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ABSTRACT This paper presents the design and results of a model that uses household smart meter data,
electric vehicle (EV) travel load and charging options, andmultiple solar resource profiles, to make decisions
on optimal combinations of photovoltaics (PV), battery energy storage systems (BESS) and EV charging
strategies. The least-cost planning model is formulated as a stochastic mixed integer programming (MIP)
problem that makes first stage decisions on PV/BESS investments, and recourse decisions on purchase/sell
from/to the grid to minimize expected household electricity costs. The model undertakes a customer-centric
optimization taking into consideration net metering policy, time-of-use grid pricing, and uncertainties around
inter-annual variability of solar irradiance. The model adds to the existing literature in terms of stochastic
representation of inter-annual variability of solar irradiance, together with BESS capacity optimization, and
EV charging mode selection. Three case studies are presented: two for a residential house with and without
EV load, and a third for a larger community facility. Results from themodel for the first residential house case
study are compared with commercially available software to show the impacts of an accurate load profile and
different policy parameters. The stochastic feature of the model proves useful in understanding the impact
of variability in solar resource profiles on PV sizing. Finally, simulations of alternative EV travel patterns
and tariff policies that discourage charging during the evening peak show the efficacy of ‘super off-peak’
pricing being introduced in the state of Maryland.

INDEX TERMS Optimization model, battery storage, solar panel sizing, electric vehicle charging, smart
meter data, TOU grid pricing.

I. INTRODUCTION
FALLING costs of solar PV systems have led to a rapid
uptake of close to 600 GW of installed capacity worldwide
in 2019 [1]. This includes a significant increase in solar
roof-top (distributed), as well as ground-based utility-scale
solar, in recent years. IEA’s Renewables 2019 projections
suggested that by 2024, solar PV will grow globally by
1,200 GW, including 500-600 GW in distributed PV [2].
There is an even larger long term growth potential: e.g.,
the USA alone has more than 1,000 GW of potential accord-
ing to NREL—roughly the size of the entire current power
system of the country [3]. A key factor that heavily influences
selection of roof-top solar (combined with battery storage)
from a customer perspective is the savings on electricity bills
it offers. There have been significant analyses done on the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yunfeng Wen .

topic including a number of websites such as Google Sunroof
that provide an assessment of roof-top panel size. There are
also more generic tools such as Aurora, PVWatts, etc. that are
gaining popularity.

There is, however, significant room for improvement in the
existing software offerings. For instance, the commercially
available tools typically do not consider the customer load
shape in sufficient granularity, which could be an important
factor in deciding system sizing. Additionally, many of the
tools do not co-optimize battery size. There are also ‘‘new’’
types of loads that are controllable—most notably, electric
vehicle (EV) charging that should be integrated in PV/battery
optimizations. There is also a more arcane issue around the
selection of a typical solar resource profile (e.g., a Typical
Meteorological Year or TMY).

Figure 1 illustrates the issue of solar resource variability
over the years that we have used for the case study in a later
section of this paper. As the figure demonstrates, annual solar
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FIGURE 1. Cumulative distribution of annual solar output per 1 kW
installed (1998-2018) for a household.

output (per kW) for the household over the last 21 years
varies between 1464-1863 kWh. The levelized cost of solar
electricity over this range falls on either side of the flat tariff
the household pays, suggesting this inter-annual variability of
solar is a reasonably important consideration that should be
considered in any system sizing analysis.

Figure 2 casts some light on the issue of EV load for the
same household before (2018) and after (2019) the EV load
occurred. The household used only a fast charging option
(220V) for the representative day in 2019 that caused the
evening peak at 7 PM to increase sharply from 1.36 KW
to over 13 kW. As the state regulation stipulates a limit
on the amount of electricity that can be sold back to the
grid, a joint consideration of solar and battery energy storage
system (BESS) is important, even before considering the
significant increase in evening peak from fast charging. These
points are compellingmotivation to improve the robustness of
the modelling tools used to size home PV/BESS systems.

FIGURE 2. Smart meter data for a household without EV (2018) and with
EV (2019) for July 3 (a weekday in both years).

The remainder of this paper is organized as follows:
Section 2 provides a survey of the literature in this area;
Section 3 presents a model that covers the stochastic rep-
resentation of solar profiles and integrates EV charging in

the analysis, followed by three case studies in Section 4.
Section 5 concludes the paper.

II. LITERATURE REVIEW
Research efforts on managing residential load using opti-
mization tools date to the 1980s. Capehart et al. [4] intro-
duced the concept of optimizing household electricity cost by
reducing peak demand and usage time. Rahman and Bhatna-
gar [5], as well as Wacks [6] are other important examples
of advancing the concept of home energy and utility load
control through home automation. Khatib et al. [7] provides
an overview of the methodologies available for PV capacity
optimization at a system level. Given the scope of the current
work, we have focused on four key aspects of the litera-
ture, namely: (a) operational simulation of a household level
energy system; (b) capacity optimization of PV and BESS;
(c) smart meter data that can inform both operational and
capacity optimization aspects; and (d) commercially avail-
able models and tools.

