing, can cause security threats that may lead to 

private information leakage. Multi-tenancy allows multiple 

users to store their data using the cloud via the application 

interface (API). In such a condition, the data of several users 

can be stored at the same locality, and data in such an 

environment can be accessed by one of these users. By either 

hacking through the loop holes in API or inserting the client 

code into the cloud system, an unauthorised operation attack 

can be launched against the data [109]. Authorised cloud users 

might also misuse their permissible access to gain unauthorised 

privileges and launch attacks, such as internal DoS. Such 

attacks can be called insider attacks [99], which can introduce 

a critical trust issue when the cloud is integrated with IoT. 

4) Web and Application Interface 

Most services provided by IoT systems provide users remote 

access via the Web or mobile applications. For example, in a 

smart home, the smart things that are connected to home 

appliances are designed to be controlled by users using their 

mobile applications or by webpage interfaces in a few cases. 

Mobile applications have also been developed for smart cars, 

watches, belts, shoes, glasses, lights, parking and other things 

that are becoming IoT-based devices controlled by mobile 

applications. With the rapid development of IoT, virtual and 

real worlds are being integrated, and soon the difference 

between the two worlds will become undefinable. IoT devices 

can interact with one another in real time. This scenario can be 

ultimately achieved with the help of smartphone applications  

[114]. Smartphones have become ubiquitous because of the 

extensive services they provide to users through their 

applications. Android-based devices are among the popular 

smart devices. They have captured a massive market because of 

their open architecture and the popularity of their application 

programming interface (APIs) among developer groups [115, 

116]. However, the open nature of mobile operating systems 

permits users to download diverse applications involving 
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malicious applications that are uploaded by a third-party to 

online application stores without thorough security checks 

[115, 117]. The growing popularity of Android-based devices 

and other operating system devices has attracted malware 

developers, followed by a huge increase in Android malware 

[115]. Malware developers can control smartphones by utilising 

platform vulnerabilities, extracting private user information or 

constructing botnets. Furthermore, Android applications may 

release private information carelessly or maliciously. 

Consequently, their functioning behaviours, operational models 

and usage patterns should be recognised to develop practical 

security methods for mobile devices [115]. Mobile devices are 

exposed to risks and threats, such as bluesnarfing, bluejacking, 

eavesdropping, tracking and DoS [13, 92, 118].  

5)  New attack surfaces introduced by IoT  

In this section, we discuss new attack surfaces introduced by 

the IoT environment.  

a) Threats caused by IoT interdependent 

environment 

With the rapid growth of IoT objects, the collaboration 

between objects has become more automated and require less 

human involvement. IoT objects no longer merely interact with 

one another like devices within a network. Many IoT devices 

nowadays are designed to achieve the vision of a smart city, 

such that many of these devices are controlled by other devices 

or depend on the operational condition of other devices or the 

surrounding environment. For example, if a GPS sensor is 

aware of the traffic situation in a different road from the user’s 

home to work and the user’s health condition (asthma) is 

known, then the GPS should select the route from the user’s 

home to work that is most suitable for his health condition (less 

traffic and air pollution) based on the health information and 

traffic and pollution sensors. Similarly, [119] provided another 

example where a sensor senses that the indoor temperature is 

raised and a smart plug senses that the air cooler is turned off; 

then, the windows automatically open. Such interdependent 

processes are common in applications that utilise IoT devices 

to achieve a fully automated process. In this environment, the 

targeted IoT device may be unreachable by an attacker, but the 

attacker could modify the operation mode of another device or 

its sensing parameter through the environment that has direct 

interdependence to launch a threat [119]. Therefore, attacking 

one surface, such as reducing the temperature or manipulating 

pollution data, can cause severe effects on other sensors whose 

operations depend on the information from these sensors. In 

such an interdependent environment, the attacker can select the 

weakest nodes in the systems to interrupt the entire systems. 

b) Interconnected environment 

IoT systems connect billions of devices. This architecture 

does not only expend the surface of the attack but also the 

magnitude of the attack. With these densely interconnected 

devices, an infected thing can become a destructive attack that 

infects numerous things at a large scale, thus affecting a large 

part of a city. This situation of nuclear destruction of technology 

can be described as ‘IoT goes nuclear’ [120]. Research [120] 

shows that IoT devices, even with secured industry-standard 

cryptographic methods, may be exploited by attackers to 

produce a new-fangled category of security risks that can be 

circulated from one IoT device to all its physically connected 

devices through the IoT medium. Consequently, an attacker can 

launch rapid and destructive attacks that may not be easy to 

control. To illustrate the impact of this scenario, an 

experimental case was conducted in [120], where an infection 

attack was launched by exploiting the popular Philips Hue 

smart lamps. The malware was diffused by moving directly 

from one lamp to the adjacent lamp through wireless 

connectivity provided by the built-in ZigBee and physical 

proximity. The researchers [120] found that the global AES-

CCM key can be used to encrypt and authenticate new firmware 

without knowing any real updates on smart lamps by using 

cheap available equipment. This situation shows how 

vulnerable such devices are, even the devices produced by a 

well-known company that applies reliable cryptographic 

methods for security. Such attacks can start at a single point at 

any location and may end up infecting the entire city, thereby 

allowing the attackers to control the lights of the city or use IoT 

lamps in DDoS attacks [120]. Consequently, an infection attack 

may spread rapidly to large-scale devices and components due 

to the interconnected nature of IoT systems. 

c)  Social IoT environment 

The Social Internet of Things (SIoT) was introduced recently to 

integrate social networking into IoT. The basis of such 

integration is that each thing (object) can obtain preferred 

services through its social objects called friends in a distributed 

manner with just local information[121].  

Consequently, the threats caused by this IoT environment can 

be related to privacy concerns that may cause exposing 

sensitive information about the objects when integrated into a 

social network of IoT devices [122].  

C. Lessons learned 

IoT systems are complex and contain multidisciplinary 

components. As such, providing effective security requirement 

with the wide-scale attack surface of IoT systems is 

challenging. To satisfy the necessary security, the solution 

should incorporate holistic considerations. However, this 

approach leads to several challenges. For instance, IoT devices 

typically work in an unattended environment. Consequently, an 

intruder may physically access these devices. IoT devices are 

normally connected over wireless networks where an intruder 

may expose private information from the communication 

channel through eavesdropping. In addition, IoT devices cannot 

support complex security structures because of their limited 

computation and power resources [5]. Section IV discusses the 

main security properties that require consideration in 

developing effective IoT security methods, namely, 

confidentiality, integrity, authentication, authorisation, 

availability and non-repudiation (see Figure 4 in Section IV for 

further description). The description shows potential threats in 

an IoT system. Here, we also provide privacy and threats 

examples, such as collecting data (e.g. eavesdropping and 

tracking users) and attack examples (e.g. impersonation of the 
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programmer and IoT Objects, man-in-the-middle) and the 

categories to which they belong (see Figure 4). 

V.  REVIEW OF MACHINE LEARNING AND DEEP LEARNING 

APPLICATIONS IN IOT SECURITY  

Learning algorithms have been widely adopted in many real-

world applications because of their unique nature of solving 

problems. Such algorithms handle the construction of machines 

that progress automatically through experience [123]. Recently, 

learning algorithms have been widely applied in practice. The 

current advancement of learning algorithms has been driven by 

the development of new algorithms and the availability of big 

data, in addition to the emergence of low-computation-cost 

algorithms [123]. ML and DL have advanced considerably over 

the past few years, starting from laboratory curiosity and 

progressing to practical machinery with extensive, significant 

applications [123]. Even though DL is a ML sub-field, in this 

paper ML methods is referred to that require engineered 

features, while DL methods refer to recent advances learning 

methods that utilise several non-linear processing layers for 

discriminative or generative feature abstraction and 

transformation for pattern analysis [10]. 

 Generally, learning algorithms aim to improve performance 

in accomplishing a task with the help of training and learning 

from experience. For instance, in learning intrusion detection, 

the task is to classify system behaviour as normal or abnormal. 

An improvement in performance can be achieved by improving 

classification accuracy, and the experiences from which the 

algorithms learn are a collection of normal system behaviour. 

Learning algorithms are classified into three main categories: 

supervised, unsupervised and reinforcement learning (RL).  

Supervised learning methods form their classification or 

prediction model on the basis of a learnt mapping [123] and 

produce by observing the input parameters. In other words, 

these methods capture the relationships between the input 

parameters (features) and the required output. Therefore, at the 

initial stage of supervised learning, learning examples are 

needed to train the algorithms, which are then used to predict or 

classify the new input [124]. Recent prodigious advancement in 

supervised learning engages deep networks. These networks 

can be viewed as multilayer networks with threshold units 

[123], each of which calculates the function of its input [125, 

126].  

Although many practical realisations of DL have originated 

from supervised learning methods for learning representations, 

recent works have achieved progress in improving DL systems 

that learn important representations of the input without the 

necessity of pre-labelled training data [127]. These learning 

algorithms are unsupervised learning methods, which are 

generally intended to analyse unlabelled data. The objective of 

an unsupervised learning algorithm is to categorise the input 

data into distinctive groups by examining the similarity 

between them. 

The third common type of ML is RL [128, 129]. RL 

algorithms are trained by the data from an environment. RL 

aims to understand an environment and discover the best 

approaches to a given agent in different environments [130]. 

The training data in RL are halfway between those of 

supervised and unsupervised learning. In place of the training 

samples in which the right output is provided for a specified 

input, the training data in RL are assumed to indicate whether 

an action is right or not; if an action is not right, then the 

problem remains until the right action is discovered [123]. 

Thus, RL is trial-and-error learning. 

  In this section, we discuss the most promising ML and DL 

algorithms in IoT security perspective. Firstly, we discuss the 

traditional ML algorithms, their advantages, disadvantages and 

applications in IoT security. Secondly, we discuss DL 

algorithms, their advantages, disadvantages and applications in 

IoT security.  

A. Machine learning (ML) methods for IoT security 

In this subsection, we discuss the common ML algorithms 

(i.e. 1) supervised ML, 2) unsupervised ML,3) semi-supervised 

ML, and 4) reinforcement learning (RL) methods. 

1) Supervised Machine learning  

In this subsection, we discuss the common supervised ML 

approaches (i.e. decision trees (DT), support vector machines 

(SVM), Bayesian algorithms, k-nearest neighbour (KNN), 

random forest (RF), association rule (AR) algorithms, ensemble 

learning) )) and their advantages, disadvantages and 

applications in IoT security. 

a)  Decision Trees (DTs) 

DT-based methods mainly classify by sorting samples 

according to their feature values. Each vertex (node) in a tree 

represents a feature, and each edge (branch) denotes a value that 

the vertex can have in a sample to be classified. The samples 

are classified starting at the origin vertex and with respect to 

their feature values. The feature that optimally splits the 

training samples is deemed the origin vertex of the tree [131]. 

Several measures are used to identify the optimal feature that 

best splits the training samples, including information gain 

[132] and the Gini index [133]. 

Most DT-based approaches consist of two main processes: 

building (induction) and classification (inference) [134]. In the 

building (induction) process, a DT is constructed typically by 

initially having a tree with unoccupied nodes and branches. 

Subsequently, the feature that best splits the training samples is 

considered the origin vertex of the tree. This feature is selected 

using different measures, such as information gain. The premise 

is to assign the feature root nodes that maximally reduce the 

intersection area between classes in a training set, consequently 

improving the discrimination power of the classifier. The same 

procedure is applied to each sub-DT until leaves are obtained 

and their related classes are set. In the classification (inference) 

process, after the tree is constructed, the new samples with a set 

of features and unknown class are classified by starting with the 

root nodes of the constructed tree (i.e. the tree constructed 

during the training process) and proceeding on the path 

corresponding to the learnt values of the features at the inner 

nodes of the tree. This procedure is sustained until a leaf is 

acquired. Finally, the related labels (i.e. predicted classes) of 

the new samples are obtained [134].  
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Researchers in [134] summarised the main points for 

simplifying DT construction. Firstly, pre-pruning or post-

pruning is applied to the tree to reduce the tree size. Secondly, 

the space of the states searched is adjusted. Thirdly, the search 

algorithm is enhanced. Next, the data features are reduced by 

removing or disregarding redundant features through the search 

process. Finally, the structure of the tree is converted into an 

alternative data structure, such as a set of rules. The main 

weaknesses of DT-based methods are summarised as follows 

[134]. Firstly, they require large storage because of the nature 

of construction. Secondly, understanding DT-based methods is 

easy only if few DTs are involved. However, certain 

applications involve a massive construction of trees and several 

decision nodes. In these applications, the computational 

complexity is high, and the underlying model for classifying 

samples is complex.  

