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Abstract—One of the most challenging problems associated
with operation of smart micro-grids is the optimal energy man-
agement of residential buildings with respect to multiple and
often conflicting objectives. In this paper, a multiobjective mixed
integer nonlinear programming model is developed for optimal
energy use in a smart home, considering a meaningful balance
between energy saving and a comfortable lifestyle. Thorough
incorporation of a mixed objective function under different sys-
tem constraints and user preferences, the proposed algorithm
could not only reduce the domestic energy usage and utility
bills, but also ensure an optimal task scheduling and a ther-
mal comfort zone for the inhabitants. To verify the efficiency
and robustness of the proposed algorithm, a number of simula-
tions were performed under different scenarios using real data,
and the obtained results were compared in terms of total energy
consumption cost, users’ convenience rates, and thermal comfort
level.

Index Terms—Demand response, energy management system,
micro-grid, smart home, thermal comfort zone.

I. INTRODUCTION

THE PRESENT and future smart grids play important
roles in delivery of electricity from suppliers to indus-

trial, commercial, and residential zones in an efficient, reliable,
and secure manner. With the aid of such intelligent grids
in micro/macro scales, not only the wasteful use of energy
for householders and business owners would be decreased,
but also further utilization of renewable energy sources will
be provided. Regarding a smart micro-grid (SMG), two-
way digital communications between the utility and common
household devices could be enabled through the joint opera-
tion of smart energy management systems and advanced smart
grid components, giving the users tools to improve their energy
efficiency and to participate in programs such as time-of-day
pricing for lowering their costs of energy consumption [1].
Since buildings contribute to a major portion of overall
electricity consumption, many researchers around the world
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have elaborated on demand-side energy management problem
and have proposed a large number of power scheduling
schemes both in domestic and residential sectors [2]–[12].
As an example, Molderink et al. [2] presented a domestic
energy management methodology based on the optimal switch-
ing of thermal appliances to minimize energy consumption
costs, while considering thermal constraints. In a similar way,
Mohsenian-Rad and Leon-Garcia [3] proposed an optimization
algorithm for minimization of users’ electricity bills consider-
ing their comfort levels as the problem constraints. Although
the authors introduced the waiting time ranges as measures
of the user’s comfort, they failed to model the behaviors of
different home appliances. Mohsenian-Rad et al. [4] proposed
a game-based approach for optimal energy management of a
residential building and justified the goodness of the global
state by giving some reasons, but they failed to consider the
user’s satisfaction degree as an objective for efficient task
scheduling. Optimal scheduling of in-home appliances with
storage device buffering has been also presented in [5] con-
sidering the total cost minimization as the objective of the
optimization problem. Likewise, an appliance commitment
algorithm for household load scheduling has been intro-
duced in [6] considering the minimum electricity consumption
cost as the only objective. Beyond what has been stated in
the field of demand-side management in smart grids, there
exist numerous techniques in recent works, which have been
applied for domestic energy management and task scheduling
aims [7]–[12]. Although these techniques have been mainly
based on deterministic and/or meta-heuristic methods, they
have failed to consider the users’ convenience and com-
fort levels as competitive objectives in their optimization
problems.

To the best of our knowledge, none of the previous research
works have considered a detailed optimization problem, which
has taken into account the energy saving and comfortable
lifestyle as objectives of a realistic smart home energy man-
agement system. Therefore in this paper, a multiobjective
mixed integer nonlinear programming (MO-MINLP) model
is developed for optimal energy use in a home considering
energy saving, user’s convenience rate and thermal com-
fort level (TCL) as three dependent objectives. Moreover, a
composite architecture for home energy management system
is presented, where each in-home device can be modeled
as a collection of functions that represent its behavior.
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The main contributions of this paper could be summarized as
follows.

1) Joint scheduling and operation management of dif-
ferent household devices and energy supply options
is presented with regard to a new mixed objective
function.

2) User’s satisfaction degrees and comfort levels both
in thermal and electrical zones are formulated and
evaluated.

3) The overall energy management optimization framework
has been improved from a thermal view point through
introduction of different sources of heat generation and
various heat flows.