The literature on Home Energy Management
Systems (HEMS) has grown over the years to embrace
developments on smart grid, roof-top PV and BESS.
Beaudin and Zareipour [8] provide an account of the wider
HEMS methodologies, including the ability of these sys-
tems to reduce household peak demand by almost 30%.
Operational simulation of HEMS has added many critical
nuances and sophistication over the years. Zhao et al. [9]
uses a sophisticated Energy Management Controller (EMC)
design including an optimal power scheduling scheme for
each electric appliance. Zhou et al. [10] extends the concept
of a smart HEMS to consider renewable options includ-
ing solar, biomass, wind, etc. that may be available to the
building. Additional operational capabilities of HEMS to
include prioritization of appliances [11], demand response
combined with storage [12], and electric vehicles [13], have
been progressively added to the literature. Thomas et al. [13],
for instance, developed a mixed integer linear programming
model that considers the impact of PV uncertainty in schedul-
ing of the HEMS. Hosseinnezhad et al. [14], [15] used
artificial intelligence techniques in order to solve the HEMS
scheduling problem. Shareef et al. [16] is a recent summary
of the HEMS applications.

As battery storage costs drop, there is increasing attention
on co-optimizing investment decisions on roof-top solar and
storage for microgrids and households. There are papers
that rely on linear/nonlinear mixed integer programming
models to undertake the capacity optimization [17]–[22].
Zhao et al. [17] and Zhou et al. [18] consider co-optimization
of battery storage together with PV systems for microgrids
and households. The HEMS model in [18] uses a nonlinear
MIP (MINLP) model to optimize battery storage and PV
under alternative pricing mechanisms. It is a comprehensive
model that includes an upper level capacity allocation prob-
lem solved in conjunctionwith a lower level operational prob-
lem using the DICOPT algorithm. Their analysis includes
several pricing and subsidy scenarios to show how subsidies

133844 VOLUME 8, 2020



E. Chatterji, M. D. Bazilian: Smart Meter Data to Optimize Combined Roof-Top Solar and Battery Systems Using a MIP Model

remain an essential component in some cases for PV to be
selected in the optimal portfolio. Hemmati [19] and Hemmati
and Saboori [20] adopt a similar approach to use variants of
mixed integer programming to optimize selection of capacity.
Hemmati and Saboori [20] also introduces uncertainty in
PV output using a Monte Carlo simulation model to design
Net Zero Energy (NZE) systems, which can reduce annual
electricity bill of customers. Okoye and Solyal [21] also
adopted an integer programming model for an application
to a Nigerian system to determine PV and BESS capacity
to reduce reliance on diesel that would otherwise be used.
Erdinc et al. [22] used a mixed integer programming model
to co-optimize distributed generation, storage and demand
response.

Given the importance of load profile in deciding the opti-
mal PV/BESS capacity and its operation, accurate load data
from smart meters should play a major role. A review of
smart meter data analytics [23], however, reveals surpris-
ingly little application of it being used for solar panel sizing.
Liang et al. [24] used smart meter data from 5,000 installa-
tions to analyze the number of solar panels needed to render
systems as net zero emissions, but there was no optimization
of solar panel sizing involved in the analysis. Dyson et al. [25]
shows how smart meter data can be useful for identification
of demand response options. They noted a high correlation
between demand response (DR) resources identified and peri-
ods of high solar generation ramping. There appears to be
no comprehensive analysis that uses: household-level smart
meter data, regulations on excess solar that can be fed back
to the grid, variability of solar including inter and intra year
solar variability, tariff policy, and the role that batteries can
play and changes in load pattern (e.g., EV charging).

Although the academic literature has explored many
sophisticated models and algorithms, there remains a paucity
of transparent and accurate customer-oriented tools that help
inform investment and operational decisions on solar PV, stor-
age systems, and EV charging strategies. There are simulation
tools such as HOMER [26], which allows the user to define
alternative configurations and simulate their performances
mainly for off-grid systems, and commercial products such
as Aurora Solar [27], AutoDesigner [28], and PVsyst [29],
which are used for designing solar roof-top systems. Aurora
Solar and AutoDesigner, use a mixed integer programming
algorithm to determine the optimal location and wiring for
solar panels taking into account shading, tilt, inverter sizing,
etc. PVsyst is a popular tool that uses a simulation approach
taking into consideration azimuth and tilt to decide alternative
PV arrays. It then selects the optimal configuration using a
heuristic approach considering a number of economic, techni-
cal, and financial attributes. PVWatts [30] is another popular
tool—both in online and offline formats—from NREL that
allows the user to simulate the impact of PV and BESS on
electricity bills for a specific location down to one-minute
resolution. It also contains multiple historic solar profiles
and provides a range around the estimated solar output.
Solar Estimates [31], Google’s Project Sunroof [32], and

WholesaleSolar [33] are more recent additions to the family
of commercial tools that are extremely user-friendly, and
backed up by detailed geospatial and solar resource data to
provide a ready estimate of solar PV potential for a house-
hold. These online tools provide a customer-centric view
on the solar capacity to be installed, payback period, and
estimated savings. These tools mostly answer the questions
around the amount and configuration of solar PV (and bat-
tery) once a target is specified (e.g., meet 100% of the
household energy). However, they [31]–[33] do not seek to
minimize household energy costs, and rely on high level
estimate of load based on monthly electricity bill and do not
use accurate load shape.