A DT is used as a main classifier or collaborative classifier 

with other ML classifiers in security applications, such as 

intrusion detection [135, 136]. For example, a previous study 

proposed the use of a fog-based system call system to secure 

IoT devices [137]. The research used DT to analyse network 

traffic to detect suspicious traffic sources and consequently 

detect DDoS behaviour. 

b)  Support Vector Machines (SVMs) 

SVMs are used for classification by creating a splitting 

hyperplane in the data attributes between two or more classes 

such that the distance between the hyperplane and the most 

adjacent sample points of each class is maximised [138]. SVMs 

are notable for their generalisation capability and specifically 

suitable for datasets with a large number of feature attributes 

but a small number of sample points [139, 140]. Theoretically, 

SVMs were established from statistical learning [138]. They 

were initially created to categorise linearly divisible classes into 

a two-dimensional plane comprising linearly separable data 

points of different classes (e.g. normal or abnormal). SVMs 

should produce an excellent hyperplane, which delivers 

maximum margin, by increasing the distance between the 

hyperplane and the most adjacent sample points of each class. 

The advantages of SVMs are their scalability and their 

capabilities to perform real-time intrusion detection and update 

the training patterns dynamically. 

SVMs have been widely used in various security 

applications, such as intrusion detection [141-143], and are 

efficient in terms of memory storage because they create a 

hyperplane to divide the data points with a time complexity 

equal to 𝑂(𝑁2), where N refers to the number of samples [139, 

140]. In relation to the IoT environment, a study [144] 

developed an Android malware detection system to secure IoT 

systems and applied a linear SVM to their system. They 

compared the detection performance of SVM with other ML 

algorithms, namely, naïve Bayes (NB), RF and DT. The 

comparison results showed that SVM outperformed the other 

ML algorithms. Such results confirmed the robust application 

of SVM for malware detection. Nevertheless, additional studies 

are essential to investigate the performance of SVMs with 

enriched datasets and datasets that are created with different 

environments and attack scenarios. Moreover, comparing the 

performances of SVM with DL algorithms, such as 

convolutional neural network (CNN) algorithms, in such a 

situation may be interesting.  

In a previous work, an SVM was used to secure a smart grid, 

and attack detection in a smart grid was empirically studied  

[145]. This research showed that the ML algorithms SVM, 

KNN, perceptron, ensemble learning and sparse logistic 

regression are effective in detecting known and unknown 

attacks, performing better than traditional methods used for 

attack detection in smart grids.  

In another research direction, SVM was recently used as a 

tool to exploit device security. The results in [146, 147] showed 

that ML methods can break cryptographic devices and that 

SVM is more effective in breaking cryptographic devices than 

the traditional method (i.e. template attack). 

c)  Bayesian theorem-based algorithms 

Bayes’ theorem explains the probability of an incident on the 

basis of previous information related to the incident [148]. For 

instance, DoS attack detection is associated with network traffic 

information. Therefore, compared with assessing network 

traffic without knowledge of previous network traffic, using 

Bayes’ theorem can evaluate the probability of network traffic 

being attack (related or not) by using previous traffic 

information. A common ML algorithm based on Bayes’ 

theorem is the Naive Bayes (NB) classifier. 

The NB classifier is a commonly used supervised classifier 

known for its simplicity. NB calculates posterior probability 

and uses Bayes’ theorem to forecast the probability that a 

particular feature set of unlabelled examples fits a specific label 

with the assumption of independence amongst the features. For 

example, for intrusion detection, NB can be used to classify the 

traffic as normal or abnormal. The features that can be used for 

traffic classification, such as connection duration, connection 

protocol (e.g. TCP and UDP) and connection status flag, are 

treated by the NB classifier independently despite that these 

features may depend on one another. In NB classification, all 

features individually contribute to the probability that the traffic 

is normal or abnormal; thus, the modifier “naïve” is used. NB 

have been used for network intrusion detection [149, 150] and 

anomaly detection [151, 152]. The main advantages of NB 

classifiers include simplicity, ease of implementation, 

applicability to binary and multi-class classification, low 

training sample requirement [153] and robustness to irrelevant 

features (The features are preserved independently.). However, 

NB classifiers cannot capture useful clues from the 

relationships and interactions among features. The interactions 

among features can be important for accurate classification, 

particularly in complex tasks in which the interactions among 

features can significantly help the classifier increase its 

discrimination power among classes [154]. 

d)  k-Nearest neighbour (KNN) 

KNN is a nonparametric method. KNN classifiers often use 

the Euclidean distance as the distance metric [155]. Figure 6 

demonstrates KNN classification, in which new input samples 
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are classified. In the figure, the red circles represent malicious 

behaviours, and the green circles represent the normal 

behaviours of the system. The newly unknown sample (blue 

circle) needs to be classified as malicious or normal behaviour. 

The KNN classifier categorises the new example on the basis 

of the votes of the selected number of its nearest neighbours; 

i.e. KNN decides the class of unknown samples by the majority 

vote of its nearest neighbours. For instance, in Figure 6, if the 

KNN classification is based on one nearest neighbour (k = 1), 

then it will categorise the class of the unseen sample as normal 

behaviour (because the nearest cycle is a green cycle). If the 

KNN classification is based on two nearest neighbours (k = 2), 

then the KNN classifier will categorise the class of the unseen 

sample as normal behaviour because the two nearest circles are 

green (normal behaviour). If the KNN classification is based on 

three and four nearest neighbours (k = 3, k = 4), then the KNN 

classifier will categorise the class of the unknown sample as 

malicious behaviour because the three and four nearest circles 

are red circles (malicious behaviour). Testing different values 

of k during the cross-validation process is an important step to 

determine the optimal value of k for a given dataset. Although 

the KNN algorithm is a simple classification algorithm and 

effective for large training datasets [156], the best k value 

always varies depending on the datasets. Therefore, 

determining the optimal value of k may be a challenging and 

time-consuming process. KNN classifiers have been used for 

network intrusion detection and anomaly detection [157-162]. 

Considering the IoT environment, a study [163] proposed a 

model for the detection of U2R and R2L attacks. The model 

reduced the dimensionality of the features to enhance efficiency 

using two layers of feature reduction and then applied a two-

tier classification model that uses NB and KNN classifiers; the 

proposed model showed good detection results for both attacks. 

Another research developed intrusion detection system-based 

KNN [164]. The developed system was meant for use in 

classifying nodes as normal or abnormal in a wireless sensor 

network (WSN), which is an important unit of IoT systems; the 

proposed system exhibited efficient and accurate intrusion 

detection. 

 

 

 

 

Figure 6 KNN working principle 

e)  Random forest (RF)  

RFs are supervised learning algorithms. In an RF, several 

DTs are constructed and combined to acquire a precise and 

robust prediction model for improved overall results [165, 166]. 

Therefore, an RF consists of numerous trees that are 

constructed randomly and trained to vote for a class. The most 

voted class is selected as the final classification output [165]. 

Even though the RF classifier is constructed mainly using DTs, 

these classification algorithms substantially differ. Firstly, DTs 

normally formulate a set of rules when the training set is fed 

into the network, and this set of rules is subsequently used to 

classify a new input. RF uses DTs to construct subsets of rules 

for voting a class; thus, the classification output is the average 

of the results and RF is robust against over-fitting. Moreover, 

RF bypasses feature selection and requires only a few input 

parameters [24]. However, the use of RF may be impractical in 

specific real-time applications in which the required training 

dataset is large because RF needs the construction of several 

DTs. RF algorithms have been used for network intrusion 

detection and anomaly detection [167, 168]. In a previous study  

[169], RF, SVM, KNN and ANN were trained to detect DDoS 

in IoT systems, and RF provided slightly better classification 

results than did the other classifiers when limited feature sets 

were used to avoid additional computational overhead and 

improve the applicability of the system to real-time 

classification. RF was trained using features obtained from 

network traffic with the purpose of correctly recognising IoT 
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device categories from the white list. The authors extracted and 

manually labelled network traffic data from 17 IoT devices. 

These devices belonged to nine categories of IoT devices and 

adopted to train a multi-class classifier using RF algorithms. 

The study concluded that ML algorithms, in general, and 

specifically RF, hold practical significance in correctly 

identifying unauthorised IoT devices [170]. 

f)  Association Rule (AR) algorithms 

AR algorithms [171] have been used to identify an unknown 

variable by investigating the relationship among various 

variables in a training dataset. For example, let 𝑋, 𝑌 and 𝑍 be 

variables in a dataset 𝑇. An AR algorithm aims to study the 

relationship among these variables to discover their correlations 

and consequently construct a model. Subsequently, this model 

is used to predict the class of new samples. AR algorithms 

identify frequent sets of variables [24], which are combinations 

of variables that frequently co-exist in attack examples. For 

example, in a previous study [172], the associations between 

TCP/IP variables and attack types were investigated using ARs, 

and the occurrence of various variables, such as service name, 

destination port, source port and source IP, were examined to 

predict the attack type. The AR algorithm reported in [173] 

exhibited favourable performance in intrusion detection. The 

researchers used fuzzy association rules in an intrusion 

detection model, which yielded a high detection rate and a low 

false positive rate [173]. However, compared with other 

learning methods, AR methods are not commonly used in IoT 

environments; thus, further exploration is suggested to check 

whether an AR method can be optimised or combined with 

another technique to provide an effective solution to IoT 

security. The main drawbacks of AR algorithms in practice are 

as follows. Firstly, the time complexity of AR algorithms is 

high. Association rules increase rapidly to an unmanageable 

quantity, particularly when the frequency among variables is 

decreased. Although several different approaches have been 

introduced to tackle the issue of efficiency, they are not always 

effective [174]. Moreover, AR algorithms are based on simple 

assumptions among variables (direct relationships and 

occurrence). In certain cases, these assumptions are 

inapplicable, especially to security applications, in which 

attackers usually attempt to imitate the behaviour of normal 

users.   

g)  Ensemble learning (EL) 

One of promising directions in ML is EL. EL combines the 

outputs of numerous basic classification methods to produce a 

collective output and consequently improve classification 

performance. EL aims to combine heterogeneous or 

homogeneous multi-classifiers to obtain a final result [175]. At 

the initial stage of ML development, every learning method has 

its advantages and achievements in specific applications or with 

specific datasets. Experimental comparisons in [176] found that 

the best learning method differs by application. The underlying 

learning theory used for a classifier depends on the data. Given 

that the nature of data apparently changes with the application, 

the best learning method that suits the given application data 

may not be the best for other applications. Therefore, 

researchers have started combining different classifiers to 

improve accuracy. EL uses several learning methods; thus, it 

reduces variance and is robust to over-fitting. The combination 

of different classifiers can provide results beyond the original 

set of hypotheses; thus, EL can adapt well to a problem [177]. 

However, the time complexity of an EL-based system is more 

than that of a single classifier-based system because EL 

comprises several classifiers [178, 179]. EL has been 

effectively used for intrusion, anomaly and malware detection 

[180-183].  

A previous study [184] showed that the time complexity of 

such learning models can be reduced to make them suitable for 

devices with limited hardware resources, such as IoT devices. 

the authors proposed a lightweight, application-independent, 

ensemble learning-based framework for detecting online 

anomalies in the IoT environment. The proposed framework 

aims to tackle two issues: 1) accomplishing automated and 

distributed online learning approaches to identifying anomalies 

for resource-constrained devices and 2) evaluating the proposed 

framework with real data. The study reported that the ensemble-

based method outperformed each individual classifier [184]. 

2) Unsupervised ML 

In this subsection, we discuss the common unsupervised ML 

approaches (i.e.k-means clustering and principal component 

analysis (PCA)) and their advantages, disadvantages and 

applications in IoT security 

a)  K-Means clustering 

K-Means clustering is based on an unsupervised ML 

approach. This method aims to discover clusters in the data, and 

k refers to the number of clusters to be generated by the 

algorithm. The method is implemented by iteratively allocating 

each data point to one of the k clusters according to the given 

features. Each cluster will contain samples with similar 

features. The k-means algorithm applies iterative refinement to 

generate an ultimate result. The inputs of the algorithm are the 

number of clusters (k) and dataset, which contains a set of 

features for each sample in the dataset. Firstly, the k centroids 

are estimated, and then each sample is assigned to its closest 

cluster centroid according to the squared Euclidean distance. 