The rest of the paper is organized as follows. A
brief description of home automation/energy management
system (HAEMS) is presented in Section II. Section III
deals with optimal home energy scheduling and its problem
formulation. The case studies and simulation results are pro-
vided in Section IV, whereas Section V draws the conclusion
and future works.

II. HAEMS

Intelligent HAEMS is the key component of the future smart
homes that benefits from several communication domains,
including the smart meter domain (AMI), the internet
domain, and home area network (HAN) [13]. Generally, a
HAEMS receives information about task operating status,
usage requests, and network signals and sends control actions
back to the smart devices. It is a system that provides useful
feedbacks about consumption habits to the occupants, while
making control decisions autonomously. It uses information
about the home’s environment and operation in order to iden-
tify solutions for different user’s objectives such as energy
saving and a comfortable lifestyle. In other words, the task of
a HAEMS is to produce an optimal solution for the weighted
combination of objectives over a time horizon based on a series
of user’s inputs and control actions.

III. OPTIMAL HOME ENERGY SCHEDULING

A. System Description

In this paper, the case study includes a modern medium
size house in a residential micro-grid with a HAEMS and a
collection of schedulable devices that control the amount of
energy consumed (or produced) in the house over discrete time
steps (�hstep = 1 h) with regard to residents’ comfort levels
and energy consumption costs. The required thermal/electric
energy is provided both by the utility and internal energy
sources such as micro cogeneration systems and underfloor
heating/cooling units. The surplus of electrical energy could
be stored in batteries, while extra thermal energy could be
saved inside the tank in the form of hot water. Through the
use of smart meter, the HAEMS supports net metering, gets
real-time electricity price, and other input parameters (such as
outdoor temperature and devices requests) and defines the opti-
mal operation of in-home devices and demand response actions
in every decision period considering the user’s preferences,
devices’ constraints and total power limits in the house.

Fig. 1. Thermal modeling of a building.

B. Problem Formulation

The mathematical modeling of the aforementioned HAEMS
system is presented as follows.

C. House Thermal Model

When developing strategies to minimize the energy con-
sumptions within a building, it is crucial to understand the
sources of energy generation and losses. Considering an under-
floor heating/cooling system as the one shown in Fig. 1, the
heat can transfer through different paths: between the indoor
air node and the outdoor environment (φao) through thermal
resistance Rao, between the floor and the indoor air (φfa)
through thermal resistance Rfa, and finally between the floor
and the ground (φfg) through thermal resistance Rfg. Based
on a simple lumped model, the thermal resistance across a
layer of area (A), thickness (x), and thermal conductivity (k)
is defined as [14], [15]

Rlayer = x

k · A
= Rvalue

A
. (1)

Once the thermal resistances are defined, the mentioned heat
flows could be calculated as follows:

φao(h) = (Tindoor(h) − Toutdoor(h)) /Rao (2)

φfa(h) = (Tfloor(h) − Tindoor(h)) /Rfa (3)

φfg(h) = (
Tfloor(h) − Tground(h)

)
/Rfg

∼= (Tfloor(h) − Toutdoor(h)) /Rfg (4)

where, T indoor(h), Toutdoor(h), and Tground(h) are the temper-
atures of indoor air, outdoor environment, and the ground at
hour h. In the above formulation, the assumption of Tground ≡
Toutdoor would also be fair due to the ventilated crawl space
in the house. In addition to heat transfers and losses, one
should also determine the sources of heat generation within
a building. In this paper, these sources mainly include the
buildings’ heating/cooling system, solar radiation, occupants’
metabolisms, and the effect of background electric appliances.
Although wind speed is regarded as another important factor
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that increases heat transfer to or from the building by increas-
ing the infiltration and the convection heat transfer coefficient,
its effect is neglected in this paper.

