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Abstract: Parity-check is a simple yet effective error detection method. Several other more sophisticated error detection
techniques are founded upon single parity-check (SPC). Exclusive-OR (XOR) is known as the parity generator in binary logic.
This study suggests some multi-valued parity generators (MPGs), studies their behaviour, and provides a full discussion about
their necessary and optional properties. The concept of Sudoku with some customised rules is used to create MPGs, which are
the extended versions of binary parity generator in higher radixes. They are capable of revealing all single-digit errors.
Additionally, they can detect incorrect data delivery with high probability when more than one error occurs (with even higher
probability than XOR). The probability of error detection is analytically calculated for the occurrence of two to five errors in
different bases. The calculations are then experimentally verified by a formal verification method. The authors’ investigations
show that error detection probability increases in higher radixes, and it is independent of dataword size.

1 Introduction
Noise and other impairments might cause errors during data
transmission from source to destination. Error detection and
correction techniques are required to enable reliable delivery of
data over an unreliable communication channel. Error-detecting
techniques such as parity-check, checksum, and cyclic redundancy
check can help to discover the occurrence of error by incorporated
redundancy in original data. Although more redundant bits provide
better error control, they impose more overhead and reduce
information transmission rate [1, 2].

Parity-check is one of the earliest and most popular error
detection codes. Due to its simplicity, effectiveness, and low
encoding/decoding complexity, it has been used in many hardware
applications such as small computer system interface, peripheral
component interconnect, and memory buses [3]. Single parity-
check (SPC) can be useful in low bit error rate (BER) systems,
where data transmission can be repeated. The extended versions of
SPC such as multidimensional parity-check (MDPC) and low-
density parity-check (LDPC) codes provide more powerful error
detection and correction capabilities in a parallelisable decoding
scheme [4, 5]. They are basically founded upon the initial concept
of the parity bit.

Multiple-valued logic (MVL) offers several potential
applications for the improvement of signal processing and modern
circuit design [6–9]. More information with fewer interconnections
can be transmitted in MVL [8], and it also provides better
functional capabilities in information process [10]. Several
successful MVL circuit methodologies have been suggested in the
literature [11–13]. Although reduced speed and noise margin are
the drawbacks of MVL, it can still improve the overall
performance of a system [14]. For example, the quaternary ROM
in the Intel 8087 coprocessor provides 31% area savings compared
to a binary ROM [14, 15]. Another example is the current-mode
ternary multiplier presented in [16], which has 629 fewer
transistors than the binary counterpart. The lack of sufficient MVL
algorithms and the two-state behaviour of electronic components
are the other reasons for keeping MVL back from prevailing. The
transformation must occur for the existing computation methods
and coding schemes in order to make MVL systems pervasive in
the future.

As far as we know, there are few MVL parity generators in the
literature. According to [17], for the purpose of error detection in
higher radixes than two, the parity for all of the states other than
‘0’ must be known. This means that r − 1 parities need to be
appended to a k-digit dataword in base r. For example, parities of
the logic values ‘1’, ‘2’, and ‘3’ have to be produced separately in
quaternary logic. As a result, the final codeword will have k + 3
digits (k digits of dataword and 3 digits of redundancy). An
alternative solution is to append only one parity digit [18]. This
way, there will be a single operator responsible for parity; the same
as Exclusive-OR (XOR) in binary logic. Moreover, in comparison
with [17], fewer gates are required, relative redundancy decreases

from r − 1
k + r − 1  to 1

k + 1 , and information transmission rate

increases significantly.
Some MVL parity generators have been introduced in [18].

According to [18], commutativity, associativity, and self-
reversibility are the properties of an MVL parity generator.
However, we will show although they bring about some
advantages, none of these characteristics is essential for error
detection. Instead, there are other fundamental properties that need
to be considered carefully. Multi-valued parity generators (MPGs)
can be non-commutative, non-associative, non-self-reversing, and
still be practical for error detection. Furthermore, ternary parity has
originally been introduced in [19]. Another ternary parity generator
has been presented in [20] with full discussions about its transistor-
level design. However, neither of them adequately explains the
properties and detection probabilities.

