Optimal resource selection framework for Internet-of-Things

Monika Bharti a,*, Rajesh Kumar b, Sharad Saxena b, Himanshu Jindal a

a Computer Science and Engineering Department, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
b Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India

A R T I C L E I N F O

Article history:
Received 19 March 2019
Revised 30 April 2020
Accepted 1 May 2020
Available online xxx

Keywords:
Internet-of-Things
Discovery and selection
Optimization
Shared ontology
Fuzzy based rules

A B S T R A C T

The fundamental requirement for communication and computation across distinct application areas on Internet-of-Things is the resource discovery that demands appropriate reasoning for the optimal selection. With exponential growth of resources and their produced huge amount of heterogeneous data, various activities with respect to foraging and sense-making loops face challenges due to interoperability. Hence, interoperability emerges as a major bottleneck for the requirement. Therefore, to eliminate the challenge, the paper has proposed an “Optimal Resource Selection Framework for Internet-of-Things” that deals with the interoperability and ease the resource discovery and selection. The framework facilitates formation of semantic knowledge base as Shared Virtual Composite Ontology for capturing dynamic IoT heterogeneous data. Moreover, it supports optimal resource selection through the proposed algorithms, namely, Resource discovery Algorithm and Improved Firefly Algorithm. Both algorithms target coordination and optimization with Shared Ontology, respectively. The feasibility of the framework is checked against data collected from Sutlej river, Ludhiana, Punjab, India. The proposed framework is evaluated using benchmark functions with respect to metrics such as mean, standard deviation, processing and execution time. The obtained results are compared with the existing Nature-Inspired algorithms to confirm the efficiency of the proposed framework.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Internet-of-Things (IoT) envision a networked infrastructure through communication, computation and interaction among heterogeneous resources to sense, process and interpret via Internet-connected infrastructures. A resource is defined as an intelligent service that can be either software or hardware with fundamental characteristics such as physical embodiment, unique identifiers, offered service, location, processed information, operating system, languages and modes of communication. These resources as predicted by International Data Corporation (IDC) projects would grow to 212 billion by 2020 that would drive 40 zettabytes IoT data approximately. The data is not limited to sensors and machines but data from social networks, the web, and other user submitted physical observations and measurements. Such huge amount of data from real or virtual world will be available globally and in vast amount which is to be shared among applications without human intervention. Such a system has to be reactive, efficient, and effective as it will have to continuously respond to changes

* This paper is for regular issues of CAEE. Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. F. Piccialli.
* Corresponding author.
E-mail addresses: monika.bharti@juit.ac.in, monika.bharti@thapar.edu (M. Bharti), rakumar@thapar.edu (R. Kumar), sharad.saxena@thapar.edu (S. Saxena), himanshu.jindal@juit.ac.in (H. Jindal).
https://doi.org/10.1016/j.compeleceng.2020.106693
0045-7906/© 2020 Elsevier Ltd. All rights reserved.
in the user’s situation. However, such a system can also be proactive, where its behavior is based on predicted situations evaluated with some level of confidence and probability. Therefore, there is a need to understand the resource discovery mechanisms on IoT platform [1].

The resource discovery mechanism enables users from different applications to access IoT data wherein users do not require to know the originating source, location, time, description of the data. It leads discovery mechanism to emerge as a challenging task since activities such as data acquisition, modeling, integration, assessment and reasoning on IoT varies with respect to data providers and end publishers or brokers. These activities help to facilitate data linking, knowledge representation and context-driven search and therefore, on their basis, resource discovery mechanism is broadly categorized in to two successive loops, namely, foraging and sense-making [2]. In former loop, originating sources are identified and assessed for knowledge extraction which is further formatted into consumable form. In latter, i.e., sense-making loop, the extracted knowledge is analyzed, interpreted and exploited for the provision of service in accordance to a particular query. In addition to it, an implicit property across these activities of IoT is heterogeneity imposed by plethora of resources. It is due to diversity in resources with respect to communication, computational capabilities, representation, storage, search types and data formats. Such diversity leads to unmanaged big data driven by its velocity, variety, value, and volume which poses significant challenges to realize the vision of IoT [3]. Moreover, to ensure availability of the resources, data would require to be efficiently stored in widely distributed and heterogeneous information systems. It would lead to another challenge related to data retrieval from the information systems which is a non-trivial task without a common machine-readable data representation. Hence, interoperability is to be addressed to design efficient mechanisms for discovering available resources and capabilities.

To address the challenge, the first requirement is to have mechanism for knowledge representation that should (i) describe resources, their properties and capabilities (ii) define building blocks of the physical things such as configuration management, registration, un-registration, or idle resource and (iii) scope of discovery with respect to location, time and dimension. The second requirement is to interpret the formed knowledge and to access resources in accordance to the user’s query. This in turn would be beneficial for the optimal selection of the resource among the discovered ones. These requirements, if not fulfilled against interoperability challenge to resource discovery mechanism, would act as a major bottleneck towards the vision of IoT.

In summary, to provide value-added services through IoT platforms, resources need to be discovered. For the purpose, it require (i) sophisticated techniques for managing meta-data, (ii) mechanism to discover meta-data and the resources, (iii) to automate resource management, and (iv) sophisticated techniques for resources’ communication. As one possible solution, the paper has proposed an “Optimal Resource Selection Framework on Internet-of-Things (ORSF-IoT)” which provides an efficient and optimized way of selection of resource in minimal time. It uses semantic based description to represent huge amount of complex heterogeneous data as knowledge (termed as Shared Virtual Composite Ontology). The formed knowledge is interpreted through Fuzzy control rules which decompose the axioms of the ontology into sub-axioms according to a degree of match. Through fuzzy concept and rules, it results into set of discovered resources having similarity matches in accordance to the queries’ parameters. However, the number of discovered resources would be directly proportional to degree of match between input parameters and knowledge. Therefore, to optimize the selection of resource, another technique, i.e., an Improved Firefly Algorithm is proposed which selects the resource optimally in minimal time and has maximum context information against query.

The organization of the remaining paper is as follows. Section 2 provides a literature survey on the resource discovery and selection on IoT. Section 3 presents the proposed framework, i.e., ORSF-IoT and its components. The proposed scheme is evaluated on various parameters and its results are depicted in Section 4. Finally, the conclusion of the paper is summarized in Section 5.

2. Related work

On IoT, the approaches for resource discovery and selection are broadly categorized with respect to knowledge formation, representation, interpretation and optimization. For the same, some of the most comprehensive contributions are provided by the researchers in the field. Thus, the paper has provided a general, comprehensive and structured overview of existing techniques in order to understand the work done in the area of resource discovery and selection on IoT.

2.1. Resource discovery and interoperability

IoT envision integration among various disciplines such as healthcare, telecommunication, agriculture, semantic web, etc., which raise interoperability as a key challenge to resource discovery due to the heterogeneity of the resources. Moreover, the volume, velocity and volatility of the data generated by highly distributed and heterogeneous resources add complexity to the interoperability challenge. This implies that providing interoperability among the interconnected resources is the prerequisite to support knowledge formation, knowledge representation, storage, and exchange. To address the challenge, various approaches for discovery mechanism with distinct requirements are needed to support IoT environment at both local and remote servers; in terms of location and network. As an example, in order to address various challenges of selecting sensors (where large numbers of sensors with overlapping are involved), a Context-Aware Sensor-search, Selection, and
Ranking Model (CASSARAM), is provided that works on the principle of user priorities [4]. Also, a framework to provide complete solution for resource discovery is formulated that provides storage of configured registries of resources, index them by grouping their location and provides lifetime attribute to remain discoverable [5]. The framework limits the discovery to authorized resources only and has limitations such that no proper syntax for describing resources, content ranking, does not provide interoperability while discovering of vehicular and smart resources. To reduce waiting time and energy consumption, a neighbor discovery approach is suggested that operate nodes asynchronously having low energy. It lacks in providing discovery for large data of resources and does not handle collisions during data transmission [6]. For capturing IoT data, a heuristic framework has been developed [7]. The gathered data further undergoes transformation and filtering for efficient search using genetic algorithm. The framework has its limitations that it has not focused on gathering and managing heterogeneous data on IoT.

To its improvement, a crawler is designed to collect IoT data automatically from different data sources [8]. The crawler provides interface for both human users and machines. However, only those data sources are chosen where the sensor data is represented through a map. Few researchers have designed an adaptive discovery algorithm, “Speed and Time based Energy Efficient Probing (STEAP)”, which helps in studying the impact on discovering resources, when nodes turn off the radio interface to conserve power [9]. The suggested approach helps in conserving energy by 30% for discovery in delay tolerant networks. The approach has its limitation for frequent turning off radio interfaces which may in turn loses the stored data during transmission to surface station. Some authors have presented an IoT based healthcare system for cancer care services that uses business analytics/cloud services for actionable insights, decision making, data transmission and reporting for enhancing cancer treatments [10]. It provides complete healthcare solution for cancer patients to help increase the quality of life. Few authors have suggested IoT based smart home management system that offers interoperability with exceptionally reliable connections [11]. The system is user-specific to control the home gadgets and adding up other security features. Its has its disadvantages to turn-off the gadgets when not in use, making it to be an inefficient system.

