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A B S T R A C T

This paper presents a non-sequential Monte Carlo Simulation (MCS)-based method for the reliability assessment
of composite power system with wind farms (WFs). A multistate probability table and its corresponding
Spearman’s rank correlation coefficient (SRCC) are combined to represent the power outputs of WFs, which
makes the multistate model of WFs compatible with the non-sequential MCS while considering the dependence
among power outputs of WFs. By constructing a system state array with encoding conversion, a state merging
technique is proposed, which significantly reduces the number of system states to be evaluated. In addition, the
parallel computing technique is employed to accelerate the contingency analysis for the merged system states.
Furthermore, the capacity credit (CC) of WFs considering both wind power correlation and transmission network
constraints is evaluated based on the proposed reliability assessment method. Finally, the effectiveness of the
proposed reliability assessment method and its application in the CC evaluation are demonstrated using ex-
tensive numerical studies on several modified test systems.

1. Introduction

Composite power system reliability is concerned with the problem
of assessing the ability of generation and transmission system to supply
adequate electrical energy to the major load points [1]. It has been
successfully applied in many areas, such as generation source planning,
transmission development planning, transmission operation planning
and operating reserve assessment [2,3]. Meanwhile, in recent years,
wind power generation has been rapidly and widely developed world-
wide for tackling the problems of environmental pollution and energy
supply sustainability. Due to the intermittent and variable nature of
wind speed, output power of wind farms is stochastic and quite dif-
ferent from those of conventional units. Thus, there is a pressing need
for studying the reliability evaluation of composite power system with
wind power integration.

The composite power system reliability evaluation generally in-
volves three basic steps: selecting system states, evaluating the con-
sequences of selected system states and calculating risk indices [2].
Analytical enumeration and Monte Carlo Simulation (MCS) are two
primary approaches that have been proposed to select system states.
Though the analytical method can obtain the exact reliability indices by
explicitly or implicitly identifying all possible system states, it is rarely

used in reliability assessment of composite power system with wind
farms (WFs). The reason is that analytical method has difficulty in as-
sessing reliability for practical-size systems due to the curse of di-
mensionality [3], as well as difficulty in building analytical models of
WFs considering wind power correlation. Naturally, it is sensible to use
MCS for reliability assessment of composite power system with WFs.
The MCS can be further categorized into sequential and non-sequential
simulation. The sequential simulation moves chronologically through
the system states, while the non-sequential simulation selects the
system states randomly [4]. In the past few decades, researchers have
conducted considerable studies on the improvement of MCS for power
system reliability. To take advantages of the computational efficiency of
non-sequential MCS and the accuracy of sequential/chronological si-
mulation, pseudo-sequential and pseudo-chronological MCS were pro-
posed in Refs. [5,6] for calculating the loss of load cost (LOLC), re-
spectively. In Ref. [4], quasi-sequential MCS was proposed in order to
deal with time-dependent aspects such as load variation, generating
capacity fluctuation from renewable sources, and maintenance. Aiming
at improving the computational efficiency of MCS, kinds of variance
reduction techniques, such as importance sampling [7], Latin hy-
percube sampling (LHS) [8], cross-entropy methods [9] and subset si-
mulation [10] were proposed in recent years. From the perspective of
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evaluation process of power system reliability, these variance reduction
techniques can be summarized as accelerating computation at the first
stage of system reliability assessment, i.e., selecting system states.
Based on this perception, we were inspired to accelerate computation of
composite power system reliability at another stage of evaluation pro-
cess. In this paper, an accelerating method based on non-sequential
MCS is proposed to deal with the sampled system states. The proposed
method is based on the observation that a large number of system states
sampled by non-sequential MCS are repetitive. Thus, if we can avoid
conducting contingency analysis for the repeating system states, the
computation effort will be greatly reduced. In this paper, we skillfully
merge all of the sampled system states by constructing system state
arrays with encoding conversion technique. The main contributions of
this paper can be summarized as follows:

(1) A multistate probability table and its corresponding Spearman’s
rank correlation coefficient (SRCC) are combined to represent the
probabilistic characteristics of WFs power outputs, allowing the
consideration of wind power correlation under the framework of
non-sequential MCS.

(2) Several innovative techniques are utilized to speed up the analysis
for thousands of simulated system states. First, the binary array
with respect to a system state is constructed and represented by a
decimal number. This makes it convenient to identify and merge
system states obtained by non-sequential MCS, and thus greatly
reduces the number of system states under analysis. Second, the
parallel computing technique is used for contingency analysis of the
merged system states, which accelerates the process of state eva-
luation significantly.

(3) On the basis of the proposed reliability evaluation method of
composite power system with WFs, capacity credit (CC) evaluation
of WFs considering both wind power correlation and transmission
constraints is implemented. This is different from existing litera-
tures which only consider wind power outputs correlation or
transmission constraints [11–13].

The remainder of this paper is organized as follows. Section 2 pre-
sents the non-sequential MCS-based reliability evaluation method of
composite power system with dependent WFs. Section 3 shows the
application of the proposed reliability evaluation method in the CC
evaluation of WFs considering both wind power correlation and
transmission constraints. The effectiveness of the proposed reliability
evaluation method and the necessity of incorporating both wind power
correlation and transmission constraints in the CC evaluation are ver-
ified by a number of numerical tests in Section 4. Finally, conclusions
are made in Section 5.