A household owner should be able to make an informed
decision based on the exact load profile including EV travel
load and charging options, on what combination of solar PV,
BESS and tariff policy is best for the household. With the
proliferation of smart meters, such design analysis can also
take advantage of accurate high-resolution load data. There
are elements of different operational simulation models and
commercial tools that partially cover the intended objectives,
but not a comprehensive model that covers them all.

III. METHODOLOGY
This paper presents a novel optimization tool that attempts
to comprehensively analyze solar panel and battery sizing for
household installations including:
(a) hourly/sub-hourly smart meter load data at the house-

hold level to represent load for one or more years;
(b) endogenous co-optimization of solar and battery capac-

ity;
(c) consideration of solar irradiance data available in the

public domain (e.g., NASA’s MERRA-2) to represent
hourly variability of solar within a year;

(d) representation of inter-annual variability of solar as a
stochastic contingency-constrained model to assess if
solar/battery needs to be oversized to cover for sus-
tained cloudy periods;

(e) explicit consideration of net metering policy for the
state/country, including restrictions on number of kWh
that can be exported to the grid;

(f) analysis of changes to the load pattern such as load
growth including addition of electric car and the opti-
mal charging strategy (slow, fast, supercharger) given a
travel load profile, and

(g) analysis of impact of alternative policies such as switch-
ing to time-of-use tariff, and/or tax mechanisms.

A. OVERVIEW OF THE MODEL
The model is cast as a least-cost planning problem to mini-
mize household electricity cost. It is formulated as a stochas-
tic mixed integer linear programming problem that considers
historic smart meter load data for one or more years, and mul-
tiple historic solar profiles with their associated probability
of occurrence. MIP is used for the model to select discrete
PV/inverter size (for larger systems), and EV charging mode.
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FIGURE 3. Overview of the model.

Stochastic modelling is introduced to account for the range
of solar resource profiles shown in Figure 1. The model can
be set up at hourly, or sub-hourly resolution with inputs on
EV travel profile, available charging hours and options (i.e.,
slow, fast or supercharger at a higher cost outside the home).
It optimizes the PV and BESS capacity as a first stage (‘‘here
and now’’) decision variable, together with second stage
resource decisions on hourly/sub-hourly buy/sell from/to the
grid, and EV charge mode, subject to the uncertainties on
solar availability. The capacity and operational decisions are
also driven by policy parameters such as tax incentives for
PVs, limits on energy that can be sold back to the utility,
and tariffs (of which we consider three variants that are on
offer in the state of Maryland: fixed/flat tariff, Time-of-Use
and EV Special Tariff with low prices for super off-peak).1

A schematic overview of the model is provided in Figure 3.

B. MATHEMATICAL DESCRIPTION
INDICES
t Hours/sub-hours of the day
d Days of the month
m Months of the year
y Solar profiles for years y=1, . . .Y

INPUT PARAMETERS
Demandy,m,d,t Hourly/sub-hourly demand
AvailableSolary,m,d,t Solar irradiance in kW/m2 per

1 kW panels installed
Tariffy,m,d,t Cost of energy from the grid in

c/kWh for day d and hour t
Py Probability of solar profile, y
E Penalty on solar rejection which is

kept very small in this analysis
PanelCost Annualized cost in dollars of pur-

chasing and installing 1 kWof solar
panels

1PEPCO rate, Schedule EV, www.pepco.com

BuyBackRate Price in c/kWhwhich can be earned
by the household by selling 1 kWh
of energy to the grid

TaxDiscount Percent of the solar panel cost sub-
sidized by the government

SolarEfficiency Efficiency of the solar panel
BatteryCost Annualized cost for purchasing and

installing 1 kWh of BESS
BatteryEfficiency BESS round-trip efficiency
ChargeRate The rate in kW that the battery can

charge
DischargeRate The rate in kW at which the battery

can discharge
EVBottomLimit Minimum charge level of EV
EVUpperLimit Maximum charge level of EV
EVDistance EV travel load expressed as kWh

lost during hours of travel

DECISION VARIABLES
Cost Total cost of the energy in dollars
Gridy,m,d,t Supply of energy from the grid in

kWh
SolarInstalled Amount of solar panels installed by

the model in kW – first stage deci-
sion

Solary,m,d,t Available solar energy in kWh
SolarInHousey,m,d,t Solar energy in kW being used in the

household
SolarExporty,m,d,t Solar energy in kWh being sold to

the grid
SolarRejecty,m,d,t Solar energy in kWh being rejected

(incurs a penalty)
BatterykW Size of battery in kW to be installed

– first stage decision
BatteryIny,m,d,t Solar energy in kWh entering the

battery
BatteryOuty,m,d,t Solar energy in kWh entering the

household from the battery
BatteryLevely,m,d,t Energy in kWh stored in the battery

(household BESS)
EVStoredy,m,d,t Energy in kWh stored in the EV’s

battery
EVEnteringy,m,d,t Energy in kWh charging the EV

from the household supply
chargeModey,m,d,t Binary variable which defines

whether the EV is being charged
through slow (1.65 kW at 110V) or
fast charging (6.6 kW at 220V) for
the day.