Additionally, there are several non-binary error-correcting
codes over high-order Galois fields (GFs) in the literature [21–26].
The non-binary LDPC (NB-LDPC) is an example with higher
performance than binary LDPC. The main differences between the
given MPGs in this paper and the previous codes are:

(i) Although NB-LDPC and other non-binary error correction
codes provide additional performance gain when symbols with
high-order modulations are sent, they have basically and originally
presented for dealing with error in a binary system with the aim of
achieving higher throughput by reducing the number of computing
stages [25]. The current paper is exclusively devoted to MVL
communication systems with higher radixes than 2.
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(ii) NB-LDPC has a costly and complex computational decoding
[27, 28] while the entire error detection procedure by the presented
operators is straightforward in both transmitter and receiver.
(iii) The order of a GF is always a prime or a power of a prime
number [25] whereas MPGs can be defined for every radix, e.g.
base 6.
(iv) Non-binary error correction codes are mostly based on
polynomial and GF arithmetic, whereas the new operators are
defined by a set of positional rules.
(v) Most of the previous non-binary works using GF aim to provide
error correction without presenting any SPC operator. In contrast,
the topic of this paper is dedicated to multi-valued SPC for error
detection. MPGs are in fact equivalent to binary XOR (as parity
generator) in higher radixes.

After the introduction of MPGs, error detection probability for up
to five errors is mathematically calculated. Formal verification is
also applied to analyse the ability of the operators in detecting
errors. The experimental results confirm our analysis. In brief, the
main contributions of this paper are as follows:

(i) MPGs for multi-valued SPC are presented.
(ii) The characteristics of the given MPGs are thoroughly studied,
and their optional and necessary properties are provided.
(iii) Their detection probabilities in different bases are also
analytically and experimentally investigated.

The new multi-valued operators are created based on Sudoku tables
with a set of custom rules. Sudoku is a number-placement puzzle,
where a 9 × 9 table is divided into nine 3 × 3 subgrids. Some of the
cells are initialised in advance. The goal is to fill the entire table so
that each column, each row, and each subgrid contains all of the
digits from 1 to 9. The idea of filling MPG tables in this paper is
taken from Sudoku although the rules are not exactly alike.

The rest of the paper is organised as follows. Section 2 defines
new MPGs and their characteristics in detail. The creation of MPG
tables is explained in Section 3. Section 4 gives a full discussion of
the error detection ability of MPG operators using analytical and
formal verification methods. Finally, Section 5 concludes the paper.

2 Multi-valued parity generator
SPC is a simple and straightforward procedure. At first, the
transmitter calculates parity for a block of data. To do so, a
pairwise operator is required to perform successive calculations on
dataword digits. In binary logic, XOR is the parity generator. Other
operators are required to generate parity in higher radixes. MPGs
are generally denoted by ⊕ in this paper. Parity calculations in the
transmitter side are shown in Fig. 1a, where the final codeword is
made up of k digits of dataword (m1 to mk) and one parity digit (p). 

On the other side, the receiver receives a codeword consisting
of m1′ to mk′ and p′. In the case of correct delivery, mi′ = mi (for 1 
≤ i≤k) and p′ = p. Parity is calculated once more in the receiver side
by the same MPG operator (Fig. 1b). We assume that the last MPG
returns zero if the received and recalculated parities, p′ and p′′, are
identical. Otherwise, it is a sign of error occurrence.

Regardless of the radix used, the SPC procedure/structure will
always resemble Fig. 1 and remain unchanged if the MPG
operators are well defined. The whole procedure is similar to what
happens in binary logic.

2.1 Necessary properties and requirements

The primary concern is that an MPG operator can provide the
ability to detect all single-digit errors. This is equivalent to the
capability of XOR in binary logic. Hamming distance (D) between
two strings of equal length is the number of positions at which the
corresponding symbols are different. A set of valid codewords with
the minimum Hamming distance of dmin can always detect dmin−1
errors [29]. Therefore, single-digit errors are detectable if dmin = 2.