Secondly, after all the data samples are assigned to a specific 

cluster, the cluster centroids are recalculated by computing the 

mean of all samples assigned to that cluster. The algorithm 

iterates these steps until no sample that can modify the clusters 

exists [185, 186]. The main limitations of k-means clustering 

are as follows. Firstly, the user has to select k in the beginning. 
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Secondly, this algorithm assumes that all spherical clusters have 

an approximately equal numbers of samples. The k-means 

algorithms can be applied to anomaly detection by 

distinguishing normal behaviour from abnormal behaviour by 

feature similarity calculations[187, 188]. Muniyandi, Rajeswari 

and Rajaram [189] proposed an anomaly detection method 

using k-means with DT (i.e. C4.5 DT algorithm). However, the 

performance of k-means was less effective than those of 

supervised learning methods, specifically in detecting known 

attack [190]. Unsupervised algorithms are generally a good 

choice when generating the labelled data is difficult. However, 

the application of clustering methods, in general, and k-means 

in particular, to IoT system security is still at its infancy and 

should be explored further. 

Unsupervised ML methods have many applications in 

securing IoT systems. For instance, k-means clustering was 

used for securing WSNs by detecting intrusions [191]. In a 

study on Sybil detection in industrial WSNs [192], a kernel-

oriented scheme was proposed to differentiate Sybil attackers 

from normal sensors by clustering the channel vectors. A 

clustering algorithm showed the potential to preserve private 

data anonymisation in an IoT system [193]. The use of 

clustering to develop data anonymisation algorithms can 

significantly advance data exchange security [193]. 

b)  Principal component analysis (PCA) 

PCA is a feature-reduction technique that can be applied to 

transform a large set of variables into a reduced set that 

preserves most of the information represented in the large set. 

This technique converts a number of probably correlated 

features into a reduced number of uncorrelated features, which 

are called principal components [194]. Therefore, the main 

working principle of PCA can be utilised for feature selection 

to realise real-time intrusion detection for IoT systems; a 

previous work proposed a model that uses PCA for feature  

reduction and adopts softmax regression and KNN algorithm 

as classifiers. The author reported that the combination of PCA 

with these classifiers provided a time- and computing-efficient 

system that can be utilised in real time in IoT environments 

[195]. 

3) Semi-supervised ML 

The most common ML approaches is supervised ML, which 

achieved their learning from the training process on labelled 

data. In the one hand building predictive models using labelled 

data is time consuming, expensive and require human efforts 

and skills. In the other hands, the objective of unsupervised 

learning that works on unlabelled data is often of exploratory 

nature (for example clustering, compression). Therefore, by 

introducing semi-supervised approach, the researchers aim to 

solve the issue of creating huge labelled data that is needed for 

training supervised ML algorithms by augmenting unlabelled 

data [196, 197]. Consequently, Semi-Supervised Learning uses 

both labelled and unlabelled data for training a ML classifier. 

However, it is important to note that even though semi-

supervised learning sounds like an effective solution to the 

issues of both supervised and unsupervised approaches, semi-

supervised learning may not success to provide detection 

accuracy that achieved by supervised machine learning . 

Therefore, there only few studies that used semi-supervised 

apaches for IoT security. For example, Authors in [198] 

developed a semi-supervised multi-Layered Clustering 

((SMLC)) approach  for the detection and prevention of 

network intrusion. SMLC has shown to be effective to learn 

from partially labelled instances at the same time accomplished 

a detection performance comparable to that of supervised 

machine learning for detection and prevention System. Authors 

[199] in  proposed an Extreme Learning Machine(ELM)-based 

Semi-Supervised Fuzzy C-Means (ESFCM) method that 

integrates a Semi-supervised Fuzzy C-Means with the Extreme 

Learning Machine (ELM) classifier to enhance efficient attack 

detection in IoT . 

4) Reinforcement learning (RL) methods  

Learning from the surrounding environment is one of the first 

learning methods humans experience. Humans naturally start 

learning by interacting with their environment. RL is inspired 

by the psychological and neuroscientific perspectives on animal 

behaviour and of the mechanism by which agents can enhance 

their control of the environment [128, 129]. RL involves 

making an agent learn how to map situations to actions 

appropriately to achieve the highest rewards [129]. The agent 

does not have previous knowledge of which actions to 

implement but has to learn which actions produce the most 

rewards by attempting them through trial and error. The 

features ‘trial’ and ‘error’ are the main and unique features of 

RL. Thus, the agent continues to learn from its experience to 

increase its rewards.  

RL has been implemented to solve several IoT issues. Studies 

by [200, 201] proposed an anti-jamming scheme that is based 

on reinforcement learning for wideband autonomous cognitive 

radios (WACRs). In [200], information about sweeping jammer 

signal and unintentional interference was used to distinguish it 

from other WACRs; RL was used with this information to learn 

a sub-band selection policy accurately to evade the jammer 

signal and interference from other WACRs. Similarly, in [201], 

an RL method based on Q-learning was trained to effectively 

avoid jamming attacks sweeping over a wide spectrum of 

hundreds of MHz in real time. In the same direction, [202] used 

RL to develop an anti-jamming scheme for cognitive radios and 

integrate the scheme with deep CNN to improve the efficiency 

of RL in a large number of frequency channels. A similar 

scheme against aggressive jamming was proposed using deep 

RL in [203], in which jamming was considered activated in an 

aggressive environment, which is normally expected in tactical 

mobile networking; the results showed that RL is a promising 

method of developing schemes against aggressive jamming. 

5) Lessons learned  

In this section, we discuss the most promising ML algorithms 

in IoT security perspective together with their advantages, 

disadvantages and applications in IoT security. The main 

application of ML algorithm is where the data is small and 

limited. However, improving the accuracy of these algorithms 

require feature engineering, which is time consuming and 

require domain knowledge. Table 1 presents the advantages, 

disadvantages and applications of each ML method. 
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Table 1 Potential ML methods for securing IoT system

Method Working principle 

 

Advantages 

 

Disadvantages Potential Application in IoT 

Security 

 

DT 

 

 

DT-based method uses a DT to establish 

a model (i.e. a prediction model) to learn 

from training samples by representing 

them as branches and leaves. The pre-

trained model is then used to predict the 

class of the new sample. 

 

DT is a simple, easy-to-use and 

transparent method. 

 

DT requires large storage 

because of its construction 

nature. Understanding DT-

based methods is easy only 

if few DTs are involved. 

 

Detection of intrusion [135, 

136]and suspicious traffic 

sources [137] 

SVM 

 

SVMs form a splitting hyperplane in the 

feature dimension of two or more 

classes such that the distance between 

the hyperplane and the most adjacent 

sample points of each class is 

maximised [138]. 

SVMs are known for their 

generalisation capability and 

suitability for data consisting of 

a large number of feature 

attributes but a small number of 

sample points [139, 140]. 

The optimal selection of a 

kernel is difficult. 

Understanding and 

interpreting SVM-based 

models are difficult. 

Detection of intrusion [141-

143], malware [144] and 

attacks in smart grids [145] 

NB NB calculates the posterior probability. 

It uses Bayes’ theorem to forecast the 

probability that a particular feature set 

of unlabelled samples fits a specific 

label with the assumption of 

independence amongst features. 

NB is known for its simplicity, 

ease of implementation, low 

training sample requirement 

[153] and robustness to 

irrelevant features (The features 

are preserved independently.). 

NB handles features 

independently and thus 

cannot capture useful clues 

from the relationships and 

interactions among features. 

(It may work effectively in 

applications whose samples 

have dependent and related 

features.) 

Detection of network intrusion  

[149, 150]. 

KNN KNN classifies the new sample on the 

basis of the votes of the selected number 

of its nearest neighbours; i.e. KNN 

decides the class of unknown samples 

by the majority vote of its nearest 

neighbours. 

KNN is a popular and effective 

ML method for intrusion 

detection. 

The optimal k value usually 

varies from one dataset to 

another; therefore, 

determining the optimal 

value of k may be a 

challenging and time-

consuming process. 

Detection of intrusions [163] 

and anomalies [157-162]. 

RF In an RF, several DTs are constructed 

and combined to acquire a precise and 

established prediction model for 

improved overall results. 

RF is robust to over-fitting. RF 

bypasses feature selection and 

requires only a few input 

parameters. 

RF is based on constructing 

several DTs; thus, it may be 

impractical in specific real-

time applications in which 

the required training dataset 

is large. 

Detection of intrusion [167], 

anomalies [168], DDoS attacks 

[169] and unauthorised IoT 

devices [170] 

AR 

algorith

m 

AR algorithms aim to study the 

relationship among the variables in a 

given training dataset T to discover 

correlations and consequently construct 

a model. This model is then used to 

predict the class of new samples. 

AR algorithms are simple and 

easy to use. 

The time complexity of the 

algorithms is high. AR 

algorithms use simple 

assumptions among 

variables (direct 

relationships and 

occurrence). In certain 

cases, these assumptions are 

inapplicable, especially to 

security applications.  

Detection of intrusion [173] 

 

EL 

 

EL combines the outputs of numerous 

basic classification methods to produce 

a collective output and consequently 

improve classification performance. 

EL reduces variance and is 

robust to over-fitting. EL 

provides results beyond the 

original set of hypotheses; 

therefore, EL can adapt better 

than can a single classifier-based 

method to a problem. 

The time complexity of an 

EL system is higher than 

that of a single classifier-

based system. 

Detection of intrusion, 

anomalies and malware [180-

184]. 

k-Means 

clusterin

g 

 

k-Means clustering is an unsupervised 

learning approach that identifies clusters 

in the data according to feature 

similarities. k refers to the number of 

clusters to be generated by the 

algorithm. 

Unsupervised algorithms are 

generally a good choice when 

generating the labelled data is 

difficult. k-Means clustering can 

be used for private data 

anonymisation in an IoT system 

because it does not require 

labelled data. 

k-Means clustering is less 

effective than supervised 

learning methods, 

specifically in detecting 

known attacks [190]. 

Sybil detection in industrial 

WSNs [192] and private data 

anonymisation in an IoT 

system [193] 

PCA 

 

PCA is a process that converts a number 

of probably correlated features into a 

reduced number of uncorrelated 

features, which are called principal 

components [194]. 

PCA can achieve dimensionality 

reduction and consequently 

reduce the complexity of the 

model. 

PCA is a feature-reduction 

method that should be used 

with other ML methods to 

establish an effective 

security approach.  

PCA can be used for real-time 

detection systems in IoT 

environments [195] by 

reducing the model features. 
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Figure 7 Illustration of NNs Working Principle for IoT Security

 

B. Deep learning (DL) methods for IoT Security  

Recently, the applications of DL to IoT systems have become 

an imperative research topic [204]. The most vital advantage of 

DL over traditional ML is its superior performance in large 

datasets. Several IoT systems produce a large amount of data; 

thus, DL methods are suitable for such systems. Moreover, DL 

can automatically extract complex representations from data 

[204]. DL methods can enable the deep linking of the IoT 

environment [205]. Deep linking is a unified protocol that 

permits IoT-based devices and their applications to interact 

with one another automatically without human intervention. 

For example, the IoT devices in a smart home can automatically 

interact to form a fully smart home [204]. 

DL methods provide a computational architecture that 

combines several processing levels (layers) to learn data 

representations with several levels of abstraction. Compared 

with traditional ML methods, DL methods have considerably 

enhanced state-of-the-art applications [10]. DL is a ML sub-

field that utilises several non-linear processing layers for 

discriminative or generative feature abstraction and 

transformation for pattern analysis. DL methods are also known 

as hierarchical learning methods because they can capture 

hierarchical representations in deep architecture. The working 

principle of DL is inspired by the working mechanisms of the 

human brain and neurons for processing signals. Deep networks 

are constructed for supervised learning (discriminative), 

unsupervised learning (generative learning) and the 

combination of these learning types, which is called hybrid DL. 