2. Fast reliability evaluation method of composite power system
with WFs based on non-sequential MCS

Three aspects of the work have been completed to develop an effi-
cient non-sequential MCS-based method for evaluating the reliability of
composite power system with WFs in this section: the state sampling of
independent conventional generation units, lines and dependent WFs
outputs, the reduction of number of system states to be evaluated and
the parallel computing of merged system states. The implementation of
these three contributions is demonstrated as follows.

2.1. Components state sampling of composite power system with WFs

The non-sequential MCS method is also called the state sampling
approach, and it is based on the fact that a system state is a combination
of all component states. In order to evaluate reliability of the composite
power system with WFs using a non-sequential MCS, the states of
conventional generating units, transmission lines and WFs have to be
determined first. Generally, the conventional generating units and

transmission lines are assumed to have two states of failure and success.
Their failures are independent of each other [2]. In this context, each
component state of generating units and transmission lines can be
modeled by producing random numbers distributed uniformly between
[0,1]. Let PFi denote the ith component failure probability and Ui de-
note a random number distributed uniformly between [0,1]. Then the
state of the ith component Si can be determined by:
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In order to adapt to the non-sequential MCS, a wind farm is sup-
posed to be represented as a generating unit with multistate output
power [14]. The multistate probability table [15,16] of a wind farm is
generally constructed and used to sample the output power state of a
wind farm. In Ref. [17], the sequential output power series of a WF
considering both wind speed correlation and wind turbine generator
(WTG) outage was developed by using a Copula function. Subsequently,
the multistate model of the total wind power generation system was
built by using an apportioning technique. Additionally, this multistate
output power model has been used for reliability evaluation of gen-
erating system with WFs. However, when it comes to the reliability
evaluation of composite power system with farms, there are two issues
needing to be addressed. First, the multistate probability table of each
wind farm, instead of the probability table of wind power of all WFs,
has to be modeled for composite system reliability, as WFs are generally
integrated into power system at different buses. Fortunately, similar to
modeling the multistate probability table of all of the WFs [17], this
issue is easy to be solved by applying an apportioning technique to the
simulated output power series of each WF. Second, it should be noted
that there exists correlation between power outputs of WFs in adjacent
areas [18], and thus the state sampling of each WF cannot be de-
termined by using independent random numbers, which is quite dif-
ferent from the state sampling of conventional system components.
Pearson correlation and rank correlation are two coefficients used to
measure the dependence among random variables in power system
analysis. Compared with rank correlation coefficient, Pearson correla-
tion coefficient is not invariant under non-linear strictly increasing
transformations in cases of non-normally distributed variables [19,20].
And on the other hand, it is pointed out in Refs. [19,21] that the WF
power output does not follow the Normal distribution, thus it is wise to
choose rank correlation to measure the dependence among WFs power
outputs. Rank correlation coefficients, including Spearman’s rank cor-
relation coefficient, Kendall’s rank correlation coefficient and Gini
correlation coefficient, are mainly used to measure the degree of
monotonic dependence between random variables [18,22]. Considering
that the Spearman correlation between two variables is equal to the
Pearson correlation between the rank values of those two variables
[23], we are inspired to use correlated random variables following
uniform distribution between [0,1] to simulate dependent WFs outputs.
In this paper, the procedure of sampling correlated WFs outputs com-
patible with a non-sequential MCS is proposed as follows:

(1) Simulate sequential output power series of WFs considering wind
speed correlation, WTG outage, and dependency between WTG
outage and wind speed. The detailed process was shown in [17].

(2) Calculate the Spearman correlation coefficient Rp between WFs
power outputs based on the sequential wind power series generated
in Step (1).

(3) Use apportioning technique to create multistate probability table of
WFs from sequential wind power series generated in Step (1).

(4) Produce random numbers distributed uniformly between [0,1] with
specified linear correlation coefficient Rp. This step is convenient to
implement by Copula method.

(5) Determine WF output states according to the random numbers
generated in Step (4). Assume that Xi is a random number generated
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in Step (4), then the output state of the ith wind farm can be de-
termined by:
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where si denotes the state number of the ith wind farm; neq is the total
number of WF equivalent states; and pWFi(j) is the jth state probability of
the ith wind farm.

2.2. Contingency analysis for sampled system states based on state merging
and parallel computing techniques

2.2.1. Construction of binary array of a system state
For a simulated system state including states of conventional gen-

erating units, transmission lines and WF outputs, system state analysis
needs to be conducted to provide a load curtailment value for updating
system reliability indices. The system state analysis is a complicated
and computationally expensive problem associated with power flow,
contingency analysis and remedial actions. In this paper, a technique
based on constructing system state arrays is proposed for identifying
and merging the sampled system states. By merging the repeating
system states, the number of system states to be evaluated reduces
dramatically.