As the main source of thermal energy, the assumed heat-
ing/cooling system includes a heat pump, which heats up (or
cools down) the water and pumps it through the piping embed-
ded inside the floor of the house. In this regard, the amount
of thermal energy that is supplied to the floor of the house
(φHCS) is determined as follows:

φHCS(h) =
(

uHCS(h) · ηH(h)−
(1 − uHCS(h)) · ηC(h)

)
PHCS(h) (5)

0 ≤ PHCS(h) ≤ PHCS,max (6)

ηH,min ≤ ηH(h) ≤ ηH,max (7)

ηC,min ≤ ηC(h) ≤ ηC,max (8)

where, uHCS is a binary showing the system’s operation status
(“1” = Heating, “0” = Cooling), and PHCS (h) is the power
consumption of the heat pump at hour h limited by its upper
bound PHCS,max; ηH(ηC) is the heating (cooling) coefficient of
the performance (COP), which is roughly a linear function of
the outdoor temperature and is calculated as follows [15]:

ηH(h) =

⎧
⎪⎪⎨

⎪⎪⎩

ηH,min ; toutdoor(h) ≤ �tHO
ηH,max−ηH,min

tH−�tHO
(toutdoor(h) − �tHO) + ηH,min

;�tHO ≤ toutdoor(h) ≤ tH
ηH,max ; toutdoor(h) ≥ tH

(9)

ηC(h) =

⎧
⎪⎪⎨

⎪⎪⎩

ηC,min ; toutdoor(h) ≥ �tCO
ηC,min−ηC,max

tC−�tCO
(toutdoor(h) − �tCO) + ηC,min

; tC ≤ toutdoor(h) ≤ �tCO
ηC,max ; toutdoor(h) ≤ tC

(10)

where, tH(tC) is the temperature of fluid that flows under the
floor when heating (cooling) and �tHO(�tCO) is the tempera-
ture difference between tH(tC) and the outdoor temperature.
Similarly, ηH,min(ηC,min) and ηH,max(ηC,max) are the theo-
retical lower and upper bounds of heating (cooling) COP,
respectively.

Solar radiation, as the second energy source, plays a major
role on the heating/cooling of a building. Since solar radiation
enters the house through the windows directly, and is absorbed
by the walls and the roof (which is released later in the day),
it has a considerable effect on the peak cooling load of a
building. In this regard, as shown in Fig. 2, the hourly heat
flow into an exterior surface of a building subjected to solar
radiation can be expressed as

φsurface(h) = φconv(h) + φsolar(h) − φradiation correction(h)

= hoAs (Toutdoor(h) − Tsurface(h)) + αsAsϕsolar(h)

− εAsσ
(

T4
outdoor(h) − T4

surr(h)
)

= hoAs

(
Teq_out(h) − Tsurface(h)

)
(11)

where, ho is the combined convection and radiation heat trans-
fer coefficient in W/(m2.K), αs is the solar absorptivity and ε

is the emissivity of the surface, ϕsolar is the solar radiation
incident on the surface in W/m2, and σ is Stefan–Boltzmann
constant [= 5.67 × 10−8 W/(m2.K4)]. The first term on the

Fig. 2. Solar radiation effect on heating and cooling of a building.

right-hand side of (11) represents the convection and radia-
tion heat transfer to the surface when the average surrounding
surface and sky temperature are equal to the outdoor air tem-
perature (Tsurr = Toutdoor) and the last term represents the
correction for the radiation heat transfer when Tsurr �= Toutdoor.
Equation (10) can be written as

Teq_out(h) = Toutdoor(h) + αsϕsolar(h)

ho

− εσ
(
T4

outdoor(h) − T4
surr(h)

)

ho
(12)

where, Teq_out is the equivalent outdoor air temperature due
to the solar radiation effect. Once Teq_out is available, the heat
transfer through an exterior surface (such as a wall or a roof)
into the indoor environment could be expressed as follows:

φsa(h) = UAs
(
Teq_out(h) − Tindoor(h)

)

= Teq_out(h) − Tindoor(h)

Rsa
. (13)

In (13), U and Rsa are the overall heat transfer coefficient
and thermal resistivity of the exposed surface, respectively,
and As is the surface area.