2.2. Knowledge formation and representation

Though, the researchers have addressed various issues to interoperability challenge but has not incorporated challenges such as syntax, waiting time, energy consumption collision detection on IoT at various levels like semantic, radio access and context with respect to resource discovery. Further, to discover the resources continuously and tracing its localization position in a network, there is a need to metadata and semantic tagging of information. To address the concern, a mechanism, i.e. Ontology is generally referred that defines vocabulary for the data with its meaning. Ontology is the meta-knowledge that describes everything known about problem domain. It allows interoperability for the resource’s meta-data, enables automatic configuration and management which together results into generation of actionable intelligence and enabling resources’ interaction [12]. For example, the paper has suggested Internet-of-Things Directory System (IoT-DS) that performs the semantic description, discovery, and integration of objects. The system has a limitation that it does not handle the exponential growth of the objects on the IoT [13]. A resource discovery algorithm based on preference and movement pattern similarity in disconnected and delay-tolerant Social Internet of Things (SIoT) has been postulated [14]. The algorithm implements a three dimensional cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. It is based on both preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. It lacks in modeling effective behavior prediction model to reduce the wait time of the nodes in mobile SIoT. To provide privacy to the data over the Internet, D. Hussein et al. have formulated a novel service framework based on a cognitive reasoning approach for dynamic SIoT service discovery in smart spaces [15]. The reasoning about users’ situational needs, preferences, and other social aspects along with environment is suggested for generating a list of situation-aware services which matches users’ needs. This reasoning is implemented as a proof-of-concept prototype, namely, Airport Dynamic Social, within a smart airport. An empirical study to evaluate the reasoning shows the improved services and efficient adaptability to situational needs.

To model Ontology, the major challenges are due to heterogeneity, multi-modality and volume of data. Moreover, semantic descriptions alone do not provide semantic interoperability and will not resolve all the issues regarding discovery, management of data, and supporting autonomous interactions. The semantic description still needs to be shared, processed, and interpreted by various methods and services across different domains. To eliminate the challenges, techniques are required which use the meaning and information about the context of request to semantically match it with the meaning of the offered services. Here, service requesters and providers utilize ontology to discover similarity between two concepts or services and determine semantic distance between concepts. For example, a Regularized Newton Method (RNM) has been postulated without line search [16]. The method controls a regularization parameter instead of a step size in order to guarantee the global convergence. It is shown that by using the suggested method, the tightness of the global complexity bounds are easily constructed which solves subproblem inexactly. A fuzzy consensus model to destroy redundancy of discordant information related to the same phenomenon provided by dynamic nodes. The model limits the search and selection of nodes into restricted area as local only [17]. To its improvement, another approach based on fuzzy set is suggested for selection criteria considering parameters for nodes, namely, connectivity degree, link quality, and the distance in terms of hop. It works on centralized approach of Software Defined Network (SDN) and provides local controller selection. Another approach, i.e., Artificial Potential Fields (APFs) is presented that is based on the search and selection of the decentralized service approach
2.3. Knowledge interpretation for optimal resource selection

Since, the domain for searching in IoT landscape is categorized in to (i) Searching around me, (ii) Searching on My network, (iii) Searching on directories, and (iv) Accessing Thing Meta-data on the basis of interaction patterns. These patterns help application developers in decision making and would decrease standards’ dependency. It removes various constraints for discovery like bootstrapping, search, range, ranking and rich queries [19]. Few authors have reviewed various search techniques, categorized on the basis of complex nature of IoT and data produced by resources as fundamental search principles, data/knowledge representation and contents being searched [20]. They have suggested that these classifications will benefit the researchers to deeply understand searching methods on IoT. The suggested approaches of discovery have their major disadvantages of dependency on application or system for connecting intelligent resources dynamically and impose restriction to process an optimal decision. To resolve this dependency for better communication through the selection of a rightful resource, various approaches have been suggested. As an example, for selecting multiple nodes as autonomous nodes, a co-operative decision making mechanism is presented that increase network’s performance to meet Quality-of-Service (QoS) [21]. It limits decision making with finite set of nodes and performance is decreased if nodes are added dynamically to the system during the process. For providing services to remote nodes and to dynamically add new nodes with updated information, distributed consensus decision making is introduced. It minimizes the dependency on matching value and uses clustering approach for decision [22]. K. H. N. Bui et al. have introduced a new approach for smart traffic light control at intersection [23]. The researchers have suggested a connected intersection system where every objects such as vehicles, sensors, and traffic lights will be connected and sharing information to one another. By this way, the controller is able to collect effectively and mobility traffic flow at intersection in real-time. The algorithm has its own disadvantages that it takes into account the priority of vehicles which are at same level of emergency. To consider priority at different level, A. Garcia-de Prado et al. have postulated a COLLABorative ConText aware service oriented architecture (COLLECT), which facilitates both the integration of IoT heterogeneous domain context data through the use of a light message broker, easy data delivery among several agents and collaborative participants in the system, and making use of an enterprise service bus [24]. The approach helps to avoid additional resource consumption to edge devices and saving costs in cloud hosting. The architecture is not feasible for real time prediction using contextual information to improve intelligent decision making in the domain. Few authors have suggested self-selection decision tree based on hand-off probability distribution that select nodes efficiently by generating decision feedback. It has a drawback of its dependency on user’s input. Also, there is need of automated optimal decision making that select nodes to provide maximum information [25]. A novel Lifetime Maximizing optimal Clustering Algorithm (LiMCA) for battery-powered IoT devices is suggested [26]. The algorithm helps in analyzing the maximum lifetime of network and the requirements for maximizing the lifetime. It uses stochastic deployment scheme for nodes acting as cluster heads and members related to one cluster. The algorithm has its drawback as this is not tested for mobility of cluster head. Moreover, being connected for IoT devices, the algorithm is tested for 200 nodes.

Considering both requirements, another paper has been suggested by the authors [27]. In this paper, the fundamental challenge of resource discovery on IoT is addressed through framework, namely, “Intelligent Resource Inquisition Framework on Internet-of-Things (IRIF-IoT)”. Its main features are to link resources that are linked through shared ontology as conceptual sets on large scale via semantic description and are authenticated at centralized server that handles databases collected from distinct local servers. Here, resources are discovered with “Semantic Matching Engine using Bipartite Graph (SMEBG)” that emphasizes on semantics for knowledge representation and automated reasoning. The technique performs semantic matchmaking which is further optimized with Hungarian approach having strong polynomial time bound complexity of $O(|V_A|^3)$. Though, SMEBG performs efficient searching with minimal operational complexity and enhances system performance significantly but it has not accounted for various constraints to the resources. The constraints are availability of the resources, waiting time for idle resources, queuing length, lag time, priority based scheduling, cost and frequency of completed cycles. Moreover, it has evaluated performance of the SMEBG with respect to searching time and evaluation parameters of the network such as packet delivery rate, throughput, packet loss, latency and power consumption. Also, it has compared the searching time of SMEBG with Fuzzy Control Logic (FCL) and Genetic Algorithm (GA) against dataset of 100 resources collected from Ladowal Toll Plaza, Ludhiana, Punjab, India. For the same, it has used software, namely, ‘AIMSUN’, that provides environment for Traffic Network Editor (TEDI).

In the present paper, the challenge of interoperability to resource discovery and selection on IoT is addressed through ORSF-IoT that performs knowledge representation through semantic networks as ontology. The ontology has built rules that are described using predicate logic. The framework does knowledge interpretation via semantic matchmaking using the concept of Fuzzy Control Logic (FCL). It addresses various constraints to the resources using FCL and optimal resource is selected through proposed Improved Firefly Algorithm (IMPF). The performance of IMPF is evaluated for benchmark functions against Nature Inspired Algorithms, i.e., PSO, ABC, CA with respect to metrics such as Mean, Standard Deviation, Processing Time and Execution Time. The evaluation is tested on collected data sets of physical parameters such as Electrical Conductivity, ϕ, Temperature, Chloride and Dissolved oxygen of Sutlej river, Ludhiana, Punjab, India. The data values of physical parameters are considered as fireflies and process is run for 30 times, each with 1000 iterations on MATLAB for
The test is run to detect water’s quality deterioration and automating monitoring stations by sending timely alarms for preventive measures.

3. Proposed optimal resource selection framework for Internet-of-Things

The proposed “Optimal Resource Selection Framework for Internet-of-Things (ORSF-IoT)” presented in Fig. 1 includes four layers, namely, (i) Physical-Communication, (ii) Virtual Translation, (iii) Optimal Resource Discovery and (iv) Application Web Terminal.

The first and second layer collects data from heterogeneous resources using platform of CoRE and translates collected data into useful information as different ontologies, respectively. The third layer is divided into three sub-layers: knowledge representation and storage, resource discovery and optimal resource selection. Here, knowledge representation is done
through the concept of ontology that frames the relations among the resources and concepts using defined properties, logical notations and produces knowledge. The formed knowledge is interpreted via FCL that outputs redundant-free data and time constraints and helps in discovering resources. Finally, discovered resources undergoes the process of optimization via IMPPF that helps in selecting a particular resource against query. The fourth layer provides a platform for clients to put their query as well as server to respond back to client. Each layer is briefly described below.

3.1. Physical communication layer

This layer is responsible for collecting data from the heterogeneous resources such as Smart Homes, Intelligent Transportation Systems, etc. through the Constrained RESTful Environments (CoRE) [28]. CoRE is based on Representational State Transfer (REST) architecture having 8-bit constrained nodes with limited memory. It supports Low-Power Wireless Personal Area Networks (6LoWPANs) and is suitable for interactions among Machine-to-Machine (M2M) applications. CoAP is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. It is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead and simplicity for constrained environments. CoAP logically uses a two-layer approach, a CoAP messaging layer that deals with UDP, the asynchronous nature of the interactions, and the request/response interactions layer that uses method and response codes. As, CoAP run over UDP, it supports the use of multicast IP destination addresses, enabling multicast CoAP requests. The resource discovery can be performed either unicast or multicast. When a server’s IP address is already known, either a priori or resolved via the Domain Name System (DNS), unicast discovery is performed in order to locate the entry point to the resource of interest. This is performed using a GET to “/._well-known/core” on the server, which returns a payload in the CoAP Link Format. A user would then match the appropriate Resource Type, Interface Description, and possible media type for its application. These attributes may also be included in the query string in order to filter the number of links returned in a response. Multicast Resource Discovery is useful when a user needs to locate a resource within a limited scope, and that scope supports IP multicast. A GET request to the appropriate multicast address is made for “/._well-known/core”. In order to limit the number and size of responses, a query string is recommended with the known attributes. Typically, a resource would be discovered based on its Resource Type and/or Interface Description, along with possible application-specific attributes. In REST architecture, resources are registered in resource directory using CoRE Link Format. Also, the registered resources are provided a link in lookup interface table of resource directory, upon which a user can request for a resource via centralized knowledge repository. The gathered data at this layer is transmitted to Virtual Translation Layer (VTL) wherein data is processed into valuable information.

