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ABSTRACT Today, the US healthcare industry alone can save $300B per year by usingmachine intelligence
to analyze a rich set of existing medical data; results from these analyses can lead to breakthroughs such
as more accurate medical diagnoses, discovery of new cures for diseases, and cost savings in the patient
admission process at healthcare organizations. Because healthcare applications intrinsically imply a vast
amount of data, the execution of any algorithm on medical data is computationally intensive. Significant
advancements made in computational power in the past decade have provided the opportunity for many
researchers to successfully implement various machine intelligence-based healthcare applications, which
didn’t run efficiently on earlier computational platforms. In this paper, we provide a survey of machine
intelligence algorithms within the context of healthcare applications; our survey includes a comprehensive
list of the most commonly used computational models and algorithms. We view the application of these
algorithms in multiple steps, namely, data acquisition, feature extraction, and aggregation, modeling,
algorithm training, and algorithm execution and provide details—as well as representative case studies—
for each step. We provide a set of metrics that are used to evaluate modeling and algorithmic performance,
which facilitate the comparison of the presented models and algorithms. Medical cyber-physical systems
are presented as an emerging application case study of machine intelligence in healthcare. We conclude our
paper by providing a list of opportunities and challenges for incorporating machine intelligence in healthcare
applications and provide an extensive list of tools and databases to help other researchers.

INDEX TERMS Healthcare applications, medical decision support, machine intelligence, statistical signal
processing, machine learning, data mining, feature selection.

I. INTRODUCTION
Improving healthcare by taking advantage of today’s technol-
ogy is a global interest; based on a 2011 report by McKinsey
Global Institute [1], it is estimated that the US healthcare
alone can save 300 billion dollars annually by analyzing the
large corpus of healthcare data that has been accumulating for
decades. This corpus of data includes patient health records
(either in written or digital format) and past diagnoses and
outcomes [2], [3]. Despite the availability of this large vol-
ume of data, the amount of time it takes to process it —to
make practical inferences— is not a trivial task either for
computers or healthcare professionals [4]. A set of algorithms
designed to find statistical connections among events and
results efficiently has been the focus of research in both
electrical engineering and computer science disciplines for
decades. These algorithms are mathematical tools with the

ability to ‘‘learn’’ input-output correlations and create an
approximation to describe their relationship; they work on
existing data and can find either patterns in the data or ana-
lytical relations between the input and output data.

Successful application of a variety of machine intelligence
algorithms to medical data can revolutionize a wide range
of medical applications by improving diagnosis accuracy,
determining its cause and course of disease, and formulating
an effective treatment for diseases, among others. For exam-
ple, by training an algorithm on multiple images of a certain
medical condition from a set of prior patients, the existence of
that same medical condition can be detected in a new patient
by using the new patient’s image as the input to the algorithm.
A remote health monitoring system consisting of body-worn
sensors [5] that acquire data from a patient, transmit to the
cloud, and process it using machine intelligence can improve
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diagnostic accuracy, reduce healthcare costs due to the reduc-
tion in the time for in-patient care [6], and introduce new
business opportunities [7].

For a majority of the algorithms, the prediction accuracy
depends on an initial ‘‘training’’ phase, where the algorithm
learns how to predict the output based on a set of training data,
which includes known input-output pairs. This is in contrast
to sets of algorithms that do not need any training, because
their intended purpose is the discovery of patterns within the
data, without designating any of the data as ‘‘input’’ or ‘‘out-
put’’ to the algorithm [8]. The concepts of ‘‘training’’ and
‘‘pattern recognition’’ provide two counteracting forces in
using machine intelligence in healthcare; while an increase
in the amount of available training data increases the demand
for computational resources, a decrease causes a reduction
in algorithmic accuracy, despite a reduction in demand for
computational resources. Because the priority for medical
applications is typically algorithmic accuracy, it is reasonable
to expect that future healthcare applications that incorporate
machine intelligence will utilize large datacenters, potentially
rented from cloud operators such as Amazon EC2 [9].

Before selecting a machine intelligence algorithm, the first
step is generally the design of a model in which the form of
the input and output values are specified, as well as a tolerable
accuracy. The choice of algorithm depends largely on the
type of data, complexity of the model, and the goal. Since
checking and understanding the decision process of themodel
is sometimes of interest, interpretability of the model for
humans is another issue. Hence, the models should show the
relation between the variables and how each variable affect
the decision process with ease.

The remainder of this paper is organized as follows:
In Section II, we categorically list a set of healthcare applica-
tions that can benefit from machine intelligence and provide
an overview of the algorithmic flow in these applications.
In Section III, we provide a conceptual architecture of how
machine intelligence algorithms are used in these applica-
tions. We study the challenges related to the acquisition of
different types ofmedical data in Section IV and describe how
raw data can be turned into feature vectors and algorithms
to select the most useful set of these features in Section V.
In Section VI, we study the metrics that are used to com-
pare the performance of different models and algorithms.
In Section VII, we elaborate on the design of models that
are used to map healthcare applications to machine intel-
ligence algorithms and study commonly used models in
Section VIII. In Section IX, we provide an overview of the
goals, characteristics, and performance metrics for the algo-
rithms that are discussed in this paper and present an overview
of a large list of commonly-used machine intelligence algo-
rithms in healthcare applications in Section X. We dedicate
Section XI to Artificial Neural Networks (ANNs), which
demonstrated major success in the healthcare arena recently
and received growing interest. In Section XII, we investi-
gate Medical Cyber Physical Systems (MCPS), which are an
emerging application of machine intelligence in healthcare.

We provide a list of challenges and opportunities in
Section XIII to highlight the potential future applications of
machine intelligence algorithms in the healthcare domain.
Our concluding remarks are provided in Section XIV.
In Appendixes A and B, we categorically enumerate a list of
publicly-available medical databases and tools, respectively,
to aid readers of this paper in finding readily-accessible data
and tools for use in their research.

II. USING MACHINE INTELLIGENCE IN HEALTHCARE
APPLICATIONS
In this section, wewill discuss six specific healthcare applica-
tion categories in Sections II-A through II-F, which represent
the majority of existing applications that can benefit from the
usage of machine intelligence.

A. CLINICAL DIAGNOSIS
In clinical diagnosis, machine intelligence algorithms recog-
nize the existence of a symptom or a specific health con-
dition in a patient, which enables real-time monitoring of
patients via the analysis of large datasets that may include
3D images and long-term signal recordings. Following stud-
ies apply machine intelligence to Electrocardiogram (ECG)
recordings of patients to detect the existence health hazards:
Hijazi et al. [10] determine their likelihood of having two
types of arrhythmias (LQT1 and LQT2) and achieve a ≥
70% accuracy. Thakor and Zhu [11] take a different approach
for detecting multiple types of arrhythmias by first remov-
ing the noise in ECG recordings and using adaptive filters
and the least mean square algorithm. Bsoul et al. [12] use
single channel ECG recordings to detect obstructive sleep
apnea (OSA), thereby eliminating the need for a full sleep
study and achieve accuracies as high as≈90% in some cases.

The following two studies demonstrate the diagnosis of
cancer using machine intelligence. Mousavi et al. [13] iden-
tify glioma (a type of cancer that starts in the brain) in
histopathological images of patients and classify the exis-
tence of glioma into one of two known categories: low-grade
glioma and high-grade glioma. They achieve up to an 88%
in recognition rate. The study presented in [14] investigates
detecting the existence of melanoma using features such as
texture and color identify normal/abnormal skin regions.

The following studies detect the existence of mental disor-
ders by using machine intelligence. Patel et al. [15] develop
a wearable monitoring system that utilizes accelerometers
to derive gait and posture information, which identifies the
severity of some Parkinson’s disease symptoms The study
reports error rates as low as 1.2%. Klöppel et al. [16] analyze
the MRI brain images of patients to determine the existence
of Alzheimer’s Disease (AD) or Frontotemporal lobar degen-
eration (FTLD). Their methods rate more than 90% accurate
and in some cases are as accurate as 96.4%.

B. PROGNOSIS
In contrast to diagnosis, the term prognosis refers to the
monitoring of a patient for a specific health condition and
predicting how this health condition will evolve in the future.
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Machine intelligence is a viable candidate for this appli-
cation category because knowledge of the specific condi-
tion for which the patient is being monitored allows the
algorithm to use a well-known model and clearly-defined
input/output parameters, potentially yielding more accu-
rate results. Neuvirth et al. [17] use machine intelligence for
prognosis of diabetes patients to determine the probability
of a patient requiring emergency care by analyzing patient
claims, pharmacy purchases, lab test results, and personal
profile. Another study in [18] uses patient MRI scans to
classify a patient’s mental state as one of {Healthy, At-risk-
of-psychosis}; they achieve accuracies higher than 80%.
They also detect the probability of a patient’s transition from
an early stage psychosis to late stage psychosis. Therefore,
their application can be thought of as being dual-purpose:
i) diagnosis of psychosis and ii) prognosis of the transition
probability from one stage of psychosis to another.

Two other studies that use machine intelligence for prog-
nosis is as follows: Tamaki et al. [19] use clinical records of
school children to predict dental cavities. The study in [20]
takes biometric, lifestyle, and demographic variables of indi-
viduals to predict the probability of hypertension. Their best
model yields a 65% accuracy.

C. ASSISTIVE TECHNOLOGIES
This category of applications aims to utilize machine intelli-
gence to provide assistance directly to a patient, rather than
being used by the doctor. Typically, the input to an underlying
machine intelligence algorithm in this category comes from
one or more physiological bio–markers of the patient and the
output of the algorithm is used to energize multiple actuators
(e.g. a robotic or haptic device) or make suggestions to the
user. In this category, the receiver of the machine assistance
is not able to perform daily activities without some type
of assistance, whether machine-based, by a medical profes-
sional, or by a family member.

In the iSTRETCH system [21], moderate–level stroke
patients are provided with a haptic robotic device to assist
their upper-limb reaching rehabilitation. This rehabilitation
is typically provided within a hospital setting; an automated
rehabilitation strategy was implemented that is ≈90% in
agreement with a physical therapist. Another study to assist
dementia patients with their handwashing [22] is known as
the COACH system, which tracks individuals with varying
degrees of dementia using a single camera during hand wash-
ing and makes suggestions. A 25% reduction on caregiver
interventions is reported. In [23], an application scenario
for machine intelligence is described, where disabled indi-
viduals use intelligent robotic wheelchairs. A set of object
recognition algorithms that track and learn the movements
of the patient is utilized to provide assistance in using the
wheelchair.

D. PERSONAL HEALTH MONITORING
Personal health monitoring applications differ from assistive
technologies in that the intended recipient of the machine

intelligence-generated suggestions is a person who is capable
of performing daily activities and the goal of using these
suggestions is to improve and monitor personal health. This
contrasts with assistive technologies, in which the users
are not able to function on their own. Following studies
use machine intelligence to make critical suggestions to
patients who are suffering from an existingmedical condition.
Turksoy et al. [24] take continuous glucose measurements of
type 1 diabetes patients in a system named artificial pan-
creas control system, which detects the probable meal that
a patient had and its impact on glucose levels. The detection
result is used to administer insulin boluses and prevent hyper-
glycemia. In another application presented in [25], authors
focus on recovering stroke patients and their rehabilitation
routine. Their system includes sensors on the bottom and back
of patients’ shoes to detect posture and activities.

The following studies investigate the use of machine intel-
ligence in applications that detect physical activity and mood.
MyBehavior system [26] is a smartphone app that infers an
individual’s physical activity and dietary behavior by utiliz-
ing both automated and manual data logging. This app uses
the collected data to suggest changes that can lead to a lower
calorie intake and more physical activity. In a test of the
app involving 14 subjects, authors reported an overall statisti-
cally significant lifestyle change. In another physical activity
detection study, Zois et al. [27] use a Wireless Body Area
Network (WBAN) to detect activities of individuals in one
of four different categories: {Sit, Stand, Run, Walk}. Their
WBAN includes a mobile phone, three accelerometers, and
one ECG sensor. Zhou et al. [28] study mood detection for
people interacting with a computer and classify user mood as
one of the three states: {Positive, Neutral, Negative}. They
use multiple types of data (head movement, eye blink, pupil
radius, etc.) as input to their algorithm. In another study that
focuses on stress detection [29], authors use a wireless chest
belt that reads ECG and respiration signals and a hand sensor
that detects skin conductance and EMG signals. They classify
subjects’ mood as one of {Stress, Non-stress} conditions.