Similar to other sources of thermal energy, the heat given
off by the occupants’ metabolisms, lights, appliances, and mis-
cellaneous equipment such as computers, contribute to the
internal heating of a building. Although such a heat gain dif-
fers during various users’ activities, its average amount could
be determined from the people’s lifestyle. Putting all the men-
tioned thermal models into a nutshell, the temperature state
functions of a given house could be determined as follows:

Tfloor(h) = Tfloor(h − 1)

+ �hstep

mf cp, f

(
φHCS(h) + φsf(h) − φfg(h) − φfa(h)

)

(14)

Tindoor(h) = Tindoor(h − 1)

+ �hstep

ma cp,a

(
φfa(h) + φsa(h) + φihg(h) − φao(h)

)

(15)
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where, mf , ma, cp,f , and cp,a are the mass and specific heat
capacity coefficients of the floor and air, respectively; φihg(h)
is the internal heat gain of the building from the occupants’
metabolisms and other home appliances at hour h, and φsf(h)
is the heat obtained directly from solar radiation when it
enters the house through the windows; and is absorbed by
the floor area (Af ) with solar absorptivity of αf . Without loss
of generality, φsf(h) can be stated as follows:

φsf(h) = αf · ϕsolar(h) · Af . (16)

D. Fuel Cell Cogeneration System

In this paper, a micro-combined heat and power system
(micro-CHP) composed of a water tank, a backup boiler, and
a fuel cell (FC) unit is considered as a residential cogenera-
tion system to serve the home’s hot water needs and provide
unmet electrical demand through its cost-effective operation.
In a FC-based micro-CHP system, the FC unit converts natural
gas GFC into electricity Pe

CHP and heat Pth
CHP as follows:

Pe
CHP(h) = GFC(h)

Gref
· ηe = Pth

CHP(h) · ηe

ηth
(17)

where, Gref is the natural gas consumption rate of a CHP
system for producing 1 kWh energy and ηeand ηth are the
electric and thermal efficiencies of the FC unit, respectively.
The electrical and thermal power outputs of a micro-CHP unit
are constrained by certain minimum and maximum capacities
as well as ramp rates modeled as follows:

uCHP(h) · Pe
CHP, min ≤ Pe

CHP(h) ≤ uCHP(h) · Pe
CHP, max (18)

uCHP(h) · Pth
CHP, min ≤ Pth

CHP(h) ≤ uCHP(h) · Pth
CHP, max (19)

∣∣Pe
CHP

(h) − Pe
CHP

(h − 1)
∣∣ ≤ Pe

CHP, ramp. (20)

The same constraints must also be satisfied for the backup
(auxiliary) boiler

uaux(h) · Pth
aux, min ≤

(
Pth

aux(h) = Gaux(h)

Gref
· ηaux

)

≤ uaux(h) · Pth
aux, max (21)

where, Pth
aux, min and Pth

aux, max are the minimum and max-
imum heat outputs of the auxiliary boiler, ηaux is the boiler
efficiency and Gaux(h) is the total gas flow to the backup system
at hour h. The binary variables uCHP and uaux also denote the on
(“1”) or off (“0”) states of the corresponding units. If the inter-
action of available hot water in the system tank and the cold
water from the water inlet is considered, the energy storage
content Qst (h) can be updated at each time step as

Qst(h + 1) = Qst(h) +
(

Pth
CHP(h) + Pth

aux(h)−
Pth

demand(h) − Pth
loss(h)

)
· �hstep (22)

where, Pth
demand(h) and Pth

loss(h) are the heat demand and heat
loss of the hot water storage at hour h, respectively. Likewise,
the water storage temperature at each hour (Tst(h)) could be
updated according to the following equations:

Tst(h + 1) = V th
demand(h) · (Tcw − Tst(h)) + Vtot · Tst(h)

Vtot

+ Pth
CHP(h) + Pth

aux(h)

Vtot · Cw
− Ast

Rst
(Tst(h) − Tb(h)) (23)

Tst,min ≤ Tst(h) ≤ Tst,max (24)

where, V tot and V th
demand(h) are the total storage volume

and hourly occupants’ hot water demand in liter, and Tcw
and Tb(h) are the entering cold water and the basement
temperatures, respectively. The last term on the right side
of (23) refers to the thermal losses of the tank (to the
environment), which greatly depends on the surface area of
the tank (Ast), R-value of the insulation material (Rst), and
the temperature difference between the hot water and the
basement.