In the following subsections, we discuss the common DL 

algorithms (i.e. 1) supervised DL, 2) unsupervised DL,3) semi-

supervised DL, and 4) deep reinforcement learning (DRL) 

methods). 

  

1) Supervised DL (discriminative learning) 

In this subsection, we discuss the common supervised DL 

approaches. CNNs and recurrent neural networks (RNNs) are 

examples of discriminative DL methods. 

a) Convolutional neural networks (CNNs) 

CNNs were introduced to reduce the data parameters used in 

a traditional artificial neural network (ANN). The data 

parameters are reduced by utilising three concepts, namely, 

sparse interaction, parameter sharing and equivariant 

representation [206]. Reducing the connections between layers 

increases the scalability and improves the training time 

complexity of a CNN.  
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A CNN consists of two alternating types of layers: 

convolutional layers and pooling layers. The convolutional 

layers convolute data parameters with the help of multiple 

filters (kernels) of equal size [207]. The pooling layers perform 

down-sampling to decrease the sizes of the subsequent layers 

through max pooling or average pooling. Max pooling divides 

the input into non-overlapping clusters and selects the 

maximum value for each cluster in the previous layer [208, 

209], whereas average pooling averages the values of each 

cluster in the previous layer. Another important layer of a CNN 

is the activation unit, which performs a non-linear activation 

function on each element in the feature space. The non-linear 

activation function is selected as the rectified linear unit (ReLU) 

activation function, which involves nodes with the activation 

function 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) [210].The working principle of 

CNN applied to IoT Security is shown in Figure 8. 

The main advantage of a CNN is that it is extensively applied 

to the training approaches in DL. It also allows for the automatic 

learning of features from raw data with high performance. 

However, a CNN has high computational cost; thus, 

implementing it on resource-constrained devices to support on-

board security systems is challenging. Nevertheless, distributed 

architecture can solve this issue. In this architecture, a light deep 

neural network (DNN) is implemented and trained with only a 

subset of important output classes on-board, but the complete 

training of the algorithm is achieved at cloud level for deep 

classification [211]. 

The development of CNNs is mainly directed towards image 

recognition advancement. Accordingly, CNNs have become 

widely used, leading to developing successful and effective 

models for image classification and recognition with the use of 

large public image sources, such as ImageNet [212, 213]. 

Furthermore, CNNs demonstrate robustness in numerous other 

applications. For IoT security, a study [214] proposed a CNN-

based malware detection method for Android. With the 

application of the CNN, the significant features related to 

malware detection are learnt automatically from the raw data, 

thereby eliminating the need for manual feature engineering. 

The key point in using a CNN is that the network is trained to 

learn suitable features and execute classification conjointly, 

thus eliminating the extraction process required in traditional 

ML and consequently providing an end-to-end model [214]. 

However, the robust learning performance of CNNs can be used 

by attackers as a weapon. A previous study [215] showed that a 

CNN algorithm can break cryptographic implementations 

successfully.   

b)  Recurrent neural networks (RNNs) 

An RNN is a vital category of DL algorithms. RNNs were 

proposed to handle sequential data. In several applications, 

forecasting the current output is based on the analysis of the 

associations from several previous samples. Thus, the output of 

the neural network depends on the present and past inputs. In 

such an arrangement, a feed-forward NN is inappropriate 

because the association between the input and output layers are 

preserved with no dependency [216]. Therefore, when the 

backpropagation algorithm was introduced, its most remarkable 

application was the training of RNNs [10, 217]. For 

applications that consist of sequential inputs (e.g. speech, text 

and sensor data), RNNs are recommended [10, 217].  

An RNN integrates a temporal layer to capture sequential 

data and then learns multifaceted variations through the hidden 

units of the recurrent cell [218]. The hidden units are modified 

according to the data presented to the network, and these data 

are continually updated to reveal the present condition of the 

network. The RNN processes the present hidden state by 

estimating the subsequent hidden state as an activation of the 

formerly hidden state. RNNs are used because of their 

capability of managing sequential data effectively. This 

capability is advantageous for various tasks, such as threat 

detection, in which the patterns of the threat are time dependent. 

Therefore, using recurrent connections can improve neural 

networks and reveal important behaviour patterns. The main 

drawback of RNNs, however, is the issue of vanishing or 

exploding gradients [219]. 

RNNs and their variants have achieved excellent 

performance in many applications with sequential data, such as 

machine translation and speech recognition [220-222]. 

Moreover, RNNs can be used for IoT security. IoT devices 

generate large amounts of sequential data from several sources, 

such as network traffic flows, which are among the key features 

for detecting several potential network attacks. For example, a 

previous study [223] discussed the feasibility of an RNN in 

examining network traffic behaviour to detect potential attacks 

(malicious behaviour) and confirmed the usefulness of the RNN 

in classifying network traffic for accurate malicious behaviour 

detection. Thus, RNNs provide a practical solution in real-

world scenarios. Exploring RNNs and their variants are of 

significance in improving IoT system security, specifically for 

time series-based threats. 
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Figure 8  Illustration of CNN Working Principle for IoT Security

2) Unsupervised DL (generative learning) 

In this subsection, we discuss the common unsupervised DL 

approaches. Deep autoencoders (AEs), deep belief networks 

(DBN), restricted Boltzmann machines (RBMs), 

a)  Deep autoencoders (AEs)  

A deep AE is an unsupervised learning neural network 

trained to reproduce its input to its output. An AE has a hidden 

layer h, which defines a code used to represent the input [206]. 

An AE neural network is divided into two parts: the encoder 

function ℎ = 𝑓(𝑥) and the decoder function, which attempts to 

reproduce the input 𝑟 = 𝑔(ℎ).The encoder obtains the input and 

converts it into an abstraction, which is generally termed as a 

code. Subsequently, the decoder acquires the constructed code, 

which was initially produced to represent the input, to rebuild 

the original input. The training process in AEs should be 

accomplished with minimum reconstruction error [224]. 

However, AEs cannot learn to replicate the input perfectly. AEs 

are also restricted because they can produce an approximate 

copy only, merely copying the inputs that are similar to the 

training data. The model is required to prioritise which 

characteristics of the inputs should be copied; thus, it frequently 

learns useful characteristics of the data [206]. AEs are 

potentially important for feature extraction. AEs can be 

successfully used for representation learning to learn features 

(in place of the manually engineered features used in traditional 

ML) and reduce dimensionality with no prior data knowledge. 

AEs, nevertheless, consume high computational time. Although 

AEs can effectively learn to capture the characteristics of the 

training data, they may only complicate the learning process 

rather than represent the characteristics of the dataset if the 

training dataset is not representative of the testing dataset. 

AEs were used to detect network-based malware in [225]; the 

AEs were trained to learn the latent representation of a diverse 

feature set; particularly, AEs were trained on the feature vector 

extracted from the cybersystems. The AEs exhibited better 

detection performance than did the traditional ML algorithms 

SVM and KNN [225]. In another study [226], an AE was 

combined with a DBN to construct a malware detection method 

and used for data dimensionality reduction by non-linear 

mapping to extract only the significant features; subsequently, 

the DBN learning algorithm was trained to detect malicious 

code. 

b) Restricted Boltzmann machines (RBMs) 

RBMs are deep generative models developed for 

unsupervised learning [227]. An RBM is a completely 

undirected model with no link between any two nodes in the 

same layer. RBMs consist of two types of layers: visible and 

hidden layers. The visible layer holds the known input, whereas 

the hidden layer consists of multiple layers that include the 

latent variables. RBMs hierarchically understand features from 

data, and the features captured in the initial layer are used as 

latent variables in the following layer. 

The research in [228] developed a network anomaly 

detection model that can overcome the inherent challenges in 

developing such a model. These challenges include the 

generation of labelled data required for the effective training of 

the model because a network traffic dataset is multi-part and 

irregular. The second challenge is the constant evolution of 

anomaly behaviour with time. Therefore, the model should be 
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dynamically adapted to detect any new form of attacks and 

generalised to detect the anomaly in different network 

environments. To solve these challenges, the researchers in 

[228] proposed a learning model that is based on a 

discriminative RBM, which they selected due to its capability 

to combine generative models with suitable classification 

accuracy to detect network anomaly in a semi-supervised 

fashion even with incomplete training data. However, their 

experimental results showed that the classification performance 

of the discriminative RBM was affected when the classifier was 

tested on a network dataset that differed from the network 

dataset on which the classifier was trained. This finding should 

be further investigated, and how a classifier can be generalised 

to detect an anomaly in different network environments should 

be further studied. 

The feature representation capability of a single RBM is 

limited. However, RBM can be substantially applied by 

stacking two or more RBMs to form a DBN. This process is 

discussed in the following section.  

c)  Deep belief networks (DBNs) 

DBNs are generative methods [229]. A DBN consists of 

stacked RBMs that execute greedy layer-wise training to 

accomplish robust performance in an unsupervised 

environment. In a DBN, training is accomplished layer by layer, 

each of which is executed as an RBM trained on top of the 

formerly trained layer (DBNs are a set of RBMs layers used for 

the pre-training phase and subsequently become a feed-forward 

network for weight fine-tuning with contrastive convergence.) 

[218]. In the pre-training phase, the initial features are trained 

through a greedy layer-wise unsupervised approach, whereas a 

softmax layer is applied in the fine-tuning phase to the top layer 

to fine-tune the features with respect to the labelled samples 

[221]. 

 DBNs have been successfully implemented in malicious 

attack detection. A previous study [230] proposed an approach 

to secure mobile edge computing by applying a DL-based 

approach to malicious attack detection. The study used a DBN 

for automatic detection, and the proposed DBN-based model 

showed vital improvement in malware detection accuracy 

compared with ML-based algorithms [230]. This result 

demonstrated the superiority of DL, in general, and DBNs in 

particular, to traditional manual feature engineering methods in 

malware detection. In another study [226], an AE was 

combined with a DBN to establish a malware detection method, 

and an AE DL algorithm was used for the reduction of data 

dimensionality by non-linear mapping to extract only the 

significant features; subsequently, the DBN learning algorithm 

was trained to detect malicious code. 

DBNs are unsupervised learning methods trained with 

unlabelled data iteratively for significant feature representation. 

However, even though DBNs use contrastive convergence to 

reduce computational time, these networks are still inapplicable 

to on-board devices with limited resources.  

3) Semi-supervised or hybrid DL 

In this subsection, we discuss the common hybrid DL 

approaches. Generative adversarial networks (GANs) and 

ensemble of DL networks (EDLNs) are examples of hybrid DL 

methods. 

a)  Generative adversarial networks (GANs) 

Introduced by [231], GANs have recently emerged as 

promising DL frameworks. A GAN framework simultaneously 

trains two models, namely, generative and discriminative 

models, via an adversarial process as shown in Figure 9. The 

generative model learns the data distribution and generates data 

samples, and the discriminative model predicts the possibility 

that a sample originates from the training dataset rather than the 

generative model (i.e. evaluates the sample for authenticity). 

The objective of training the generative model is to increase the 

probability that the discriminative model misclassifies the 

sample [231]. In each stage, the generative model, which is the 

generator, is prepared to deceive the discriminator by 

generating a sample dataset from random noise. By contrast, the 

discriminator is fed with several real data samples from the 

training set, accompanied by the samples from the generator. 

The discriminator aims to classify real (from the training 

dataset) and unreal (from the generative model) samples. The 

performances of the discriminative and generative models are 

measured by the correctly and incorrectly classified samples, 

respectively. Subsequently, both models are updated for the 

next iteration. The output discriminative model assists the 

generative model to enhance the samples generated for the 

subsequent iteration [224]. 

GANs have been recently implemented in IoT security. For 

example, the study in [232] proposed an architecture for 

securing the cyberspace of IoT systems, and the proposed 

architecture involves training DL algorithms to classify the 

system behaviour as normal or abnormal. GAN algorithms were 

integrated into the proposed architecture for preliminary study, 

whose evaluation results showed the effectiveness of the GAN-

based architecture in detecting abnormal system behaviour 

[232]. 

GANs may have a potential application in IoT security 

because they may learn different attack scenarios to generate 

samples similar to a zero-day attack and provide algorithms 

with a set of samples beyond the existing attacks.  

GANs are suitable for training classifiers through a semi-

supervised approach.  