In order to meet this target, MPG must have a couple of
necessary properties. In order to clarify them, consider

Dataword(1) and Dataword(2) in Fig. 2 which have the same data
pattern, except one digit (mi in Dataword(1) versus mi′ in
Dataword(2)). In order to have dmin = 2 for the corresponding
codewords, the second difference, other than mi and mi′, must be in
their parities. The MPG operator must be able to provide this
disparity. Then, Codeword(1) and Codeword(2) will have two
different digits, (mi versus mi′) and (pk versus pk′), while the
remaining digits, (m1 to mi−1) and (mi+1 to mk), are similar.
According to Fig. 2:

(i) The identical parts, (m1 to mi−1) and (mi+1 to mk), generate the
same parities, p1_to_i−1 and pi+1_to_k, in both datawords.
(ii) mi and mi′ are different. Consequently, pi = MPG(p1_to_i−1, mi)
and pi′ = MPG(p1_to_i−1, mi′) must return dissimilar values. The
reasonable outcome is that MPG(a, b) ≠ MPG(a, c) where a, b, c∈
{0, 1, … ,r−1} and b≠c. This is the first necessary property for
MPG ((1)).
(iii) Then, pi and pi′ are different. Therefore, pk = MPG(pi, pi
+1_to_k) and pk′ = MPG(pi′, pi+1_to_k) must again return dissimilar
values in order to produce different final parities. The reasonable
outcome is that MPG(b, a) ≠ MPG(c, a) where a, b, c∈{0, 1, …, r
−1} and b≠c. This is the second necessary property for MPG ((2)).

Fig. 1  SPC procedure and structure by using MPG operators
(a) Transmitter side, (b) Receiver side

 

Fig. 2  Two codewords with the Hamming distance of 2
(a) Codeword(1), (b) Codeword(2)
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The third condition is in fact a requirement based on the
assumption shown in Fig. 1b. In the receiver side, parity is
generated once more. The received and recalculated parities, p′ and
p′′, are compared with each other. Due to the earlier agreement, the
operator must return zero in case of their equality. Therefore, we
conclude that MPG(a, a) = 0 (for 0 ≤ a≤r − 1). This is the third
requirement for our MPG ((3)).

A pairwise operator can visually be expressed by using a two-
dimensional table (Fig. 3), where pi,j = MPG(i, j). MPG tables are
exemplified in base 4 although they are extensible to any other
radix. The third requirement (3) forces the main diagonal of the
matrix to be zero (Fig. 3a). The first and second properties ((1) and
(2)) imply that no repetitive values are allowed in a row and a
column, respectively (Figs. 3b and c)

MPG(a, b) ≠ MPG(a, c) (1)

MPG(b, a) ≠ MPG(c, a) (2)

MPG(a, a) = 0 (3)

2.2 Optional properties

Thus far, the necessary properties have been settled for the
proposed MPG operator. The first and second properties satisfy the
minimum Hamming distance for detecting all of the single-digit
errors. The third requirement helps the receiver to detect error
without ambiguity if the received and recalculated parities are
unequal.

There are three other optional properties which might make
MPGs more effective. Although MPGs are preferred to be
commutative (4), it is not a mandatory attribute. If so, input signals
are interchangeable (Fig. 4a), and it does not matter in what order
they are situated. If not, circuit designers must be careful not to

place MPG gates conversely. For a non-commutative MPG
(Fig. 4b), inputs are not interchangeable. To make an MPG
commutative, its table must be symmetric (Fig. 3d). However,
MPG operators cannot be commutative in odd bases. This issue is
addressed in Figs. 5 and 6 for the bases 3 and 5, respectively. In
spite of a little circuit complexity, this limitation does not affect the
proper functionality of MPGs in odd bases.