E. Energy Storage Device

A modern household in a SMG is expected to be equipped
with some form of energy storage/production devices such
as batteries or plug-in hybrid electric vehicles (PHEVs). To
keep high battery efficiency, the charging/discharging power
and the state-of-charge (SoC) should be constrained within
certain ranges as follows:

PBatt,ch(h) ≤ Pch,max · ηch · uBatt(h) (25)

PBatt,dch(h) ≤
(

Pdch,max

ηdch

)
· (1 − uBatt(h)) (26)

SoCmin ≤ SoC(h) ≤ SoCmax (27)

where, Pch,max and Pdch,max are the battery maximum charg-
ing and discharging powers and SoCmin and SoCmax are the
lower and upper bounds of the battery’s SoC, respectively.
In a similar manner, ηch and ηdch are the battery’s charging
and discharging efficiencies, and uBatt(h) is a binary variable
that shows the battery’s status at hour h (“1” = charging and
“0” = discharging). Considering the above constraints, the SoC
update function is given by

SoC(h + 1) = SoC(h) +
(
PBatt,ch(h) − PBatt,dch(h)

) · �hsetp

EBatt
(28)

where, EBatt is the battery capacity in kWh. Although a PHEV
is essentially the same as the battery, a few additional con-
straints such as the trip signal (showing that the PHEV battery
could only be charged/discharged when it is at home) and
hourly SoCmin (showing that minimum energy of the PHEV
battery) must be satisfied as well.

F. Schedulable Tasks and Residential Load Model

Residential loads generally fall into two categories:
1) schedulable loads (shiftable and curtailable tasks); and
2) fixed loads. While loads such as refrigerator and stove are
regarded as fixed ones, the space heating and cooling, vacuum
cleaner, washer, and dryer are examples of schedulable tasks
that use most of the electricity in a household and have differ-
ent behaviors in response to changes in the price of electricity
over time [16]. With a focus on shiftable loads, there exists
several parameters that should be set by the residents for effi-
cient scheduling, including the utilization time range (UTRi =
[hs,i, hf ,i]) during which, task i is valid for scheduling; the
preferred time range (PTRi = [he,i, hl,i]) during which, task i
is better to be scheduled according to the user’s preferences;
the length of operation time (LOTi), and the estimated energy
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consumption (EECi). Through these definitions, the power
consumption of shiftable task i at hour h would be

PDschd,i(h) = EECi

LOTi
· si(h); ∀ (h ∈ UTRi , i ∈ N) (29)

where, si(h) is a binary value with “1” for task i scheduling
and “0” for task i dropping. For each task, from the set of
schedulable tasks N, there are also several constraints that must
be met suitably: first, task i must be completed before the end
of optimization time hf ,i

hf ,i∑

h=hs,i

si(h) = LOTi. (30)

Second, some tasks need to run once within a time window
and should not be turned off before the completion

hf ,i∑

h=hs,i

|si(h) − si(h − 1)| ≤ 2. (31)

Third, one task (e.g., task j) may depend on the completion
of another task (e.g., task i)

hf ,j∑

h=hs,j

sj(h) · H

⎛

⎜
⎝λ − LOTi +

h∑




h=hs

si(



h)

⎞

⎟
⎠ = LOTj (32)

where, hs= min(hs,i,hs,j), λ is a positive number smaller than
1 and H(·) denotes a Heaviside step function. It is worth to
note that the scheduling status of any given task is set to zero
out of its utilization time range.

Fourth, if a large time gap between the operations of two
consecutive tasks is not desired, the following constraint must
be considered as well:

Ord
( 


h
)

· H
(

sj(



h) − sj(



h −1) − λ
)

≤ (Ord (h) − 1) · H (si(h − 1) − si(h) − λ)

+�i,j; ∀
(

h ∈ UTRi ,



h∈ UTRj

)
(33)

in which, Ord(·) is a function that returns the relative posi-
tion of a member in a given set and �i,j is the maximum
allowed time gap between the operations of two consecutive
tasks i and j. In addition to the aforementioned constraints,
there exists a common constraint for the maximum allowable
power consumption of a house (Pmax

House) as follows:

PD(h) = PDfix(h) +
N∑

i=1

PDschd,i(h) ≤ Pmax
House. (34)

G. Objective Functions

Objective 1: Minimization of the total operation cost.
The total cost of operation in short-term for a typical house

includes the costs of power exchange with the utility and the
fuel cost of cogeneration system

Min : Cost

=
T∑

h=1

⎛

⎝
ρgrid(h) · Pgrid(h)