E. HEALTH-RELATED DISCOVERIES
Discovering previously unknown causal relationships in
healthcare datasets is another application of machine intel-
ligence. In these applications, existing databases, which may
be months, years, or centuries old and may be gathered from
diverse sources globally, are used to analyze the relationships
among different variables. Social network data proves to
be especially useful for this category, because the acquisi-
tion of data is not restricted to narrow geographic regions.
Tatonetti et al. [30] use data mining techniques to detect pre-
viously unknown interactions between drug pairs in FDA
adverse event reports. They hypothesize that a specific pair of
drugs act together and leads to an increase in blood glucose
levels; they use this cue as a guide and perform a clinical
test to validate the effect in a real world scenario. A different
study [31] aims to determine animals that may carry diseases
that are transmittable to humans based on the knowledge
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FIGURE 1. A conceptual diagram of a generalized health care application. Each functional unit is depicted as a box with an associated box number:
Box D is the entry point of the data into the application from one or many sources. Box FE is the initial pre-processing step to reduce the amount of data
that needs to be processed/stored by turning the raw data into a set of feature vectors. Box FA further reduces the number of features by aggregating
(fusing) them. Box A and Box M form the machine intelligence computational core, where the latter is optional in some applications. Box O is typically
the human that observes the data and uses it in some health care application. Box T is utilized in applications that require training for their operation.
Box DB is the permanent storage point of patient medical —or environmental— healthcare data.

gained by observing Ebola outbreaks. The author argues that
machine intelligence can help narrow down the geographical
regions and the animals that may carry specific diseases.

F. BUSINESS ANALYTICS
Machine intelligence also has applications in the field of
healthcare business management, in which the goal is to pre-
dict the existence of certain events to improve business out-
comes (e.g., profits). Ginsberg et al. [32] use Google search
entries to predict physician visits related to influenza-like
illnesses days or weeks in advance to help healthcare centers
manage their human resources more efficiently. The study
in [33] focuses on analyzing claim datasets and detecting
insurance fraud to reduce costs for insurance companies.

III. A CONCEPTUAL DIAGRAM FOR USING MACHINE
INTELLIGENCE IN HEALTHCARE
A conceptual diagram is shown in Fig. 1 that unifies a
majority of the applications in the healthcare domain. In
this paper, we will continuously refer to this figure and will
reference the number of the ‘‘box’’ as the point of inter-
est; for example, we will use ‘‘observer’’ and ‘‘Box O’’
interchangeably. This will allow us to provide summarized
information in a concise manner. Note that every application
does not necessarily include all of the boxes shown in Fig. 1.
For example, the MyBehavior system [26] does not include
Box DB (Database), because the underlying machine intel-
ligence algorithm only requires instantaneous patient data
instead of stored data. In another example, Tatonetti et al. [30]
describe data mining techniques to detect drug interactions
that increase blood glucose levels; because their algorithms
assume no previously known drug interactions, the concept
of training —and consequently Box T (Training)— is not
applicable in this case. We will now introduce the function
of each box:

Box D (Source of Data): A health care application
can use data from heterogeneous sources. For example, cer-
tain applications may require the collection of environmen-
tal information such as temperature, atmospheric pressure,
accelerometer information, or location. Other applications
can capture the health data from the remotely-monitored
patient [34], [35] or crowd-sourced environmental informa-
tion [36]. In either case, we assume that the output of this box
is raw data. Section IV is dedicated to describing this box in
detail.

Box FE (Feature Extraction): The amount of raw data
exiting Box D is unmanageable for any computer hardware
(or software) and is at the heart of the Big Data problem [4].
In addition to its insurmountable volume, this data is vastly
redundant; a pre-processing step is always used to turn the
raw data into features (or, alternatively, feature vectors). One
example of feature extraction is the conversion of raw patient
ECG data into the QT, and RR intervals [37], where the QT
and RR are the intervals of a heart rhythm that consists of
repeated Q, R, S, T, and U delineators [38]. In this appli-
cation, 24-hour raw ECG data occupies 40MB, while when
converted to QT and RR intervals, only 10KB is needed to
store a patient’s 2- hour ECG recordings, thereby achieving a
40,000× data compression.

Box FA (Feature Aggregation): While the feature extrac-
tion step drastically reduces the amount of data to process
—and transmit— there can still be a significant amount
of redundancy in the output of Box FE, depending on the
application. Combining features to obtain aggregated fea-
tures (or, alternatively, fused features) allows machine algo-
rithms to take advantage of the specific characteristics of an
application to achieve higher accuracy or better run time [10],
[35], [39]. The details of Box FE and Box FA —along with
techniques to extract and aggregate features— will be pro-
vided in Section V.
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Box M (Model): For some medical applications, a model
of computation may exist, which can facilitate a better under-
standing of the application as well as determine some oper-
ational parameters. While a model is not necessary, it can
substantially reduce the computational requirements. In a
case model does not exist, the data flow is from the out-
put of Box FE into Box A. Alternatively, a model may
be used to extract features, effectively making Box FE and
Box FA unnecessary. The requirements for models alongwith
some known models in healthcare applications are studied in
Sections VII and VIII.

Box A (Machine Algorithms): The heart of health care
applications is Box A, where one or more algorithms execute
to provide an output for presentation to the observer. The
output of Box A can be as simple as a ‘‘threshold alert’’
that warns the healthcare professional about a patient health
condition (e.g., heart rate going above a given thresh-
old [38]) or as sophisticated as an elaborate suggestion about
a pattern of a bio-marker resembling a certain disease (e.g.,
the QT interval of a patient suggesting the existence of the
Long QT syndrome (LQTS) heart condition [10]). Majority
of this paper is devoted to the categorization and the descrip-
tion of different types of algorithms that make up Box A
starting with an overview of the algorithms in Section IX-A
and the metrics involved in gaging the performance of an
algorithm in Section VI.

Box O (Observer): This box is conceptualized to be the
receiver of the suggestions from the machine. For example,
in the case of medical decision support, the observer is a
doctor or a nurse who is continuously monitoring a patient
for potential health hazards. In case the machine makes a
suggestion about a health hazard, the suggestion is analyzed
by the health care professional and an appropriate action is
taken [34], [40]. The suggestion could simply be ignored if
it is believed to be faulty. Note that, in applications such
as robot-assisted surgery, the observer is not necessarily a
human. The actuator can be the observer that takes commands
from the algorithm and actuates automatic suturing devices
to assist a surgery [41]. The functionality of Box O is inter-
twined with Box T and will be detailed in conjunction with
one another in Section IX-B.

Box T (Training): While certain applications intend to
provide a one-way output (i.e., feed-forward) to the observer,
many applications take the observer’s input and re-apply (i.e.,
feedback) it to a training algorithm (Box T) to continuously
learn from the feedback. Training is a crucial component of
every algorithm that is described in this paper —with the
exception of data mining algorithms— and the accuracy of
the machine learning algorithms depend significantly on the
training phase of that algorithm. The problem of over-training
exists in the functionality of this box, as will be detailed in
Section IX-B.

Box DB (Database): Patient medical data is stored in a
permanent database for future use. The storage time of this
data is mandated by the law in many cases; for example,
HIPAA regulations in the US require the retention of patient

medical records for at least 6 years. This retention period is
even longer in some states [42]. Although raw medical data
can be stored, this can cause an overload in cloud storage.
Almost every algorithm described in this paper works with
feature vectors, rather than raw data; therefore, storing the
output of Box FA proves sufficient in many applications,
however, a challenge exists in determining what happens
when a newly-developed application requires different fea-
ture vectors for its operation that cannot be derived from the
existing ones.

IV. DATA SOURCES (BOX D, BOX DB)
The machine intelligence algorithms described in this paper
can take a variety of different data types as their input,
as long as the utilized data has a statistical importance in
the application that can lead to the generation of the desired
outcomes. In this section, these different types of data are
studied categorically.

A. STATIC PERSONAL DATA
For machine intelligence to produce an initial ‘‘rough-
estimate’’ decision support results, a personal database can
be utilized. Such personal data can include family history,
smoking habits, gender, weight, and ethnicity. For example,
statistically it is a known fact that female QT intervals in ECG
recordings are ≈20ms higher than male QT intervals [38].
Furthermore, smokers are more likely to have cardiac prob-
lems [43]. Having a recorded database of a patient’s personal
information can provide highly valuable input to the algo-
rithms.

B. SHORT TERM PERSONAL RECORDINGS
In applications where a decision has to be made regarding
whether a patient requires immediate attention (e.g., an emer-
gency room), the recorded data in the first 5–10 minutes —
from the time arrival time of the patient— has significant
importance. For example, in the THEW ECG database [2],
patients that came to the emergency roomwith chest pain and
had high levels of Troponin in their blood had a much higher
mortality rate, because the existence of Troponin signals a
cardiac dysfunction. This enzyme should never ‘‘leak’’ into
the blood from the heart.

C. UNSTRUCTURED DATA
While the previously mentioned ECG recordings are stored
in databases that have a well-defined structure (e.g., ISHNE
format [44]), some medical information in databases that do
not necessarily have not every storage format allows easy
access to data; these unstructured databases can either be
converted to a structured format or algorithms that can handle
unstructured data can be utilized to process them. For exam-
ple, Weng et al. [45] take unstructured texts of clinical notes
and by using natural language processing algorithms, they
classify those notes to indicate which medical subdomain
they belong to. In another example presented in [46], authors
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study unstructured electronic health records of breast cancer
treatments for enhancing precision medicine.

D. LONG TERM PERSONAL MONITORING DATA
Data obtained through a longer observation period, such as
12–48 hr, is very important due to the fact that short-term
recordings at a hospital may miss crucially important details
about a patient’s health condition. An example is a study
in [38] that uses Holter recordings. This study shows that the
QT interval of an ECG can point to significant cardiac hazards
at night and can be missed at the hospital using the short
term ECG recordings. An open-source tool to visualize a
patient’s 24 hr ECG recordings is introduced in [47] to readily
visualize such abnormal patterns over a longer period. An
important characteristic of the data in this category is that it is
not available until the end of the recording period, therefore
it can only be used to track long-term trends by a machine
intelligence algorithm, rather than providing a mechanism for
real-time detection/intervention.

Another example of this type of data is the recordings
obtained by the skin-worn sensors by a bio-sensor manufac-
turer MC10 [48]–[50], which record their data into the mem-
ory that is inside the sensor and transmit it into a computer at
the end of the day using an RF-based powering and charging
mechanism.

While Holter devices and MC10 skin-worn sensors are
non-invasive recording devices, some sensors are implanted
in a patient’s body through some form of surgery; for exam-
ple, implantable loop recorders [51] are placed inside a pocket
created under the skin and are able to record ECG data.
This data can be downloaded by physician during a visit
by a special programmer. Loop recorder batteries may last
for more than 2 years and recording may be activated and
deactivated by the patient using an activator.

E. REAL-TIME PERSONAL MONITORING DATA
With the emergingMedical Cyber Physical Systems (detailed
in Section XII), long-term data from patients can be obtained
in real-time (Section XII-A), rather than at the end of an
observation period (Section IV-D). This has major implica-
tions on the type of machine intelligence algorithms that can
be used for health monitoring, as well as the applications
of it. With real-time monitoring, not only the response to
urgent health hazards can be much faster than long-term
monitoring, but also the necessity for the patients to bring
back the monitoring devices is eliminated.

F. EXTERNAL DATA (ONLINE)
Some machine intelligence-based applications gather auxil-
iary data from online queries and use them as data sources.
This data can supplement the data already being acquired
from the user or other external devices. A framework called
ContextProvider [52] takes GPS and network-based posi-
tions, accelerometer and magnetic orientation data, weather
conditions and forecast, and phone calls and SMS usage
data —in addition to direct questions from the user— to

build a context-aware health monitoring system. In another
application presented in [53], a warning system monitors the
GPS data and queries the air quality from online sources to
determine if an asthmatic patient’s health is threatened.

G. CHALLENGES IN DATA ACQUISITION
Medical data differs drastically from other forms of data in
that knowledge about one’s health status can be used mali-
ciously. Therefore, handling of personal health information is
strictly mandated by HIPAA laws in the United States [54].