• Base 3 (Fig. 5): On account of symmetry, values of the matrix
elements p0,1 and p1,0 are the same (Let them be ♀ as indicated
in Fig. 5; ♀∈{1,2}). According to the first and second properties
((1) and (2)), there are exactly three ♀s in the whole table
because repetitive values are not allowed in rows and columns.
Therefore, the third ♀ can only be situated in the element p2,2,
which is on the main diagonal. Nevertheless, this is against the
third requirement (3), based on which p2,2 is zero.

• Base 5 (Fig. 6): Values of the matrix elements p0,1 and p1,0 are
the same (Let them be ♀ as in Fig. 6; ♀∈{1,2,3,4}). The next
two ♀s can be either in (p2,3 and p3,2) or (p2,4 and p4,2). Either
way, the remaining ♀ must be situated in an element on the
main diagonal, p3,3 or p4,4. Both outcomes are in contrast with
the third requirement (3).

MPG(a, b) = MPG(b, a) (4)

The second optional property is associativity (5). Figs. 7 and 8
display different MPG placement topologies for a 4-digit dataword. 
If an MPG operator is associative, it does not make a difference in
what order it calculates parity. All of them produce identical
results. However, the one in Fig. 8 leads to maximum parallelism
and the fastest parity calculation approach. If the MPG operator is
non-associative, transmitter and receiver must follow the same
MPG placement topology. They can still use the topology with the
fastest parity computation (Fig. 8) whether or not the MPG
operator is associative. Therefore, associativity does not add any
specific value to the MPG operators and can be ignored.

Fig. 3  MPG table defined by a two-dimensional table
(a) Visual representation of the third requirement (3), (b) Visual representation of the
first necessary property (1), (c) Visual representation of the second necessary property
(3), (d) Visual representation of the first optional property (4)

 

Fig. 4  MPG gate
(a) Commutative, (b) Non-commutative

 

Fig. 5  MPG operator cannot be commutative in base 3
 

Fig. 6  MPG operator cannot be commutative in base 5
 

Fig. 7  MPG placement topologies for a 4-digit dataword
(a) MPG(MPG(MPG(m1,m2),m3),m4), (b) MPG(m1,MPG(m2,MPG(m3,m4))), (c)
MPG(m1,MPG(MPG(m2,m3),m4)), (d) MPG(MPG(m1,MPG(m2,m3)),m4)
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The third optional characteristic is self-reversibility. MPGs
might be self-reversing over the columns ( 6), over the rows (7), or
both of them. Nonetheless, this characteristic does not add any
specific value to the MPG operators for detecting error. Self-
reversibility can specifically be exploited for data recovery, and it
is particularly useful for error correction [30].

In summary, the optional properties bring about some
advantages. Although commutativity, associativity, and self-
reversibility are generally preferable, none of them is necessary for
the context of error detection. Finally, unlike commutativity, the
second and third optional properties do not have visual
representations within an MPG table

MPG(a, MPG(b, c)) = MPG(MPG(a, b), c) (5)

MPG(a, b) = p ⇒ MPG(a, p) = b (6)

MPG(a, b) = p ⇒ MPG(p, b) = a (7)

3 MPG creation
Filling an MPG table is like solving a Sudoku puzzle; however,
with fewer and less complicated rules. Similar to Sudoku, non-
repetitive digits are supposed to be inserted in every row and
column. On the other hand, there is not any subgrid to be worried
about. The third requirement (3) is used to initialise the table (such
as Fig. 3a). The first and second necessary properties ((1) and (2))
are the cardinal rules, based on which an MPG table is completed.
Although it is also possible to consider the first optional property,
commutativity, as an additional rule in even bases, it is not
mandatory.

There are several algorithms such as rule-based [31, 32] and
backtracking [32, 33] algorithms to solve a Sudoku table. There are
also some other algorithms based on permutations [34], cyclotomic
cosets [35], swarm intelligence [36, 37], and genetic algorithm
[38]. Nonetheless, MPG creation is much easier than solving
Sudoku puzzles since the rules are relatively simpler.