+ρgas · (uCHP(h) · GFC(h) + uaux(h) · Gaux(h))

+SCHP |uCHP(h) − uCHP(h − 1)|

⎞

⎠

(35)

where, ρgrid(h) and Pgrid(h) are the real-time electricity price

and the amount of power bought (or sold) from (or to) the
utility at hour h, respectively; ρgas is the natural gas price in
cent per cubic meter, and GFC(h) and Gaux(h) are the total
amount of gas consumed by the FC unit and the auxiliary
boiler at hour h, respectively. To avoid intermittent operation of
a micro-CHP system and meet the thermal load continuously,
the start-up/shut-down cost (SCHP) is also introduced for such
a system.

Objective 2: Maximization of the user’s convenience
level (UCL).

As mentioned beforehand, all schedulable tasks in a home
have their own utilization and PTRs, which can be used as
measurement tools for the UCL and the satisfaction of the
users could be obtained when those tasks are executed at
different times. To include the user’s satisfaction level as
an objective function, the following formulation could be
introduced:

Max : UCL =
N∑

i=1

wi · CV i(h) (36)

where, wn ε {1,2,3} is the weight coefficient reflecting the
significance of task i from the lowest priority “1” to highest
one “3,” and CVi(h) is the user’s convenience value when task
i is executed at hour h

CV i(h) =
⎧
⎨

⎩

1; h ∈ PTRi(
H(he,i − h) · (

αe · exp
(
h − he,i

))

+H(h − hl,i) · (
αl · exp

(
hl,i − h

))
)

; Oth

(37)

where, αe, αl ε R+are the leading coefficients of the natural
exponential functions used for controlling the penalty values
over the optimization process, and H(·) is a Heaviside step
function.

Objective 3: Maximization of the TCL.
From a heating/cooling viewpoint, a user’s comfort mainly

depends on three environmental factors including the tem-
perature, relative humidity, and the air motion among which
the indoor temperature is the most important one. Moreover,
according to the extensive research works on human’s ther-
mal comfort zone, it has been observed that most of normally
clothed people (resting or doing light work) feel comfortable in
the operative temperature range of 23–27 ◦C [14]. Considering
the above statements, the TCL for a human body could be
described as follows:

Max : TCL =
T∑

h=1

CLth(h) (38)

where, CLth(h) represents the level of thermal comfort experi-
enced by the inhabitants at each time step and is formulated as

CLth (h) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βc · exp (Tindoor(h) − Tset + �Tther)

; Tindoor(h) − Tset < −�Tther
1 ; |Tindoor(h) − Tset| ≤ �Tther
βh · exp (Tset + �Tther − Tindoor(h))

; Tindoor(h) − Tset > +�Tther

(39)

where, Tset is the user-specified set point for indoor tem-
perature and �T ther is the threshold temperature difference.
βc, βh ε R+ are also the leading coefficients of the natural
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Fig. 3. Structural layers of the floor.

exponential functions used for adjusting the penalty values
assigned to the undesirable lower and higher temperature
differences, respectively.

H. Optimization Model

Since optimal energy management of a residential building
inherently involves multiple, conflicting, and incommensurate
objectives as mentioned before, a mixed objective function is
proposed as the model of optimization

Min : J = Cost

ξ1 · UCL + ξ2 · TCL
(40)

where, ζ 1,2 ε [0, 1], ζ 1 + ζ 2 = 1 are the weighting coefficients
determined by the residents and represent the significance of
individual objectives shown in (36) and (38), respectively. The
above mixed objective function must be optimized subject
to the following demand-supply balance equation and all the
previously mentioned constraints for the considered problem:

Pgrid(h) + Pe
CHP(h) − (

PBatt,ch(h) − PBatt,dch(h)
) = PD(h).