SuperChargey,m,d,t Energy in kWh charging the EV
from the super charger (outside the
home at a higher cost)

C. OPTIMIZATION MODEL
The model selects the optimal size of PV systems and battery
size, coupled with grid-supply, to meet hourly/sub-hourly
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household demand for one or more years. It takes into con-
sideration multiple annual solar profiles (y) that embody
inter-annual variability of the resource with associated prob-
ability for each profile (Py). The model uses demand from a
single year (2018) in its analysis. The optimization problem is
formulated as a stochastic mixed integer linear programming
problem (MILP). This model falls in the same category of the
HEMS planning models [17]–[22], and especially [18], [20].
The incumbent model keeps the formulation as MILP as
opposed to a MINLP in [18], to render it computationally
tractable. This is particularly important given the considera-
tion of uncertainties that may include up to 21 solar profiles in
hourly resolution for our case studies. The stochastic formula-
tion is different from a Monte Carlo simulation implementa-
tion in [20]. It should also be noted that the model integrates
EV charging as an endogenous variable including selection
of charging modes. Although there have been operational
simulation models of HEMS (e.g., [13]) of EV, integrated
treatment of EV related load together with PV and BESS
capacity in a stochastic model has not been considered. The
model formulation is presented in line with the implemen-
tation of the model for different case studies that use both
deterministic and stochastic versions of the model.

The deterministic objective function for the model which
defines the cost of the household’s electricity is defined as
Cost for a pre-specified solar profile (y = y∗ and hence the
index is dropped). Household electricity bill/cost comprises
cost of purchasing electricity from the grid and the cost of
the solar panel and its battery storage, along with any penalty
associated with unused solar less the feed-in revenue:

Cost =
∑
m,d,t

(
Gridm,d,t ∗ Tariff m,d,t

−SolarExportm,d,t ∗ BuyBackRate
)

+ SolarInstalled ∗ PanelCost ∗ TaxDiscount

+BatterykW ∗ BatteryCost

+

∑
m,d,t

SolarRejectm,d,t ∗ ε (1)

A modified version of this equation is used for the stochas-
tic model. This modified equation in the stochastic version
multiplies the annual costs by the relative probability, Py of
each solar profile:

Cost =
∑
y

Py ∗∑
m,d,t

(Gridy,m,d,t ∗ Tariff y,m,d,t

−SolarExporty,m,d,t ∗ BuyBackRate)
)

+ SolarInstalled ∗ PanelCost ∗ TaxDiscount

+BatteryCost ∗ BatterykW

+

∑
y,m,d,t

SolarRejecty,m,d,t ∗ ε (2)

The equation used by the model to balance the power
injected from the grid along with the power coming from
the solar panels and output from the battery in order to meet

hourly demand is defined as follows:

SolarInHousey,m,d,t + Gridy,m,d,t + BatteryOuty,m,d,t
∗ BatteryEfficiency = Demandy,m,d,t (3)

The solar energy production is limited by availability of
solar energy and the size of the solar panel system installed.
Efficiency of the panel can also be represented as a piecewise
linear function of production, but has not been considered
here, keeping in view the marginal increase in accuracy vs
significant increase in the size of the MIP model that this
entails.

Solary,m,d,t ≤ AvailableSolary,m,d,t ∗ SolarInstalled

∗ SolarEfficiency (4)

The solar energy which is generated can either be used in
the household, sold to the grid, stored in the battery, or be
rejected at a small penalty:

SolarExporty,m,d,t + BatteryIny,m,d,t + SolarRejecty,m,d,t
+SolarInHousey,m,d,t = Solary,m,d,t (5)

In order to reflect the net metering policy in the state that
limits the amount of solar energy the household can sell to the
grid, the model stipulates that export cannot exceed in-house
consumption:∑

m,d,t

SolarExporty,m,d,t ≤
∑
m,d,t

SolarInHousey,m,d,t (6)

To simulate a high export scenario, the following equation
is used:∑

m,d,t

SolarExporty,m,d,t ≤
∑
m,d,t

Demandy,m,d,t (7)

The following equation represents the energy balance for
the battery:

BatteryLevely,m,d,t = BatteryLevely,m,d,t−1
+BatteryIny,m,d,t − BatteryOuty,m,d,t (8)

The charging and discharging rates are predefined and
incorporated into the model as follows:

BatteryIny,m,d,t ≤ BatterykW ∗ ChargeRate (9)

BatteryOuty,m,d,t ≤ BatterykW ∗ DischargeRate (10)

The equations from (11) and onwards are used only in the
EV Case Study. Equation (11) is identical to the objective
function in Equation (1), however it includes a provision to
account for the cost of the supercharging:

Cost =
∑

y,m,d,t

(
Gridy,m,d,t ∗ Tariff y,m,d,t

−SolarExporty,m,d,t ∗ BuyBackRate
)

+ SolarInstalled ∗ PanelCost ∗ TaxDiscount

+BatterykW ∗ BatteryCost

+

∑
y,m,d,t

SolarRejecty,m,d,t ∗ ε+SuperChargey,m,d,t

∗SuperChargeCost (11)
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Equation (12) is identical to Equation (3), except it includes
a provision to account for the additional load from the EV:

SolarInHousey,m,d,t + Gridy,m,d,t + BatteryOuty,m,d,t
∗BatteryEfficiency = Demandy,m,d,t + EVEnteringy,m,d,t

(12)

The following equations define the lower and upper limits
of the EV’s battery:

EVStoredy,m,d,t ≥ EVBottomLimit (13)

EVStoredy,m,d,t ≤ EVUpperLimit (14)

The EV can either charge using slow charging at a rate
of 1.65 kW (110V), or fast charging at a rate of 6.6 kW
(220V):

EVEnteringy,m,d,t ≤ 1.65
(
1− ChargeModey,m,d

)
+6.6 ∗ ChargeModey,m,d (15)

The following equation defines the balance for the EV’s
battery:

EVStoredy,m,d,t = EVStoredy,m,d,t−1 + EVEnteringy,m,d,t
+SuperChargey,m,d,t (16)

Supercharging hours are restricted, e.g., excludes early
midnight till 4 am.