3.2. Virtual translation layer

VTL performs the knowledge representation and storage on the gathered data through CoRE. For the same, it performs semantic modeling based on standard design principles such as lightweight, completeness, compatibility and modularity, in order to hide the heterogeneity of real world entities, i.e., resources. This semantic modeling processes data into valuable information as different ontologies, i.e., Resource, Location and Context using CoRE Link format. These ontologies are discussed.

The Resource Ontology describes physical or composite object along with their characteristics. Fig. 2 is an example of resource ontology having four subclasses, i.e., physical characteristics, interests, deployment and working features. Some of the
properties that are exposed using this ontology are resource ID, range, energy, processing time, name, response time, precision, latency, accuracy, and measurement. These properties share common information with respect to Internet-connected resources. The deployment subclass has location ontology which is described further.

The Location Ontology adds geospatial information semantically for linking IoT resources and services. Location ontology has three sub-classes, viz., place, object and context ontology. The sub-class place has two major components, i.e., neighbor and nearby. In former, it describes neighbors of resources. In latter, it defines nearby locations to location class. The ontology shown in Fig. 3 exposes properties like place-time, place-name, object-id, object-name, object-type, processing and execution time of sensor. Location ontology is used to perform reverse geocoding, to identify a place using latitude, longitude and vice versa, using geospatial semantic contextual information. The location ontology has subclass as context ontology, which is described next.

Context Ontology represents contextual information that enables awareness and interoperability at the time of service discovery and composition. Contextual information is obtained using direct or indirect methods. In former, the user’s gathered knowledge and sensed information is used to describe contextual information. In latter, the inference mechanisms and reasoning helps to obtain the information. Contextual information can also be described from obtained sensor data. In short, it is described as any information which helps to distinguish states of entity related to specific scenario (aspect). The scenario is based on value-range that can have reachable states in all dimensions (scale). Each scenario aggregates one or two dimensions to provide interrelated contextual information (one-to-one mapping, one-to-many mapping). As IoT resources are constrained specific and contextual information obtained from sensor data might not be accurate due to faultiness of the sensors. Taking into consideration, context ontology considers quality constraints like accuracy, certainty and lifetime. Fig. 4 describes the context ontology of such kind used for IoT resources. The gathered information from VTL as ontologies is transferred to Optimal Resource Discovery and Selection Layer.

3.3. Optimal resource discovery and selection layer

This layer is subdivided into three stages, i.e., Knowledge Representation and Storage, Resource Discovery using Fuzzy control rules and Optimal Resource Selection using Improved Firefly Algorithm. Each stage is discussed in detail below.

3.3.1. Knowledge representation and storage

The information sent from VTL via Web Links is gathered and stored in centralized server repository (constrained specific). Web Links provides a link in lookup interface table of resource directory, upon which a user can request for a resource via centralized repository. The gathered information from different ontologies at VTL creates a centralized Shared Virtual Composite Ontology by linking them. This Shared Virtual Composite Ontology is generic and can be applied to any IoT applications, e.g., Home Automation, Intelligent Transportation System, Smart Agriculture, etc.
It performs knowledge representation through Mapping Process that deduce logical relations between concepts to link the ontologies and generate knowledge. Before initiating the mapping process, it is required to describe gathered data from the resources with few definitions and notations that helps to transform it into information.

(A) **Definition for χ – Relation:** A χ – relation describes the semantic properties of the concepts and is defined as:

\[\chi \rightarrow \text{Relation} : I_k \rightarrow I_k' \]

where, \(I_k \) and \(I_k' \) are instances for various concepts. Considering \(r_c \) and \(r_c' \) to be any element of \(I_k \) and \(I_k' \), the relation could be one of the following types as shown in Table 1. where, \(pqs(r) \) and \(cts(r) \) represents prerequisite and context sets of relation \(r \), respectively.

(B) **Definition for Ontology:** An ontology, \(O_k \) is expressed mathematically as:

\[O_k = \{ R_k, C_k, H_{C_k}, \varphi, C_r, I_r \} \]

where, \(R_k \) and \(C_k \) are the sets that identify relation and concept, respectively, \(H_{C_k} \) represents partial ordered pair on \(C_k \) and is known as concept hierarchy taxonomy. \(\varphi : R_k \rightarrow C_k \times C_k \) defines signature of relation among two concepts, \(C_r \) tells relation associated to concepts and is called divergent, i.e., no relation between associated resources and \(I_r \) represents relation associated to concepts and is called convergent, i.e., at least a single relation exists between associated resources.

(C) **Logical relation between concepts:** The following logical notations define relation between concepts, \(s \) and \(t \), is expressed as follows (see Table 2):

(D) **Degree of Convergence:** It measures the convergence among the concepts and is given as:

\[D_{cts} = \frac{\text{number of common instances between } s \text{ and } t}{\min(|s|, |t|)} \]

(E) **Definition for Ontology Morphism:** If the comparison of images for two concepts in two distinct ontologies is equivalent to each other, then, ontology morphism between two ontologies, \(O_k = (R_k, C_k, H_{C_k}, \varphi, C_r, I_r) \) and \(O_k' = (R'_k, C'_k, H'_{C_k}, \varphi', C'_r, I'_r) \) is the couple of function \((KL)\) such that \(K : C_k \rightarrow C'_k \) and \(L : R_k \rightarrow R'_k \). Suppose, \(s \) and \(t \) are two elements of \(C_k \) then relations generated are shown in Table 3.

With these definitions and notations, two ontologies, \(O_k \) and \(O_k' \) are mapped into one another, i.e., each entity concept, \(s \) in \(O_k \) has same intended corresponding concept, \(t \) in \(O_k' \). The mapping process undergoes phases, namely, similarity computation, similarity generation, interpretation and benefits in generating information by comparing instances and produces relations among them, i.e., convergent and divergent. These phases are discussed.

(A) **Similarity computation:** Similarity computation, \(SM_c \), is an iterative process that provides similarity among concepts. Also, it uses linguistic tools for comparing the concepts. It produces similarities in \((i-1)\) iterations and inference rules are applied for comparisons. To find similarities among ontologies, different similarity measures or methods are required that are discussed below.

- **WordNet:** WordNet is used to compute the uniform distance among edges, i.e., to describe relations among two concepts [29]. It also helps in judging the similarity among concepts as information content by comparing either syn/antonym or hol/hyponym synset (synonym set) information stored in WordNet. Since, hol/hyponym relations are same as synonyms, then all concepts of synset share same information and path among concepts is either single
entity (i.e., 1), or hyponym link (i.e., any value between 0 or 1) or no relation (i.e., 0). Based on methodology for WordNet, the relations for two concepts, say M and N are described below.

- \(M \equiv N \Rightarrow \text{sim}(M, N) = 1 \): It exists if the meaning of \(M \) has synonym to meaning of \(N \).
- \(M \supset N \text{ i.e.} \text{sim}(M, N) = 0.7 \): It exists if the meaning of \(M \) has hyponym to meaning of \(N \).
- \(M \sqsubseteq N \text{ i.e.} \text{sim}(M, N) = 0.3 \): It exists if the meaning of \(N \) has hyponym to meaning of \(M \).
- \(M \perp N \Rightarrow \text{sim}(M, N) = 0 \): It exists if there is no relation among \(M \) and \(N \).

WordNet provides the similarity relation among concepts but most words have multiple senses. As WordNet has defined conceptual similarity, so using it, the hypnym values are assumed and described as 0.7 and 0.3 for concepts.

- **String Equability:** It performs comparisons of two or more strings. Its similarity measure is given as:

\[
\text{Str}_{\text{sim}}(s, t) = \begin{cases}
1, & \text{if } s.\text{char}(i) = t.\text{char}(i) \forall i \in [0, \mid s \mid] \text{with } \mid s \mid = \mid t \mid \\
0, & \text{otherwise}
\end{cases}
\]

(3)

- **String Equality:** It measures similarity computation among two strings on scale 0 to 1 and is given as:

\[
\text{Str}_{\text{sim}} = \max \left(0, \frac{\min(s, t) - \text{euc}_{\text{dis}}(s, t)}{\min(s, t)} \right)
\]

(4)

where, \(\text{euc}_{\text{dis}} \) is euclidean distance among two concepts.