As mentioned in the previous section, a conventional generating
unit or transmission line is usually represented as a two-state compo-
nent, and a WF is generally modeled as a multistate generating unit.
Consequently, the system state can be determined by combing the states
of all components. In this paper, the state array composed of 0 or 1
element is proposed to represent the system operation status. The
system state array is constructed like this: for a two-state component
(i.e., conventional generating unit or transmission line), one array
element is used to represent its operation state; for a multistate WF,
several array elements are used to represent its output. For example, if a
WF is equivalent to a generating unit with neq states, then the operation
state of WF can be represented by nw array elements. The nw is de-
termined by:

=n nceil(log )w eq2 (3)

where the function ceil(x) represents rounding up x to the nearest
greater integer.

By storing a single binary number representing the state of a
transmission line or a generating unit and a string of binary numbers
representing the state of a WF in an array successively, a specified
system state array can be constructed. Assume that a composite system
consists of nl transmission lines, ng generating units and nWF WFs, then
a binary system state array is comprised of elements as follows:

(1) The first nl elements in the state array represent the states of nl
transmission lines: “1” represents that a transmission line is in
service, while “0” represents that a transmission line is out of ser-
vice.

(2) The following ng elements in the state array represent the states of
ng generating units: “1” represents that a generating unit is in ser-
vice, while “0” represents that a generating unit is out of service.

(3) Assume that each WF output state is represented by nw binary
numbers. Then the last nw × nWF elements in the state array re-
present the states of nWF WFs. The value of nw is dependent on the
equivalent number of WF states. For example, if a WF is supposed to

be modeled as a generating unit with 11 output states, then 4 binary
numbers are used to represent the WF output state (i.e., nw = 4).
Considering that a WF is sampled to be in the “k” status according
to Eq. (2), we convert the decimal number k into nw binary numbers
and then fill these nw binary numbers into the system state array. To
illustrate the binary representing method of a WF, we assume that a
WF has 11 equivalent output states. If the WF is sampled to be in
the “0” status, then we use “0,0,0,0” to represent the state of this
WF; if the WF is sampled to be in the “2” status, then we use
“0,0,1,0” to represent the state of this WF.

A typical binary array representing a system state is shown in Fig. 1,
where L denotes transmission lines, G denotes generating units, and WF
denotes wind farms.

2.2.2. Process of identifying and merging system states
By representing the system states sampled by a non-sequential MCS

with binary arrays, the identification between system states is trans-
formed to be the criterion of comparisons between the state arrays. In
this paper, the comparison between two state arrays is proposed to be
implemented by an encoding conversion method.

The flowchart of sampling, identifying and merging system states
based on non-sequential MCS is shown in Fig. 2. For a certain string of
binary codes saved in the state array, it is converted to its equivalent
decimal number to mark a system state. Then, this decimal number is
searched in the history decimal numbers to check whether this system
state has been previously sampled. If a decimal number marking a
special system state can be found, this sampled system state is a re-
peated state and should be merged. To sum up, for a specific system
state, the information needing to be saved includes the binary codes
representing this system state, its equivalent decimal number and the
number of occurrence times of this system state.

2.2.3. Parallel computing on analyzing the merged system states
With the rapid development of computer and communication

technologies, the parallel computing technique has been widely applied
in many engineering problems, such as load flow analysis [24], power
system security analysis [25] and optimum allocation of distributed
generation units [26]. It is noted that the contingency analysis of
system states are independent from each other. This implies that the
state analyses are suited for parallel computing. Data parallelism and
task parallelism are the two schemes used for parallel computing. In
this paper, data parallelism is used for analysis of the merged system
states, i.e., the merged system states are split into multiple state sets and
each state set is expected to be processed by different workers using the
same instruction. In this paper, the proposed work has been carried out
in Matlab enviroment, with Matlab Parallel Computing Toolbox Soft-
ware (PCTS) used to implement parallel computing. The PCTS divides
the system states analysis into various tasks and assigns different tasks
to various workers of a multi-core computer.

Assume that the total number of system sampling states is NS, the
number of merged system states is Nm and the number of computing
resources is l. Then the anaysis for the Nm system states are evenly
distributed to l computing resources. The flow chart of system states
analysis using parallel computing is shown in Fig. 3.

2.3. Calculation of reliability indices

As shown in Fig. 3, the load curtailments of Nm system states are
concurrently computed by multiple processors. By collecting the load

Components 1L … nlL 1G … ngG 1WF ……
WFn

WF

Binary code 1 … 1 0 … 1 1 0 0 1 …… 1 1 0 1

Fig. 1. The binary array representing a system state.
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curtailments returned by all of the parallel processors, the reliability
indices can be obtained. Probability of load curtailments (PLC) and
expected energy not supplied (EENS) are two commonly used reliability
indices, and in this paper they are formulated as follows:

∑= ⎛
⎝

× ⎞
⎠=

PLC I ns
NSi

Nm

i
i

1 (4)
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where NS is the total number of system sampling states; Nm is the
number of system states after being merged; nsi is the number of

occurrence times of the ith system state; CSi is the load curtailment of
the ith system state; and Ii is an indicator variable, which means:
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3. Capacity credit evaluation of WFs considering both wind power
correlation and transmission constraints

As previously mentioned, the power output of WFs is highly un-
certain due to the intermittent nature of wind speed. Therefore, it be-
comes an urgent issue for the utility company to evaluate to what extent
the WFs could provide capacity contribution to power system when the

Produce random numbers satisfying specified correlation 
coefficient and distributed uniformly between [0,1]

Determine the state numbers representing outputs of WFs

Convert the state numbers of WFs to binary codes 

Construct the system state array

Determine the decimal number corresponding to the system 
state array

Check whether this decimal identification number 
of system state has been encountered before?