Superchargey,m,d,t
∣∣
t 6=τ
= 0 (16a)

For every hour the EV is out of the house, it loses charge
at a predefined rate:

EVStoredy,m,d,t = EVStoredy,m,d,t−1 − EVDistance (17)

There must be continuity in the EV’s battery from day to
day, namely:

EVStoredy,m,d,1 = EVStoredy,m,d−1,24 (18)

The model is implemented using GAMS (General Alge-
braic Modeling System [34]) and solved using the CPLEX
Barrier algorithm.2 The stochastic formulation of the model
for a full-year in hourly steps with 21 solar resource pro-
files contains 1.5 million variables, 1.3 million constraints,
and 4.6 million non-zeroes. It solves in 42 seconds on an
i7-9750H (ninth generation) processor with 32GBRAM.The
deterministic version of the model for a single profile solves
in 8 seconds.

IV. CASE STUDY RESULTS
This section presents results of themodel for three cases using
2018 smart meter load data: (a) the ISKCON DC complex
in Potomac, Maryland that includes a temple with relatively
large annual peak load in excess of 25 kW; (b) a single family
residential home with annual peak load below 10 kW; and
(c) the same house with an added load from an EV. These

2The model is implemented in GAMS with an Excel front-end The model
will also be made available through IEEE Access.

case studies are chosen to illustrate how system sizing and
selection is influenced by substantially different load shapes.
ISKCON load generally occurs during day, while the house-
hold loads are concentrated during early evening hours, and
the addition of the EV charging that can add substantially to
it depending on the travel pattern.

The model uses a cost of $3000/kW for fully installed solar
systems, representing multiple quotes obtained from solar
companies,3 and a cost of $300/kWh for BESS. We consider
several different grid pricing scenarios, the most basic of
which is a fixed/flat price of 15.65 c/kWh. The other two
pricing scenarios consider two variants of Time of Use (TOU)
schemes. The first maintains a 25 c/kWh peak from 6 PM to
10 PM, and an 8 cent off peak for the rest of the day. The sec-
ond one is a more extreme variant, with a 30 c/kWh peak
from 6 PM to 10 PM, an 8 c/kWh off-peak, and a 5 c/kWh
super-off-peak from 11 PM to 5 AM. These pricing scenarios
mimic the pricing schemes that are currently on offer from
PEPCO—the major utility in Maryland—including the Spe-
cial EV Tariff that encourages charging during late night.

A. CASE STUDY 1: ISKCON DC
The ISKCON DC case study illustrates the stochastic formu-
lation, a key feature of the model. It uses solar profiles from
the 21 years shown in Figure 1 and assigns a relative probabil-
ity to each of these profiles. This probabilistic representation
allows the model to account for interannual variability over
a reasonably wide range of years that differ significantly in
terms of insolation level and its timing during different parts
of the year.

Peak hourly load for the ISKCON site in 2018 was
25.8 kW, and the daily consumption pattern remained rela-
tively similar throughout the year including occurrence of the
daily peak during the daytime. Figure 4 shows a typical day

3This cost is 2-3 times that of a utility-scale PV in the US (see for example
Wiser et al. [35]). Cost for roof-top PV system included in this analysis
represents commercial pricing for fully installed system.

FIGURE 4. Typical load curve and solar output for a 30 kW panel.
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TABLE 1. Comparison of scenarios: ISKCON DC.

and shows how a 30kW panel could have met a substantial
part of the load during peak.

Analysis for the ISKCON site is shown in Table 1:
1. The ‘‘Base Case’’ uses the stochastic model and includes

all 21 solar profiles simultaneously. It results in selection
of 38 kW of solar;

2. The ‘‘Worst Solar Profile’’ and ‘‘Best Solar Profile’’
scenarios use single year (2003 and 2001, respec-
tively) deterministic scenarios. The former selects only
25 kW, while the latter matches the Base Case outcome
of 38 kW;

3. The ‘‘Conservative Scenario’’ uses solar profiles of low
irradiance years including 2003; and

4. The ‘‘No Solar Panel’’ case is included as a benchmark
to calculate the savings.

As Figure 1 demonstrates, there is significant variation in
solar irradiance throughout the years. The stochastic model
helps to better analyze multiple profiles and yields a solution
that reflects the resource risk. The base case in Table 1 rec-
ommends the installation of 38 kW of solar panels, saving
nearly $1,350 in a single year (i.e., the difference between
‘No Solar Panel’ and Base Case in Table 1). This optimal
capacity selection is identical to the single year scenario
of 2001, which is the year with the highest irradiance of those
included in the model. However, the model calculates that
25 kW of solar panel as the optimal choice if we were to
consider the worst (2003) profile. This difference in outcomes
underlines the importance of the stochastic formulation. The
importance of considering inter-annual variability for system-
wide planning has been discussed by Pfenninger [36] among
others, but an issue that is largely ignored in the commercial
applications. This effect is further demonstrated by the ‘‘Con-
servative Scenario,’’ which shows the optimal capacity might
be restricted to 31 kW by selecting a set of low-yield solar
profiles—reflecting a more risk-averse investor.