(B) **Similarity Generation:** It uses a Rule Base to compute similarities between ontologies and has sets of rules. These rules benefit in the judgment on whether two concepts are similar but none provides the mapping for itself. Also, they give only a similarity weight between two compared entities. A threshold is defined on the similarity values to determine the correspondence or the non-correspondence. Moreover, these rules using the definition for ontology morphism, would generate new similarity relations at iteration \(i \) from the \(i-1 \). For the progressive and dynamic similarity generation, consider a similarity function, \(F_{\text{inc}} : C_x \times C_y \rightarrow [0, 1] \), which associate for each couple of concept, a degree of similarity comprise between 0 and 1. The following rules illustrate the mechanism of similarity computation as follows:

Rule 1 IF \(F_{\text{inc}}(s, s') \) increases value THEN \(\forall (t, t') \in C_x, C_y \) such that \((s \mapsto t \text{ and } s' \mapsto t') : F_{\text{inc}}(t, t') = F_{\text{inc}}(t, t') + \left(F_{\text{inc}}(s, s') \right) \)

Rule 2 IF \(F_{\text{inc}}(s, s') \) increases value THEN \(\forall t' \in C_y \) such that \(t' : F_{\text{inc}}(s, t') = F_{\text{inc}}(s, t') + \left(F_{\text{inc}}(s, s') \times R_{s,y} \right) \)

Here, \(nbc(s) \) as sub-concept of \(C_x \).

(C) **Interpretation:** The mapping values derived from similarity computation and generation are assigned on the basis of semantic matching of the concepts. The query as the input from the client and the output is a Matching Set, \(D_{\text{mt}} \). The algorithm iterates in its repository in order to determine a match between input and output.

The matching of output is defined as:

\[
\forall C_x \in Q_{\text{out}}, \exists D_{\text{mt}} \in C_x \text{such that} \\
\text{match}(C_x, D_{\text{mt}}) \neq \text{Failure}
\]

(5)

Let \(Q_{\text{user}_m} \), \(M_n \) be the list of input concepts, then matching of inputs is calculated by:

\[
\forall C_x \in M_n, \exists D_{\text{mt}} \in Q_{\text{user}_m} \text{such that} \\
\text{match}(C_x, D_{\text{mt}}) \neq \text{Failure}
\]

(6)

Thus, the match, \(C_x \) and \(D_{\text{mt}} \) returns the degree of match between two concepts. For conceptual sets, \(q_{\text{out}} \in Q_{\text{out}} \cdot c_{\text{out}} \in C_x \) and \(d_{\text{mt}} \in D_{\text{mt}} \), the match function is described in Table 4.

\(D_{\text{mt}} \) is ranked as Correct < Segment < ContainIn < Failure.

For a machine to machine interaction, there is no intervention of humans and data override is not possible at the time of resource discovery by a constrained server. Moreover, IoT is an abstraction of resources as services, they are described through information provided by resource constrained servers having limited computational capacity, less bandwidth, limited memory and energy consumption. These services/resources are available to clients via multicast Web Resource Discovery through Shared Virtual Composite Ontology. This ontology provides homologous and scalable means of accessing IoT.
resources coupled with service oriented computing. It makes use of semantic modeling for describing the relations of IoT resources, their attributes, properties, etc. These services or resources are further processed for resource discovery using Fuzzy control rules as described below.

3.3.2. Resource discovery

In this subsection, FCL is used for resource discovery through the network. It takes input query as matched set, S_{mat}, to retrieve large set of data from Shared Virtual Composite Ontology. The input S_{mat} is processed using control rules under fuzzy operation to generate fuzzy value on the basis of SM_c as shown in Table 5. The output is calculated as total search time for processing the SM_c. Finally, the accurate value is generated by fuzzy estimation. The operation is processed for all possible inputs to avoid redundancy in SM_c. Also, S_{mat} have resources that are already allocated to multiple activities over the server. Moreover, these resources have complex logical dependencies and stochastic duration. This leads to selection of resources with increase in idle time of other resources to come in queue as similarity set. Further, these resources upon completion of one activity are released to be allocated to other process on sever. Thus, the resources in S_{mat} face certain constraints with respect to time dependency such as available resource, waiting time, queueing length, lag time, duration factor and completion of cycle, while computing the degree of match.

In order to eliminate these constraints, resources in S_{mat} need to be allocated considering multiple criteria as objectives, O_j. The O_j are (i) giving priority to resources having larger quantity ratio with respect to quantity of required parameters; (ii) minimizing waiting time for idle resources; (iii) minimizing queuing length for idle resources; (iv) reducing lag time among current and immediate processes; (v) providing priority for critical activities; and (vi) balancing frequency of completed cycles. Here, first objective satisfies activities having less resources for next operation cycle and reflects the various utilization of different resources. Second objective minimizes the waiting time and cost for incurred resources. Third avoids excessive queue of idle resources. Few activities are started upon completion of preceding activities. Fourth avoids lag time in order to increase efficiency of process. Fifth weighs longer and heavy processes as these are critical to process. Last objective balances the work by rearranging the frequency of completed cycles.

Now, considering the above discussed O_j, resources in S_{mat} are expressed as fuzzy sets that satisfy l objectives: $O_j(i = 1, \ldots, l)$. Also, it defines the associated fuzzy membership $\vartheta_i(O_j)$ that indicates how the O_j are satisfied. The ϑ_i helps to resolve the time dependency constraints and takes less computation time for processing S_{mat}. The intersection of constraint free S_{mat} would help in taking decision, D_F for degree of match and is given as:

$$D_F = \vartheta_1 \cap \vartheta_2 \cap \ldots \cap \vartheta_l$$ \hspace{1cm} (7)

The membership function for combined decision, ϑ_{D_F} is expressed as:

$$\vartheta_{D_F} = \sum_{l=1}^{i} \beta_i \times \vartheta_i$$ \hspace{1cm} (8)

where, $\sum_{l=1}^{i} \beta_i = 1$. β_i reflects the relative importance of $\vartheta_1, \ldots, \vartheta_l$. If the weights (wt) are not normalized for ϑs, then it is obtained using,

$$\beta_i = \frac{wt_i}{\sum_{p=1}^{l} wt_p}$$ \hspace{1cm} (9)

The D_F selects the ϑ_i with largest membership value after determining membership of ϑ_{D_F} and is given by:

$$\vartheta_{FinalD_F} = \{S_{mat} \mid \vartheta_{D_F} \text{ is max}\}$$ \hspace{1cm} (10)

To satisfy the degree of match, the fuzzy based six membership functions ϑ_i, $i = 1, \ldots, 6$ based on the objectives, are considered detailed below.

(1) The membership function for removing constraint related to availability of resource (first objective) is described as:

$$\vartheta_1 = \begin{cases} 1, & AR_c(Av_k) \leq R_u(Av_k) \\ 0, & AR_c(Av_k) > R_u(Av_k) \end{cases}$$ \hspace{1cm} (11)

where, $Av_k \rightarrow$ activity. $AR_u \rightarrow$ available wait current resource, $R_u \rightarrow$ required wait current resource.
(2) The membership function for handling waiting time (second objective) is

\[
T_w(Av_k) = \sum_{k=1}^{NR_T(Av_k) - 1} \sum_{l=1}^{AR(T)} \text{wait}_{k,l}(Av_k)
\]

where, \(T_w(Av_k)\) tells total waiting time of resources for activity, \(NR_T\) represents total number of different resource types and \(wait\) is the waiting time.

\[
\vartheta_2 = \begin{cases}
1, & T_w(Av_k) \leq MTR \\
0, & T_w(Av_k) > MTR
\end{cases}
\]

where, \(T_w(Av_k) \rightarrow \text{total waiting time of resources for activity} Av_k\), as calculated in Eq. 12, \(MTR \rightarrow \text{maximum waiting time allowable for resources, } NR_T \rightarrow \text{total number of different resource types, } wait \rightarrow \text{waiting time.}\)

(3) The membership function for queuing length (third objective) is:

\[
Q_q(Av_k) = \sum_{k=1}^{NR_T(Av_k) - 1} Q_{kq}(Av_k)
\]

where, \(Q_q(Av_k)\) tells queuing length for \(Av_k\), \(NR_T(Av_k) - 1\) is the current lacking type of resource causing other resources to be in queue.

\[
\vartheta_3 = \begin{cases}
1, & Q_q(Av_k) \leq MQR \\
0, & Q_q(Av_k) > MQR
\end{cases}
\]

\(MQR\) is the maximum queuing-occupy ration allowable for resources.

(4) Membership function \(\vartheta_4\): It is defined using lag time \(L_I(Av_k)\) (fourth objective). The \(L_I(Av_k)\) at activity \(Av_k\) is calculated as:

\[
L_I(Av_k) = \sum_{k=1}^{N_T(Av_k)} \sum_{l=1}^{C(Av_k)} L_{kl_I}(Av_k)
\]

where, \(N_T(Av_k)\) is the number of types of resources at \(Av_k\), \(C(Av_k)\) tells completed cycles at \(Av_k\).

\[
\vartheta_4 = \begin{cases}
1, & L_I(Av_k) \leq ML_w \\
0, & L_I(Av_k) > ML_w
\end{cases}
\]

where, \(ML_w\) is the maximum lag time.

(5) Membership function \(\vartheta_5\): It is defined using duration factor \(D_{df}\) (fifth objective) which is calculated as:

\[
D_{df} = \text{mean}_{dr}(Av_k) + \frac{\text{std}_{dr}(Av_k)}{\text{mean}_{dr}(Av_k)}
\]

where, \(\text{mean}_{dr}\) is the mean duration and \(\text{std}_{dr}\) is the standard deviation. Using the factor, membership function \(\vartheta_5\) is computed as:

\[
\vartheta_5 = \frac{D_{df}(Av_k) - \text{min}_{df}}{\text{max}_{df} - \text{min}_{df}}
\]

here, \(\text{max}_{df}\) and \(\text{min}_{df}\) is the maximum and minimum duration factor.