Add 1 to the occurrence count of 
this encountered system state

Save the binary codes and equivalent decimal number of this new 
system state, and the number of its occurrence times is saves as 1.

Does it arrive at a predetermined sample number?

Return the information of merged system states  including 
their binary encodes and the corresponding occurrence counts

Yes

No

Yes

No

NS=NS+1

Initialize the number of sample times
NS=1

Produce independent random numbers distributed uniformly 
between [0,1]

Determine the binary codes representing the states of 
conventional generating units and transmission lines

Begin

End

Fig. 2. Flowchart of sampling, identifying and merging system states based on non-sequential MCS.
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long-term generation expansion planning is implemented. Generally,
this problem is referred to as capacity credit (CC) evaluation of WFs.
There exist several ways for defining CC in existing literature, and ef-
fective load carrying capability (ELCC) and equivalent firm capacity
(EFC) are the two metrics most commonly used. ELCC is the amount of
load that can be added to the system in the presence of wind generators
while maintaining the system's reliability level, while EFC is the com-
pletely firm generating capacity which would give the same risk level if
it replaces the wind power generation [11,12,27,28]. Some existing
literatures have been conducted to investigate the CC of wind power. In
Ref. [11], both the ELCC and EFC of WFs were evaluated by using a
system well-being analysis approach at the generation level (hier-
archical level I, HLI). In Ref. [12], a rigorous analytical model con-
sidering wind power correlation was derived; then the CC of wind
power was also calculated at the generation level by a fast method
based on the proposed analytical model. Unlike literature [11,12], in
which the transmission constraint was ignored, the CC of wind power
was evaluated at a composite system level (hierarchical level II, HLII) in
Ref. [13]. Unfortunately, the wind speed correlation was not taken into

consideration in Ref. [13]. As can be summarized from the literatures
above, transmission constraints and wind power correlation are two
factors affecting the CC of wind power. However, there is little litera-
ture considering both of these two factors. In this context, an assess-
ment framework for the CC of WFs considering both transmission
constraints and wind power correlation is presented, which is based on
the proposed reliability evaluation method in Section 2. The ELCC ap-
proach is chosen to determine the CC of wind power in this paper based
on the following considerations. When the EFC definition is employed,
the CC of WFs depends on the location used to connect the equivalent
firm generator to the composite power system, which makes it com-
plicated to quantitatively study the effects of wind power correlation
and transmission constraint. Whereas, when the ELCC definition is
employed, it is convenient to quantitatively calculate the effective load
under different cases, such as different wind power correlation or dif-
ferent network topology. The developed framework for the WFs CC
evaluation, based on the reliability evaluation method presented in
Section 2, is shown in Fig. 4.

Fig. 3. Flow chart of system states analysis using parallel computing.

Fig. 4. The framework for the WFs CC evaluation.
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4. Case studies

4.1. General setup

In order to validate the proposed reliability evaluation algorithm of
composite power system integrated with WFs, and to demonstrate the
necessity to consider both the correlation of power outputs of WFs and
the transmission network constraints in the CC evaluation of WFs, two
wind farms (WF_A and WF_B) are integrated into IEEE RTS 79 [29] to
create five modified reliability test systems. For simplicity, it is assumed
that each wind farm is composed of 100 identical wind turbine gen-
erators with a rated capacity of 2 MW and cut-in, rated, and cut-out
speeds of 4, 10, and 22 m/s, respectively, and the forced outage rate
(FOR) of each wind turbine generator is 0.05. Wind speeds of the two
WFs follow Weibull distribution, and both have scaling and shape factor
specified as 7.5 and 2.0, respectively. The five modified test systems
used in this section are as follows:

• MRTS_A1: the two WFs are integrated into IEEE RTS 79 at buses 1
and 2, respectively.

• MRTS_A2: the FORs of conventional generating units of IEEE RTS 79
are reduced by half, and then the two WFs are integrated at buses 1
and 2, respectively.

• MRTS_A3: the capacity limits of all transmission lines of IEEE RTS
79 are reduced by half, and then the two WFs are integrated at buses
1 and 2, respectively.

• MRTS_B1: the two WFs are integrated into IEEE RTS 79 at buses 18
and 22, respectively.

• MRTS_B2: the capacity limits of all transmission lines of IEEE RTS
79 are reduced by half, and then the two WFs are integrated at buses
18 and 22, respectively.

In the analysis process for a specified system state, the load shed-
ding policy aimed at minimizing the total load curtailment is used to
reschedule generations and eliminate constraint violations. A series of
numerical tests are performed on a dual-core, four-thread personal
computer with Intel (R) Core(TM) i5-3427U CPU (1.8 GHz) and 4 GB
RAM. Programs are executed in MATLAB.