Another significant result from this case study is that the
model does not select any BESS. This is mostly because the
load profile matches the solar irradiance profile well, and,
in part because the additional cost in BESS is not justified
given the fixed tariff in this instance is very close to the
levelized cost (LCOE) of the PV system.

Figure 5 shows the supply to ISKCON DC for 3 days
(Jan 1-3, 2018) from grid and in-house usage of solar to meet

FIGURE 5. Grid and in-house solar usage for ISKCON: Base Case.

its demand. It shows how the daytime peak demand is met
through use of solar, although the mix of grid and solar may
vary significantly over the days. The selection of 38 kW of
solar is driven by the high demand during the day, and also the
fact that part of it can make a small profit (i.e., the difference
between buy-back tariff and LCOE of the PV system). The
volume of export back to the grid varies across the years: it is
33% for the worst solar profile (2003), and 39% for the best
solar profile (2001).

B. CASE STUDY 2: RESIDENTIAL HOME (WITHOUT EV)
1) BASE CASE AND COMPARISON WITH OTHER MODELS
This section describes the findings from a residential home
in Maryland. Smart meter data at hourly resolution for
2018 is obtained for the household together with an average
PV system price based on quotes from multiple providers.
The model is used in a relaxed mixed integer program-
ming (RMIP) mode allowing for fractions of kilowatts,
in order to make it comparable with the quotes received.

The Base Case of the model using the stochastic formula-
tion yields an optimal solar panel size of 3 kW. Figure 6 shows
the hourly use from the grid and solar for the first three days
of the year. It shows that the low selection of solar panels
is ultimately due to the low daytime demand, which mostly
stays under 1 kW.

FIGURE 6. Grid and in-house solar usage for the household: Base Case.
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Next, we present the findings from our model vis-à-vis
alternative estimates obtained using other tools (Figure 7).

FIGURE 7. Comparison of PV sizing across different models. Note:
Lumina Solar uses LIDAR together with Aurora [27]. Google Sunroof
estimate represents an average for the postcode and not available for
the precise location. The estimate from PVWatts is obtained by running
the model repeatedly to meet the household demand.

The model’s estimate is markedly lower than the other
appraisals. Although we do not present the findings of other
household case studies, it is likely the case that the com-
mercially available tools tend to overestimate system size.
Detailed load profiles are not used in most commercial tools.
The online tools and the solar company recommended the
installation of solar PV well in excess of the peak hourly
load, which was 4.7 kW for 2018, and occurs in the evening.
As several of the online tools use a combination of monthly
bills and synthetic load profiles, their estimations overlooked
the fact that the household’s average demand during daylight
hours is only 0.635 kW. The household in this instance could
overinvest anywhere between $5,000 and $18,000. That said,
there are several other factors that would also determine the
PV/BESS as we discuss next.

2) NO EV SCENARIO: OTHER CASES
Table 2 shows a comparison of PV and BESS selection for
the following scenarios:
1. The ‘‘Base Case,’’ which implements fixed pricing and

the stochastic model;
2. ‘‘Best Solar Year’’ and the ‘‘Worst Solar Year,’’ which

use single-year solar profiles of 2001 and 2003, respec-
tively and fixed pricing;

3. ‘‘TOU,’’ which implements a Time of Use pricing sce-
nario (25 c/kWh peak from 6 PM to 10 PM and an 8 cent
off peak for the rest of the day);

4. A ‘‘Special (EV) Tariff’’ scenario (30 c/kWh peak from
6 PM to 10 PM, an 8 c/kWh off-peak, and a 5 c/kWh
super-off-peak from 11 PM to 5 AM);

TABLE 2. Comparison of model scenarios.

5. A ‘‘High Export’’ scenario which allows the model
to sell higher amount of energy to the grid up to the
household demand (i.e., Eq (6) is relaxed);

6. There is also a ‘‘No Export’’ scenario which prohibits
net-metering reflecting a situation where the Maryland
state cap of 1,500 MW for roof-top solar is reached;

7. ‘‘Cost of Solar Reduced 50%,’’ with panel price drop-
ping to $1,500/kW;

8. The ‘‘Cost of Solar Reduced 50% + No Export,’’
which halves the cost of solar panels, but no net-metering
is in place which reduces profitability of solar;

9. The ‘‘No Solar’’ scenario, which serves as a benchmark
for all scenarios to calculate the benefit of PV/BESS
system.

Several observations arise. First, the Base Case shows
3 kW of solar can save 7.4% net of all costs including the
capital costs for a year, relative to the No Solar counterpart.
This savings is not insignificant, and we note that there are
many environmental and other benefits that are not counted
in an electricity bill reduction. However, it is typically a small
fraction of the savings reported by the commercially available
models. SolarEstimate [31], for instance reports an average
annual electric bill savings of $2,566 pa (or $64,171 over a
25-year period), using a panel size of 8.8 kW (Figure 7). Even
if we adjust for the panel size, these benefits are 8.3 times
higher than what we have estimated using an accurate load
profile. Secondly, the difference in optimal PV between the
‘‘Best Solar Year’’ and the ‘‘Worst Solar’’ is small unlike the
ISKCON DC case study. The savings associated with the lat-
ter case is only $10 relative to the No Solar case, making solar
potentially a marginal investment in low insolation years.