(6) Membership function \(\vartheta_6\) for completion of cycle; \(X_{cr}\) as completion ratio of activities (sixth objective) is calculated as:

\[
X_{cr} = \frac{X_{co}(Av_k)}{S_{co}(Av_k)}
\]

where, \(X_{co}\) tells the completed cycles, \(S_{co}\) are the stipulated operation cycles. For the completion of cycle, membership function is given as:

\[
\vartheta_6 = \frac{\text{max}_{cr} - X_{cr}(Av_k)}{\text{max}_{cr} - \text{min}_{cr}}
\]

where, \(\text{max}_{cr}\) is the maximum completion ratio of resources and \(\text{min}_{cr}\) is the minimum completion ratio of resources.

Once all the membership functions are determined, the weighted membership value is determined using Eq. 8. Finally, the resource is selected using Eq. 10. Thus, the combined decision based on its membership function using Eq. 8 and is expressed as:

\[
\text{FinalD}_F = \vartheta_{\text{FinalD}_k} \times \sum_{i=1}^{6} \beta_i \times \vartheta_i
\]
where, θ_{Fim} ensures the limited queuing capacity taken by the current resource at activity β_i. The θ_{Fim} is determined using:

$$
\theta_{\text{Fim}} = \begin{cases}
1, & (AV_u(S_{\text{mat}}) + ALLU) \leq MQR(S_{\text{mat}}) \\
0, & (AV_u(S_{\text{mat}}) + ALLU) > MQR(S_{\text{mat}})
\end{cases}
$$

(23)

where, $AV_u(S_{\text{mat}})$ is available unit of current resource and $ALLU$ is allocated unit. Thus, it results into redundant and constraint free resources in S_{mat} having maximum information. The process of resource discovery is explained in Algorithm 1.

The process initializes n to 100, Q_1 to resources and Q_2 to C_S. It initializes a loop to prioritize similarity computation, SM_c, by matching C_S with resources. It computes the time consumed, t_c, for SM_c and condition is checked to generate matching sets, S_{mat}, from C_S with in prescribed time. It prints S_{mat} and t_c. A loop is initialized for matching S_{mat} and SM_c using FCL as shown in Table 5 and results out as $Q_{S_{\text{mat}}}$ with true or false statement. As S_{mat} faces various constraints with respect to time, therefore, six membership functions are described using Eqs. 11–21. Now, another loop computes the decision, D_{fim}, for degree of match and combined decision, θ_{Fim}, is calculated using Eqs. 7 and 8, respectively. Finally, 9 with largest membership value is calculated and combined final decision, $\text{Final}_{D_{\text{fim}}}$, is generated using Eqs. 10 and 22, respectively. The process ends up with the display of redundant and constraint free, S_{mat}. S_{mat} is further processed for optimal selection of the resource using Improved Firefly algorithm (IMPF).

3.3.3. Optimal resource selection

The discovered resources (data values) will act as brightest fireflies having maximum similarity match determined with best direction in which brightness of firefly increases and is selected in minimal time. The IMPFF is nature inspired multiple heuristic algorithm that helps in optimizing S_{mat} as maximization problem and works through its three basic components, namely, optimization function, solution set for selecting variable and rule for optimization. The optimization function is defined as:

$$
\max f(x_i) \text{ such that } x_i \in S_{\text{mat}}
$$

(24)

A solution for this function is a member of S_{mat} that provides the maximum value of $f(x_i)$ compared to all matched resources in S_{mat}. The optimizibility lies in selecting x^*_i such that $f(x^*_i) \geq f(x_i)\forall x_i \in S_{\text{mat}}$. The IMPFF aims to select such x^*_i. The working of IMPFF is explained as under.

It works on the principle of flashing at night with its three rules to be followed. The first rule suggest to attract unisex fireflies to brighter one. The second rule determines the brightness of firefly using encoded function. The third rule describes that attractiveness that is fully dependent upon brightness and is decreased with increase in distance. If there is no brighter firefly then firefly will move randomly. The light intensity is reciprocal to square of distance (r_c), that is going farther from source. It also describes that if light passes through medium having absorption coefficient (λ_k), then intensity (I_1) changes with r_c and is given as:

$$
I_1(r_c) = I_1 \times e^{-\lambda_k \times r_c}
$$

(25)

where, I_1 is source point intensity. Using physics principle, the $I_1(r_c)$ becomes

$$
I_1(r_c) = I_1 \times e^{-\lambda_k \times r_c^2}
$$

(26)

Since, the computation of $\frac{1}{1 + \lambda_k \times r_c^2}$ is easy than $e^{-\lambda_k \times r_c^2}$, therefore, intensity is calculated as:

$$
I_1(r_c) = \frac{I_1}{1 + \lambda_k \times r_c^2}
$$

(27)

Now, the computed I_1 also computes the degree of attractiveness as it is measured by what intensity light is flashed by the fireflies. Therefore, the attractiveness of fireflies is described as:

$$
A_f(r_c) = \frac{A_1}{1 + \lambda_k \times r_c^2}
$$

(28)

where, $A_1 \rightarrow$ attractiveness at $r_c = 0$.

If firefly at exact position $x^*_i = [x^*_1, x^*_2, \ldots, x^*_n]$ is brighter in comparison with fireflies at position $x_i = [x_1, x_2, \ldots, x_n]$, then, x_i firefly will move towards x^*_i having better matched similarity in resource’s constraints (fireflies). Thus, the updated position of x_i firefly is given as:

$$
x_i = x_i + A_1 \times e^{-\lambda_k \times r_c^2} \times (x^*_i - x_i) + \beta \times \xi
$$

(29)

where, β is randomized parameter whose value lies in range of $[0,1]$. ξ consists of vectors with random step-length. β and ξ are the parameters that has the property of the adaptive adjustment and leads to algorithm’s convergence. At the beginning of the search larger value of β (random) and smaller ξ is selected, and smaller β, larger ξ’s values is used later in the search. In addition, in order to highlight the random movement at the beginning of the algorithm and reduce the random motion in the later stage, random movement step is added. $A_1 \times e^{-\lambda_k \times r_c^2} \times (x^*_i - x_i)$ describes the degree of attractiveness of x_i towards x^*_i. In real-life, A_1 is considered as 1, i.e., $A_1 = 1$. The parameters of the algorithm are adjusted adaptively according
Algorithm 1 Proposed Resource Discovery Algorithm.

Require: Concepts (C_x), Similarity Computation (SM_c), time (t_x), input query (S_mat), query (Q_{s_in}), membership function (\theta), decision (D_F), combined decision (FinalD_F)

1: \textbf{begin}
2: \text{//Discovery process}
3: \textbf{initialize} n \leftarrow 1000, Q_1 \leftarrow \text{resources}, Q_2 \leftarrow C_{x:0:n}
4: \textbf{for} (i = 0..n) \textbf{do}
5: \hspace{1em} prioritize SM_c \leftarrow (C_x, Q_2)
6: \textbf{end for}
7: \textbf{for} (i = 0..n) \textbf{do}
8: \hspace{1em} t_x \leftarrow \text{calculate-time}(SM_c)
9: \hspace{1em} if (t_x > \text{random}([0, 1])) \textbf{then}
10: \hspace{2em} get S_mat from C_x
11: \hspace{2em} output S_mat
12: \hspace{2em} print t_x
13: \textbf{end if}
14: \textbf{end for}
15: \text{//Matching process}
16: \textbf{for} (i = 0..n) \textbf{do}
17: \hspace{1em} Q_{s_mat}(i) \leftarrow \text{match}(S_mat, SM_c)
18: \hspace{1em} if (Q_{s_mat}(i) == true) \textbf{then}
19: \hspace{2em} switch Q_{s_mat}(i)
20: \hspace{3em} case 1 \rightarrow \{ Q_{s_in} : S_mat == SM_c \} :
21: \hspace{4em} Q_{s_mat}(i) = 1;
22: \hspace{3em} break;
23: \hspace{3em} case 2 \rightarrow \{ Q_{s_in} : S_mat <= SM_c \}
24: \hspace{4em} Q_{s_mat}(i) = 1;
25: \hspace{3em} break;
26: \hspace{3em} case 3 \rightarrow \{ Q_{s_in} : S_mat < SM_c \}
27: \hspace{4em} Q_{s_mat}(i) = 0/1;
28: \hspace{3em} break;
29: \hspace{3em} case 4 \rightarrow \{ Q_{s_in} : S_mat >= SM_c \}
30: \hspace{4em} Q_{s_mat}(i) = 1/0;
31: \hspace{3em} break;
32: \hspace{3em} case 5 \rightarrow \{ Q_{s_in} : S_mat > SM_c \}
33: \hspace{4em} Q_{s_mat}(i) = 0/1;
34: \hspace{3em} break;
35: \hspace{3em} case 6 \rightarrow \{ Q_{s_in} : S_mat != SM_c \}
36: \hspace{4em} Q_{s_mat}(i) = 0;
37: \hspace{3em} break;
38: \hspace{1em} else
39: \hspace{2em} Q_{s_mat}(i) \leftarrow false
40: \hspace{1em} return Q_{s_mat}(i)
41: \textbf{end if}
42: \textbf{end for}
43: \text{//Eliminating constraints with respect to time}
44: \textbf{initialize} six membership functions, i.e., \theta_l, l = 1, ..., 6 //using Eqs. 11-21
45: \textbf{for} (i = 1..l) \textbf{do}
46: \hspace{1em} compute D_F \leftarrow \theta_1 \cap \theta_2 \cap \ldots \cap \theta_l
47: \hspace{1em} compute \theta_{D_F} \leftarrow \sum_{l=1}^{l} \beta_l \times \theta_l
48: \textbf{end for}
49: \text{compute} \theta_{\text{FinalD_F}} \leftarrow \{ S_mat | \theta_{D_F} \text{is max} \} // determining \theta with largest membership value
50: \text{compute} FinalD_F \leftarrow \theta_{\text{FinalD_F}} \times \sum_{l=1}^{l} \beta_l \times \theta_l
51: \text{display} FinalD_F
52: \textbf{end}
to the lightness variance of the firefly and the random movement step is determined in accordance with the distance of two firefly. IMPFF considers the updated locations of brightest fireflies and selects the brighter one by processing them iteratively against threshold value. The firefly that retains for longer period and has maximum similar matches of concepts is selected as optimal solution. For each iteration, the firefly at farthest distance from the brightest firefly is discarded.