4.2. Verification of the proposed reliability evaluation algorithm of
composite power system with WFs

4.2.1. Probabilistic models of WFs compatible with non-sequential MCS
As mentioned in Section 2, to be compatible with non-sequential

MCS and to preserve the characteristics of wind power correlation, WFs
are represented by combination of a multistate probability table and its
corresponding SRCC. The SRCCs of wind speeds in the two WFs and
their corresponding SRCCs of wind power outputs have been calculated
and are shown in Table 1. It implies that when the wind speeds of the
two WFs follow a certain correlation coefficient, the simulated wind
power outputs should follow the corresponding Spearman correlation.

The multistate probability table of the two dependent WFs under
different correlation coefficients of wind speeds (i.e., Rv equals 0.2, 0.5
and 0.9, respectively) is shown in Table 2. In our work, the fixed
random number seeds are used to simulate wind speeds; thus, the state
probabilities of WF_A remain unchanged, while the state probabilities
of WF_B vary with wind speed correlation coefficients.

For convenience, the probabilistic distributions of output power of
WF_B under different wind speed correlation are shown in Fig. 5. As
depicted in Fig. 5, state probabilities of WF_B under different wind

speed correlation coefficients are quite close. This indicates that the
effect of wind speed correlation on sampling of wind farm outputs is
mainly reflected on the correlation coefficients of wind farm outputs.

4.2.2. Composite power system reliability evaluation of MRTS_A1
The correlation coefficient of wind speed series of the two WFs is set

to be 0.5 in this section. To ensure accuracy in non-sequential MCS, the
coefficient of variance is often used as the stopping rule in the sampling.
It has been found that the coefficient of variance of EENS index has the
lowest rate of convergence among many risk indices [2]. Therefore, the
coefficient of variance for EENS index is used as the convergence cri-
terion and is set to be 2% in our case study. By running program, it is
found that the sampling number of non-sequential MCS is 93,359 when
the convergence for EENS index (i.e., βEENS ≤ 2%) is reached. Here, for
the sake of comparison, the sample size of non-sequential MCS is set to
be 100,000 in our case study (In fact, the βEENS corresponding with the
sample size of 100,000 is 1.86%). To validate the effectiveness of the
proposed accelerating techniques of the composite power system re-
liability evaluation, computation times of four computation scenarios
are compared. The four computation scenarios are as follows:

• Scenario 1: neither the state merging technique nor the parallel
computation technique is employed.

• Scenario 2: only the state merging technique is employed.

• Scenario 3: only the parallel computation technique is employed.

• Scenario 4: both the state merging technique and the parallel
computation technique are employed.

Table 1
Corresponding relation between SRCC of wind speeds and wind power outputs.

SRCC of wind speeds 0.2 0.5 0.9
SRCC of wind power outputs 0.1828 0.4622 0.8698

Table 2
State probability table of dependent WFs power outputs.

Power outputs (MW) State probabilities of WF_A and WF_B

WF_A WF_B

Rv = 0.2 Rv = 0.5 Rv = 0.9

0 0.3293 0.3310 0.3313 0.3350
20 0.1120 0.1148 0.1130 0.1107
40 0.0893 0.0826 0.0876 0.0848
60 0.0697 0.0682 0.0678 0.0684
80 0.0557 0.0633 0.0575 0.0546
100 0.0472 0.0460 0.0463 0.0475
120 0.0407 0.0363 0.0397 0.0403
140 0.0315 0.0342 0.0342 0.0321
160 0.0303 0.0284 0.0270 0.0300
180 0.1063 0.1061 0.1063 0.1058
200 0.0882 0.0891 0.0894 0.0908

Fig. 5. Probabilistic distributions of WF_B under different wind speed correla-
tion.
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In this paper, the program is performed on a personal computer with
dual-core and four-threading configuration, and thus there are totally
six computation cases for the reliability evaluation. The number of
system states to be evaluated (designated as Nstates) of each compu-
tation case with its corresponding CPU time is shown in Table 3. Ad-
ditionally, taking the CPU time in Case 1 as the benchmark, and the
ratios of CPU times in the six cases to the CPU time in case 1 are given
in the last column of Table 3. For the sake of comparison, the CPU time
of MRTS_A1 in six computation cases is shown in Fig. 6 (also including
CPU time of MRTS_A2). In the process of programming, the seeds for
the random number generator in the six cases are set to be identical for
the sake of comparison. Using the same random number seeds, relia-
bility indices of MRTS_A1 in the six computation cases are the same.
The probability of load curtailment (PLC) and the expected energy not
supplied (EENS) are 0.04744 and 67362 (MWh/year), respectively.