1) DATA PRIVACY
HIPAA laws place restrictions on how medical data is trans-
ported and stored. For the transportation of the medical data,
Kocabas et al. [55] survey a set of encryption algorithms that
make the data unreadable to someone who does not have the
decryption key, rendering the data inaccessible to adversaries
with malicious intent. For the storage of the data, a set of
data obfuscation methodologies prevent the data from being
identified, although the data can be readily accessed. As an
example,Murphy and Chueh et al. [56] obfuscate the queries
retrieved from a database so that they prevent the identifica-
tion of individuals when adversaries narrow down their search
criteria.

2) NOISE IN MEDICAL DATA
Noise in medical data varies based on the source of the data
and each type of data may require specific preprocessing to
increase the signal to noise ratio. Some examples of noise
in medical data are as follows: (i) noise in MRI images
tend to have a Rician distribution [57]; (ii) Lu et al. [58]
demonstrate that CT images have noise distribution of a
Gaussian function rather than the usually-assumed Poisson
distribution; (iii) EMG signals manifest themselves as noise
induced on the power spectrum of ECG recordings [59]; and
(iv) noise introduced by eye movements interferes with EEG
recordings [60].

3) MEASUREMENT ERRORS
Measurement errors and errors in software packages that
interpret the raw medical data are a major issue in health-
care databases. Eklund et al. [61] show that most common
software packages that analyze fMRI data can result in 70%
false positive rates, which is much higher than the generally-
acceptable threshold of 5%. Kimberlin and Winterstein [62]
discuss multiple aspects of the reliability and validity of mea-
suring instruments used in medical research for evaluating
the quality of measurements. They raise issues about the vari-
ability in self-reported measurements and the repeatability of
research outcomes.

4) MISSING DATA
Missing data in medical databases is also common. Burton
and Altman [63] study 100 published research papers on can-
cer and report that 81 of the studies showed evidence of miss-
ing data. Many databases report whether they have missing
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data or not; for example, UCI machine learning repository [3]
has a ‘‘Missing Value?’’ field for all of its datasets, which
shows if the dataset is complete or some entries are missing.
Statistical research techniques to impute missing data has
been successfully applied to medical datasets [64].

5) OUTLIERS
Outliers in datasets are another source of uncertainty.
In certain research areas, such as fraud detection in healthcare
providers, anomalies and outliers are the data that researchers
seek; in other cases, removing outliers is a necessary step for
the consistency of data [65].

H. DATA VARIABILITY AMONG INDIVIDUALS
Since each individual is unique, their physiological signals
capture this uniqueness. As a result, the features that describe
the same disease may take different values depending on the
patient characteristics or even different features may be more
informative than others. Therefore, it is necessary to develop
personalized training models to ensure that the accuracy of
the machine intelligence algorithms is maximized. For exam-
ple, in [66], personalized training (models and time peri-
ods), features, and other model parameters are used to detect
the physical activity of an individual as well as determine
the optimal sampling rate of the sensors in a WBAN. The
authors illustrate —via numerical simulations— that both
the accuracy and the lifetime of the WBAN is maximized
using personalized training. Swan [67] discuss consumer
personalized medicine, where the main idea is to tailor thera-
pies (e.g., drug delivery and dosage) to individuals based on
their specific biological characteristics. Typical examples of
personalized medicine are personalized genomics services,
blood and other biomarker testing, environmental testing, and
predictive biosimulation.

I. HISTORICAL DATA AND DATA STANDARDS
Healthcare data is provided in various types and formats.
These formats include the type of the data (image, text, video,
etc.), the format that the data is stored in, and established
standards that the information follows. We elaborate on the
data types and standards in Appendix A.

V. FEATURES (BOXES FE AND FA)
In machine learning and pattern recognition applications,
the goal is to reach a decision regarding the category of a
pattern starting from raw data [68]. As an example, consider
the case where we have access to clinical observations of
patients and our goal is to determine their health status, e.g.,
healthy vs. suffering from Parkinson’s disease. Any informa-
tion beyond what is required for our algorithm to achieve
a specified accuracy can be omitted during the execution
of this algorithm. A feature is a measurable property of
reduced dimension, as compared to the original data, which
is extracted from raw data and captures useful discriminative
characteristics that relate to the phenomena being observed.
All that is needed for our algorithms is the features, rather

than the highly-redundant raw data. Typical examples of
features are (i) temporal features, such as the mean, mini-
mum, or maximum of a biological signal over an observation
interval (e.g., heart rate [38], acceleration [39]), (ii) spectral
features, such as the spectral entropy and the mean frequency
of the magnitude of a biological signal in the frequency
domain, (iii) cepstral features, such as the cepstral power
and the Mel-Frequency Cepstral Coefficients (MFCC) [69],
and (iv) application-specific features, such as the QT and RR
intervals of an ECG recording [10].

In medical applications, features fall into two main cat-
egories: (i) application–independent [29], [39], [70]–[77],
and (ii) application–specific [12], [38], [78]. The latter are
usually provided by medical domain experts after years of
research and result in high accuracy. In contrast, application-
independent features do not rely on any knowledge of the
application. This eliminates the need for sophisticated proce-
dures to acquire them and results in lower acquisition costs.
As far as performance is concerned, the resulting accuracy is
within acceptable ranges [29], [35], [39], [71]. In the follow-
ing subsections, typical examples of such features that belong
to various application categories are discussed.

Two crucial steps that ensure the effectiveness of the result-
ing features are feature extraction and feature selection. The
goal of the former step is to extract a set of variables that
represent the initial problem from the initial raw data, which
enable the solution to be computed significantly faster due
to the reduced number of computations resulting from this
new representation [79]. The goal of the latter step is to
select the best subset of the initially-extracted features so as
to improve the accuracy, generalization, and interpretability
of the results, as well as the computational complexity that is
required to achieve these performance goals. Both methods
are able to (i) identify the best features for each class, (ii)
address the curse of dimensionality, which arises from the
fact that the number of examples needed to train a classifier
function grows exponentially with each added dimension,
(iii) improve generalization performance, and (iv) facilitate
a visualization and intuitive understanding of the problem
solution.

A. FEATURE EXTRACTION
To identify the most representative variables, feature extrac-
tion [80], [81] either involves the extraction of stan-
dard application-independent and application–specific fea-
tures or usage of various dimensionality reduction methods,
in which case an appropriate transformation is applied to
the original data —or features— to reduce their dimension.
Typical application-independent and application-specific fea-
tures will be discussed in Sections V-C and V-D, respectively.
Some commonly-used feature extraction methods in medical
applications are:

1) PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal Component Analysis (PCA) [82] is a dimensional-
ity reduction technique that converts a set of correlated data
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points into a set of linearly uncorrelated variables through an
orthogonal transformation. The main idea behind PCA lies
in determining the eigenvalues associated with the data point
matrix of interest and removing the dimensions that exhibit
variance below a certain threshold. In [17], PCA is employed
to the problem of disease management for diabetic patients,
where feature dimensionality is reduced significantly, while
at the same time, 90% of the variance in the data is preserved.
In [83], the first 12 principal components of PCA were used
to classify normal/abnormal ECG signals, achieving a max-
imum accuracy of 96.88%. Finally, in [84], PCA is used to
reduce 108 spectral variables to a minimal set, which covers
75% of the data variance for brain tumor classification.

2) KERNEL PCA
Kernel PCA (KPCA) [85] is an extension of PCA that per-
forms nonlinear projection using an appropriately defined
kernel function (e.g., polynomial, Gaussian). Similar to the
original PCA, KPCA is employed for dimensionality reduc-
tion and feature extraction. For example, in [86], KPCA is
used to extract features from single-photon emission tomog-
raphy images to enable early Alzheimer’s disease diagnosis.

3) CANONICAL CORRELATION ANALYSIS (CCA)
Canonical-Correlation Analysis [87] analyzes the correla-
tion between two multivariate random variables. Assuming
two random variables of X = (X1, . . . ,Xn) and Y =

(Y1, . . . ,Ym), CCA finds combinations of Xi andYj that are
correlated to each other linearly. Chen et al. [88] use CCA to
analyze EEG signals for a Brain-Computer Interface (BCI)
application, in which the subjects select letters on an on-
screen keyboard by visually focusing on them and the system
determines the selected letters by acquiring and analyzing the
EEG signals of the users. The acquired signals are treated
as variables and their correlation coefficient with reference
signals are calculated; the reference signal with highest cor-
relation to the EEG signal is chosen as the selected keyboard
letter. Authors show that they are able to detect the letters in
≈0.5 seconds with minimal error.

4) LINEAR DISCRIMINANT ANALYSIS (LDA)
Linear Discriminant Analysis (LDA) [89], [90] is a dimen-
sionality reduction method that projects data points to a
lower dimension space and selects the projection that ensures
the separability between different data classes. Jen et al. [91]
develop a chronic illness early-warning system, in which they
have use LDA and feature selection techniques to determine
the 5 most important risk factors (out of 53) for different
classes of chronic illnesses. In [86], LDA is combined with
KPCA with different kernels to reduce the dimensional-
ity of single-photon emission tomography images for early
AlzheimerâĂŹs disease diagnosis.

5) GENERALIZED LDA (GDA)
Generalized LDA (GDA) [92] is a nonlinear extension of
the LDA method, where the data is first moved to a higher

dimensional space and then standard LDA is applied. In [93],
a heart arrhythmia classification algorithm is proposed, which
employs GDA to reduce the feature dimensions from 15 down
to 5. In [94], GDA is used within the context of optic nerve
disease classification from visual evoke potential signals,
where prediction accuracy is improved up to 10%.

6) CLUSTERING
Clustering refers to the task of mapping similar data points
to the same group (i.e., cluster) and dissimilar data to dif-
ferent clusters. It is useful in a variety of tasks includ-
ing data compression and reduction. For instance, in [95],
k–means clustering is used to improve sleep classification
using EEG signals by identifying appropriate weight fac-
tors for the features, which ensures that similar data points
are clustered together. In [96], spectral clustering is used to
reduce the dimensionality of a feature set containing texture
and graph features extracted from breast tissue images to
improve the automatic classification of low and high grades
of breast cancer.

7) MULTIDIMENSIONAL SCALING (MDS)
Multidimensional Scaling (MDS) [97] is a nonlinear dimen-
sionality reduction technique that facilitates the understand-
ing of similarity among individual data points in a dataset.
The main idea behind MDS is to find a low dimensional
space such that the Euclidean distances among a set of data
points are able to reproduce the distance matrix in the original
space. For example, in [98], MDS is used to identify changing
spatial patterns in measles morbidity data to predict measles
epidemics in the USA. In [99], MDS is used to identify the
key parameters that enable accurate Post Traumatic Stress
Disorder (PTSD) diagnosis in police officers.

8) ISOmap
ISOmap [100] is a nonlinear dimensionality reduction
method that reveals the underlying global geometry of a
dataset. To this end, it estimates the intrinsic geometry of
a data manifold using rough estimates of each data point’s
neighbors on the manifold. In [101], ISOmap is used to
enable high–quality visualization of medical image data
such as tomography and MRI images so as to facilitate
the expert’s image interpretation or diagnosis. In contrast,
in [102], ISOmap is used to generate a low-dimensional
embedding from brain MRI scans, based on which appro-
priate features are extracted that facilitate the classification
between individuals with Mild Cognitive Impairment and
Alzheimer’s disease.

9) ARTIFICIAL NEURAL NETWORKS
Certain types of Artificial Neural Networks, such as autoen-
coders, deep belief networks, convolutional neural networks,
as detailed in Section XI, are used to extract features
from raw data [103]. For example, Auto-encoders [104]
reduce the dimensionality of the data by learning its rep-
resentation, while ensuring that the input can be accurately
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reconstructed. In that sense, the lower dimensional data can
be used as features. In [105], features from the outputs of
a convolutional neural network are extracted and used as
part of a computer-aided detection system to automatically
identify micro-calcification clusters on digital mammograms
for breast cancer diagnosis. In [106], deep belief networks
are used to extract features from audio and video signals for
emotion recognition purposes.