Procedure 1 is an example that provides a row-wise traversing
algorithm, which fills the table line by line taking only the
necessary properties into account. At first, the main diagonal is
initialised by zero (MPG(i, i) = 0). Then, the whole table is filled
out by an iterative procedure. The outer and inner loops are

repeated r and r − 1 times, respectively. They set two variables, i
and j, pointing to the blank cells, which are assigned in each row
by a value increasing from 1 to r − 1. The assignment starts from
the cell next to the one initialised by zero. Fig. 9 shows the
MPG(Base) operators which are produced by Procedure 1 (Fig. 10)
in bases 3 to 6 (MPG(3) to MPG(6)). MPG(7) and MPG(8) are also
depicted in Fig. 11. The outcomes are similar to circulant matrices
[39]; however, there are several other solutions to create an MPG
operator. They have no particular priority over each other as long
as the necessary properties are satisfied.

4 Error detection capability
As described before, the MPG operators can reveal single-digit
errors. This ability is exemplified in Fig. 12a in base 4. At first, the
transmitter calculates parity for a 5-digit dataword based on the
MPG(4) operator given in Fig. 9b. Then, one of the digits changes
from ‘2’ to ‘3’ during data transmission over a noisy channel.
Afterwards, the receiver recalculates parity, p′′ = 0, and compares it
with the received one, p′ = 3. Since they are different, the incorrect
delivery of data is successfully detected in this scenario.

The MPG operators are even more powerful. Although not all
of the error patterns are detectable, MPGs can detect incorrect data
delivery if more than one digit flips. Two other scenarios are
exemplified in Figs. 12b and c. In the first one (Fig. 12b), the
receiver detects the incorrect delivery correctly. In the second
example (Fig. 12c), however, the receiver fails to reveal error
occurrence due to the fact that the received and recalculated
parities are similar (p′ = p′′). In this section, the probability of
successful error detection is analytically calculated and
experimentally measured.

4.1 Error detection probability

Error detection probability for up to five errors is calculated in this
subsection. It is assumed that errors can occur independently of one
another among all of the digits of a codeword. The probability
calculations are based on (8)–(10). According to the first necessary
property (1), MPG(a, b) and MPG(a, c) are certainly dissimilar. In
other words, the probability of their equivalence is zero (8). In the

Fig. 8  MPG placement topology for a 4-digit dataword with maximum
parallelism (MPG(MPG(m1, m2), MPG(m3, m4)))

 

Fig. 9  MPG operators created by Procedure 1
(a) MPG(3), (b) MPG(4), (c) MPG(5), (d) MPG(6)

 

Fig. 10  Procedure 1: MPG creation in base r
 

Fig. 11  MPG operators created by Procedure 1 (continued from Fig. 9)
(a) MPG(7), (b) MPG(8)
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same manner, according to the second necessary property (2),
MPG(b, a) and MPG(c, a) never generate identical parities (9).

Furthermore, concerning the two-dimensional table of the MPG
operator, MPG(a, b) and MPG(c, d), where a≠c and b≠d, return
equal values with 1/r − 1  probability (10). The reason is that
P(MPG(a, b) = x) =  r /r2  where x∈{0,1,…,r − 1}. Subsequently,
P(MPG(c, d) = x) =  r − 1/ r − 1 2  after the elimination of the ath
row and bth column from the MPG table. Eventually, permutation
of x is also taken into consideration by the combination of one
from r digits

P(MPG(a, b) = MPG(a, c)) = 0 (8)

P(MPG(b, a) = MPG(c, a)) = 0 (9)

P(MPG(a, b) = MPG(c, d)) = r
r2 × r − 1

(r − 1)2 × r
1 = 1

r − 1 (10)

Fig. 13 demonstrates two datawords with the same size, which are
different in five digits [(mi versus mi′), (mj versus mj′), (mw versus
mw′), (mh versus mh′), and (mg versus mg′)]. With reference to
Fig. 13, 14 shows a tree diagram where all of the possible
outcomes are displayed. The successful and unsuccessful error
detection probabilities are indicated by a Tick and a Cross,
respectively. A Tick on a level indicates a sequence of events and
probabilities from the root to the leaf (Tick) which has led to
successful error detection. The probabilities on the corresponding
branch are multiplied to reach the probability of a Tick. Then, the

detection probability (Pdetection) is the sum of probabilities of the
Tick(s) on a specific level. As a result, Pdetection of q errors can be
calculated by (11), where n points to the Ticks on the target level
(level q), and m points to nodes of the corresponding branch from
root to the target leaf (n in level q). In fact, n and m characterise q
within (11).