(41)

IV. SIMULATION RESULTS

For the simulation studies, one of the variations of a real
single-zone, low-energy house in Sydney (latitude 33.86◦S
and longitude 151.21◦E) is considered as the case study [17].
The house is oriented north, fully exposed to solar insolation
and has a floor area of 201.2 m2. The North/South and the
East/West facing walls are also 56 m2 and 28.2 m2, respec-
tively. All sides of the house are equipped with double-glazed
windows to the outside environment with areas of 15 m2 and
7 m2 on the North and the South sides, and 4 m2 on the
East/West sides, respectively. All window areas include 10%
of window frame areas and no blinds or shading devices asso-
ciated with them. Both the walls and the flat roof of the
house are comprised of the same structural insulated pan-
els with R-value of 6.25. The floor structure is also shown
in Fig. 3. All the controllable devices and schedulable loads
mentioned in Section III are also implemented and included

TABLE I
PARAMETERS USED IN COMPUTER SIMULATIONS

TABLE II
SCHEDULABLE TASKS PARAMETERS

in the experimental house using the parameters shown in
Tables I and II, respectively.

Similarly, the hourly electrical power consumption of the
house along with the hot water demand is shown in Fig. 4.
In the same figure, the two-period moving average trend-line
of the electrical demand is presented for better understanding
of the user’s consumption behavior, as well.

To include both the heating and cooling cases, two differ-
ent simulations regarding cold and hot weather conditions are
also executed with the same scenario but with different exter-
nal parameters such as outdoor/basement temperatures, solar
radiations, and real-time utility electricity prices, as shown in
Figs. 5 and 6, respectively. It is noteworthy that the natural
gas price is assumed to be 33 ¢/m3 all year round [18].

Moreover, we compare the performance of the proposed
algorithm through three different controlling scenarios: naive,
normal, and smart. The naive scenario describes a situation in
which the household does not possess or run a HAEMS; there-
fore there is no ability for responding to the RTP and managing
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Fig. 4. Total electrical and hot water demands.

Fig. 5. Weather observations for the Sydney area [19].

Fig. 6. Real-time utility electricity price [20].

the controllable devices according to different objectives. The
tasks are executed upon the user’s requests and the indoor
temperature is maintained within the thermal comfort zone.

The normal controller gets real-time price signal and deter-
mines the tasks scheduling in a cost-effective way under
RTP changes; however, user’s preference is not considered as
an objective. It also tries to maintain the house within the
comfortable temperature ranges.

Unlike the previous models, the smart controller benefits
from a fully-featured HAEMS and solves the optimization
problem over the whole experiment duration. The controller
not only reduces the domestic energy use, but also ensures
an optimal task scheduling and a thermal comfort zone for

Fig. 7. Controllers’ performances for the examined cooling/heating scenarios.

TABLE III
CALCULATION TIMES OF THE CONTROLLING ALGORITHMS

UNDER DIFFERENT SCENARIOS

the inhabitants under different system and user’s imposed
constraints. It should be mentioned that all of the algo-
rithms and simulations were carried out on a PC with an
Intel i5-2430M chip running Windows 7 (64-bit) with GAMS
and Cplex/Dicopt solvers. Since GAMS is a high-level model-
ing system designed for solving linear, nonlinear, and mixed-
integer optimization problems, it is selected as the main
optimization engine. Also, Cplex/Dicopt solvers are utilized
to allow users to combine the high level modeling capabilities
of GAMS with the power of such optimizers. These solvers
basically designed to solve large and difficult problems quickly
and with minimal user intervention. Moreover, the mentioned
solvers could automatically calculate and set most options at
the best values for specific problems.

The controllers’ performances are plotted in Fig. 7 for each
of the examined cooling/heating scenarios. The required com-
putational times for the mentioned algorithms are reported in
Table III as well.

As observed from the simulations results, the smart con-
troller demonstrates superior performance in comparison with
the other controllers taking into account the three mentioned
objectives in both scenarios. It has improved the mixed objec-
tive function value (Mobj) up to 55% and 25% with respect
to the naïve and normal controllers in a hot weather condition
and up to 63% and 38% in a cold weather condition. It can
be also seen that the performances of the normal and smart
controllers get quite close to each other in terms of cost reduc-
tion, and they produce significant energy savings compared to
the naïve controller. Although the performances of the three
controllers are quite competitive to each other in maintaining
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Fig. 8. Heat flows through different paths for the examined cooling/heating
scenarios.

a thermal comfort zone [TCR = (TCL/TCLmax) × 100], the
normal controller fails to fully satisfy the user’s task schedul-
ing needs in terms of the UCR index [UCR = (UCV/UCVmax)
× 100]. From the same figure it can be observed that the con-
trollers’ performances are not the same in heating and cooling
scenarios mainly due to the sun effects on the peak cooling
load of a building. As shown in Fig. 8, in a hot weather condi-
tion, not only the solar heat enters the house directly through
the glazing, but also the heat transfers from the exposed side
of the building (including walls and the roof) to the indoor
environment, which in turn increases the indoor temperature
and decreases the cooling capacity of the system. It is also
noteworthy that the running times of the above mentioned
algorithms under different operating conditions are less than
5 s in worst cases, which are indeed small values in com-
parison with the typical 1-h time resolution of the simulated
scenarios.