As shown in Case 2 of Table 3, when the state merging technique is
used, only 28.56% of the total system states have to be evaluated; thus,
the computational time of the reliability assessment procedure in Case 2
is only 45.60% of the computational time in Case 1. This significant
reduction verifies the effectiveness of the state merging technique. As
shown in Table 3 and Fig. 6, when the parallel computation technique is
applied, the computational times in Cases 3 and 4 are also greatly re-
duced compared to the computational time in Case 1. Moreover, in Case
3, it is worth noting that the computational time in two threads en-
vironment is 58.59% of the computational time in a single thread en-
vironment, which is larger than 50% of the time of serial computation.
The reason lies in that it takes time to allocate task and communicate
data among the processors when parallel computation technique is
employed. In Case 4, it is also important to note that the computational
time in four threads environment is 46.18% of the computational time
in a single thread environment, which is less than 50% of the time of
serial computation. The reason lies in that the hyper-threading tech-
nique refines parallel computation to thread level and implements dual
thread parallel computing for a single processor. Owing to the hyper-
threading technique, the computational ability of each computing unit

of a single processor is fully utilized, further improving the computation
efficiency of the CPU. Similarly, the CPU time in Case 6 is less than the
CPU time in Case 5 owing to the utilization of hyper-threading tech-
nique. In general, it is significant that the computational time in Sce-
nario 4 is the much less than the computational times in other sce-
narios, which demonstrates the validity of the proposed reliability
evaluation algorithm integrated with state merging, parallel computa-
tion and hyper-threading techniques.

4.2.3. Composite power system reliability evaluation of MRTS_A2
It is noted that under the constant sample size of system states, the

higher the reliability of system components, the more likely to sample
the same system states. In this context, we conclude that the state
merging technique will be more effective for reliability evaluation of
power system with high reliable components. To verify the deduction,
we created a test system with high reliability components. First, we
specially carried out statistical analysis on the reliability indices of the
MRTS_A1 system. The statistical analysis showed that 97.47% of load
curtailment is caused by failure events of generating units (the other
2.53% of load curtailment is caused by combination failure of gen-
erating units and transmission lines). Therefore, we reduce the FORs of
MRTS_A1 conventional generating units by half to form the MRTS_A2
test system. The reliability indices of MRTS_A2 are obtained by running
the reliability evaluation program, with the PLC is 0.01148 and the
EENS is 13268 MWh/year, respectively. The computation efficiency
information in the six computation cases for MRTS_A2 reliability eva-
luation is shown in Table 4. Especially, the CPU times of MRTS_A2 in six
cases is also shown in Fig. 6, for the sake of comparison. As shown in
Fig. 6, the CPU time of MRTS_A2 is less than that of MRTS_A1. The
reason lies in that MRTS_A2 is a more reliable system and thus less
contingency states need to be analyzed.

Moreover, comparing the computation results of Case 2 in Tables 3
and 4, we see that the total number of merged system states for
MRTS_A2 (i.e., 13,330) is much less than the total number of merged
system states for MRTS_A1 (i.e., 28,555), and correspondingly the time
ratio of MRTS_A2 (i.e., 33.57%) is much less than that of MRTS_A1 (i.e.,
45.60%). Technically, it implies that the computation improvement of
the state merging technique is related to the reliability of system
components: the higher the component reliability, the more significant
the computation improvement of the state merging technique.

4.3. CC evaluation of WFs incorporating both wind power correlation and
transmission constraints

The EENS is used as the reliability criterion to evaluate the CC of
WFs in this paper. A series of numerical tests have been carried out to
study the effects of some factors including wind speed correlation,
transmission network constraints and WF-integrated locations on the
CC of WFs. The evaluation results of different conditions will be listed
in Tables 5–9 in the following sections. But now, for the convenience of
comparison, the EELCs and CCs of WFs in Tables 5–9 are graphically
shown in advance in Figs. 7 and 8.

4.3.1. Effect of wind speed correlation
The MRTS_A1 system is used to investigate the effect of wind speed

Table 3
Comparison of evaluation efficiency of different cases for MRTS_A1.

Scenarios Thread number Nstates CPU time (s) Time ratios

Scenario 1 Single thread (Case 1) 100,000 693 100%
Scenario 2 Single thread (Case 2) 28,555 316 45.60%
Scenario 3 Two threads (Case 3) 100,000 406 58.59%

Four threads (Case 4) 100,000 320 46.18%
Scenario 4 Two threads (Case 5) 28,555 189 27.27%

Four threads (Case 6) 28,555 153 22.08%

Fig. 6. CPU time in different computation cases.

Table 4
Comparison of evaluation efficiency of different cases for MRTS_A2.

Scenarios Thread number Nstates Run time (s) Time ratios

Scenario 1 Single thread (Case 1) 100,000 426 100%
Scenario 2 Single thread (Case 2) 13,330 143 33.57%
Scenario 3 Two threads (Case 3) 100,000 259 60.80%

Four threads (Case 4) 100,000 197 46.24%
Scenario 4 Two threads (Case 5) 13,330 97 22.77%

Four threads (Case 6) 13,330 69 16.20%
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correlation on the CC of WFs in this section. Firstly, the EENS of the
composite power system of IEEE RTS 79 is calculated and used as the
benchmark of composite power system reliability. Then, the EENS of
MRTS_A1 at different peak loads is calculated and compared with the
EENS of IEEE RTS79 to obtain the ELCC of WFs. The ELCCs and CCs of
WFs in MRTS_A1 with different wind speed correlation coefficients are

shown in Table 5, while the transmission constraints are considered.
As shown in Table 5, the CC of WFs in MRTS_A1 decreases along

with the increase of wind speed correlation coefficient. This is due to
the fact that the wind speed correlation weakens the improvement ef-
fect of wind power on system reliability. Correspondingly, ELCC of WFs
decreases under the equal reliability criterion. It can be concluded that
the effect of wind speed correlation should be considered when eval-
uating the CC of multiple WFs, and the omission of wind speed corre-
lation may lead to an optimistic result.