GANs can generate samples more rapidly than can fully 

visible DBNs because the former is not required to generate 

different entries in the samples sequentially. In GANs, 

generating a sample needs only one pass through the model, 

unlike in RBMs, which require an unidentified number of 

iterations of a Markov chain [231, 233].  

However, GAN training is unstable and difficult. Learning to 

generate discrete data, such as text, by using a GAN is a 

challenging task [231, 233]. 

 

b)  Ensemble of DL networks (EDLNs) 

Several DL algorithms can work collaboratively to perform 

better than independently implemented algorithms. EDLNs can 

be accomplished by merging generative, discriminative or 
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hybrid models. EDLNs are often used to handle complex 

problems with uncertainties and high-dimensional features. An 

EDLN comprises stacked individual classifiers, either 

homogenous (classifiers from the same family) or 

heterogeneous (classifiers from different families), and is used 

to enhance diversity, accuracy, performance and generalisation 

[234]. For instance, authors in  [235] leverage SAE for feature 

extraction and regression layer with softmax activation function 

for classifier. The experiment results demonstrated that our 

semi-supervised for intrusion detection approach can achieve 

more accurate attack detection rate compared to the earlier work 

.Although EDLNs have achieved remarkable success in 

many applications, such as human activity recognition, EDLNs 

application in IoT security needs further investigation, 

particularly the possibility of implementing light homogenous 

or heterogeneous classifiers in a distributed environment to 

improve the accuracy and performance of an IoT security 

system and solve challenges related to computational 

complexity.  

Table 2 shows Potential DL methods for securing IoT 

systems and their advantages, disadvantages and applications in 

IoT security. 

 

 

 
Figure 9 GAN working principle 

4) Deep Reinforcement learning (DRL) 

Reinforcement Learning (RL) has developed  to become an 

effective method that allows a learning agent to adjust its policy 

and derive an optimal solution via trial and error to accomplish 

the optimal long-term aim without requiring any prior 

knowledge of the environment [236]. Deep Reinforcement 

Learning (DRL) methods such as deep Q-network (DQN) have 

been introduced as a strong alternative to solve the high-

dimensional problems and establish  scalability and offloading 

efficiency in various mobile edge computing  based 

applications[237]. One of the recent successful RL methods is 

the deep Q network [128]. Extensions of deep Q networks have 

been suggested, including double Q-learning [238], continuous 

control with deep RL [239] and prioritised experience replay 

[240]. Authors in [237] have jointly investigated access control 

and computation offloading by combining blockchain and DRL 

for the mobile edge-cloud computation offloading systems in 

IoT networks.   In other research direction, DLR has been 

applied to secure cyber-security , authors in  [241] have 

investigated several  DRL approaches established for cyber 

security , including DRL-based security methods for cyber-

physical systems, autonomous intrusion detection techniques, 

and multi-agent DRL-based game theory simulations for 

defense strategies against cyber-attacks.   Exploring these 

approach within IoT eco-system holds potential future 

direction.  

5) Lessons learned  

In this section, we discuss the most promising DL algorithms 

in IoT security together with their advantages, disadvantages 

and applications. DL techniques offer a computational 

architecture that combines several processing levels (layers) to 

learn data representations with several levels of abstraction. 

Compared with traditional ML methods, DL methods have 

considerably enhanced state-of-the-art applications. DL 

algorithms have a key advantage over ML, which is the capacity 

to eliminate the need for manual feature engineering process 

while providing effective accuracy. However, DL algorithms 

need a large dataset to learn effectively, while several 

augmentation approaches may be used to compensate the 

shortage of training data. Table 2 presents the advantages, 

disadvantages and applications of each DL method. 

 

 

Authorized licensed use limited to: McMaster University. Downloaded on May 03,2020 at 01:08:58 UTC from IEEE Xplore.  Restrictions apply. 



1553-877X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2020.2988293, IEEE
Communications Surveys & Tutorials

 

 

26 

 

 

Table 2 Potential DL methods for securing IoT systems 

Methods 

 
Working principle 

 

Advantages 

 

Disadvantages Potential Application in IoT 

Security 

  

CNNs 

CNNs mainly aim to reduce data 

parameters used by applying sparse 

interactions, parameter sharing and 

equivariant representations [206], thereby 

reducing the connections between layers 

to quantities less than those in ANNs. 

CNNs are robust supervised DL 

methods with highly competitive 

performance. With the new 

features of CNNs, their 

scalability is increased and their 

training time complexity is 

improved compared with those 

of ANNs. CNNs have potential 

application in IoT security as 

they can automatically learn 

features from security raw data.  

CNNs have high 

computational cost; thus, 

implementing them on 

resource-constrained devices 

to support on-board security 

systems is challenging. 

Malware detection [214]; CNNs 

can automatically learn features of 

raw security data; therefore, they 

can construct an end-to-end 

security model for IoT systems 

[214]. 

 

RNNs 

 

RNNs integrate a temporal layer to take 

sequential data and then learn multi-

faceted variations with the hidden unit of 

the recurrent cell [218]. 

RNNs and their variants have 

achieved excellent performance 

in many applications with 

sequential data. In certain cases, 

IoT security data consist of 

sequential data; thus, RNNs 

have potential application in IoT 

security.  

The main drawback of RNNs 

is the issue of vanishing or 

exploding gradients 

[219]. 

RNNs can classify network traffic 

with high accuracy in detecting 

malicious behaviour [223]. RNNs 

and their variants show 

considerable potential in improving 

IoT system security, specifically 

for time series-based threats. 

 AEs An AE has a hidden layer ℎ, which has a 

code to represent the input. An AE neural 

network is divided into two parts: the 

encoder function ℎ = 𝑓(𝑥) and the 

decoder function, which attempts to 

reproduce the input 𝑟 = 𝑔(ℎ). The 

encoder obtains the input and converts it 

into an abstraction, which is generally 

termed as a code. Subsequently, the 

decoder acquires the constructed code that 

was initially produced to represent the 

input to rebuild the original input. 

AEs are potentially important 

for feature extraction. AEs can 

be effectively used for 

representation learning to learn 

features in place of the manually 

engineered features used in 

traditional ML and reduce 

dimensionality with no prior 

data knowledge. 

AEs consume considerable 

computational time. Although 

AEs can effectively learn to 

capture the characteristics of 

the training data, if the 

training dataset is not 

representative of the testing 

dataset, then the AEs may 

only complicate the learning 

process rather than represent 

the characteristics of the 

dataset. 

AEs can be used for detecting 

malware [225]. AE has been 

combined with a DBN to establish 

a malware detection method [226]. 

 RBMs RBMs are deep generative models 

developed for unsupervised learning 

[227]. They are completely undirected 

models with no link between any two 

nodes in the same layer. 

Using a feedback mechanism on 

RBMs allows for the extraction 

of numerous vital features 

through an unsupervised 

approach. 

RBMs have high 

computational cost; thus, 

implementing them on 

resource-constrained IoT 

devices to support on-board 

security systems is 

challenging. 

RBMs can be used for network 

anomaly detection [228]. 

DBNs DBNs consist of stacked RBMs that 

execute greedy layer-wise training to 

accomplish robust performance in an 

unsupervised environment. 

DBNs are unsupervised learning 

methods trained with unlabelled 

data iteratively for significant 

feature representation. 

DBNs present high 

computational cost due to the 

extensive initialisation 

process caused by the large 

number of parameters. 

DBNs can be used for malicious 

attack detection [230]. 

GANs The GAN framework simultaneously 

trains two models (i.e. generative and 

discriminative models) via an adversarial 

process. The generative model learns the 

data distribution and generates data 

samples, and the discriminative model 

predicts the possibility that a sample 

originates from the training dataset rather 

than the generative model (i.e. evaluates 

the instance for authenticity). 

In GANs, generating a sample 

needs only one pass through the 

model, unlike in DBNs and 

RBMs in which an unidentified 

number of iterations of a 

Markov chain is required [231, 

233]. 

GAN training is unstable and 

difficult. Learning to generate 

discrete data by using GAN is 

a difficult task  [231, 233]. 

GANs can be used to build an 

architecture for securing the 

cyberspace of IoT systems [232]. 

EDLNs 

 

EDLNs can be accomplished by merging 

generative, discriminative or hybrid 

models.   

Combining DL classifiers can 

help achieve model diversity, 

improve model performance and 

expand model generalisation. 

The time complexity of the 

system can be significantly 

increased. 

The use of GANs in securing IoT 

systems needs further investigation, 

particularly the possibility of 

implementing light homogenous or 

heterogeneous classifiers in a 

distributed environment to improve 

the accuracy and performance of a 

system. 

DRL DRL  allows a learning agent to adjust its 

policy and derive an optimal solution via 

trial and error 

DRL agent to take sequential 

actions optimally without or 

with limited prior 

information of the environment, 

and therefore, DRL approaches  

can be  

Efficiently adaptable in 

adversarial environments. 

DRL needs a series of 

assumptions that are rarely 

satisfied in real practice. 

jamming, spoofing, false data 

injection, malware, DoS, DDoS, 

brute force [242] 
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VI. IOT SECURITY LAYERS BASED ON ML AND DL METHODS  

In this section, we classify previous studies on ML and DL 

methods for IoT security according to the layers that they were 

designed to protect. Although these methods may be applied to 

protect more than one layer or the end-to-end system (which is 

the advantage over other methods and holds potential future 

uses), the following classification is proposed to highlight the 

conceptualisation of ML and DL methods for IoT security. The 

technology tools that can essentially enable ML/DL 

deployment for IoT security are listed at the end of this section. 

A.  Perception layer  

One of the promising applications of DL methods is physical-

layer authentication. Traditional physical-layer authentication 

techniques apply assumption checks and relate the randomness 

and exclusiveness of the radio channel between “Alice” and 

“Bob”, to detect spoofing attacker “Eve” in a wireless network. 

Nonetheless, such an approach is not always practical, 

specifically in dynamic networks [48]. Wang, Jiang, Lv and 

Xiao [48] used a learning model to construct a physical-layer 

authentication model that uses past data generated from a 

spoofing model as learning vectors to train an extreme learning 

machine. The proposed model exhibited improved spoofing 

detection performance and consequently achieved considerably 

enhanced authentication accuracy compared with that of state-

of-the-art methods. 

Shi, Liu, Liu and Chen [243] proved that the present Wi-Fi 

signals generated by IoT objects can be adopted to detect 

distinctive human behavioural and physiological features and 

can be utilised to authenticate individuals on the basis of an 

understanding of their daily activities. The authors proposed a 

scheme which adopts a single pair of Wi-Fi signals generated 

by IoT devices to mine Wi-Fi channel state information and 

thus obtain the amplitude and the relative phase for precise user 

authentication without the need for user participation. Using 

these features, the authors developed a DL model (i.e. Deep 

Neural Network (DNN)) to identify the daily human activity 

distinctiveness of each individual and subsequently generate a 

fingerprint for each user, called Wi-Fi fingerprint, to capture the 

distinct characteristics of different users; the proposed DL-

based authentication method exhibited high accuracy [243]. 

This study validates the potential application of DL algorithms 

in constructing authentication systems.  

In another study [203], a scheme against aggressive jamming 

was developed using RL, and jamming was considered 

activated in an aggressive environment, which is normally 

expected in tactical mobile networking. RL was found effective 

in developing a method against aggressive jamming [203]. 

The research in [244] also considered the issue of jamming 

in an IoT network and introduced a centralised approach to 

addressing possible jamming attacks in an IoT environment, 

which consists of resource-constrained devices. The idea of the 

proposed model is to use the IoT access point to protect against 

the jamming attacker by distributing its power over the sub-

carriers in an intelligent manner and using an evolutionary-

based algorithm. The proposed method can converge in a 

practical iteration number; thus, it can provide a better solution 

than a random power allocation strategy.  

Along the same direction, two previous studies [200, 201] 

proposed RL-based anti-jamming schemes for WACRs. In 

[200], the authors used information about sweeping jammer 

signal and unintentional interference to distinguish it from those 

of other WACRs. This information and RL were combined to 

learn a sub-band selection policy accurately to evade the 

jammer signal and interference from other WACRs. Similarly, 

in [201], an RL method based on Q-learning was trained to 

effectively avoid jamming attacks sweeping over a wide 

spectrum of hundreds of MHz in real-time. In the same 

direction, [202] used RL to develop an anti-jamming scheme 

for cognitive radios and integrate it with deep CNN to improve 

the efficiency of RL in a large number of frequency channels. 