The grid pricing scenarios are especially interesting
because they include the installation of BESS even though
they recommend installing fewer solar panels. This makes
sense, because in the TOU scenario, the peak hours where
the cost of energy from the grid is the highest comes in the
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evening. The TOU scenario provides the desired incentive to
optimize PV/BESS and lower the electricity bill by $319 or
22% of the No Solar scenario. The Special (EV) Tariff which
is geared towards an EV off-peak charging brings in more
BESS to take advantage of the very low prices during super
off-peak hours, but absent an EV load in this case, is not as
effective, although it also results in 18% savings.

The net metering scenarios with High and No Export pro-
vide good insights into the significant impact of this policy.
In our Base Case as well as other scenarios, themodel [Eq (6)]
restricts net-metering to the amount of solar energy used
in the household. When the model can sell energy back to
the grid up to the year’s demand, it recommends installing
7 kW, i.e., more than double of the Base Case outcome.
However, when net-metering is restricted which is a policy
risk that homeowners and investors have to consider over the
longer term, the model recommends installing only 1 kW
of solar panels. This indicates that for this residential home,
solar panels are not well suited for the load profile. The
household cannot reap significant benefits from solar energy
(as indicated by the $31 difference between the ‘‘No Solar’’
case and the ‘‘No Export’’ case) without being able to sell
excess energy back to the grid. The results from the ‘‘No
Export’’ scenarios in particular demonstrate that solar pan-
els have little impact on the household’s utility bill without
net-metering.

As the last two cases with 50% drop in solar cost demon-
strates, there is a much greater prospect for solar if the current
costs in the US falls in line with those observed internation-
ally (especially in India and China) where roof-top solar can
be installed for $1,500/kW. With the current net-metering
policy in place (‘‘Cost of Solar Reduced 50%’’), there is room
to oversize the panel to 4 kW and include 1.2 kWh of BESS
to generate 39% savings. Even absent any export to the grid,
the model selects 3 kW with 2 kWh BESS to provide a 16%
reduction in electricity bill.

As a more general observation on BESS at its current
costs, the model rarely finds it attractive. BESS selection is
influencedmostly by the other factors, such as the grid pricing
scenarios or the cost of solar panels. It is certainly striking
that the model recommends installing BESS when the cost of
solar panels is halved, even when net-metering is restricted.

In this case study, the only factor which was not altered was
the demand. The following case study analyzes the impact of
an EV on the sizing of solar PV and BESS.

C. CASE STUDY 3: RESIDENTIAL HOME WITH EV
This section details the findings for the same residential
household, but with an EV. This uses the same 1-year smart-
meter data used in the previous case study for 2018. The EV
travels every day: on weekdays, the EV is outside of the home
from 7 AM to 6 PM, and on weekends, the EV is out of
the home from 8 AM to 12 PM, and again from 6 PM to
8 PM. These hours are meant to reflect a typical working
family’s weekly travel pattern. The model provides complete
flexibility in setting any pattern and vary the travel distance.

TABLE 3. Comparison of model scenarios.

When out of the house, the EV loses 1 kWh of its battery
for every hour that it remains out of the house. Thismeans that
on weekdays, by the time it returns to the household, it will
lose 14 kWh of its battery to travel∼42 miles. The EV cannot
be charged when it is outside of the household, except for a
supercharger.

The EV’s battery has a capacity of 60 kWh and its state
of charge cannot go below 20% or 12 kWh. In most EV’s,
going below a certain limit of the battery reduces the lifespan
of the battery, and hence this lower limit is enforced as a hard
constraint.

The EV has three charging options:
1. Slow charging at a rate of 110 Volts/1.65 kW
2. Fast charging at a rate of 220 Volts/6.6 kW
3. Supercharging outside of the household at a rate

of 480 Volts/72 kW, but at a high cost of $0.6/kWh
An additional constraint on the supercharging is that it

cannot be done between 11 PM and 5 AM – this is again a
constraint that is customized for each application. The model
has been run for a single-year solar profile with the following
scenarios (Table 3):
1. The ‘‘Base Case,’’ which implements fixed pricing;
2. Two scenarios, ‘‘2∗Distance’’ and ‘‘3∗Distance’’ which

double/triple travel distance and hence the amount of
battery the EV loses every day (28 kWh per week-
day in ‘‘2∗Distance’’ and 42 kWh per weekday in
‘‘3∗Distance’’);

3. Two scenarios, ‘‘TOU’’ and ‘‘Special (EV) Tariff’’
which alter the grid pricing schemes as discussed earlier;

4. Two scenarios, ‘‘Special Tariff+ 2∗Distance’’ and ‘‘Spe-
cial Tariff + 3∗Distance’’ which combine the special
tariff with higher travel load scenarios.

The major difference between this case and the previous
one is that the load profile has a sharp peak in the evening,
when the EV returns to the household. A cursory glance
at these results reveals that the model avoids using super-
charging, meaning the immediate benefit of filling the battery
is outweighed by its high cost, albeit a larger EV and/or travel
load can increase the need for supercharging. Nevertheless,
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it should be noted that supercharging and the associated sharp
increase in peak load could be avoided in this instance with
an optimized charging strategy.