Now, considering the directional movement of brightest firefly as \(P \), the other fireflies move towards it and generates \(K \) vectors, i.e., \(P_1, P_2, \ldots, P_k \). Then the movement of brightest firefly is described as:

\[
x_i = x_i + P_i
\]

Here, if any direction does not exist for firefly then brightest firefly remains at same position only.

Furthermore, if source attractiveness assignment (that is dependent on intensity of firefly and objective) is considered rather than taking \(A_{ij} = 1 \) for each firefly \(i \), one possible solution is to assign firefly’s intensity ratio. Let say, firefly \((k) \) is located at \(x_j \) position is much brighter than firefly \((l) \), located at \(x_l \), then firefly \((l) \) at \(x_l \) will move towards firefly \((k) \), using Eq. 29. At this time, \(A_1 \) is given as:

\[
A_1 = \frac{l_k}{l_l}
\]

where, at \(r_c = 0 \), \(l_k \) and \(l_l \) is the intensity for fireflies \(k \) and \(l \), respectively. In real life, \(A_1 \) is described as \(e^{k-l} \) in order to eliminate significant case for \(l_1 = 0 \). If \(A_1 = l_k \) and intensity is less, then firefly \(l \) will take longer time to move towards firefly \(k \). Therefore, it is better to adjust \(A_1 \) because in either cases \(A_1 \) is directly proportional to intensity at source, \(l_1 \). The updated brightest firefly is checked for its new intensity iteratively. The firefly having maximum intensity and attractiveness, is selected as the brightest firefly and it provides the optimal solution against query. The summarized working of IMPFF is described in Algorithm 2.

Algorithm 2 Proposed IMPFF Algorithm.

Require: Position \((x_j, x_n)\), Intensity \((l_j)\), Attractiveness \((A_f)\), Euclidean Distance(euc\(_{ds}\))

1: begin
2: \(k \leftarrow 0\), \(n \leftarrow 1000\)
3: // Call procedure Resource Discovery Algorithm (Algorithm 1)
4: \(\text{for}(k = 1..n)\) do
5: \(\text{calculate} \ l_i(r_c) = \frac{l_i}{1+\lambda_k \times r_c^2}\)
6: \(\text{calculate} \ A_f(r_c) = \frac{A_{ij}}{1+\lambda_k \times r_c^2}\)
7: \(\text{generate} \ x_i = x_i + P_i\)
8: end for
9: \(\text{for}(i = 1..n)\) do //fireflies
10: \(\text{for}(j = 1..n)\) do //brightest firefly
11: \(\text{if} \ (l_i(x_j) < l_i(x_n))\) then
12: \(\text{brightest} \leftarrow \text{firefly}_j\) // selecting brightest firefly
13: \(\text{calculate} \ euc_{ds}(\text{brightest, firefly}_j)\)
14: \(\text{move} \ \text{firefly}_j \text{to brightest}\)
15: end if
16: end for
17: end for
18: \(\text{rank(brightest – fireflies)}\)
19: \(\text{for}(i = 1..n)\) do
20: \(\text{calculate} \ l_{\text{new}}(x_i) \leftarrow \text{brightest} \) // calculating intensity of brightest fireflies
21: \(\text{if} \ (l_i(x_j) < l_i(x_n))\) then
22: \(\text{select} \ B \leftarrow \text{brightest} (\text{firefly}_j)\)
23: end if
24: end for
25: \(\text{display}(B)\) // selecting brightest best matched firefly
26: end

Algorithm 2 begins with calling **Algorithm 1** and initializing loop for calculating intensity and degree of attractiveness for the firefly. It generates new position for updated fireflies. Now, the process is executed iteratively to find and select brightest firefly. It compares the intensities of previous with updated fireflies. A random brightest firefly is selected and its distance with other fireflies is checked using euclidean distance. The other firefly will be attracted towards brightest firefly. The brightest fireflies are ranked according to their intensity and another iteration is processed for checking their intensity. The firefly with maximum intensity is selected providing optimal matched resource against query.
3.4. Application web terminal

It is the Web Terminal, where clients can register themselves for accessing the services provided by the framework. Here, each client is given a unique ID and password at the time of registration, for authentication and authorization. By this terminal, user puts a query and in frequent time, he/she has a response against the required query.

4. Experimental results and discussion

4.1. Study area

The datasets for ORSF-IoT is collected from Sutlej river using underwater sensors, at Bassi near Nurpur Bedi, Ludhiana, India (see Fig. 5). The Ludhiana city is situated on banks of Sutlej and is a hub of major industries/factories of garments, bicycles, glass making, etc. The river acts as a source of irrigation water for southern villages of Punjab. The river’s quality is deteriorating due to the discharges of effluents from domestic sewage as well as from various industrial units. Therefore, it needs to be monitored regularly and take timely preventive measures.

The various parameters of sensors that are taken for deployment are shown in Table 6 [30].

The objective of framework on this river is to automate the process of monitoring through accurate deterioration detection by analyzing physical parameters such as Electrical Conductivity, pH, Temperature, Chloride, and Dissolved Oxygen, to minimize man-power, on-site sampling processes; and to provide timely alarms to monitoring stations.

4.2. System performance

For real-time measurements, the system’s performance is analyzed on the collected data from destined location, i.e., Sutlej river. The data value includes Electrical Conductivity, pH, Temperature, Chloride, and Dissolved Oxygen of river water and are recorded for three months. The collected parameters are shown in Table 7, measured observation (collected) are shown in Tables 8, 9, 10, 11, 12.

The performance of IMPFF is tested on data values of these parameters using benchmark functions as described in Table 13.

These functions are widely used for evaluating optimization of nature-inspired algorithms. The Sphere is a multi-modal function having global minimum solution, \(f_s = 0 \) located at \(x^* = (0,0,...,0) \). Rosenbrock is single modal function having global minimum \(f_s = 0 \) located at \(x^* = (1,1,...,1) \) and Ackley is multi-modal function having global minimum solution, \(f_s = 0 \) located at origin \(x^* = (0,0,...,0) \). These functions are implemented to validate the optimizibility for IMPFF algorithm. For the

![Fig. 5. Study Area.](image)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>25 KHz</td>
</tr>
<tr>
<td>Number of Sensor Nodes</td>
<td>13</td>
</tr>
<tr>
<td>Max. TX Distance (single hop)</td>
<td>35 m</td>
</tr>
<tr>
<td>Max. TX Distance (multi hop)</td>
<td>100 m</td>
</tr>
<tr>
<td>Min. CH candidate range</td>
<td>70%</td>
</tr>
<tr>
<td>Max. CH candidate range</td>
<td>90%</td>
</tr>
<tr>
<td>Packet with error ratio</td>
<td>1/1000</td>
</tr>
<tr>
<td>Batteries (Panasonic Eneloop Pro-Ni-MH)</td>
<td>2550 mAh</td>
</tr>
</tbody>
</table>

Table 6

Sensors parameters .
Table 7
Water Physical Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Range</th>
<th>Computational Formula</th>
<th>Effects/ Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Conductivity</td>
<td>350–500</td>
<td>$EC,(mg/l) = \frac{TDS,(ppm)}{1000}$</td>
<td>The conductivity is a measure of total dissolved solids (TDS) in water (in terms of ppm or mg/l). It is related with dissolved salts in water. It’s increased level is critical for aquatic animals because they have specific tolerance ranges and is dependent on climatic conditions and pollutants which increases during or after rainfall.</td>
</tr>
<tr>
<td>pH</td>
<td>6.6–7.1</td>
<td>$pH = -\log[H_3O^+]$</td>
<td>pH factor is used to estimate the acidic or alkaline nature of water. The lesser value of pH results into acidic nature of water and it affects various flora and fauna in water.</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>25–27.5</td>
<td>$\Delta T = \frac{O}{me}$</td>
<td>Temperature plays an important role for growth of flora and fauna within water. The increased level of temperature increases the chemical reaction and hence affects organic beings. Temperature is simply measured as amount of heat released or absorbed by organic beings.</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>80–95</td>
<td>$NaCl + H_2O \rightarrow Na^+ + Cl^- + H_2O$</td>
<td>The high chloride concentration in fresh water is toxic to aquatic organisms and is a threat to survival, growth and reproduction of the species.</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/l)</td>
<td>7–8</td>
<td>$DO = \text{Amount of Titrant Used (mL)}$</td>
<td>Dissolved oxygen (DO) is a measure of total amounts of Titrant in water. It is required by aquatic animals and phytoplankton for respiration and photosynthesis processes, respectively, it is necessary source of life residing underwater.</td>
</tr>
</tbody>
</table>

Table 8
Electrical Conductivity.