Incorporating cognitive radio (CR) capability into IoT 

devices has paved the way for an innovative research on IoT 

systems [245]. Currently, many researchers are conducting 

studies on communication and computing in IoT systems. 

According to two previous studies [246, 247], IoT systems 

cannot be sustained without comprehensive cognitive 

capability because of growing issues. CRs are radio devices that 

can learn and change in accordance with their dynamic 

environment [248]. The main step towards accomplishing such 

cognitive operation is enabling CRs to sense and understand 

their working environment. Ideally, CRs should be able to work 

over a wide frequency range. However, sensing all required 

frequencies in real time is a challenging task, specifically with 

the existence of jamming attacks. CRs can become increasingly 

useful and reliable communication systems if they can 

eliminate the incidence of accidental interference or deliberate 

jamming attacks [201].  

B. Network layer 

The network layer forms the largest surface of the IoT 

system. This layer is responsible for transmitting and routing 

data. It provides a ubiquitous access environment to the 

perception layer, i.e. data communication and storage 

functionalities [249]. Therefore, securing the IoT network layer 

should be of high technical priority. Along the same line of 

thought, Yavuz  [250] proposed a DL-based model to detect the 

routing protocol for IoT systems and created a dataset for 

training and testing the DL model by using the Cooja IoT 

simulator with simulations up to 1000 nodes within 16 networks 

to detect three types of attacks, namely decreased rank attack, 

hello flood attack and version number attack. The DNN 

achieved high performance in detecting the three attacks. 

However, the authors did not mention the statistics as to how 

many normal and anomalous samples were in the created 

dataset. Precision, recall and f-measure were used as evaluation 

metrics; however, in model evaluation, they may not reflect the 

actual performance of the model and tend to be biased if the 

created dataset is imbalanced. 

Nobakht, Sivaraman and Boreli [251]  proposed an intrusion 

detection framework that is implemented at the network level 

and constructed ML algorithms to protect smart devices 

installed in home environments. They used precision and recall 

metrics to measure the performance of the classifiers. However, 

the dataset used was unbalanced, with the number of illegal 

access samples forming the majority of the samples in the 

dataset; thus, both evaluation metrics may not precisely reflect 
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the model performance. In case of imbalanced data, other 

performance metrics such as the area under the receiver 

operating characteristic curve (AUC) can be better choice to 

evaluate the performance than accuracy, recall and precision 

metrics [252, 253]. 

A previous study [223] discussed the viability of an RNN 

(i.e. large short-term memory [LSTM] network) in the analysis 

of network traffic behaviour to detect potential attacks 

(malicious behaviour) and confirmed the effectiveness of the 

RNN in precisely classifying network traffic to detect malicious 

behaviour; thus, the LSTM network can be adopted as a 

practical solution in real-world scenarios. 

  Cañedo and Skjellum [254]  used ML to detect anomalies, 

specifically training ANN algorithms to detect whether the data 

sent from an edge to the smart object in an IoT system are valid 

or invalid. They generated the data from the edge to the device 

nodes and then inserted invalid and valid data to train the 

model; the experimental results showed that the ANN can 

effectively detect invalid data. However, diverse and enriched 

datasets that contain various data tampering attacks should be 

used to train and test the ANN to reconfirm whether it can 

maintain high accuracy in practical settings or other advanced 

learning algorithms are required. An investigation in this 

research direction is recommended to generate enriched 

datasets.  

In another study [255], an intrusion detection system (IDS) 

based on a hybrid detection method (i.e. unsupervised ML 

method with specification-based method) was used for an IoT 

system. For this purpose, the author proposed a local intrusion 

detection method at the local node by using a specification-

based intrusion detection approach; the method examined the 

behaviour of the host nodes and sent analysis results to the 

global node, which used an ML-based intrusion detection 

method (i.e. unsupervised optimum-path forest algorithm [256] 

for clustering the data from local node on the basis of the 

MapReduce design [257]). 

A generative model (i.e. unsupervised model) using AEs was 

proposed in [225] to detect malware network-based anomaly in 

cybersystems. The AEs were trained to learn the latent 

representation of a diverse feature set, and they received a 

feature vector extracted from the cybersystems; compared with 

SVM and KNN, the AEs exhibited improved detection 

performance [225]. 

Wi-Fi technology is an IoT-enabling technology, especially 

for smart homes [258]. Wi-Fi technology is of practical 

importance to the expansion of IoT [259]. A previous study 

[260] aimed to detect impersonation attacks in a Wi-Fi 

environment by developing a method called weighted feature 

selection for extracting and selecting deep features, which were 

combined with the features generated by a stacked AE (SAE) 

algorithm. The combined features were then fed into a neural 

network to train it for classifying the input data into two classes 

(i.e. impersonation or normal) [260]. This combination of 

unsupervised DL algorithm (i.e. SAE) and supervised DL 

algorithm (i.e. ANN) showed high detection accuracy, 

confirming the potential applications of deep algorithms in 

securing Wi-Fi networks from impersonation attacks. A similar 

study [261] used a combination of two unsupervised algorithms 

(SAE) for mining features and k-means clustering for 

categorising the input into two classes: benign and malicious. 

 The research in [228] developed a network anomaly 

detection model that can overcome the inherent challenges in 

developing such a model. These challenges include the 

generation of labelled data required for the effective training of 

the model because a network traffic dataset is multi-part and 

irregular. The second challenge is the constant evolution of 

anomaly behaviour with time. Therefore, the model should be 

dynamically adapted to detect any new form of attacks and 

generalised to detect the anomaly in different network 

environments. To solve these challenges, the researchers in 

[228] proposed a learning model that is based on a 

discriminative RBM, which they selected due to its capability 

to combine generative models with suitable classification 

accuracy to detect network anomaly in a semi-supervised 

fashion even with incomplete training data. However, their 

experimental results showed that the classification performance 

of the discriminative RBM was affected when the classifier was 

tested on a network dataset that differed from the network 

dataset on which the classifier was trained. This finding should 

be further investigated, and how a classifier can be generalised 

to detect an anomaly in different network environments should 

be further studied. 

  Saied, Overill and Radzik [262] used an ANN to detect 

known and unknown DDoS attacks in a real-time environment. 

The proposed defence technique aimed to thwart fake packets 

and permit real packets to pass through. They assessed the 

ANN’s performance in unknown DDoS detection when it is 

trained with old and updated datasets and reported that the 

further they trained the algorithm with the latest features of 

known DDoS attacks, the more they improved the detection 

probabilities for known and unknown DDoS attacks. The ANN 

algorithm learns from training samples and then detects zero-

day attack features, which are comparable to the features on 

which it was trained [262].  

Chen, Zhang and Maharjan [230] developed a DL-based 

model for malicious attack detection to secure mobile edge 

computing. The approach used a DBN for automatic detection, 

and the model exhibited improved accuracy in malware 

detection compared with ML-based algorithms, confirming the 

effectiveness of the automatic feature learning characteristic of 

DL compared with traditional feature engineering methods.  

Meidan et al. [263] implemented ML algorithms for precise 

IoT device identification by utilising network traffic features, 

which are then fed into a multi-stage classifier. The classifier 

categorises the devices that are connected to the network as IoT 

or non-IoT devices; the ML algorithms identify unauthorised 

links of IoT devices automatically and accordingly alleviate the 

disruptions that may occur due to threats. 

In a previous study [264], the abnormal behaviour of IoT 

objects was profiled, and the generated dataset from profiling 

was used to train the classifier to detect abnormal behaviour. 

The author investigated how a partial variation (assuming that 

the attacker can utilise such changes for malicious purposes) of 

sensed data can influence the accuracy of the learning algorithm 

and used SVM and k-means clustering as experimental cases 

for examining the impact of such changes on the detection 

accuracy of both ML algorithms. The results showed that both 

algorithms (i.e. SVM and k-means) suffered from detection 

accuracy drops. The zero-day attacks are mostly variations of 

existing attacks; thus, the accuracy of the classifier in detecting 
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variations and changes in the dataset is research topic for future 

investigation. 

A system called ‘IoT SENTINEL’, which is based on the RF 

classification algorithm, was proposed in [265] to recognise the 

types of devices connected to an IoT system automatically and 

execute an action to restrain any of vulnerable connections 

accordingly to reduce damage that may be caused by 

compromised devices. 

A previous study [266] developed an IDS for IoT by 

combining fuzzy c-means clustering [267] and the feature 

selection method PCA [194]. The results of the study indicated 

that the proposed method can increase detection effectiveness. 

In [268], the authors proposed a framework to recognise all 

potential attack paths and alleviate the effects of attacks on the 

IoT system; the proposed framework contains a graphical 

security model. The framework consists of five connected 

stages starting with data processing, in which the information 

from the system and the security metrics is fed and processed. 

In the second stage, which is the security model generation, a 

gap model is generated; this model contains all potential attack 

paths in the IoT system; an attack path identifies the structure 

of the nodes that the intruder can compromise to gain access to 

the required node. In the third and fourth stages, the IoT 

network, including the attack paths, is visualised (i.e. security 

visualisation) and analysed (i.e. security analysis), respectively. 

Finally, the security model is updated on the basis of the 

analysis of the attack paths and patterns captured in the previous 

stages. However, this study used basic statistical analysis to 

obtain the security model; therefore, whether the proposed 

framework can be improved by integrating it with intelligent 

methods, such as ML or DL methods, should be investigated. 

In [269], a solution was proposed to detect and restrain 

malware diffusion in an IoT network. The solution is based on 

fog computing, which can simultaneously maximise malware 

detection and minimise the possibility of privacy breach. The 

proposed malware detection system was constructed using an 

IDS, and deployment was accomplished at cloud and fog 

computing to avoid the restrictions on IDS deployment in smart 

objects [269]. The authors also presented a framework to show 

the possible application of malware dissemination restraint in 

IoT networks. 

C.  Application layer 

Currently, most IoT services have application and user 

interfaces; for example, the Android platform is becoming a 

vital element for enabling the IoT system [65]. In the related 

security literature, a previous study [270] showed the effective 

performance of DL in accurately detecting Android malware, 

and the authors of the study constructed a DL model to learn 

features from Android apps. Subsequently, the learning model 

was used to identify unspecified Android malware; the authors 

showed the effectiveness of using DL in Android malware 

detection in terms of performance accuracy and time efficiency, 

indicating that DL can be adapted to real-world applications. 

A past work [214] proposed an Android malware detection 

method that utilises a CNN. With the application of the CNN, 

the significant features related to malware detection are learnt 

automatically from the raw data, thereby eliminating the need 

for manual feature engineering. The main advantage of using 

DL algorithms, such as CNNs, is that the network is trained to 

learn suitable features and execute classification conjointly, 

eliminating the extraction process required in traditional ML 

and consequently providing an end-to-end model [214].  

 The study in [232] proposed an architecture for securing the 

cyberspace of IoT systems, and the proposed architecture 

involves training ML algorithms to classify the system 

behaviour as normal or abnormal. They used GAN algorithms, 

which were integrated into the proposed architecture for 

preliminary study, whose results showed the effectiveness of 

DL-based architecture in detecting abnormal system behaviour. 

Cybersecurity remains to be a serious challenge, especially 

with the steadily increasing number of objects connecting to the 

cyberspace, such as IoT. Cyberattacks, including zero-day 

attacks, are incessantly evolving; consequently, the 

vulnerabilities and opportunities open to attackers increase with 

the rapid growth of IoT. Many of these attacks are minor 

variations of formerly identified cyberattacks [271]. Therefore, 

the recent improvements in effective learning algorithms are 

significant. Effective learning algorithms can be trained to 

adapt to attack variations in the cyberspace with high-level 

feature abstraction capability; thus, they can provide resilient 

solutions to the variations of formerly identified cyberattacks or 

new attacks [271]. A previous study [271] proposed a DL model 

to enhance cybersecurity and enable attack detection in IoT 

systems and verified the appropriateness of the DL model in 

securing the cyberspace of IoT systems. Similarly, [272] 

proposed a distributed DL model to deliver accurate protection 

against cyberattacks and threats in fog-to-things computing and 

used an SAE algorithm to construct their learning model. The 

authors confirmed that the DL models are more suitable for 

such cyberattack protection than are traditional methods in 

terms of scalability, accuracy and false alarm rate.  