A closer look at the first three scenarios indicates how
themodel switches between slow-charging and fast-charging.
In the ‘‘Base Case,’’ the model charges only 65 kWh through
fast charging, even though the EV required 4,015 kWh
throughout the entire year, i.e., only 2% of the charging
needed through fast charging. This is a significant point from
a utility perspective as most daily commuting need using
EV (up to 42 miles per day) can be accommodated through
slow charging without causing a sharp increase in evening
peak. For the other two scenarios with heavy EV travel loads,
the model must chargemore energy between each day tomeet
the more stringent travel load. Doubling (84 miles per work-
ing day) and tripling (126 miles per working day) EV travel
requires 45% and 70% of the energy through fast charging.
It is also worth noting that the PV/BESS size remains almost
identical throughout all these cases. This is because the cost
of PV is relatively high which in turn reduces the need for
BESS, and the fact that the household is on a fixed price that
gives no incentive to alter its consumption pattern.

In the ‘‘TOU’’ scenario, energy costs more in the evening.
It follows logically, then that themodel would recommend the
installation of more batteries to use cheap energy to charge
the EV rather than use grid energy at 25 c/kWh. The model’s
findings suggest using more solar energy than grid energy
compared to the Base Case even though it is using fewer
panels, because of the presence of BESS.

The ‘‘Special Tariff’’ scenario sees the installation of more
PV/BESS than any of the previous scenarios, as it is cheaper
to use energy from the PV//BESS than the expensive evening
peak rate. However, doubling, or even tripling, the distance
the EV travels every day has no effect on PV/BESS is because
it gets the additional energy from the grid at 5 c/kWh and use
fast charging. In other words, the super off-peak rate is lower
than the levelized cost of PV/BESS. The model recommends
using 1,380 kWh for the year which is almost 20 times the
amount of fast charging than the Base Case for 14 kWh
(42 miles) of daily EV load. If EV load doubles, fast charging
rises over 7,000 kWh annually, or nearly double that of the
Base Case 2∗Distance scenario. When tripling the distance
under Special Tariff, the model recommends installing 5 kW
of solar panels and 4.3 kWh of battery, as the fast charging
requirements include some of the evening peak. The value
of the model lies in the fact that it can look at PV/BESS/EV
options in order to maximize the value of PV/BESS for the
household and it can also help policy makers to design tariff
that avoids adding expensive peaking generation capacity.
TOU/EV pricing in this instance can create the necessary
incentive to install solar panels and batteries for households
with EVs.

Figure 8 shows the difference in hourly EV load for a day
across the three pricing scenarios averaged across the year
for the 3∗Distance sensitivity. In the fixed price scenario,
the EV demand remains almost entirely constant, including

FIGURE 8. Comparison of added EV load for an average day across
pricing scenarios for 3∗Distance sensitivity case. Note: Daytime EV loads
in the plot between 6 AM-6PM reflect the charging that take place
during weekends (averaged across all 365 days).

the household peak in the evening. In the other two pricing
scenarios, however, the added demand is shifted away from
the evening peak. This is a serious issue because a fixed price
regime would on average lead to EV load that is four times
that of TOU/Special Tariff regime. The Special Tariff can
be particularly effective in moving part of this load to late
night and early AM hours. During the super-off-peak period
(11 PM to 5 AM), the Special Tariff leads to an average
consumption of 30 kWhwhich is higher than that for the TOU
(27 kWh), and fixed price scenario (20 kWh).

V. CONCLUDING REMARKS
Although there has been significant research and develop-
ment of commercial tools to design roof-top solar systems,
there is relatively less analysis of combined PV/BESS/EV
systems that employs smart meter data. Estimations for solar
panels in households often come from online solar com-
pany resources that are opaque and use limited load infor-
mation. The proposed model addresses these gaps by using
hourly/sub-hourly smart meter data to accurately estimate
solar panel and battery size with the integration of the con-
sumption pattern (including EV load), and policies, which
both have a significant influence on purchase and sizing.

The model’s results vary significantly depending upon the
customer load shape and solar resource availability. Analysis
conducted for households suggests the commercial software
estimates are significantly higher (in estimating installed
solar PV capacity needed)—on average by a factor of two.
This maymean sub-optimal investment, e.g., up to $18,000 in
the example presented in the second case study for a sin-
gle household. The analysis also demonstrates how detailed
smart meter load data can be useful in determining the precise
volume of solar PV and battery combination that may differ a
great deal from one case to another. In contrast, the first case
study conducted for a larger multi-house complex shows that
solar PV can be highly profitable because its consumption
pattern aligns quite well with solar availability. The analysis,
however, also points to the role uncertainty of solar resource
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availability may play in shaping the decision. A stochastic
programming model is demonstrated to be a useful tool in
gaining insights on this issue.

The addition of EV load is materially significant for
PV/BESS, and it should be analyzed together with PV/BESS
sizing. The model allows a user to help optimize the EV
charging load by observing practical constraints around tim-
ing and available charging options, as well as pricing options.
These considerations are critical as excessive additions to the
household (and system) evening peak load can be avoided
through a proper optimization of the charging regime, even
for very high travel load, by choosing the right tariff scheme.
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