4.3.2. Effect of transmission network constraints
(1) The CC of WFs without considering transmission constraints
The CC of WFs considering only the stochastic failures of the gen-

erating system is calculated in this section to demonstrate the effect of
transmission network constraints. Based on the generating system re-
liability assessment method, the EENS of the IEEE RTS79 generating
system is calculated and used as the benchmark. Then the EELC of WFs
in MRTS_A1 can be obtained by an iterative method. The ELCCs and
CCs of WFs in MRTS_A1 without considering transmission network
constraints are shown in Table 6.

As shown in Table 6, when the transmission line constraints are not
considered, the CC of WFs in MRTS_A1 also decreases along with the
increase of the wind speed correlation coefficient. Moreover, when we
compare the results of EELC and CCs in Tables 5 and 6, it can be ob-
served that the results in Table 5 are less than those in Table 6 (as
shown in Figs. 7 and 8). This is because that the reliability improvement
of WFs is weakened when transmission system outages and congestions
are considered. The differences of results between Tables 5 and 6 sug-
gest that it is essential to incorporate the transmission network con-
straints when evaluating the CC of WFs.

(2) Effect of transmission capacity limitations
As mentioned above, the MRTS_A1 test system has a strong trans-

mission network but a weak generation system. In order to demonstrate
the effect of transmission network on the CC of WFs, we create an
MRTS_A3 system by reducing capacity limits of all transmission lines of
the MRTS_A1 by half. The ELCCs and CCs of WFs in MRTS_A3 with
different wind speed correlation coefficients are shown in Table 7.

Comparing the results in Tables 5–7 (as shown in Figs. 7 and 8), it is
obvious that the ELCCs and CCs of WFs in Table 7 are the minimum and
the ELCCs and CCs of WFs in Table 5 are the maximum. This not only
validates the effect of transmission capacity constraints on the CC of
WFs, but also shows the extent of effect of transmission constraints is
related to the transmission capacity. The more adequate the transmis-
sion capacity is, the greater the CC of WFs.

(3) Effect of WFs integrated locations
To demonstrate the effect of WF locations on the CC of WFs, we try

to change the integrated locations of MRTS_A1 WFs from buses 1 and 2
to buses 18 and 22, i.e., to construct a MRTS_B1 test system. The EELCs
and CCs of MRTS_B1 WFs are calculated and shown in Table 8.

Comparing the results of MRTS_B1 in Table 8 with the results of
MRTS_A1 in Table 5 (as shown in Figs. 7 and 8), it is observed that
results in Table 8 are smaller than the results in Table 5. This suggests
that the CC of WFs is related to the integrated locations of WFs. In fact,

Table 5
The CC of WFs in MRTS_A1 (considering transmission constraints).

Indices Correlation coefficients of wind speeds

0.2 0.5 0.9

ELCC (MW) 112.50 106.25 96.88
CC 28.13% 26.56% 24.22%

Table 6
The CC of WFs in MRTS_A1 (without considering transmission constraints).

Indices Correlation coefficients of wind speeds

0.2 0.5 0.9

ELCC (MW) 132.04 125.39 115.82
CC 33.01% 31.35% 28.96%

Table 7
The CC of WFs in MRTS_A3 (considering transmission constraints).

Indices Correlation coefficients of wind speeds

0.2 0.5 0.9

ELCC (MW) 103.13 95.31 84.38
CC 25.78% 23.83% 21.09%

Table 8
The CC of WFs in MRTS_B1 (considering transmission constraints).

Indices Correlation coefficients of wind speeds

0.2 0.5 0.9

ELCC (MW) 109.38 104.69 95.31
CC 27.35% 26.17% 23.83%

Table 9
The CC of WFs in MRTS_B2 (considering transmission constraints).

Indices Correlation coefficients of wind speeds

0.2 0.5 0.9

ELCC (MW) 55.96 53.13 48.44
CC 13.99% 13.28% 12.11%

Fig. 7. ELCCs of WFs in different tables.

Fig. 8. The CCs of WFs in different tables.
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the difference of CC of WFs between MRTS_A1 and MRTS_B1 is con-
sistent with the network structure characteristics of IEEE RTS79. The
north region of IEEE RTS79 is the area where considerable power
sources are concentrated, while the south region of IEEE RTS79 is the
area where considerable system loads are concentrated. A significant
amount of power is therefore transferred from the northern to the
southern part. When the WFs are integrated into IEEE RTS79 at buses
18 and 22 (i.e. MRTS_B1 test system), the line power flow from the
north region to the south region will become heavier; thus, the relia-
bility improvement of wind power injection will be reduced due to the
line power flow constraints. When the WFs are integrated into IEEE
RTS79 at buses 1 and 2 (i.e. MRTS_A1 test system), the heavy power
flow from the north to south will be alleviated. Subsequently, higher
reliability improvement of wind power can be obtained. This explains
why the ELCCs of WFs are smaller when wind power is injected at buses
18 and 22, compared to when wind power is injected at buses 1 and 2.