<table>
<thead>
<tr>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>433</td>
<td>431</td>
<td>452</td>
<td>12</td>
<td>465</td>
<td>388</td>
<td>538</td>
<td>23</td>
<td>375</td>
<td>494</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>448</td>
<td>447</td>
<td>465</td>
<td>13</td>
<td>472</td>
<td>396</td>
<td>532</td>
<td>24</td>
<td>357</td>
<td>499</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>467</td>
<td>459</td>
<td>470</td>
<td>14</td>
<td>451</td>
<td>408</td>
<td>526</td>
<td>25</td>
<td>341</td>
<td>502</td>
<td>482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>417</td>
<td>441</td>
<td>481</td>
<td>15</td>
<td>399</td>
<td>424</td>
<td>521</td>
<td>26</td>
<td>327</td>
<td>496</td>
<td>498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>415</td>
<td>426</td>
<td>494</td>
<td>16</td>
<td>444</td>
<td>430</td>
<td>515</td>
<td>27</td>
<td>353</td>
<td>485</td>
<td>510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>377</td>
<td>401</td>
<td>499</td>
<td>17</td>
<td>464</td>
<td>442</td>
<td>510</td>
<td>28</td>
<td>380</td>
<td>481</td>
<td>524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>422</td>
<td>383</td>
<td>506</td>
<td>18</td>
<td>472</td>
<td>461</td>
<td>477</td>
<td>29</td>
<td>404</td>
<td>477</td>
<td>536</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>457</td>
<td>381</td>
<td>512</td>
<td>19</td>
<td>437</td>
<td>476</td>
<td>467</td>
<td>30</td>
<td>422</td>
<td>471</td>
<td>491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>402</td>
<td>379</td>
<td>520</td>
<td>20</td>
<td>407</td>
<td>483</td>
<td>490</td>
<td>31</td>
<td>349</td>
<td>-</td>
<td>502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>414</td>
<td>386</td>
<td>529</td>
<td>21</td>
<td>387</td>
<td>491</td>
<td>502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>432</td>
<td>387</td>
<td>534</td>
<td>22</td>
<td>379</td>
<td>492</td>
<td>521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The same, different non-linear unconstrained equations are considered as hives for fireflies to reach local minima as global optimal solution. The equations are $e^{-(x-4)^2-(y-4)^2}$, $e^{-(x+4)^2-(y-4)^2}$, $e^{-(x+4)^2-(y+4)^2}$, $e^{-(x-4)^2-(y+4)^2}$, $2 \times e^{-(x^2+y^2)}$, $2 \times e^{-(x^2-(y-4)^2)}$, $2 \times e^{-(x^2-(y+4)^2)}$ and $2 \times e^{-(x^4-y^2)^2}$. In Fig. 6, the peaks generated through these equations are shown as 3D-view.

The data values of physical parameters of river water as fireflies, are considered for evaluating the performance of benchmark functions. Fig. 7 is the top view of Fig. 6 in which hives are shown as round circles and fireflies are shown as blue dots. These fireflies are attracted towards the center of hives on the basis of degree of attractiveness towards brightest one. The firefly having euclidean distance farther from brighter one, move randomly and wait for other brightest fireflies in range. The firefly with lowest threshold value is discarded and the iteration is processed for selecting the brightest firefly (optimal selection), i.e., the errored data value of physical parameters which exceeds the nominal range.

For verifying the performance of the framework, the benchmark functions are being tested for IMPFF and existing nature-inspired algorithms such as PSO, ABC and CA. The PSO considers real-number randomness and global communication among resources as swarm particles. It optimizes the function by iteratively improving user solution with regard to given measure of quality. ABC provides optimal solution by considering the position of nectar amount of food as resources corresponding to quality (fitness) of associated outcome. CA is an extension to conventional genetic algorithm. Its knowledge component (belief space) is divided into distinct categories that represent different domains of knowledge with respect to its search space. The belief space is updated iteratively to select the best resources using fitness function among the population. In short, these algorithms are used because they provide highly influential results in terms of optimization.
Table 9
pH Data.

<table>
<thead>
<tr>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.9</td>
<td>7</td>
<td>6.9</td>
<td>12</td>
<td>6.9</td>
<td>7</td>
<td>6.8</td>
<td>23</td>
<td>7</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>7.1</td>
<td>7</td>
<td>6.7</td>
<td>13</td>
<td>6.8</td>
<td>6.9</td>
<td>7</td>
<td>24</td>
<td>7.2</td>
<td>7</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>6.8</td>
<td>7.1</td>
<td>14</td>
<td>6.7</td>
<td>6.8</td>
<td>7.1</td>
<td>25</td>
<td>7.1</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>6.9</td>
<td>6.9</td>
<td>7.2</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>6.8</td>
<td>7</td>
<td>6.8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7.1</td>
<td>16</td>
<td>7.2</td>
<td>7.1</td>
<td>6.9</td>
<td>27</td>
<td>6.9</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>6.9</td>
<td>7.1</td>
<td>17</td>
<td>7.1</td>
<td>6.9</td>
<td>7</td>
<td>28</td>
<td>6.8</td>
<td>6.9</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6.9</td>
<td>7</td>
<td>7.2</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>6.8</td>
<td>29</td>
<td>6.8</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>8</td>
<td>6.8</td>
<td>7.1</td>
<td>6.9</td>
<td>19</td>
<td>6.9</td>
<td>7</td>
<td>6.9</td>
<td>30</td>
<td>6.7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>6.9</td>
<td>7.2</td>
<td>7</td>
<td>20</td>
<td>6.8</td>
<td>7.1</td>
<td>7.1</td>
<td>31</td>
<td>6.6</td>
<td>-</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>6.9</td>
<td>7.1</td>
<td>6.9</td>
<td>21</td>
<td>6.8</td>
<td>6.9</td>
<td>7.1</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>22</td>
<td>6.9</td>
<td>7.1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10
Temperature Data.

<table>
<thead>
<tr>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.1</td>
<td>25.3</td>
<td>26.2</td>
</tr>
<tr>
<td>2</td>
<td>23.6</td>
<td>25.4</td>
<td>26.1</td>
</tr>
<tr>
<td>3</td>
<td>24.2</td>
<td>25.5</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>24.8</td>
<td>25.5</td>
<td>26.1</td>
</tr>
<tr>
<td>5</td>
<td>25.6</td>
<td>25.4</td>
<td>26.3</td>
</tr>
<tr>
<td>6</td>
<td>27.6</td>
<td>25.3</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>25.4</td>
<td>26.3</td>
</tr>
<tr>
<td>8</td>
<td>27.3</td>
<td>25.5</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>26.7</td>
<td>25.3</td>
<td>26.8</td>
</tr>
<tr>
<td>10</td>
<td>26.6</td>
<td>25.6</td>
<td>27.1</td>
</tr>
<tr>
<td>11</td>
<td>26.7</td>
<td>25.3</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 11
Chloride Data.

<table>
<thead>
<tr>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.4</td>
<td>85.3</td>
<td>86.7</td>
</tr>
<tr>
<td>2</td>
<td>94.9</td>
<td>80.3</td>
<td>85.1</td>
</tr>
<tr>
<td>3</td>
<td>80.4</td>
<td>77.3</td>
<td>84.7</td>
</tr>
<tr>
<td>4</td>
<td>76.4</td>
<td>75.4</td>
<td>84.2</td>
</tr>
<tr>
<td>5</td>
<td>80.6</td>
<td>76</td>
<td>83.6</td>
</tr>
<tr>
<td>6</td>
<td>83.2</td>
<td>72.9</td>
<td>82.6</td>
</tr>
<tr>
<td>7</td>
<td>82.1</td>
<td>72.4</td>
<td>82.5</td>
</tr>
<tr>
<td>8</td>
<td>79</td>
<td>74.2</td>
<td>81.9</td>
</tr>
<tr>
<td>9</td>
<td>77.9</td>
<td>75.3</td>
<td>81.4</td>
</tr>
<tr>
<td>10</td>
<td>81</td>
<td>77.8</td>
<td>81.1</td>
</tr>
<tr>
<td>11</td>
<td>80.2</td>
<td>78.9</td>
<td>81.2</td>
</tr>
</tbody>
</table>

Table 12
Dissolved Oxygen.

<table>
<thead>
<tr>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>Days</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.9</td>
<td>7.7</td>
<td>7.9</td>
<td>12</td>
<td>7.7</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>2</td>
<td>7.8</td>
<td>7.6</td>
<td>7.9</td>
<td>13</td>
<td>7.7</td>
<td>7.5</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>7.8</td>
<td>7.5</td>
<td>7.8</td>
<td>14</td>
<td>7.6</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>7.6</td>
<td>7.5</td>
<td>7.9</td>
<td>15</td>
<td>7.7</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>5</td>
<td>7.9</td>
<td>7.6</td>
<td>7.6</td>
<td>16</td>
<td>7.6</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>6</td>
<td>7.6</td>
<td>7.6</td>
<td>8</td>
<td>17</td>
<td>7.5</td>
<td>7.3</td>
<td>7.7</td>
</tr>
<tr>
<td>7</td>
<td>7.7</td>
<td>7.6</td>
<td>7.9</td>
<td>18</td>
<td>7.4</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>8</td>
<td>7.6</td>
<td>7.5</td>
<td>7.7</td>
<td>19</td>
<td>7.8</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>9</td>
<td>7.7</td>
<td>7.4</td>
<td>7.7</td>
<td>20</td>
<td>7.8</td>
<td>7.4</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>7.8</td>
<td>7.5</td>
<td>7.6</td>
<td>21</td>
<td>7.6</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>11</td>
<td>7.7</td>
<td>7.3</td>
<td>7.7</td>
<td>22</td>
<td>7.4</td>
<td>7.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Table 13
Benchmark Functions.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Function Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sphere</td>
<td>[f_1(x) = \sum_{i=1}^{n} x_i^2, \text{ for } 0 \leq x_i \leq n]</td>
</tr>
<tr>
<td>2</td>
<td>Rosenbrock</td>
<td>[\sum_{i=1}^{n} \left[(x_i - 1)^2 + 100 \times (x_{i+1} - x_i^2)^2 \right], \text{ for } 0 \leq x_i \leq n]</td>
</tr>
<tr>
<td>3</td>
<td>Ackley</td>
<td>[-20 \times \left(1 - \exp \left(-\frac{1}{2} \left(\sqrt{\sum_{i=1}^{n} x_i^2} - \frac{\sum_{i=1}^{n} x_i}{n} \right) \right) \right) - \exp \left(\sum_{i=1}^{n} \cos \left(2 \pi x_i \right) \right) + 20 + \exp(1), \text{ for } 0 \leq x_i \leq n]</td>
</tr>
</tbody>
</table>

Fig. 6. Working of IMPFF - Range of Firefly.