B. FEATURE SELECTION
Although a large set of features may be available, they do not
necessarily contribute to the accuracy of an algorithm equally.
Some of the features can be more informative, while others
can be almost useless. An example study in [38] shows that
to detect the LQT1 cardiac condition, even the same feature,
calculated at different times, contains drastically different
information; using only the information-rich features allows
the utilized algorithm to reach desired accuracy orders-of-
magnitude faster by only using a set of selected features.
In general, the selected features must be informative, non-
redundant, and fast to compute to ensure optimum overall
system performance [79].

In many applications, feature selection algorithms are
employed to select a subset of features to reduce the num-
ber of available ones according to certain evaluation crite-
rion [107], [108]. The goal is to improve metrics such as
accuracy, generalization, interpretability and computational
complexity, similar to the goals of feature extraction. Because
the initial set of featuresmay be large and redundant in nature,
a set of algorithms are employed that evaluate the importance
of each feature and its relationship with others to determine
the ones that can substantially improve the aforementioned
metrics. Consequently, the feature selection process requires
a search strategy to select candidate features and an objec-
tive function to evaluate them. The reason behind these two
requirements is that in practice an exhaustive search over all
possible features is a computationally intensive task. Search
strategies can be roughly categorized as (i) exponential (e.g.,
exhaustive search, branch and bound, beam search), where a
number of feature subsets that grow exponentially with the
search space dimension are evaluated, (ii) sequential (e.g.,
sequential forward selection, sequential backward selection,
plus–L minus–R selection, bidirectional search, sequential
floating selection), where features are added or removed
sequentially in the subset but suffer from local minima, and
(iii) randomized (e.g., random generation plus sequential
selection, simulated annealing, genetic algorithms), where
randomness is incorporated into the search procedure.

Feature selection algorithms can be broadly categorized
as (i) filter methods, (ii) wrapper methods, and (iii) hybrid
methods [107]. Filter methods evaluate feature subsets with
respect to their information content and their performance
highly depends on the employed metric. Typical measures of
information content are distance / separability measures (e.g.,
Euclidean distance, Mahalanobis distance), correlation mea-
sures (e.g., correlation coefficient), and information-theoretic

measures (e.g., mutual information). In contrast, wrapper
methods usually evaluate feature subsets with respect to their
predictive accuracy under a certain classifier (see Fig. 2).
Finally, hybrid methods combine both of these approaches.
In summary, the main difference between the filter and
wrapper feature selection methods lies in the fact that they
allow feature selection either with or without regard to a
specific machine algorithm, which affects generality, accu-
racy and scalability. For more details on the feature selection
problem and related methods, the reader is referred to [80]
and [107]–[110]. Some commonly-used feature selection
algorithms in medical applications are:

1) SEQUENTIAL BACKWARD SELECTION (SBS)
The SBS method [111] is a greedy algorithm that begins with
a complete feature set and sequentially removes the feature
that reduces a certain metric the least. Yu and Guan [112]
use SFS to select 15 out of 31 temporal and image–based
features to maximize the detection rate of clusters of micro-
calcifications in mammograms, which are early indicators of
breast cancer. SBS has also been applied to select between
features extracted from a variety of physiological signals such
as electromyogram (EMG), electrocardiogram (ECG), skin
conductivity, and respiration changes for emotion classifica-
tion within the context of psychophysiology [113].

2) SEQUENTIAL FORWARD SELECTION (SFS)
The SFS method [110], [114], [115] is a correlation-based
greedy algorithm that begins with an empty set and continues
to include features in the set in an effort to maximize a certain
metric associated with the current subset. At each step it adds
to the subset the feature that gives rise to the best outcome.
For instance, in Thatte et al. [66] use the SFS algorithm
with the symmetrical uncertainty (SU) metric [116] to select
the most informative features from ACC and ECG raw data
for physical activity classification. In [113], SFS is used to
select features extracted from a variety of physiological sig-
nals (e.g., electromyogram, respiration changes) for emotion
classification.

3) PLUS–L MINUS–R SELECTION (LRS)
The LRS method is a generalization of the SFS and SBS
methods, where L or R features are added or removed depend-
ing on whether the set is empty or full. To reduce the fea-
ture set size in automatic cancer diagnosis, plus-2 minus-1
selection (i.e., forward-select 2 new features and backward-
eliminate one feature) was used in [117], which resulted in
the use of maximum 2 features out of the 7 available ones
without compromising accuracy.

4) SEQUENTIAL FORWARD FLOATING SELECTION (SFFS)
The SFFS method [118] dynamically includes or eliminates
changing number of features at each step. After each forward
step, SFFS performs backward steps as long as the objec-
tive function increases. In [70], SFFS is used to examine
which features are highly-correlated with the self-reported
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FIGURE 2. Feature selection methods structure: filter feature selection (left) and wrapper feature
selection (right).

perceived stress scale ratings. SFFS is also used in [119] to
select among a variety of 87 temporal and spectral features
for breast cancer detection in mammograms.

5) SEQUENTIAL BACKWARD FLOATING SELECTION (SBFS)
The SBFS method [118] performs forward steps after each
backward step as long as the objective function increases.
In [120], SFFS and SBFS are employed for feature subset
selection from ELM images for automatic melanoma recog-
nition and an increase in the order of 5–10% is observed with
only 10–15 features being selected out of the 122 available
ones.

6) CORRELATION-BASED FEATURE SELECTION (CFS)
The CFS method [115] is a filter method that selects subsets
of features that are not correlated to each other, but are
highly correlated with the class of interest. In [121], the CFS
method is employed to reduce the size of the features from
38 to 5 or 6 features without loss in the accuracy of stress
detection using physiological and sociometric sensors. The
CFSmethod is also used in [122] to evaluate the classification
effectiveness of automatic feature selection for cardiovascu-
lar disease risk prediction compared to using domain knowl-
edge. It is observed that automatic feature selection improves
the predictive power of a classifier, while domain knowledge
improves its sensitivity.

7) GENETIC ALGORITHMS (GA)
A Genetic Algorithm (GA) [123], [124] is a method of
solving optimization and search problems based on natural
selection, i.e., the process that drives biological evolution.
More specifically, a GA starts with a population of individual
solutions and selects at random a subset of them to produce

children. The population evolves toward an optimal solution.
In [125], GA-based feature selection reduces the size of the
feature set from 49 down to≤10 for classification of liver tis-
sue (i.e., normal, hepatic cysts, hemangiomas, hepatocellular
carcinomas) using computed tomography (CT) images and
shows improved classification performance. In [126], GA-
based search is also employed for feature selection in the
classification of ‘‘difficult-to-diagnose" micro-calcifications
frommammography, where 20 out of the 40 available features
are selected.

C. APPLICATION–INDEPENDENT FEATURES
Typically the goal of feature extraction is to use domain
knowledge to extract characteristic information of reduced
dimension from the raw data, which successfully represents
the phenomenon of interest. However, there are certain types
of features that are used in a variety of medical applications,
independent from the application. In general, these features
can be categorized as (i) temporal, (ii) spectral, and (iii) cep-
stral. In all of these cases, the amplitude of the medical bio-
markers are treated as ‘‘signals.’’ Temporal features focus on
the time-domain characteristics of these signals, while spec-
tral features focus on their frequency-domain characteristics.
Cepstral features show the rate of change in the spectral bands
of a signal and can be thought of as being the spectrum of
their spectrum. Note that although these features are gathered
by applying the same techniques to different signals, the way
they should be interpreted depends on the application and
only the extraction part is application-independent.

1) TEMPORAL FEATURES
Typical examples of temporal features are statistical fea-
tures, including —but not limited to— mean, standard
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FIGURE 3. Example accelerometer (ACC) temporal features.

deviation, median, mean absolute deviation, kurtosis,
skewness, zero crossing rate, mean of maxima, mean of
minima, (10, 20, 50, 40, 60, 80, 90)th percentile, cross cor-
relation, mean crossing rate, root mean square, correlation,
and absolute value of slope. Fig. 3 illustrates some of these
features for raw accelerometer (ACC) data. For instance,
such ‘‘conventional’’ features (e.g., mean of maxima, mean
of minima) are extracted from ACC and ECG raw data
in [39] for physical activity detection. Similarly, a subset of
the statistical features (e.g., median frequency) mentioned
above are extracted from ECG, EMG and skin conductance
raw signals for mental stress detection [29], [70]. In [71],
various temporal features (e.g., correlation, absolute value of
slope) are extracted from ECG and saturation of peripheral
oxygen (SpO2) signals for real-time sleep apnea detection.
More complex processing of biometric signals can result
in temporal features, which significantly enhance accuracy,
such as the principal component analysis (PCA) error vec-
tor, the Hermite polynomial expansion (HPE) coefficients,
the central tendency measure, and the Lempel-Ziv complex-
ity. For instance, PCA error vectors have been extracted
from ECG raw data and shown to improve physical activity
detection [39] and body movement activity recognition [72].
On the other hand, exploiting HPE coefficients extracted
from ECG raw data have also shown to improve physical
activity detection [39]. Finally, the use of the central tendency
measure and the Lempel-Ziv complexity of the SpO2 signals
can enhance real-time sleep apnea detection [71], [73].

2) SPECTRAL FEATURES
In many applications, frequency domain analysis of signals
provides useful insights on the structural characteristics of
signals. For example, careful frequency domain analysis of
heart rate signals provides a unique understanding and a
more precise assessment of various heart variability condi-
tions [127]. Typical examples of spectral features are the
spectral entropy, low/high frequency variability, median fre-
quency and mean frequency of the magnitude, signal power
in each frequency band, and mean phase angle. Figure 4
illustrates some of these features for raw audio data. In [128],
spectral features such as the dominant frequency and the
normalized spectral entropy are extracted from EEG raw data
for automatic epilepsy detection. For the detection of micro-
calcification clusters in digitized mammograms, the spec-
tral entropy and the block activity are calculated in [129].

Average spectrum, proportion of low frequency energy under
500Hz/1000Hz, the slope of spectral energy above 1000 Hz,
the Harmonic-to-Noise ratio and a variety of other spectral
features are extracted from speech signals in an effort to
detect sleepiness in [130].

3) CEPSTRAL FEATURES
In certain cases, filtering out the artifacts caused by irrelevant
parameters (e.g., sensor displacement, skin muscle activity)
can be achieved by using cepstral features to model the
frequency information of the signal of interest (e.g., heart
rate, moving pace). The cepstrum of a signal is defined as
the inverse Fourier transform of the logarithm of its estimated
spectrum [131]. The cepstrum of an ECG signal is shown
in Fig. 5. Typical examples of cepstral features are the cepstral
power, the MFCCs and their derivatives. Features such as
the above are extracted from ECG raw data for physical
activity detection [39] and arrhythmia detection using neural
networks [74], from EMG data to automatically classify head
and hand movements [75], from vibroarthrographic (VAG)
signals to characterize the knee-joint pathology [76], and
from breath sound signals to detect existing breath prob-
lems [77].

D. APPLICATION–SPECIFIC FEATURES (BOX FE)
Many applications have their own specific features, based
on their specific data format. These features are extracted
from the raw data and provide useful information for both
the humans and the machine intelligence algorithms. Some
examples of these features are as follows:

1) ECG WAVEFORM FEATURES
When working with cardiovascular diseases, a set of features
that are extracted from ECG signals —such as the QT and
RR intervals— are commonly used (see Fig. 6). QT interval
is the time from theQRS onset to the end of Twave in an ECG
waveform, whereas the RR is the R wave-to-R wave interval
that designates the time between two heart beats [47], which
is directly related to the heart rate. These features can be used
in machine intelligence algorithms on their own or can be
‘‘fused’’ together to create fewer, yet better features.

2) EEG WAVEFORM FEATURES
EEG signals that are captured by sensors placed on the scalp,
are variables that change through time and do not have a
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FIGURE 4. Example audio spectral features.

FIGURE 5. An example ECG cepstrum.

certain structure like the ECG signals. Some of the basic fea-
tures of EEG signals are the power of the signals in different
bandwidths. For example, Delta wave represents the EEG
signal having frequencies between 0.5 and 4 Hz, while Alpha
waves cover the frequencies between 7.5 and 12.5 Hz. There
are other types of waves covering different spectrum of EEG
signals and each of them can be used as a feature.