The first mismatch between Dataword(1) and Dataword(2) in
Fig. 13 (mi versus mi′) definitely causes two different parities (pi≠pi
′). This is the first error, which can certainly be detected (12). The
second mismatch might equal the parities again (pj = pj′) with the
probability of 1/r − 1 . If so, the two datawords produce similar
parities, and it is infeasible to detect an error. If not, different
parities are generated once again (pj≠pj′), and error occurrence is
detectable with the probability shown in (13).

There is an impossible situation in the third level which never
happens (Fig. 14). If the second mismatch (mj versus mj′) generates
identical parities (pj = pj′), the third mismatch (mw versus mw′) will
then produce different parities exclusively (pw≠pw′). Therefore,
P(pw = pw′) = 0. Pdetection for three to five errors can also be
calculated by (14)–(16)

Pdetection(qError(s)) = ∑
n = 1

No . ticks
in level q

∏
m = 1

q
PNode on level m leading

tonthtickonlevelq
(11)

Pdetection(1Error) = 1 (12)

Fig. 12  Examples of parity-check process
(a) One error is detected, (b) Two errors are detected, (c) Two errors are not detected
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Pdetection(2Errors) = 1 − 1
r − 1 (13)

Pdetection(3Errors) = 1 − 1
r − 1

2

+ 1
r − 1 (14)

Pdetection(4Errors) = 1 − 1
r − 1

3

+ 2
r − 1 1 − 1

r − 1 (15)

Pdetection(5Errors) = 1 − 1
r − 1

4

+ 3
r − 1 1 − 1

r − 1
2

+ 1
r − 1

2 (16)

Fig. 15 displays detection probability versus the number of errors
in different radixes. It shows that the presented MPG operators are
generally capable of detecting errors with high probability. In
addition, detection probability increases in higher radixes. For
instance, errors are detected with ∼85% probability in base 8.
Another noticeable observation is that it is less likely to detect two

errors compared to when there are more, e.g. three errors. Finally,
(12)–(16) show that detection probability is independent of the size
of dataword.

The error detection probabilities presented in (13)–(16) are
directly derived from (11) and Fig. 14. Fig. 14 is a binary tree
representing all of the successful and unsuccessful error detection
scenarios and probabilities for up to five errors. The binary tree can
be expanded for a larger number of errors. Equation (11) is simply

correct because ∑n = 1

No . ticks
in level q ∏

m = 1

q
P + ∑n = 1

No . crosses
in level q ∏

m = 1

q
P = 1. In other

words, for every level we have PSuccessfulDetection = 1 − 
PUnsuccessfulDetection. We will also verify the equations by means of
a formal verification method in the next subsection.

4.2 Formal verification

A model checking formal verification method is used here to verify
the probability equations (13)–(16). A labelled transition system
(LTS) is utilised for behavioural modelling of the MPG operator in
base 3 (MPG(3)). The state space exploration for the behavioural

Fig. 13  Two datawords with five mismatches
(a) Dataword(1), (b) Dataword(2)

 

Fig. 14  Tree diagram of the possible outcomes for up to five errors and their detection probabilities (with reference to Fig. 13)
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model is depicted in Fig. 16. Base 3 is exemplified here for the
sake of simplicity; however, LTS models for MPGs in higher
radixes are also achieved. The definition for formal specification
model is as follows.
 