Fig. 7. Working of IMPFF - Attracted Firefly towards Brightest.
The proposed IMPFF is compared with these algorithms in terms of metrics namely Mean, Standard Deviation, Standard Error of Mean (SEM), Processing Time, Execution Time; in order to evaluate its efficacy. The low Mean denotes the minimal utilization of computing resources in finding the matched sets and increasing the speed of computation. Lower Standard Deviation denotes the maximum resources that converges to optimal selection against query. It tends to denote maximum matched sets near to mean. The low SEM provides the stability in finding the rightful resource with computation of maximum resources. It denotes best matched solution with higher accuracy. The algorithm’s speed is evaluated in terms of Processing and Execution Time. The complex algorithm consumes more processing time in search computation and has increase in execution time to process the query. Less processing and execution time denotes the efficiency of algorithm in computing the query and to find the optimal solution in minimal time. For testing purposes, the data values of physical parameters as fireflies are selected. The process is run for 30 times with 1000 iterations to find the errored value that exceeds the limit of nominal ranges (given in Table 7) and the system will provide timely alarms/warning to the monitoring stations to take preventive measures. The comparison among various benchmark functions, is described in Table 14.

The graphical notation of comparison of evaluation metrics for functions on the basis of Table 14 is shown in Figs. 8–12. These figures are obtained with the average Mean, Standard Deviation, SEM, Processing Time, Execution Time of 30 times test statistics. Fig. 8 shows the comparison of Mean for the functions. It is found that PSO, ABC and CA provides larger mean

Table 14

Comparison among Approaches.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Approaches</th>
<th>Metrics</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean (SEM)</th>
<th>Processing Time (seconds)</th>
<th>Execution Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>PSO</td>
<td></td>
<td>8.94E+04</td>
<td>35.6324</td>
<td>2.24E+03</td>
<td>0.8745</td>
<td>1.9559</td>
</tr>
<tr>
<td></td>
<td>ABC</td>
<td></td>
<td>7.87E+04</td>
<td>27.7562</td>
<td>1.97E+03</td>
<td>0.8126</td>
<td>2.0124</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td>7.36E+04</td>
<td>24.7486</td>
<td>1.85E+03</td>
<td>0.5468</td>
<td>1.0656</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>IMPFF</td>
<td></td>
<td>6.75E+04</td>
<td>14.3554</td>
<td>1.69E+03</td>
<td>0.1046</td>
<td>1.0018</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td></td>
<td>8.72E+04</td>
<td>34.6502</td>
<td>2.19E+03</td>
<td>0.8621</td>
<td>2.4257</td>
</tr>
<tr>
<td></td>
<td>ABC</td>
<td></td>
<td>7.61E+04</td>
<td>26.774</td>
<td>1.91E+03</td>
<td>0.7453</td>
<td>1.5987</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td>7.11E+04</td>
<td>23.7664</td>
<td>1.78E+03</td>
<td>0.4526</td>
<td>1.0425</td>
</tr>
<tr>
<td></td>
<td>IMPFF</td>
<td></td>
<td>6.51E+04</td>
<td>13.3732</td>
<td>1.63E+03</td>
<td>0.2412</td>
<td>0.0955</td>
</tr>
<tr>
<td>Ackley</td>
<td>PSO</td>
<td></td>
<td>8.25E+04</td>
<td>38.7041</td>
<td>2.07E+03</td>
<td>0.7421</td>
<td>1.7864</td>
</tr>
<tr>
<td></td>
<td>ABC</td>
<td></td>
<td>7.21E+04</td>
<td>30.8279</td>
<td>1.81E+03</td>
<td>0.6354</td>
<td>1.3289</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td>7.65E+04</td>
<td>27.8203</td>
<td>1.92E+03</td>
<td>0.4452</td>
<td>1.2267</td>
</tr>
<tr>
<td></td>
<td>IMPFF</td>
<td></td>
<td>6.95E+04</td>
<td>17.4271</td>
<td>1.74E+03</td>
<td>0.3173</td>
<td>1.0148</td>
</tr>
</tbody>
</table>

Fig. 8. Mean Metric using PSO, ABC, CA and IMPFF.
as compared with IMPFF. This suggest that IMPFF is more stable in providing accurate parametric values than other algorithms.

Fig. 9 shows the Standard Deviation for the functions. It is observed that IMPFF provide minimum standard deviation as compared with PSO, ABC and CA. Thus, it implies that IMPFF converges to select optimal solution. Fig. 10 shows the SEM for the functions. It is observed that IMPFF provide minimum SEM as compared with PSO, ABC and CA. Thus, it implies that IMPFF helps in finding the rightful resource with computation of maximum resources. Fig. 11 shows the comparison of Processing Time of IMPFF and existing nature-inspired algorithms. It is found that IMPFF works smoothly and take 0.1-0.3 (seconds) providing efficient search with respect to other algorithms. Fig. 12 shows the comparison of Execution Time for functions processed using IMPFF and existing nature inspired algorithms. It is postulated that IMPFF takes minimum time
for executing a process against query, in comparison with PSO, ABC and CA. Thus, IMPFF improves the performance of system by taking less execution time.

Further, to support its efficacy, the algorithms are observed for its iterations that provides the best cost assumption for the benchmark functions as shown in Figs. 13 - 15. It presents the comparison of PSO, ABC, CA and IMPFF for evaluating cost to check framework’s performance with respect to Processing and Execution Time; processed for functions, namely, Sphere, Rosenbrock and Ackley. It runs 30 times for 1000 iterations independently for these functions. Figs. 13 - 15 are the illustrations for the best outcomes of the iterations.

It is observed from Fig. 13 that IMPFF converges slow providing the lowest cost as compared with other approaches. Fig. 14 describes that IMPFF goes downward to negative whereas maximum cost for other methods have their estimated cost between 0–10 and is constant throughout. Fig. 15 shows the lowest cost for IMPFF due to slow convergence as compared with PSO, ABC and CA. It is depicted that IMPFF provides the best cost as compared with other algorithms.
Thus, it is concluded that IMPFF significantly provide optimal solution for selecting the parametric value having exceeded limit as the brightest firefly in less time and providing timely alarms to the system for corrective measurements. The results justifies the statement providing minimum mean and standard deviation with less time consumption; as compared with existing nature-inspired algorithms.
5. Conclusion

ORSF-IoT intends to represent knowledge using semantic based Shared Virtual Composite Ontology. The ontology has prescribed rules for relations and concepts and eliminates the interoperability issue to a great extent. The discovery of resources is achieved using Fuzzy control rules that interprets the formed knowledge. Further, the discovered resources are investigated for the selection of optimal resource using IMPFF algorithm, the performance of which is analyzed with respect to various evaluation metrics, namely, mean, standard deviation, execution and processing time.

The results obtained confirm the effectiveness of the IMPFF with respect to these evaluation metrics. It is found that it provides the optimal selection of resource as brightest firefly that has maximum contextual information against input query. Moreover, it provides faster convergence that results in selecting the best resource when compared with its counterparts, namely, PSO, ABC and Cultural. Thus, the framework provides an efficient method for optimal resource discovery and selection.

Declaration of Competing Interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

References

Shelby Z. Constrained restful environments (core) link format2012;

Monika Bharti is currently working as an Assistant Professor in Computer Science Engineering Department, Jaypee University of Information Technology, Waknaghat, Solan. She has also worked as an Assistant professor in Chandigarh University for 2.5 years. She did her Ph.D. and M.E. in Computer Science from Thapar Institute of Engineering and Technology, India. She was awarded with both JRF and SRF from DeitY, Govt. of India. She has guided 4 M.E. thesis. She has 23 international publications in reputed journals and conferences. Her area of research includes cloud computing, networking, and Internet-of-Things.

Rajesh Kumar is Professor, CSED, Thapar Institute of Engineering and Technology, India. He obtained his M.Sc., M.Phil. and PhD from IIT Roorkee. He has more than 18 years of teaching and research experience. He has more than 78 publications in Journals and conferences. He is member of professional societies of repute. His area of research includes Mathematical Modeling, Wireless Networks, Software Engineering, Pattern Recognition.

Sharad Saxena is Associate Professor, CSED, Thapar Institute of Engineering and Technology, Patiala. He did his Ph.D. (CSE) from Uttarakhand Technical University, India and M. Tech. (CSE) from Shobhit University, India. He has published 45 International Papers, guided 15 M. Tech. and 4 Ph.Ds. He is reviewer of reputed journal and member of IEEE, ACM, CSI societies. His research interest includes WSN and Ad-hoc networks.

Himanshu Jindal is currently working as an Assistant Professor in Computer Science Engineering Department, Jaypee University of Information Technology, Waknaghat, Solan. He has worked as Teaching Associate and Lecturer in Thapar Institute of Engineering and Technology and Rayat Bahra Group of Institutes, for 3 and 2 years, respectively. He obtained his Ph.D. (CSE), M. Tech. (CSE) from TIET, Patiala after completing B.Tech from SUSCEY, Tangori. He has 21 international publications in reputed journals and conferences. His research interest includes Wireless Sensor Network, Image Processing, Machine Learning and Internet-of-Things.