3) HEIGHT AND WEIGHT
In many of the medical reports, height and weight of the
subjects are reported. These features can be used as an input

for machine intelligence algorithms and are shown to be an
an important factor in predicting disease outcomes; for exam-
ple, weight is a useful feature when detecting cardiovascular
disease probabilities.

E. APPLICATION SPECIFIC FEATURE FUSING (BOX FA)
In some applications, multiple simpler features can be com-
bined (fused) to create features that reduce computational
complexity at the expense of higher pre-computation. Fus-
ing features either removes a bias in the original informa-
tion or provides new information that machine intelligence

46430 VOLUME 6, 2018



O. R. Shishvan et al.: Machine Intelligence in Healthcare and MCPSs: Survey

FIGURE 6. A sample waveform of a two heartbeat. QT and RR intervals
are shown in the figure.

algorithms are unable to infer from the original features.
Some examples of fusion are as follows:

1) BAZETT’s FORMULA/FRIDERICIA’s FORMULA
The QT feature mentioned in Section V-D1 is highly depen-
dent on the heart rate and normalizing it to the heart rate
(i.e., the RR interval) provides a more informative feature
for the machine intelligence algorithms. Two commonly
used formulas that provide the corrected QT (QTc) are the
Bazett’s Formula (Eq. (1)) [132] and the Fridericia’s Formula
(Eq. (2)) [133].

QTcB =
QT
√
RR

(1)

QTcF =
QT
3√RR

(2)

TheseQT correction formulas provide a feature by combining
two simpler features that is a better indicator for clinical uses
such as detection of long QT syndrome [38].

2) DISCRETE WAVELET ANALYSIS OF EEG SIGNALS
As mentioned before, different frequency bands of an EEG
signal can be used as features in machine intelligence algo-
rithms, but using an extra step on the data by passing them
through a discrete wavelet transform provides features both
in frequency and time domain. This decomposition of signal
has been more successful when used for applications such as
epileptic seizure detection [134].

3) BODY MASS INDEX (QUETELET INDEX)/CORPULENCE
INDEX
Quetelet Index [135] (Eq. (3)) and Corpulence Index [136]
(Eq. (4)) are indexes that use weight and height of a person
and ‘‘normalize’’ the weight with regard to the height of an
individual. They provide a more informative fused feature as
a result, because the two metrics they use (Mass, Height) are
statistically correlated.

BMI =
Masskg
Height2m

(3)

CI =
Masskg
Height3m

(4)

VI. PERFORMANCE METRICS FOR MODELS
AND ALGORITHMS
Accuracy of models and machine intelligence algorithm out-
puts is determined by a fair metric that indicates if the model
can successfully describe our empirical data or the algorithm
is successful in fulfilling its task. In this section, different
metrics are studied that are developed —and are in use— to
(i) assess goodness of fit between model and data, (ii) com-
pare different models, (iii) quantify the quality of predictions
associated with a specific model, (iv) assess the performance
of an algorithm, and (v) compare different algorithms. The
type of the metric used depends on the context of research
and the type of model/algorithm used.

A. ERROR METRICS
When evaluating the accuracy of a model or an algorithm,
it is necessary to calculate the cumulative error it makes for
a given set of input and output values. The most commonly
used to metrics are described below.

1) MEAN ABSOLUTE ERROR (MAE)
MAE is a metric that shows the average difference between
the absolute value of the estimated values and the observed
values of a phenomenon and is calculated as shown in Eq. (5).

MAE =
1
n

n∑
i=1

|ŷi − yi| (5)

Ng et al. [137] create a surgery duration prediction sys-
tem and use MAE as one of the metrics that evaluates their
model. Correctly predicting the duration of surgeries helps in
maximizing the utilization of surgery rooms. Authors develop
multiple regression systems and report RMSE and MAE of
the surgery duration predictions versus the real duration.

2) ROOT MEAN SQUARE ERROR (RMSE)
RMSE is used to determine the squared difference between
predicted values and observed values (i.e., the error). It is
identical to the MAE with the exception of squaring each
error, which tends to amplify the impact of the errors that are
large. RMSE is calculated using Eq. (6) where n is the number
of observations, ŷi and yi are the estimated and observed
values for the ith observation, respectively.

RMSE =

√√√√√√
n∑
i=1

(ŷi − yi)2

n
(6)

Zhang et al. [138] develop a healthcare recommendation
system that makes personalized suggestions to its users about
choosing the best healthcare provider. Their system takes
available patient ratings and reviews for doctors in addition
to the preferences of the user and specialties of the doctors
to recommend the best matching doctor for them. To analyze
the performance of their system, they predict the rating that a
patient will assign to a recommended doctor and compare it
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TABLE 1. Confusion matrix.

to the real rating that the patient submits and report the RMSE
of these predicted and actual ratings.

B. CONFUSION MATRIX AND RELATED METRICS
A confusion matrix is used to describe the performance of
a classifier. A sample confusion matrix for a classifier with
two possible outputs (‘‘Positive’’ and ‘‘Negative’’) is shown
in Table 1. True Positive (TP) denotes the condition where
the true condition is positive and is also correctly predicted
as positive; for example, assume the case where a patient has
a cardiac hazard and an algorithm predicts the condition as
‘‘this patient has a cardiac hazard.’’ This Positive prediction
is correct (True) and the algorithm’s output is considered to be
a True Positive. Alternatively, assume that the algorithm pre-
dicts that ‘‘this patient is healthy.’’ This Negative prediction
by the algorithm is clearly incorrect (False) and is therefore
called a False Negative. Similarly, False Positive corresponds
to the case where a healthy patient is detected as a patient
with a heart condition, whereas True Negative corresponds to
the case where a healthy person is correctly identified by the
algorithm as healthy.Many other metrics are defined by using
the entries in Table 1; we will introduce the most commonly
used ones in this section.

1) ACCURACY
Accuracy indicates the percentage of the prediction by an
algorithm that is correct, as defined by Eq. (7); this includes
cases where a positive case was predicted as positive (TP) or a
negative case was predicted as negative (TN).

Accuracy =
TP+ TN

TP+ FP+ FN+ TN
(7)

Accuracy is used widely in the literature. As an example,
Hijazi et al. [10] report the accuracy of their LQTS syndrome
classification system; their algorithm predicts the output
correctly 70% of the time, corresponding to an accuracy
of 70%.

2) SENSITIVITY/RECALL/TRUE POSITIVE RATE (TPR)
These three terms refer to the same metric. Sensitivity
(Eq. (8)) denotes the percentage of positive predictions by an
algorithm, when the actual condition is indeed positive; note
that the actual condition being positive covers the first row of
Table 1, which includes the cases where the algorithm made
a positive prediction (TP) and a negative prediction (FN).

Sensitivity = Recall = True Positive Rate =
TP

TP+FN
(8)

3) SPECIFICITY/TRUE NEGATIVE RATE (TNR)
These two terms refer to the samemetric. Specificity (Eq. (9))
denotes the percentage of negative predictions by an algo-
rithm, when the actual condition is indeed negative; note that
the actual condition being negative covers the second row of
Table 1, which includes the cases where the algorithm made
a positive prediction (FP) and a negative prediction (TN).

Specificity = True Negative Rate =
TN

TN+ FP
(9)

Specificity and sensitivity are usually paired together.
For example, Kushki et al. [139] detect physiological anxiety
arousal in children and in addition to Accuracy, they report
(Sensitivity = 0.99 = 99%) and (Specificity = 0.92 = 92%)
for their proposed method.

4) PRECISION
Precision (Eq. (10)) is the ratio of the correct positive predic-
tions to the sum of all positive predictions. To phrase alter-
natively, this metric denotes what percentage of the positive
predictions are correct.

Precision =
TP

TP+ FP
(10)

Precision is also usually paired with recall (sensi-
tivity) when it is reported as a performance metric.
Mozos et al. [121] report their results on stress detection
models using Accuracy, as well as Precision and Recall.
Their precision varies from 0.89 to 0.99, depending on the
participant.

5) LIKELIHOOD RATIOS IN DIAGNOSTIC TESTING
Likelihood Ratio (LR) [140] is the ratio of the probability
that a test result is correct to the probability that a test result
is wrong for a diagnostic application. Two distinct related
metric are defined.
• LR+: Probability of correct positive predictions divided
by the probability of incorrect positive predictions,
as formulated by (Eq. (11)), as shown at the top of the
next page.

• LR−: Probability of incorrect negative predictions
divided by the probability of correct negative predic-
tions, as formulated by (Eq. (12)), as shown at the top
of the next page.

LR+ and LR− metrics are used in [141] to show the
performance of their sleep apnea prediction model. They
report LR+ of 2.8 and LR− of 0.46 for their work. Note that
this metric should not be confused with ‘‘Likelihood Ratio
test’’ introduced in Section X-K.

6) GEOMETRIC MEAN
Imagine a database that contains input-output pairs, where
the outputs denote a patient being ‘‘healthy.’’ Assume that
this database provides input-output pairs for only 10 healthy
patients and 990 unhealthy patients. Because of providing
a significant amount of input-output pairs for unhealthy
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LR+ =
Sensitivity

1 - Specificity
=

Pr(Prediction=Positive | Actual=Positive)
Pr(Prediction=Positive | Actual=Negative)

(11)

LR− =
1 - Sensitivity
Specificity

=
Pr(Prediction=Negative | Actual=Positive)
Pr(Prediction=Negative | Actual=Negative)

(12)

g =
√
Sensitivity× Specificity =

√
TP

TP+ FN
×

TN
TN+ FP

(13)

patients, this database is termed imbalanced. When testing an
algorithm using such an imbalanced database, it is more suit-
able to use the Geometric mean metric, introduced in [142]
and formulated in Eq. (13), as shown at the top of this page.

7) F1 SCORE
F-score is a measure of an algorithm’s performance using
Precision and Recall.

test
The general form of the F-score is shown in Eq. (14), which

puts a higher weight on Precision or Recall based on the value
of β.

Fβ = (1+ β2)
precision× recall

(β2.precision)+ recall
(14)

The most common form of the F-score is the F1 score
(Eq. (15)), which is also defined as the harmonic mean of
Precision and Recall.

F1 = 2 ·
1

1
recall

+
1

precision

= 2 ·
precision× recall
precision+ recall

(15)

Su et al. [143] use the F1 score and the geometric mean
in addition to sensitivity and specificity to evaluate their
pressure ulcer development diagnosis predictor. They reach
an F1 score of 0.8 and the geometric mean (g) of 0.88 in their
study.

8) DICE COEFFICIENT
One of the areas of research that utilizes the F1 score is image
segmentation problems. F1 score (which is also known as
the Dice coefficient [144]) shows how a mask created by
the machine that segments an image covers the real areas of
interest in the image, like the areas with ‘‘tumors’’ in a photo.
Dice coefficient is defined for two sets and is related (i.e.,
is equal) to F1 as follows:

D =
2 · |X

⋂
Y |

|X | + |Y |
=

2 · TP
2 · TP+ FP+ FN

= F1 (16)

where X and Y are the two sets; the more elements they have
in common, the closer the Dice coefficient is to ‘‘1.’’ If the
intersection of computer image segmentation and the actual
segmentation is defined as TP (i.e., the True Positive ratio),
the Dice coefficient is equal to the F1 score.
Salehi et al. [145] develop a brain segmentation in 3Dmag-

netic resonance imaging (MRI) system using convolutional
neural networks (see SectionXI-E). To show the effectiveness

of their scheme, they report Dice coefficient of more than
95% for two different datasets. Although their reported Dice
coefficient outperforms the rest of the algorithms, they do not
have the highest sensitivity or specificity when compared to
the competing algorithms.

9) MATTHEWS CORRELATION COEFFICIENT (MCC)
Matthews Correlation Coefficient is a metric that is used
to measure the quality of a binary classifier [146]. MCC is
calculated according to Eq. (17) and takes values between
−1 and 1.

MCC=
TP× TN− FP× FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(17)

An MCC value of 1 shows a perfect classifier, while a
value of -1 shows that the classifier has predicted all of the
values wrong. An MCC of 0 shows that the classifier has the
same performance as a classifier that produces purely random
outputs for every input.

Sakar et al. [147] use the MCC metric to evaluate the
performance of their algorithms, which target diagnosing
Parkinson disease through speech. They implement multiple
algorithms and calculate the MCC value for each one; the
performance of their best algorithm achieves an MCC value
of 0.70.