Definition 1: The parity error detection model in base 3 is
mapped on a specific LTS, which is represented by a 4-tuple [40]:
MPG(3) = (S, s, E, ℛ), where: 

• S is a set of nine states, S = {S1, S2, S3, S4, S5, S6, S7, S8, S9}. A
state represents a record of MPG(3) truth table (Table 1) with the
structure of (x,y) | MPG(3)(x, y), where x and y are the input
arguments for the MPG operator. All of the states are shown in
Table 1.

• The initial state is s (s∈S). Note that there is not a specific
initial state, and the state machine can start from an arbitrary
state depending on the first two digits of dataword/codeword.

• All of the events are denoted by E. An event is in fact the next
unprocessed digit. Thus, E∈{0, 1, 2}. In addition, an event
shows a transition relation between two states.

• A transition relation, ℛ, is presented by the existing states and

events: ℛ⊆S × E × S. The relation s1 →
e

 s2 (s1,s2∈S and e∈E)
is applied to the state that (s1,e,s2)∈ℛ. A transition relation
between two states and the related event is defined with (x1, y1) |

MPG(3)(x1, y1) →
y2

 (MPG(3)(x1, y1), y2) | MPG(3)(MPG(3)(x1, y1),
y2). It actually forms a recursive function where the generated
parity in a state becomes the first input argument of the next
state.

After specifying the formal concepts in the LTS structure, the
behavioural model is translated into a symbolic model verifier
(SMV) code to verify the system correctness in the NuSMV model
checker [41]. The flowchart of Fig. 17 demonstrates the code
sequence diagram. At first, a random dataword is generated. Then,
errors are deliberately inserted in some accidental positions.
Finally, p′ and p″ are compared with each other.

In the NuSMV, flatten hierarchical method generates a state
space graph for the MVL model to analyse the error detection
reachability (EDR). Fig. 18 demonstrates EDR versus the number
of errors in different radixes. Each run contains 10000 128-bit

random data string samples. The experimental results in Fig. 18
confirm our analytical results in Fig. 15. Fig. 18 also provides a
comparison between binary and MPGs. Binary XOR can always
detect an odd number of errors (EDR = 100%), but it can never
detect an even number of errors (EDR = 0%).

The same analysis is also carried out for datawords with
different sizes (8-, 16-, 32-, 64-, and 128-bit datawords). The
experimental results are displayed in Fig. 19. The curves are almost

Fig. 15  Pdetection versus number of errors in different radixes; obtained
from our analytical results (12)–(16)

 

Fig. 16  LTS-based structure for the MPG operator model in base 3
 

Table 1 States and events of MPG(3) table model
x y MPG(3)(x, y) State
0 0 0 S1 = (0,0)|0
0 1 1 S2 = (0,1)|1
0 2 2 S3 = (0,2)|2
1 0 2 S4 = (1,0)|2
1 1 0 S5 = (1,1)|0
1 2 1 S6 = (1,2)|1
2 0 1 S7 = (2,0)|1
2 1 2 S8 = (2,1)|2
2 2 0 S9 = (2,2)|0

 

Fig. 17  SMV code sequence diagram
 

Fig. 18  EDR (%) versus number of errors in different radixes; obtained
from our experimental results
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straight lines, implying that error detection probability is
independent of dataword size. The negligible fluctuations are due
to the probabilistic nature of the proposed MPGs. For instance, as
exemplified before in Fig. 12, a particular pattern of two errors is
successfully detected (Fig. 12b), while another one with the same

number of errors is not (Fig. 12c). Therefore, EDRs for different
dataword sizes with a fixed number of errors are not exactly alike,
but very close to each other due to the law of large numbers. We
have considered a large number of trials, 10,000 dataword samples,
so that the obtained results become close to the expected values.
Furthermore, EDR values in Figs. 18 and 19 (simulation results)
entirely match with EDR values in Fig. 15 (analytical results).