To get better insights about the smart controller perfor-
mances, the optimal operation of the household devices,
FC-based micro-CHP unit, and battery along with the amount
of power exchange between the house and the utility are also
shown in Fig. 9 for the given demand profiles in a typical
hot weather condition. Likewise, the optimal operations of the
heating systems with regard to the thermal demand and user’s
comfort level are shown in Fig. 10 for two different scenarios
including the case in which, a detailed thermal model (DTM)
is incorporated and the one without a detailed model (NDTM).

As it can be seen in Fig. 9, during some periods of
time when the real-time electricity prices are relatively low
(e.g., 3:00–7:00 and 13:00–15:00), most of the residential load
is supplied by the utility; and the charging process of the bat-
tery is done with lower costs. With the growth of demand and
bids of the utility during the other hours of the day, in-home
units including the CHP and the battery, not only generate
electricity in a cost-effective way to meet the load, but also sell
the surplus of energy to the utility and make profits. Besides,
optimal scheduling of household devices is done effectively
regarding to associated operational constraints and user’s pref-
erences. As an example, for two consecutive tasks such as
washing machine and clothes dryer, although the latter must
run shortly after the former, its operation is delayed for one

Fig. 9. Optimal operation management of devices and units.

Fig. 10. Optimal operations of heating systems based on the thermal demand
and user’s comfort level.

hour considering the maximum allowed time gap between the
operations (�i,j = 2 h) and user’s preferences.

Similarly, as observed in Fig. 10, although the smart con-
troller maintains the indoor and the hot water temperatures
within the acceptable ranges through optimal controlling
of underfloor heating/cooling system and the micro-CHP
unit, there exist some differences between the operation of
the mentioned systems under DTM and NDTM scenarios.
Regarding to a DTM, the heat pump is run more to handle
more heat between the indoor and the outdoor environment
for the body comfort while in a NDTM there is no need for
frequent operation of the heating/cooling system. Likewise,
the variation of the indoor temperature within the acceptable
range is clearly observed in a DTM due to the heat flows
between the indoor node and the external environment,
such as walls, roof, and the sky, but such a variation is
not noticeable in case of NDTM. On the other hand, the
operation of CHP unit and the temperature of hot water are
slightly different in these scenarios because the heat loss of
the storage tank is not considerable in both cases.
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V. CONCLUSION

In this paper, a multiobjective MINLP-based smart energy
management system for residential scenarios has been
described and valuated through different operating conditions.
The proposed model, which benefits from a fully-featured
HAEMS, could schedule household devices and micro-sources
optimally taking into account a meaningful balance between
the energy saving and a comfortable lifestyle.

It was demonstrated (through simulation case studies) that
under different system and users imposed constraints the pro-
posed algorithm could not only reduce the domestic energy
use, but also ensured an optimal task scheduling and a ther-
mal comfort zone for the inhabitants. To verify the efficiency
and robustness of the proposed model, a number of simulations
were also performed under different heating/cooling scenarios
with real data and the obtained results were compared with
those from conventional models in terms of total operation
cost, user’s convenience rate, and TCL.

Future efforts will be mainly aimed at improving the
optimization framework by taking into account more real
smart-home settings and environments. This will allow us to
scrutinize how closely real conditions can be modeled with
uncertain parameters and random processes. We also need to
further investigate how different user’s preferences or pric-
ing schemes (such as flat rate and time of use) influence the
performance of the proposed algorithm. We will also conduct
more experiments on larger test systems such as a residential
micro-grid with multiple small or medium size houses and
investigate the effectiveness of our proposed architecture in a
multiagent based simulation environment.
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