10) COHEN’s KAPPA COEFFICIENT (KAPPA VALUE)
Cohen’s kappa coefficient [148] is a metric that, when used in
classification problems, removes the effect of random classi-
fication accuracy from the achieved accuracy. As an example,
assume a dataset with two classes of data and equal num-
ber of data points belonging to each class; a classifier with
random output will achieve 50% accuracy for this dataset.
This makes it feasible to report accuracies of other algorithms
with respect to the accuracy of a this algorithm with random
outputs. Cohen’s kappa coefficient, as formulated in Eq. (18),
adjusts the accuracy of an algorithm by taking the random
accuracy into account.

κ =
acc− rand
1− rand

(18)

In Eq. (18), ‘‘acc’’ is the accuracy of the algorithm and
‘‘rand’’ is the accuracy that an algorithmwith random outputs
achieves.

Tabar and Halici [149] classify EEG motor imagery sig-
nals and the accuracy as well as the κ value for 9 subjects
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FIGURE 7. An example binary classifier that uses a threshold (left) to determine the regions of the input
values that must be classified as TP, TN, FN, and FP. A sample ROC curve (right) that shows the performance of
a classifier by plotting Sensitivity vs. 1-Specificity. Notice the labeling on the x axis (100% to 0%), which allows
plotting 1-Specificity.

separately for their classification scheme. They report an
average κ of 0.55 and κ=1 for one of their subjects.

C. ROC (RECEIVER OPERATING
CHARACTERISTICS) CURVE
A classification algorithm maps continuous input values to
discrete output values; in determining which one of the dis-
crete output values that an input value belongs to, it uses
a threshold value, which separates the points at which the
output is considered to be one of the allowed discrete values.
This separation is exemplified for the case of binary classifi-
cation in Fig. 7, which shows that the values of TP, TN, FP,
and FN depend on this threshold and changing the threshold
affects the percentages of data points that are truly or falsely
classified as positive or negative. This means that Sensitivity
and Specificity of an algorithm also depends on this threshold
value. An ROC curve shows the dependence of an algorithm’s
Sensitivity and Specificity on the threshold value by plotting
these two metrics for different threshold values. In practice,
Sensitivity vs. 1-Specificity is plotted, which is observed by
the reverse labeling, i.e., from 100% down to 0% on the right
side of Fig. 7. Although the ROC curve is drawn by sweeping
through multiple threshold values, these threshold values are
not visible on the ROC curve; each value of the threshold
corresponds to a different point on the curve, i.e., a different
(Sensitivity, 1-Specificity) pair.

1) AUC (AREA UNDER CURVE)
One of the main metrics derived from the ROC curve is the
area under it, which is called Area Under Curve (AUC) [150].
AUC ranges between 0.5 and 1; an AUC of 0.5 represents
a worthless algorithm, whereas an algorithm with perfect
performance reaches an AUC of 1. ROC curve and AUC
are among the most widely reported results in the litera-
ture; for example, Kurt et al. [151] build multiple coronary

artery disease prediction models and report their Sensitivity,
Specificity, and plot the ROC curve; they report AUC values
between 0.675 and 0.783 for their algorithms by using their
ROC curve.

2) GINI COEFFICIENT
Although the Gini coefficient was initially introduced to iden-
tify income inequality within a group of people, it also found
use in medical applications to describe distinguishability of
two different classes of data. Gini coefficient can be calcu-
lated using AUC as follows:

Gini = 2 · AUC− 1 (19)

An AUC of 0.5 will results in a Gini coefficient of 0 and
a perfect AUC of 1 will yield a Gini coefficient of 1. So,
the Gini coefficient is identical to the AUCwith the exception
of a 2× wider range to describe the same phenomenon.
Nguyen et al. [152] classify EEG signals in a brain-computer
interface study with various classification methods and report
the F score, accuracy, and Gini coefficient as performance
metrics. They show that their proposed Naive Bayes algo-
rithm has a Gini coefficient of 0.8, which is higher than other
algorithms.

D. PEARSON CORRELATION COEFFICIENT
The Pearson correlation coefficient (R) and its square (R2)
constitute metrics of linear correlation between variables,
where the former one is computer as follows:

R =
n
∑

xiyi − nx̄ȳ√
n
∑

x2i − (
∑

xi)2
√
n
∑

y2i − (
∑

yi)2
, (20)

where n is the number of samples, xi and yi are the values
of the variables, and x̄ and ȳ are the mean of the samples
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(Eq. (21)) defined as:

x̄ =
1
n

n∑
i=1

xi and ȳ =
1
n

n∑
i=1

yi. (21)

R varies between -1 and 1 and R2 of 0 shows no correlation
between the variables andR2 of 1 implies a perfect correlation
between them.

Ma et al. [153] predict the effects of drugs based on their
structure and use R2 as a measure to show their success. They
compare the R2 value of their proposed algorithm (A deep
neural network) with conventional algorithms (such as ran-
dom forests) and show that the average R2 of their algorithm
is 0.411 as opposed to 0.361 for the other algorithms, which
is a significant improvement in their field of study.

E. p-VALUE
In many cases, the results of machine intelligence algorithms
must be checked for ‘‘statistical importance,’’ i.e., whether
they are created by chance or reflect the correct statistical
relationship between the data and the produced results. As
the default, a ‘‘Null Hypothesis (H0)’’ is assumed, which
indicates ‘‘zero relationship between the data and the pro-
duced results,’’ i.e., results that could have been obtained by
consecutive coin tosses. An alternative hypothesis is tested
against it with the data provided by the algorithm. For exam-
ple, Page et al. [38] analyze the ECG recordings of patients
with LQT1, LQT2, and LQT3 syndromes and as a part of
their study, they claim that median QTc values for men with
LQT2 syndrome is longer when compared to median QTc
values for men with LQT1 syndrome (471 ms vs. 455 ms);
this constructs their alternative hypothesis H1 and strong
opposition to the null hypothesis H0 must be provided; both
of these hypotheses are shown below:

H1: {‘‘Median QTc values for men with LQT2 syndrome
is longer when compared to median QTc values for men
with LQT1 syndrome.’’}
H0: {‘‘There is no difference between median QTc
values for men with LQT2 syndrome and men with
LQT1 syndrome.’’}

To provide evidence to reject H0, they need to assume that
H0 is true and compute the probability of two random samples
having median values of 471 ms vs. 455 ms, without any
relationship to LQT1 or LQT2. This probability is called the
p-value and in their case it is 0.03; a p-value of 0.03 means
that there is only a 3% chance that the alternative hypothesis
H1 can be replicated with randomly selected set of ECG
samples. Therefore, there is a 97% chance that the result
is statistically-meaningful. A generally-accepted p-value to
reject H0 is 5%; p-values less than 5% provide strong evi-
dence in rejecting the H0 and supporting the alternative
hypothesis H1. In the same study, authors elaborate on the
QTc values at two specific time intervals, between 3AM-
4AM and between 3PM and 4PM, for all patients with LQT1,
LQT2, and LQT3 syndromes. For the cases of LQT1 and
LQT2, authors claim that the QTc value difference between

these two time periods is significant and a p-value of p≤0.01
provides strong support for their claim. On the other hand,
for LQT3, due to the limited number of patients (9 men
and 5 women) the p-values are within the range 0.2–1.0,
which means that they can not draw any conclusion from
the QTc values between these two periods, as far as LQT3 is
concerned.

F. CONCORDANCE INDEX (C-INDEX)
Algorithms used for survival analysis produce a ‘‘time-to-
event’’ output, which indicates how long it will take for an
event to happen for a given input. For example, predicting
the next time that a person, who is recently discharged from a
hospital, will be readmitted to the hospital again, is a form of
survival analysis. Concordance index is a metric that is used
to rate the performance of such algorithms. C-index is defined
as ‘‘the probability that considering two randomly chosen
patients, the one who is predicted to have a shorter survival
time —by the algorithm— will actually end up having an
actual shorter survival time in reality.’’ The mathematical
definition of C-index is as follows:

C = Pr
(
g(
−→
Z 1) > g(

−→
Z 2)

∣∣ T2 > T1
)

(22)

where
−→
Z 1 and

−→
Z 2 are the two input vectors (e.g., ECG

recordings of two patients), g(
−→
Z 1) and g(

−→
Z 2) are the esti-

mated survival times for these inputs vectors (e.g., machine-
estimated survival probability of these patients), and T1 and
T2 are the actual survival times (e.g., the amount of time these
patients lived) [154].

A C-index of 1.00 shows perfect prediction and a C-index
of 0.5 corresponds to a completely random predictor. Note
the resemblance between the C-index (which is defined for
continuous values) and the AUC, which is defined for discrete
classification outcomes. Khosla et al. [155] develop stroke
prediction algorithms and one of the metrics they use is the
C-index. They report C-indexes between 0.73 and 0.777.

G. SHAPE SIMILARITY METRICS - HAUSDORFF DISTANCE
For applications that deal with detecting a shape in an image,
a metric is required to quantify the similarity of the shape
produced by the algorithm to the the actual shape of the object
in the image. Hausdorff distance is one of the metrics that is
used to quantify the similarity between two shapes, which
is defined as the biggest ‘‘smallest distance’’ between two
sets; for each point in set A, the minimum distance to the
corresponding point in set B is calculated and the maximum
of these distances is selected as the Hausdorff distance. When
the coordinations of the edges of a 2D shape is considered a
set, Hausdorff distance can be defined as a metric that shows
how two objects are similar to each other, in terms of their
shape. For example, Chen et al. [156] perform gland segmen-
tation on histology images using deep neutral networks and
to show how close their detected glands are to real glands;
they report Hausdorff distance of less than 50 pixels for one
of their algorithms.
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H. BLEU SCORE
For applications that involve written text and language,
the Bilingual Evaluation Understudy (BLEU) [157] is an
algorithm that assigns a score to the quality of texts that
are translated from one language to another by machine.
Shin et al. [158] annotate chest X-ray images by generating
a description for them and score the effectiveness of their
annotation generation using the BLEU score.

I. GOODNESS OF FIT TESTS
There are many tests that show if a produced distribution
of a model’s (or algorithm’s) results represent the actual
dataset or they are due to chance. These tests, known as good-
ness of fit tests, are used in many healthcare related machine
learning applications. They include Hosmer-Lemeshow test,
Chi-square test, and Kolmogorov-Smirnov chart and are stud-
ied below.

1) CHI SQUARED (χ2) TEST
The chi-squared test is designed to check if there is a signifi-
cant difference between the observed number of data entries
in a category of data and the expected number of data entries
in the same category. The Chi-squared test is defined as:

χ2
=

n∑
j=1

(Oj − Ej)2

Ej
(23)

where n is the number of different classes (i.e., categories)
present in the data and Oj and Ej are the observed and
expected number of cases, respectively, in the jth class. Net-
work et al. [159] develop a model that tracks the effects
of child care quality on the development of young children.
They develop different models, where each model is related
to one aspect of the child’s development; e.g., (i) cognitive
competence, (ii) caregiver report of social competence, and
(iii) mother report of social competence. An example output
of their cognitive competence model includes standard tests
such as incomplete words, memory for sentences, letter-word
identification, and auditory competence. Authors calculate
the χ2 value for their models by comparing the expected
values of these outcomes created by their models and the
actual results acquired from the tests; they show that their
model provides a good fit for the data.

2) HOSMER-LEMESHOW TEST
Hosmer-Lemeshow test [160] works for models that make
a binary prediction (with two possible outcomes) and the
observations are usually divided into 10 groups based on
their predicted probabilities and the test is calculated as
follows:

G2
HL =

10∑
j=1

(Oj − Ej)2

Ej(1−
Ej
Nj

)
(24)

where Nj is the number of observations (for both outcomes)
in the jth group and Oj and Ej are the observed and expected

number of only one case (e.g the positive case) in the
jth group. Hansen et al. [161] develop a pregnancy predic-
tor model among couples with unexplained infertility. Their
models take multiple inputs such as age, income level, smok-
ing, and duration of infertility; they predict the possibility
of the pregnancy outcome. They validate their model by
performing the Hosmer-Lemeshow test and show that their
model is a good fit for the data.