Eventually, Monte Carlo simulations are taken into
consideration to test and model the presented MPG operators over
a non-binary symmetric channel (NBSC) [42, 43], where errors are
independent and every bit transmitted has a fixed probability of
error p. It is a natural probabilistic extension of the binary
symmetric channel [42]. The error probability model of an NBSC
in radix r is shown in Fig. 20 [43]. The conditional probabilities of
such a channel are demonstrated in (17) and (18), where transmitter
(T) sends a digit (m), and receiver (R) gets either a right (m) or
wrong (m′) digit

P[R = m T = m] = 1 − p (17)

P[R = m′ T = m] = p
r − 1 (18)

The percentage of EDR versus BER is depicted in Fig. 21, in
which BER and p as defined in Fig. 20 are equivalent. As it is
clear, the proposed MPGs provide higher EDRs than binary XOR.
In lower BERs, mostly single-digit errors happen, which are
always detectable in base 2. However, in higher BERs, where there
is a 50–50 chance of an odd and even number of errors, EDR for
binary XOR approaches 50%.

5 Conclusion and future works
Some parity-generating operators, which are non-commutative,
non-associative, and non-self-reversing, have been given in this
paper. None of these characteristics is essential to create an MPG
operator in the context of error detection. Instead, there are three

Fig. 19  EDR (%) versus dataword size (8, 16, 32, 64, and 128 bits) and number of errors; obtained from our experimental results
 

Fig. 20  NBSC model in radix r with probability of error p [43]
 

Fig. 21  EDR (%) versus BER; obtained from our simulation results over a
NBSC
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other necessary properties and requirements for the creation of
MPGs. Afterwards, some MPG operators in bases 3 to 8 have been
presented based on the idea of Sudoku puzzles. However, MPG
tables are not unique, and one can define several other MPG
operators by considering permutations and other Sudoku-like
solving algorithms. This gives circuit designers a chance to reach
the most efficient design in terms of hardware implementation.
MPG operators can be realised in transistor level [20] or with look-
up tables (LUTs) [44].

We have made the following observations based on our
theoretical analyses and simulation results:

(i) The proposed MPGs can successfully detect all of the single-
digit errors, and even a larger number of errors with high
probability ( ≥ 50%).
(ii) Detection probability increases in higher radixes. Nevertheless,
high-order MPGs need more complex encoding and decoding
procedures. Larger LUTs or more complicated circuits are required
to implement MPGs in higher bases.
(iii) Detection probability does not necessarily decrease as the
number of errors increases. In spite of its apparent irregularity, the
same thing actually happens in binary logic as well. For example,
binary XOR can detect three errors, but not two. Error detection in
MVL is a matter of probability. With similarity to binary logic,
three errors in MVL are detected with higher probability than two.
(iv) Binary SPC can detect all of the errors caused by odd numbers
of error bits. However, the MPG counterparts do not have the same
capability with 100% detection probability. On the other hand,
binary XOR fails to reveal incorrect data delivery when an even
number of errors occurs in a data stream. This time, MPGs gain the
upper hand and can detect an error with more than 50% probability.
Generally, MPG operators are more powerful in detecting errors
than binary XOR, especially in channels with high BERs.
(v) Detection probability is independent of the size of dataword.

Finally, we point out some open problems and possible future
works regarding the topic of this paper:

(i) The proposed MPG operators can be realised in transistor level
or with LUTs, and their implementation complexities can also be
calculated. On the one hand, MPGs provide higher error detection
probabilities than binary XOR. On the other hand, it is evident that
more transistors and larger LUTs are needed to realise MPGs.
(ii) It is possible to define different MPG tables in a specific radix
for the purpose of error detection. Which MPG table is more
appropriate for circuit realisation is still an open question.
(iii) The given MPGs are in fact equivalent to binary parity
generator in higher radixes. However, their relation to GF
arithmetic is another open question. It will be interesting to study
whether or not the proposed MPGs are actually the XOR version of
a GF.
(iv) The analogy of MVL parity-check matrices (PCMs) as well as
their Hamming weight spectrums to their binary counterpart can
further be investigated. It would be interesting to create a whole
class of error detection/correction for MVL data based on the
proposed MPGs.
(v) The presented MPG operators can be applied to the formulation
of PCM of NB-LDPC. It is also possible to create MDPC codes for
the purpose of error correction.
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