 Table 3 and 4 shows the comparison and summary of studies 

on ML and DL for IoT security. 

D. Enabling technology for ML/DL deployment for IoT 

security  

On the one hand, realising ML/DL to construct an 

intelligence-based security for IoT systems can be practically 

challenging because robust software and hardware are required 

to implement such complex algorithms. On the other hand, 

recent advancements in computational capability of tiny 

devices and in several ML/DL implementation platforms can 

result in successful implementation of these methods in 

onboard devices, such as smartphones [273] or in fog and edge 

computing platforms [273]. Figure 10 shows that the 

technology tools that essentially enable ML/DL deployment for 

IoT security can be generally listed as a large growth of IoT 

data, robust software frameworks for facilitating the 

development of security models based on ML/DL methods and 

sophisticated hardware equipment to deploy the developed 

security model. Large growth of IoT data: The large data 

growth results in producing large-volume data, which contain 

useful information about the system behaviour under different 

modes, that is, ‘normal’ and ‘attack’ modes. The current data 

volume is larger than that in the past. Data are the main 

elements for successful implementation of ML/DL-based 

systems.  
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VII. ISSUES, CHALLENGES AND FUTURE DIRECTIONS  

In this section, we present a list of Issues, challenges and future 

directions for using ML and DL methods to mitigate security 

weakness IoT systems, which are classified based on data, 

learning strategies, IoT environments, inherent ML and DL 

Challenges, opportunities to integrated ML/DL with other 

technology, computational complexity issues and security vs 

other trades off requirements. IoT data related issues  

1)  Availability of security related datasets 

The general purpose of learning algorithms is capturing the 

patterns from the available partial training dataset and then 

constructing a model to categorise the new inputs on the basis 

of the learnt patterns. In this process, a question to investigate 

is the volume of training data required to train the learning 

algorithms sufficiently for these algorithms to be generalised 

for new input in the given domain [274]. In the context of the 

application of ML and DL for IoT security, the major challenge 

encountered by ML and DL, in general, and the supervised ML 

and DL methods in particular, is how to extract or generate a 

realistic and high-quality training dataset that contains various 

possible attack types. A high-quality training dataset is an 

essential ingredient to train the ML and DL algorithms 

accurately. The training datasets should be comprehensive and 

diverse. They should contain information that reflects nearly all 

of the strategies of real-world attacks because these training 

datasets are the basis for obtaining model knowledge. This 

condition can directly influence model accuracy. Given that IoT 

systems generate large volumes of data, real-time data 

streaming data quality maintenance remains a challenge. 

A vital future research direction is the use of crowd-sourcing 

methods for generating datasets related to IoT threats and 

attacks. Rich datasets that include nearly all attack patterns 

should be generated for training ML and DL algorithms. 

Furthermore, such datasets can be used to benchmark the 

accuracy of newly proposed algorithms against that of existing 

methods for attack detection. Although generating collaborative 

IoT threat datasets, which can be continuously updated with 

new attacks, is of great importance, it is challenging technically 

due to the wide diversity of IoT devices. Furthermore, a privacy 

issue prevails because datasets may contain sensitive or critical 

information that are not meant to be shared publicly, 

specifically for industrial and medical IoT devices. 

2) Learning to secure IoT with low-quality data 

Most of the proposed DL representations are generally for 

high-quality data [221]. However, IoT systems comprise 

heterogeneous connected devices, and large-scale streaming, 

leading to the possibility of high-noise and corrupted data to be 

gathered from such systems[224, 275]. Therefore, learning to 

secure IoT systems requires effective DL models that can 

handle and learn from low-quality data, particularly when 

obtaining high-quality training data is practically infeasible. 

Therefore, multi-modal and effective DL models should be 

developed to secure IoT systems with large-scale streaming, 

heterogeneous and high-noise data. 

3) Augmentation of IoT security data to improve learning 

algorithm performance 

Intuitively, richer the data that ML and DL algorithms have 

to learn from, the more accurate they can be [276]. Although 

obtaining a large dataset is relatively easy in certain domains, 

such as image and natural language processing, acquiring a 

large dataset for ML and DL is relatively difficult in the domain 

of data security in IoT systems. Therefore, finding alternative 

means to obtain substantial amounts of data in this domain is 

desirable. Data augmentation is used to expand limited data by 

generating new samples from existing ones. In the 

augmentation of IoT security data, the limited amount of 

existing IoT security samples can be utilised to generate new 

samples. 

The key challenge in data augmentation is producing new 

data samples that preserve the appropriate data distribution for 

each class, normally necessitating domain knowledge [218, 

277]. In view of this problem, suitable methods for the 

augmentation of IoT security data should be investigated to 

improve the classification accuracy of learning methods. 
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Figure 10 Technology tools that can essentially enable ML/DL deployment for IoT security

 

B.  Learning Strategies for Effective IoT Security 

1)  Zero-day attacks on IoT 

The main advantage of ML and DL methods over traditional 

security methods, such as the threat signature-based method, is 

their capability to detect zero-day attacks. Zero-day attacks, 

which are evolving threats, were previously anonymous to 

detection systems. These attacks have varying potentials, such 

as metamorphic malware attacks that automatically reprogram 

themselves each time they are circulated or transmitted. 

Consequently, detecting these malware attacks by traditional 

methods is difficult [278, 279]. The number of emerging IoT 

security threats [22]., such as zero-day attacks, is continuously 

growing at an alarming rate [22]. For example, the Mirai botnet 

and its derivations are becoming an alarming threat to the 

security of IoT systems [7, 9]. The development of the recent 

derivation of the Mirai botnet, Satori, proves that other 

malicious IoT botnets are emerging to exploit known and zero-

day vulnerabilities [280].  

On the one hand, recent derivations of Mirai suggest that IoT 

malware continues to grow because Mirai’s open source code 

allows creators of IoT malware to produce new variants of 

Mirai that exploit known and zero-day vulnerabilities to attack 

IoT devices [7, 9, 22, 280]. On the other hand, intelligent 

monitoring and control of IoT security provides an important 

solution to these new attacks or the zero-day attack and its 

variations. ML and DL algorithms are powerful analysis tools 

for learning normal or abnormal behaviour on the basis of 

interactions among the systems and devices within an IoT 

ecosystem. Input data from each element of an IoT system and 

its devices can be collected and examined to determine normal 

patterns of interaction and consequently identify malicious 

behaviour at an early stage. Moreover, in view of the capability 

of ML and DL methods to learn from existing samples to 

intelligently predict future unknown samples, these methods 

have the potential to predict new attacks, which, in many cases, 

are simple derivations and mutations of previous attacks. 

Therefore, IoT security systems need to advance from the 

simple facilitation of secure communication between devices to 

intelligent security enabled by DL and ML methods. 

2) Lifelong Learning for learning IoT threats  

One of main characteristics of the IoT environment is 

dynamism; several new things join and numerous objects leave 

the system given the numerous and diverse IoT devices used to 

manage different applications and scenarios. Given IoT’s 

Authorized licensed use limited to: McMaster University. Downloaded on May 03,2020 at 01:08:58 UTC from IEEE Xplore.  Restrictions apply. 



1553-877X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2020.2988293, IEEE
Communications Surveys & Tutorials

 

 

33 

nature, normal structures and patterns of IoT systems may 

considerably change with time, and threats and attacks targeting 

the IoT system may likewise persistently vary with time. 

Therefore, distinguishing between normal and abnormal IoT 

system behaviour cannot be always pre-defined. Thus, the 

frequent updating of security models is required to handle and 

understand IoT modifications. In an actual IoT environment, 

the short-term learning of threats and attacks targeting IoT 

systems may be ineffective for long-term protection. 

Consequently, the concept of lifelong learning can hold realistic 

significance in long-term real-world applications. The concept 

of lifelong ML [123, 281, 282] is directed towards the 

construction of a model that can repeatedly perform the 

retraining process for learning new emerging patterns related to 

each behaviour. The model should be able to continuously 

adapt to and learn from new environments [123, 281, 282]. 

Researchers have reported that the further training an algorithm 

receives with the latest features of known DDoS attacks, the 

more these improved the detection probabilities for known and 

unknown DDoS attacks. The ANN algorithm learns from 

training samples and then detects zero-day attack features, 

which are comparable to the features on which it was trained 

[262]. Therefore, frequently updating training samples is 

important for developing effective real-world security models 

for IoT-related threats. 

3) Transfer learning  

Transfer learning refers to the idea of transferring knowledge 

from a domain with sufficient training data to a domain with 

insufficient training data. The main purpose of transfer learning 

is to reduce the time and effort required for the new learning 

process. The main concern in transfer learning deals with the 

part of knowledge that can be transferred as knowledge that is 

common between the domains. Therefore, transferring such 

knowledge is useful. Meanwhile, transferring knowledge that is 

specific for a particular domain and does not hold any 

importance to other domains must be avoided [283].  

The concept of transfer learning, which consists of different 

elements such as devices, WSNs and cloud computing, can be 

useful for securing IoT systems. The security of these elements 

has already been extensively studied, and well-established 

training samples on different attacks have been generated. 

Consequently, if transfer learning is accomplished successfully 

from IoT elements, then such learning may considerably 

improve the security performance of an entire IoT system with 

less effort and cost in constructing training samples. 

C. ML and DL for IoT security in interdependent, 

interconnected and interactive environments 

In this section, we present the opportunities for using ML and 

DL methods to mitigate internal security issues arising from the 

structures of IoT systems, which are interdependent, 

interconnected and interactive environments. 

As explained previously, with the rapid increase in the 

number of IoT devices, the collaboration among devices is 

becoming increasingly autonomous; i.e. they require reduced 

human involvement. IoT devices no longer simply interact with 

one another like devices within a network. Many current IoT 

devices are designed to achieve the vision of a smart city, in 

which many of the devices are controlled by other devices or 

depend on the operational condition of other devices or the 

surrounding environment  

The advantage of using ML and DL in securing IoT devices 

in such an environment is that these methods can be developed 

to go beyond simply understanding the operational behaviour 

of specific devices to understanding the operational behaviour 

of entire systems and their devices.  

Moreover, IoT systems connect billions of devices; thus, not 

only the surface of the attack but also the magnitude of the 

attack should be considered in IoT systems. With these densely 

interconnected devices, an infected thing can result in a 

destructive attack that infects a considerable number of things 

at a large scale, even affecting a substantial part of a city.  

For interconnected systems, the benefit of using ML and DL 

for securing IoT devices is that ML the DL methods can provide 

intelligence to systems for detecting abnormal behaviours of a 

thing or groups of things and thus automatically respond at an 

early stage. This strategy may mitigate the impact of the attack 

and lead to learning for the prevention of future occurrences of 

similar attacks on the basis of a solid understanding of the 

current causes. 

Along the same direction, ML and DL can be effective for 

securing IoT devices in an interactive environment In SIoT. 

Suitable instructions should be established for objects to choose 

their appropriate friends because these instructions impact the 

service outputs built on top of social networks [121]. The 

advancement in SIoT increases critical security and privacy 

concerns regarding the disclosure of sensitive information 

related to the objects [122]. 

ML and DL methods can potentially contribute to securing 

the integration of social networking into IoT. However, this 

direction is still in its infancy and needs further investigation. 

D. ML and DL Challenges 

1) Possible misuse of ML and DL algorithms by attackers 

(breaking cryptographic implementations by ML and DL 

methods) 

Recent advances in ML and DL algorithms have enabled 

them to be used in breaking cryptographic implementations. For 

example, two previous studies [146, 147] used ML to break 

cryptographic systems using SVMs, which outperformed the 

template attack. Similarly, the authors in [215] investigated 

different DL algorithms to break cryptographic systems and 

reported that DL can break cryptographic systems. Specifically, 

CNN and AE algorithms performed better than did ML 

algorithms (SVM and RF) and the rational profiling method 

template attack. 

A previous study showed that RNNs can learn decryption. 

Specifically, an RNN with a 3000-unit LSTM can learn the 

Enigma machine decryption function by learning effective 

internal representations of these ciphers; the results suggested 

that DL algorithms, such as RNNs, can capture and learn the 

algorithmic representations of polyalphabetic ciphers for 

cryptanalysis [284]. Consequently, future work should consider 

the ability of ML/DL as a major factor while designing IoT 
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security methods.  