3) KOLMOGOROV SMIRNOV TEST
The Kolmogrov-Smirnov (K-S) test [162] is another good-
ness of fit metric and it is based on the cumulative distribution
function (CDF) of the data; it is only applied to continuous
data distributions. To define the K-S test, the CDF of two
data are plotted together (e.g., the CDF of the observed data
vs. the CDF that is produced by the system that is modeling
the observed data). The maximum absolute distance between
these CDF plots is calculated and this distance is called D.
The next step is to calculate the p-value (see Section VI-
E) for this D value, i.e., the statistical importance of D in
representing the data. For example, Chen et al. [163] use K-S
test to determine the quality of medical images when they are
compressed. In irreversible image compression techniques
some of the data is lost and it is important to reach an optimal
compression ratio that both reduces the size of the data and
keeps the lost information at a tolerable rate. Authors sample
data from both the original picture and the compressed image
with size n and create the CDF for these samples. They
compare these two CDFs by performing the K-S test and
findg the maximum distance (D) between the curves. They
show that by setting a bound of D = 1.92

√
n , the amount

of lost information during the compression process is
acceptable.

J. CONFIDENCE INTERVAL
Confidence intervals assess the reliability of statistical esti-
mates. Interval estimates are different from point estimates
in that while only a single value is presented in the lat-
ter case (e.g., mean or median), an interval estimate is
provided for a given confidence (or reliability) level (e.g.,
95%) in the former case. The range of the confidence
interval varies based on the desired reliability; for exam-
ple, a 99% confidence interval for a value has a wider
range compared to a 95% confidence interval range for the
same value. The number of samples and the variance in
the data affect confidence intervals as follows: low sample
sizes and high data variance both result in wider confidence
intervals.

An example usage of confidence intervals is presented
in [164], where the authors develop a framework for pre-
dicting the future trajectory of diabetes and mental illness
of patients based on their medical records. In addition to
providing a precision value for their prediction, which is a
point value, they also provide a confidence interval for the
precision metric, at a 95% reliability.
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FIGURE 8. An example Gain chart for a population where 20% of the data entries are positive (e.g., unhealthy
patients). The baseline selects the positive entries in proportion with the selected data entries, denoting a
purely random selection. The ideal selection yields only positive data entries. A practical (i.e., non-ideal)
algorithm selects a higher proportion of positive entries compared to the baseline, although it can never
reach the ideal curve.

K. GAIN AND LIFT CHART
Gain and Lift charts are visualization techniques that show
how good the performance of a predictive model (or algo-
rithm) is.

1) GAIN CHART
An example Gain chart is shown in Fig. 8, which depicts
the characteristic of an algorithm that is designed to select
unhealthy patients from a pool of 1000 patients. Out of these
1000 patients, 200 of them are known to be unhealthy and
800 are healthy. Therefore, if the patients were selected purely
randomly from 1000, we would expect to discover, say, 40%
of the unhealthy patients (200×40% = 80) when 40% of the
patients have been exhausted (1000× 40% = 400); in other
words, the ratio of the unhealthy patients discovered by this
purely random selection would be 20%, which matches the
original ratio of unhealthy patients (200÷1000 = 20%). This
corresponds to the ‘‘Baseline’’ curve in Fig. 8. Although a sta-
tistical near impossibility, in the case that every selection was
correct (i.e., yielded an unhealthy patient), the best we can
expect is the ‘‘Gain Curve - Ideal’’ in Fig. 8, which reaches
the 20% ratio (i.e., 200 unhealthy patients discovered) after
making a mere 200 selections. Between these two extreme
cases, a realistic scenario for a selection algorithm is depicted
as the ‘‘Gain Chart’’ in Fig. 8, which performs much better
than the Baseline, although it cannot reach the ideal curve.
The example in Fig. 8 selects 60% of the unhealthy patients
(200×0.6 = 120) after selecting from only 20% of the entire
population (1000× 0.2 = 200).

Francis et al. [165] develop an algorithm to predict delayed
discharge of the patients and readmission to a hospital fol-
lowing a cancer surgery. In addition to AUC, they provide a
gain chart that shows their predictive validity compared to a
random selection.

2) LIFT CHART
The Lift Chart, shown in Fig 9, depicts how good the algo-
rithm performs in comparison to a purely random selection.
For example, for 20% of the population, a purely random
selection would discover only 20% of the unhealthy patients
(Baseline), while the algorithm is able to select 60% of the
patients; this means that the algorithm performed 3× better
than the random selection (i.e., 0.6÷0.2 = 3). This is termed
a lift of 3.0, which is plotted as the ‘‘Lift Curve - non-ideal’’
in Fig. 9. Using a similar logic, the ‘‘Baseline’’ of a Lift Chart
has 1.0 for every point in the plot and the ideal Lift Chart has
values of 5.0 until it reaches 20% of the selection values and
goes down hyperbolically after that until it reaches 1.0.

Yom-Tov [166] design a classifier to predict drug recalls
in the future by using internet search queries. To test their
classifier, authors use a Lift chart in addition to AUC values.
Their predictor is able to achieve a maximal lift of ≈ 7.5,
which implies a 7.5× better prediction than a random one.

VII. COMPUTATIONAL MODELS (BOX M)
In many medical applications, it is necessary to understand
and appropriately describe the structure of the phenomenon
of interest before addressing the task at hand. In this section,
we will provide an overview of modeling, which is a nec-
essary procedure that enables the understanding and detailed
characterization of a phenomenon, such as detection or track-
ing of a disease, using mathematical concepts. We emphasize
that creating or using a model is, in many cases, a necessary
step before using a specific machine intelligence algorithm.

A. DEFINITION
The goal of modeling is to define, understand, quantify,
and visualize a phenomenon or system by generating an
appropriate model that conceptually represents its structure.
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FIGURE 9. An example Lift chart, which depicts the Lift values for the data shown in Fig 8. Ideal and
non-ideal lift curves are calculated by dividing the ideal and non-ideal gain values by the gain of baseline
respectively.

A variety of models exist in practice (e.g., mathematical,
graphical, logical) and serve different purposes. In machine
learning and pattern recognition applications, mathematical
and graphical models are used predominantly to describe a
system using mathematical concepts and graph-based rep-
resentations. Models can serve three purposes: (i) facilitate
the understanding of a system and the interactions of its
constituent components (e.g., an individual’s disease tra-
jectory [167]), (ii) predict the behavior of a system (e.g.,
predict the course of interstitial lung disease [167]), and
(iii) optimize or control the behavior of a system (e.g., per-
form upper–limb reaching rehabilitation [21]).

1) MODEL VARIABLES
A mathematical model consists of a set of variables and a
set of equations that characterize the phenomenon of interest.
The variables represent quantifiable parameters of the phe-
nomenon and can take various types of values (e.g., integer,
real, boolean, or string). Typically, variables are determinis-
tic or stochastic and can be categorized as

1) state variables, which describe the future behavior of
the phenomenon,

2) output variables, which relate to the unobserved state
variables and are used to make decisions regarding the
state variables,

3) decision variables, which are able to control the inter-
actions between the constituent components of a phe-
nomenon, and

4) exogenous or constant variables, which are auxiliary
variables that affect the structure of the phenomenon.

2) MODEL EQUATIONS
The equations, on the other hand, represent relationships
that characterize any subset of the variables and are usually
described by algebraic operators and functions. In general,
equations can be categorized as

1) state equations that describe how the values of the state
variables will change (usually with respect to time),

2) observation equations that describe the mathematical
relationship among model variables,

3) defining equations that define new variables in terms of
the ones that are already known, and

4) constraints that describe the phenomenon of interest
through a set of conditions that must be satisfied among
the variables.

For instance, Conforti et al. [168] address the problem of
maximizing efficient delivery of services in a ‘‘weekly hos-
pital’’ (i.e., a hospital that admits and discharges patients
on weekly basis) by scheduling patient visits based on the
hospital’s available resources. Input variables in this case can
be the number of available beds, the waiting list of patients,
and the capacity of the clinical services. At the same time,
decision variables may involve if a patient should occupy a
bed or undergo a clinical service at a given time slot. Different
type of constraints can be imposed in this case, such as a
limit on the number of visits by a patient (e.g., one visit per
week) or the total number of patients that can be admitted in
a specific week (e.g., maximum 100 patients per week).

In the rest of this section, we delve into the details of
modeling as follows. In Section VII-B, we classify models
based on their structure and provide relevant medical appli-
cations. In Section VII-C, we discuss the challenges in build-
ing and selecting appropriate models and related methods.
In Section VII-D, we summarize important model evaluation
strategies. Finally, we discuss the important topic of learning
model parameters in Section VII-E. Widely used models in
the medical domain are studied in Section VIII.

B. CATEGORIES OF MODELS
Models can be classified in one or more categories based on
their structure (i.e., form of variables and equations, model
assumptions and goals). For instance, a linear stochastic
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dynamical model is an example of an explicit, linear, proba-
bilistic, continuous and dynamic model that has been used in
variousmedical applications (e.g., heart rate estimation [169],
respiratory tumour motion prediction [170]). Next, we briefly
discuss the different model classification criteria and provide
related examples within the medical domain.

1) EXPLICIT VS. IMPLICIT
A model is characterized as explicit if all input parameters
are known and can be used to determine the output param-
eters through a finite series of computations. For example,
Wang et al. [171] propose an explicit dependency model to
appropriately fuse medical images in an effort to capture the
extant dependencies between different highpass subbands.
They present experimental results based on actual MRI
images from The Whole Brain Web site of the Harvard Med-
ical School and show that their proposed approach achieves
better fusion performance compared to other typical fusion
methods (e.g., PCA, discrete Wavelet transform fusion).
In contrast, a model is implicit if only the output variables are
known and are used to determine the corresponding inputs.
For instance, Alagoz et al. [172] study the problem of accept-
ing or declining an offered organ of a given quality from
patients who are in a waiting list and have end-stage liver dis-
ease. They propose an implicit model that relates the patient
health, the organ quality, and the effects of the waiting list to
estimate the probability of the patient accepting or declining
the transplant.

2) RULE BASED
In rule-based models, a set of rules are used to indirectly
specify a mathematical model. As opposed to other modeling
approaches, where all possible interactions must be specified
ahead of time and require careful revision of the model in the
case of even minor changes, in rule–based models, a char-
acteristic of the phenomenon or system of interest may be
introduced or modified by simply adding or updating a rule
that relates to this particular characteristic. Rules are usually
defined and visualized through graphs and graph rewriting
approaches [173]–[176], where a new graph is created based
on an original graph in an effort to describe the interactions
between variables of the model. Rules are usually employed
to define interactions between various variables and the asso-
ciated consequences. Alternatively, a rule based model can
be transformed into an equation based model such as Markov
chains or differential equations. In general, rule based mod-
eling approaches are adopted when it is much simpler to
use a set of rules than identifying an appropriate equation
based mathematical model. For instance, in [177], rule based
models are discussed and used within the context of protein-
protein interactions and other biochemical systems, where
the types of interactions between chemical components are
described by a set of rules.

3) LINEAR VS. NONLINEAR
Amodel is characterized as linear if the equations describing
the system or phenomenon of interest are linear with respect
to model variables. As an example, Smith and West [178]
present a linear growth model for the evolution of the serum
creatinine chemical indicator in an effort to monitor the
progress of the kidney function of individual patients who
recently received transplants. A model is referred to as non-
linear in any other case. In [179], a nonlinear model that
considers the spatial correlations between neighboring pixels
is proposed for segmenting brain magnetic resonance images.
At this point, we note that the linearity/nonlinearity entirely
depends on the context, in the sense that many linear models
may include nonlinear expressions. For example, in a linear
model, the state and output variables are described by lin-
ear equations, but certain parameters can be characterized
by nonlinear defining equations. In general, most nonlinear
models are difficult to study due to the complexity of the
associated equations. A common approach that facilitates
the understanding of the behavior of nonlinear models and
their analysis is linearization, where nonlinear equations are
replaced by their linear approximation at given points.

4) DETERMINISTIC VS. PROBABILISTIC (STOCHASTIC)
A model is referred to as deterministic if the values of all
variables are calculated by using the model variables and no
random effects exist. In that sense, a deterministic model will
always generate the same values for a given set of initial
conditions. In contrast, in a probabilistic model, the values
of model variables are described by probability distributions
and as a result, such a model generates different values for a
given set of initial conditions. For instance, in [66], a proba-
bilistic model based on Gaussian distributions is proposed to
model a variety of features extracted from accelerometer and
heart–rate signals to perform physical activity detection.