On the other hand, it is also observed that the differences of results
in Tables 5 and 8 are small (as also shown in Figs. 7 and 8), which
indicates that the integrated location has relatively minor impact on the
CC of WFs as for the IEEE RTS79 system. This is due to the fact that the
IEEE RTS79 system has a strong transmission network. Though WFs are
connected at different buses of IEEE RTS79, the injected wind power
can be transferred to load points basically without congestion. To verify
that the CC impact of connecting WFs at different locations is related to
transmission system adequacy, we constructed a test gird with a weak
transmission system. In this context, the capacity limits of all trans-
mission lines of IEEE RTS79 are reduced by half. Then WFs are con-
nected into the system at different buses to form MRTS_A3 and
MRTS_B2 test systems. The CCs of WFs of MRTS_A3 are shown in
Table 7, and the CCs of WFs of MRTS_B2 are then calculated and shown
in Table 9.

Comparing the results of MRTS_A3 in Table 7 with results of
MRTS_B2 in Table 9 (as shown in Figs. 7 and 8), it can be observed that
results in Table 9 are smaller than the results in Table 7 and the dif-
ferences of results in Tables 7 and 9 are significant. This indicates that
the integrated locations have great impact on the CC of WFs, as well as
for the modified test system with weak transmission network. In fact,
the observation is consistent with the topology and operating condi-
tions of MRTS_A3 and MRTS_B2 systems. The capacity ratings of all
transmission lines of MRTS_A3 and MRTS_B2 are only half of the ori-
ginal IEEE RTS 79, so there is considerable utilization of the trans-
mission network in these two systems when they are considered to be
under stress. As for the MRTS_A3 system, the WFs are connected at a
load area (buses 1 and 2), therefore the transmission congestion is al-
leviated and the CC of WFs is relatively high. In contrast, as for the
MRTS_B2 system, the WFs are connected at a power source area (buses
18 and 22), therefore the transmission congestion worsens and the in-
jected wind power cannot fully be distributed to the load points, and
finally lead to a lower CC.

Moreover, it can be observed that in Table 9, the differences of the
EELCs and CCs under different wind speed correlation coefficients are
small, which implies that wind speed correlation has relatively minor
impact on the CC of WFs. The reason for this is that the impact of wind
speed correlation is swamped by the impact of transmission network
congestion of MRTS_B2 system.

5. Conclusion

A non-sequential MCS based reliability assessment method of
composite power system with dependent wind farms is proposed in this
paper. First of all, the WFs outputs are proposed to be modeled by
combining the multistate probability table with SRCCs. In this way, the
outputs of WFs can be appropriately simulated by using dependent
random variables under the non-sequential MCS frame. Subsequently, a
special array is constructed to represent each system state simulated by
non-sequential MCS and then this array is represented by a decimal

number, which facilitates the merging of the entire simulated system
states. And as for the merged system states, parallel computing tech-
nique is used for their contingency analysis. Furthermore, based on the
proposed composite power system reliability assessment algorithm, a
computing framework for the CC evaluation of WFs considering both
wind power correlation and transmission network constraints is pro-
posed. Numerical results on five test systems validate the effectiveness
of the proposed reliability assessment method and the necessity of
considering wind speed correlation and transmission constraints in the
CC evaluation. In addition, there are some meaningful conclusions
about the CC evaluation of WFs worth to be pointed out, as follows:

(1) The impact of wind speed correlation on the CC of WFs is related to
the transmission congestion level and the locations of WFs. As for a
power system with strong transmission, the impact of wind speed
correlation is relatively considerable. While as for a power system
with weak transmission, the impact of wind speed correlation is
further dependent on the locations used to connect WFs. If WFs are
connected in the power source area, then the reliability improve-
ment of wind power may be swamped due to transmission system
outages and congestions, leaving the differences of CC among dif-
ferent wind speed correlation coefficients small. Conversely, if WFs
are connected in the load area, then the wind power can be suc-
cessfully transmitted into load points. As a result, the impact of
wind speed correlation will be relatively obvious.

(2) Similarly, the impact of integrated locations of WFs on the CC of
WFs is related to the transmission congestion level. As for a power
system with heavy transmission burden, there is great impact on the
CC; while as for a power system with adequate transmission cap-
ability margin, the impact is slight.

Different from existing works focusing on improving the sampling
efficiency of system states [7–10], we focus on dealing with system
states which are simulated by non-sequential MCS to accelerate the
reliability evaluation of composite power system. However, it should be
pointed out that our proposed method is compatible with these ad-
vanced sampling methods. In addition, the frequency and duration (F&
D) indices are important in practical application of composite power
system reliability assessment. A lot of studies have been conducted on
calculating F&D by non-sequential MCS or its improved methods
[4–6,9,30,31]. The proposed method of this paper is under the frame of
non-sequential MCS, thus it is potential to calculate the F&D indices of
composite power system with WFs. Our future work includes in-
tegrating the proposed accelerating method with the existing advanced
sampling methods to improve the computational efficiency, and cal-
culating the F&D induces.
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