2) Privacy of ML and DL  

Recent studies [285-287] have shown that ML and DL 

algorithms can leak data. Privacy-preserving ML and DL 

algorithms are vulnerable to dominant attacks [285]. A study 

showed that federated, distributed or even decentralised DL 

methods are easily broken and unable to maintain training set 

privately [285]. The authors developed an attack to manipulate 

the real-time nature of a learning process in which the adversary 

was allowed to train a GAN that creates samples similar to those 

in the targeted training dataset, which was supposed to be 

private; the samples produced by the GAN were supposed to 

originate from the same distribution as the training dataset 

[285]. Therefore, DL algorithms themselves are vulnerable to 

potential attacks when generating the training data. 

Consequently, attackers can build a DL system that can 

recognise how DL-based detection methods work and generate 

attacks that cannot be detected easily. This area of research is 

still in its infancy and needs further investigation to find the 

appropriate solution to such an issue. 

3)  Security of ML and DL methods  

Researchers have recently investigated various threats that 

can be launched against ML and DL algorithms. These 

algorithms are susceptible to many threats that either decrease 

the accuracy and performance of the classifiers or expose 

sensitive data used in the training process of the classifiers. 

Examples of the potential threats that can be utilised by 

attackers include poisoning, evasion, impersonation and 

inversion attacks s [288]. Poisoning is a threat in which the 

attacker injects malicious samples with incorrect labels into the 

training dataset to modify training data distribution, decrease 

the discrimination power of the classifier in distinguishing 

between the normal and abnormal behaviour of the system, and 

ultimately decrease classifier accuracy and performance. Such 

attacks can be potentially launched against ML algorithms that 

need to dynamically update their training sets and learning 

models to adapt to the new attacks features, such as ML 

algorithms for malware detection [288, 289]. The second 

possible attack on ML and DL is the evasion attack. This attack 

is based on generating adversarial samples by modifying the 

attack features to be slightly different from the malicious 

samples used to train the model; consequently, the probability 

of the attack being detected by the classifier is decreased, and 

the attack avoids detection, thereby reducing the performance 

of the system remarkably [288]. The third possible attack is 

impersonation. In this attack, the attacker attempts to mimic the 

data samples to deceive the ML algorithms to classifying the 

original samples with different labels incorrectly from the 

impersonated ones [288, 290, 291]. The last possible attack is 

inversion, which exploits the application program interfaces 

presented to the users by the current ML platform to collect 

roughly the necessary information about the pre-trained ML 

models [287, 292]. Subsequently, this extracted information is 

used to perform reverse engineering to obtain the sensitive data 

of users. This kind of attack violates the privacy of users by 

exploring the data, which are sensitive in certain cases (e.g. 

patients’ medical data), inserted in the ML models [293, 294]. 

Consequently, the security of DL/ML methods that hold 

potential applications to secure IoT devices should be 

effectively and sufficiently secure against adversarial leakage 

of their training parameters.  

4) Insights into DL architecture 

ML and DL methods change the means through which a 

computer solves a problem, from instructing the computer what 

to do programmatically to training the computer what to do 

intelligently (learning from experience). However, despite the 

progress achieved by DL algorithms in many applications, a 

theory that can describe why and how DNNs run depending on 

their architecture has not yet been established. Such a theory 

can be significant in comprehending the quantity of data or the 

number of the layers required to achieve the desired 

performance. The theory can also facilitate the reduction of the 

resources (e.g. time, energy and memory) required to construct 

a DL model [205], thereby providing a sophisticated but 

lightweight DL model that is useful for resource-constrained 

systems, such as IoT devices. Establishing a lightweight DL 

model is a significant step towards the implementation of 

onboard security systems for IoT devices. Thus, this topic needs 

further exploration in future studies. 

E. Integrating DL/ML with Other Technology for IoT 

Security 

1) Implementation of ML and DL at the edge  

Edge computing has become an essential technology in 

providing IoT services. Edge computing immigrates service 

provision from the cloud to the network edge, which holds a 

potential solution in the IoT era [204, 295]. Implementing DL 

and ML at the edge for IoT security can minimise delays, realise 

near-real-time detection systems, improve energy efficiency 

and enhance the scalability of lightweight IoT objects. Such 

implementation can offer an effective framework for data 

processing with reduced network traffic load. However, edge 

computing is still at its infancy, and its implementation is 

accompanied by several challenges. Further research needs to 

be conducted to explore and develop effective strategies for 

implementing DL and ML at the edge to provide real-time IoT 

security. 

2)  Synergic integration of ML and DL with blockchain for 

IoT security 

Blockchain is an emerging technology that uses 

cryptography to secure transactions within a network. A 

blockchain delivers a decentralised database (called ‘digital 

ledger’) of transactions, of which each node on the network is 

aware [296]. The network is a chain of devices (e.g. computers) 

that all need to endorse a transaction before it can be verified 

and recorded [296]. In other words, a blockchain is simply a 

data structure that allows the production and distribution of a 

‘tamper-proof digital ledger’ of exchanges [297]. The 

decentralised architecture of a blockchain is antithetical to the 

security issues that are inherent in a centralised architecture. 

Using decentralised database architecture, transaction 

authentication depends on the approval of many parties in 

systems rather than of a single authority, as is common practice 

in centralised systems. Therefore, blockchain systems can 
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render transactions relatively more secure and transparent than 

those in centralised systems. IoT systems are distributed by 

nature. Thus, the distributed digital ledger blockchain can play 

a significant role in securing IoT systems.  

ML and DL are concerned with training machines to learn 

from real-world samples to act autonomously and intelligently. 

The goal of ML and DL methods is to allow the machines to 

become smart machines. The simplified definitions of both 

technologies (i.e. ML/DL and blockchain) reveal that a synergic 

relation can be obtained by combining both technologies to 

achieve a fully functional IoT security system. Firstly, ML and 

DL may assist blockchain technology in realising smart 

decision-making, improved evaluation, filtering and 

comprehension of data and devices within a network to 

facilitate the effective implementation of blockchain for 

enhanced trust and security services for IoT systems. Secondly, 

blockchain may assist ML and DL by providing a large volume 

of data because blockchain is a decentralised database that 

stresses the importance of data distribution among several 

nodes on a specific network. The availability of big data is a 

main factor in establishing an accurate ML- and DL-based 

model. Therefore, with the increase in the data volume to be 

analysed, particularly security-related data, the accuracy of ML 

and DL methods can be considerably increased and generalised 

to develop a security model with enhanced reliability. 

F. Computational complexity  

IoT devices are resource-constrained devices. The resources 

of IoT devices (things), such as memory, computation and 

energy, which are required for ML and DL deployment, are 

limited and create a crucial bottleneck in the adoption of DL 

and ML for real-time on-board implementation [298]. The 

current solutions of computation offloading and execution in 

the cloud suffer from high wireless energy overhead. Moreover, 

the availability of the applications for such solutions is based 

on the network conditions. Consequently, if the network 

connectivity is weak, then cloud offloading will be 

unattainable, leading to the unavailability of the applications. 

Another recent solution which may advance the implementation 

of ML and DL for IoT security is the development of edge 

computing GPUs (mobile GPU). However, GPUs on mobile 

can still consume considerable mobile battery reserves [298]. 

On the one hand, enhancing GPU-based solutions and 

proposing an efficient offloading strategy are important in 

advancing the implementation of ML- and DL-based IoT 

security to enhance the performance of IoT DL applications in 

IoT systems with cloud and edge computing [204]. On the other 

hand, ML and DL frameworks that can efficiently reduce 

computational complexity should be developed. Developing 

real-time detection and protection systems are important for 

providing effective security mechanisms, particularly for large-

scale IoT systems. Thus, reducing computational complexity 

holds practical importance in future research. 

G. Security vs Trade-offs in IoT Applications 

The existing security trade-offs, such as that between 

availability and safety, are another challenge to the achievement 

of a robust security scheme for IoT systems. Moreover, the 

importance of various security trade-offs differs from one IoT 

application to another. For example, an IoMT system should 

provide a security scheme, but it should also offer the flexibility 

of being accessible in emergency situations. When a patient 

with an implanted IoMT, which monitors his or her health 

conditions, is suddenly in an emergency situation, easy access 

to the IoMT device is the first priority in saving his or her life. 

Therefore, creating a design that balances providing a robust 

security scheme to protect the implanted IoMT and 

guaranteeing accessibility of such devices during emergency 

situations is necessary. Such a trade-off between security and 

safety poses a critical challenge. An appropriate balance 

between patient safety and device security is an important 

parameter to be considered in the design phase [63, 78]. ML and 

DL methods mainly aim to provide intelligence and contextual 

awareness to devices; therefore, these methods can better 

mitigate security trade-off issues than can traditional access 

control methods. 

Similarly, other applications of IoT have different security 

trade-offs in accordance with diverse implemented 

environments. Given the required security level and trade-offs 

in specified IoT applications, security design should satisfy 

different operation modes within the given applications. Future 

research may utilise the intelligence capability of ML and DL 

methods to design security schemes that can effectively satisfy 

various security trade-offs under different operation modes 

within a specified application. 

Summary and Discussion 

The major contribution of Section VII is the provision of the list 

of issues, challenges and future directions for using ML and DL 

methods to mitigate security weakness IoT systems. These 

issues are classified based on data, learning strategies, IoT 

environments, inherent ML and DL challenges, opportunities to 

integrate ML/DL with other technology, computational 

complexity issues and security versus other trade-off 

requirements.  

VIII.  CONCLUSION  

The requirements for securing IoT devices have become 

complex because several technologies, from physical devices 

and wireless transmission to mobile and cloud architectures, 

need to be secured and combined with other technologies. The 

advancement in ML and DL has allowed for the development 

of various powerful analytical methods that can be used to 

enhance IoT security. 

In this survey, various IoT security threats and IoT attack 

surfaces are discussed. A comprehensive review of the potential 

uses of ML and DL methods in IoT security is provided. These 

methods are then compared at the end of each subsection in 

terms of their advantages, disadvantages and applications in IoT 

security. Afterward, the uses of the ML and DL methods for 

securing the main IoT layers (i.e. perception, network and 

application layers) are reviewed. Finally, an extensive list of 

issues, challenges and future directions related to the use of ML 

and DL in effectively securing IoT systems are presented and 
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classified according to data; learning strategies; ML and DL for 

IoT security in the interdependent, interconnected and 

interactive environments of IoT systems; diverse security trade-

offs in IoT applications and synergic integration of ML and DL 

with blockchain for IoT security.  

This survey aims to provide a useful manual that can 

encourage researchers to advance the security of IoT systems 

from simply enabling secure communication among IoT 

components to developing intelligent end-to-end IoT security-

based approaches. 
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List of Acronyms 

Acronym Description  
6LoWPAN Combination IPv6and Low-power 

Wireless Personal Area Networks 
AEs Auto-encoders 
ANN Artificial Neural Network 
CNN Convolutional Neural Network 
CCTV Closed-Circuit Television 

CPS Cyber-physical System 

ARs Association Rules  

DL Deep Learning  

DBN Deep Belief Network 

DNN Deep Neural Network 

DoS Denial of Service 

DDoS Distributive Denial of Service 

DRL Deep Reinforcement Learning 

DT Decision Tree 

EL Ensemble Learning  

EDLNs Ensemble Deep Learning Networks 

GAN Generative Adversarial Network 

GPS Global Positioning System 

GPU Graphics Processing Unit 

IoT Internet of Things 

IoMT Internet of Medical Things 

KNN K-nearest neighbour 

LAN Local Network Area  

LSTM Long Short-term Memory 

MitM (Man-in-the-Middle 

NB Naive Bayes 

NFC Near Field Communication  

PCA Principal Component Analysis 

RBMs Restricted Boltzmann Machines 

ReLU Rectified Linear Units 

RNN Recurrent Neural Network 

RF Random-Forest  

RFID Radio Frequency Identification 

(SIoT) Social Internet of Things 

(SQL) structured query language 

SNs Sensor networks 

SVMs Support Vector Machines 

UWB ultra-wide bandwidth 

WAN Worldwide Network Area 

WSN Wireless Sensor Network 

Wi-Fi Wireless Fidelity 
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