5) DYNAMIC VS. STATIC
In a dynamic model, variables evolve in time and capture the
changes of the phenomenon of interest as time progresses.
In general, dynamic models are described by difference and
differential equations as well as probabilistic update rules that
are compactly represented by transition probability matrices.
In [27], physical activity is modeled as a finite state Markov
chain that evolves in time and is observed via accelerometer
and heart rate data. On the other hand, in a static model,
variables are not subject to change over time and thus, such
a model is suitable for the description of time invariant phe-
nomena or systems. For instance, in [180], a static nonlinear
finite element model is proposed for accurate brain deforma-
tion prediction due to individual anatomical structure differ-
ences. Accurate knowledge of brain deformation is necessary
when determining the current position of a tumor and other
pathologies during surgery.
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6) DISCRETE VS. CONTINUOUS
A model is characterized as discrete if model variables
take on discrete values (finite or countable). For instance,
in [35], both the actual physical activity and the related
noisy observations are represented as categorical random
variables that take values such as sitting, standing, running
and walking. Contrary to a discrete model, in a continuous
model, variables take continuous values and thus can model
phenomena or systems that are described by such parameters.
In [169], heart rate estimation is modeled as a Kalman fil-
tering task, where the heart rate and features extracted from
an ECG and arterial blood pressure signals are represented
by a continuous valued linear stochastic dynamic model.
A model that includes both discrete and continuous valued
variables is referred to as a mixed or hybrid model. For
instance, in [27], physical activity is modeled as a discrete
random variable, whereas features extracted from accelerom-
eter and heart rate signals are modeled as continuous random
variables with Gaussian distributions. Furthermore, models
can be characterized as discrete time or continuous time if
the related time variable takes discrete or continuous values,
respectively. For example, Zois et al. [35] assume that phys-
ical activity changes take place in discrete time points and as
a result, they adopt a discrete time model for physical activity
evolution.

7) DECISION MAKING MODELS
Sequential Decision Making (SDM) mechanisms (also
referred to as agent decision processes) provide a mathe-
matical framework for modeling decision making in cases
where outcomes are partially random and partially under
the control of a decision maker. They are useful for a
wide range of applications [181] including but not limited
to machine maintenance, structural inspection, autonomous
robots, marketing, target tracking, education, estimation of
sparse signals, and communications. Markov Decision Pro-
cesses (MDPs) [182]–[184], Partially Observable Markov
Decision Processes (POMDPs) [183], [185] andMulti Armed
Bandits (MABs) [186], [187] are typical examples of such a
framework that can successfully capture the complex sequen-
tial decision making nature of medical diagnosis and treat-
ment. The common characteristic among these models is the
existence of a mechanism that makes decisions at specific
steps. In all of these cases, the goal is to find the optimal
decision strategy that optimizes (maximize or minimize) a
certain objective. Such mathematical models are very useful
in modeling and solving complex, stochastic, and dynamic
problems. Since medical decision making is inherently com-
plex and uncertain with respect to the treatment outcomes and
costs associated with different diagnostic tests, such models
are expressive enough to capture the interaction among all
relevant features. As a result, various medical applications
have used these mechanisms to enable automatic decision
making and more efficient usage of the related resources.
Examples include physical activity tracking for obesity

prevention [35], [188], stroke rehabilitation [21], assisting
people with dementia [21] and stress management interven-
tions [189]. Formore information regarding SDMmodels and
techniques, the interested reader is referred to [182]–[187]
and [190].

There are various challenges associated with the applica-
tion of decision making models in medical cyber physical
systems. First, deciding on the detailed structure of the state
is a very challenging task. Common issues are the size of
the state space (i.e., a fine grained state space yields better
decision strategies but leads to more complicated models)
and data limitations (e.g., for some state control pairs, there
may be no observations). Second, when trying to optimize
a treatment or intervention plan, a model of the individual’s
health evolution (before and after the treatment or interven-
tion) is necessary. In fact, to support proactive and preven-
tive healthcare delivery, time variable models are required
to capture the progression of diseases and the effects of
treatments and interventions. Solving such stochastic mod-
els is a computationally intensive task, but exploiting the
structure and characteristics of the particular applications
can lead to efficient solution strategies (e.g., [35], [191]).
Third, selecting between the available decision making mod-
els and determining the rewards/costs associated with var-
ious control actions may require the doctor’s intervention.
Fourth, the inherent variability of individuals with respect
to the response to treatments/interventions suggests the need
for personalized models and methods. Fifth, considering the
healthcare medical cyber physical systems’ scale with mil-
lions of EHRs, biometrics signals, treatments, interventions
and patient-doctor interactions, scalable decision making
models and approaches must be devised. Finally, in a free
living setting, non-compliance of individuals and missing
data will be prevalent requiring the design of appropriate
decision making strategies.

C. MODEL SELECTION
Model selection refers to the process of selecting a model
from a set of candidate models based on either a descrip-
tion of the phenomenon of interest or a pre-existing dataset.
In general, the set of candidate models is selected based on
the characteristics of the problem at hand, focusing initially
on simple models. Building a mathematical model usually
requires some sort of an abstraction of the problem and is
achieved by having appropriate assumptions; a model can
accurately predict the behavior of a phenomenon if it is
built upon valid assumptions. Selecting an appropriate model
is a difficult problem since it involves a trade-off between
simplicity and accuracy. Among differentmodels with similar
predictable accuracies, the simplest model is usually selected.
The quality of a model depends on howwell the model agrees
with the observations made during empirical studies. To
create realistic mathematical models, subjective information
such as expert input, intuition, and mathematical convenience
are usually considered.
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1) A PRIORI INFORMATION
The amount of available a priori information on the problem
of interest usually determines both the accuracy of the model
and the approach that can be used. In the latter case, models
can be categorized as (i) black box if no a priori information is
available, (ii) white box in the case all required information
is known, and (iii) grey box, where a model is constructed
based on insight, a priori information, or experimental data
and a set of unknown parameters need to be estimated. Grey
box modeling is adopted in practice, since we have access
to various types of a priori information for most problems of
interest. Exploiting as much a priori information as possible
leads to more accurate models.

Usually, a priori information can be given in the form of
equations that relate problem variables, assuming that only
certain parameters related to the variables are unknown and
need to be estimated. For instance, in an ECG recording (see
Fig. 6), the ST elevation is directly related to a potential heart
condition and must be estimated [38]. In other cases, it is
necessary to estimate the functional form of equations. In the
same figure, it is a well-known fact in the cardiology field
that the morphology of the T wave has a direct correlation to
an upcoming cardiac hazard, however, a functional form of
an equation is not easy to determine [192].

In cases where there is no access to a priori information
one can use very general functions. Artificial neural net-
works —discussed in Section XI— are often used, since
no assumptions are imposed on the incoming data. Next,
we briefly discuss a number of topics that relate to a priori
information:
• Subjective Information: Intuition, experience, domain
knowledge, or even mathematical convenience can be
used to incorporate subjective information into a model;
as an example, we may use an earlier probability dis-
tribution to describe the behavior of a variable and then
update its distribution based on experimental data. Fur-
thermore, domain knowledge, which refers to knowl-
edge that is related to the particular problem of interest,
can not only lead to more accurate models, but also
simplify the modeling process; one example of this from
the field of cardiology is that while an ECG recording
(Fig. 6) has a rich set of features such as QT, ST, PR,
TQ, etc. [38], [47], the part of the ECG that contains
the most useful information is generally the QT and RR
segments [10].

• Data Analysis: In a variety of problems, we have access
to empirical data without an explicit knowledge of the
physical behavior of the phenomenon of interest. In this
case, our first step is to identify a set of input, output,
and internal variables that can successfully describe the
phenomenon. Data analysis methods including, but not
limited to, histograms and scatter plots as well as domain
knowledge, intuition, and experience enable us to extract
useful information that can be used to build robust and
accurate models later. At the same time, feature extrac-
tion techniques, as discussed in Section V, can be used

to select which variables will go into a model. On the
other hand, feature selection techniques can provide us
with a way to build simple but accurate models.

• Relationship Estimation: During the data analysis
stage, it is usually the case that important variables are
selected based on their ability to accurately describe
the phenomenon or system of interest. However, since
models are designed to predict or optimize the behav-
ior of a system, a necessary step is to start from the
measurements of the system behavior and identify use-
ful relations between model variables. This process is
termed system identification, structure learning, or data-
driven modeling depending on the methodology used
and its focus, the form of the final outcome, and the
field from which an approach was originated. In system
identification [193]–[196], statistical methods are used
to build mathematical models of dynamic systems based
on observed input/output data. Based on themodel struc-
ture (i.e., linear versus nonlinear), various approaches
have been proposed including, but not limited to,
least squares, maximum likelihood, Volterra series and
NARMAX methods. In [197], a new algorithm named
the Common Model Structure Selection (CMSS) is pro-
posed, which is used to select a common model struc-
ture. As a case study, the authors develop a time-varying
common structure for EEG signals that is able to follow
the test data with a 0.27% mean square error. In the
context of probabilistic graphical models [198], it is
usually the case that the structure of the Bayesian net-
work (i.e., the relationships between the variables in the
network) that we wish to use to describe our problem
of interest is not known in advance. In this case, there
are threemain approaches: (i) constraint-based structure
learning, where the goal is to find a network that best
explains these dependencies and interdependencies in
the data, (ii) score-based structure learning, where the
goal is to find the highest scoring network structure
that explains the data assuming an appropriately defined
scoring function, and (iii) Bayesian model averaging,
where an ensemble of possible structures is generated
and all such predictions are averaged. Structure learning
problems are often formulated as multiple hypothesis
testing problems, where each hypothesis corresponds
to a different structure, or as an optimization problem,
where the optimal solution will correspond to the high-
est scoring structure. For example, Kontis et al. [199]
study the life expectancy in 35 industrialized countries.
They deploy a probabilistic Bayesian Model Averag-
ing (BMA) approach with an ensemble of 21 models
that project age-specific death rates. They train all of
these different models and pool them together to get age-
specific death rates under the BMA and show that the
performance of BMA projection is better than any of the
single models. They predict that the life expectancy will
increase in all the 35 countries for at least 65% of the
women and 85% of the men.
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• Training: As already discussed, all types of models
(excluding white box models) include parameters and
relations that need to be estimated and optimized based
on available data in order to accurately describe the sys-
tem or phenomenon of interest. This process is referred
to as training and will be discussed in more detail in
Sections VII-E and IX-B. Since the quality of training
depends on the quality of the available data, active learn-
ing methods [200] have been employed to efficiently
collect informative data that can lead to low-complexity
but accurate models. The main idea is to interactively
query an expert (i.e., user or any other information
source) to obtain informative input/output data points.
Kholghi et al. [201] develop an active learning based
system that extract medical concepts from clinical
reports. The language of clinical reports are usually
unstructured and may not follow standards which makes
annotating them a costly task, as they have to be anno-
tated in a supervised fashion; this motivates the authors
to analyze the effectiveness of active learning techniques
on reducing annotation efforts of medical records by
developing a model on a portion of the data in an active
learning framework and analyzing the rest of the data
based on the developed model. Authors investigate the
trade-off between the accuracy of the model output and
the effort that it saves in the annotation process. They
are able to show that by using active learning, they can
get within an acceptable range of accuracy with much
less effort, although the accuracy is not as high as in
supervised annotation.
Model parameters can be either estimated from the data
through training or considered fixed. In the latter case,
they are referred to as hyper-parameters and need to
be optimized to ensure the accuracy and generaliza-
tion of the model, a process known as hyper-parameter
optimization or tuning. For example, in [202], a model
is proposed that analyzes the electronic health records
of patients and makes a prediction on their probabil-
ity of heart failure. This model includes many hyper-
parameters such as the dimension of their input feature
data, regularization factors that bound the parameters
of the model, and the complexity of their model. They
discuss their hyper-parameter tuning phase and describe
their selection process. They show that their model is
more accurate on heart failure prediction compared to
other methods, especially when the models are trained
on smaller portions of the data. For example, when the
models are trained on 20% of the data, the proposed
model achieves a 32% accuracy, while other models
have accuracies lower that 28%.
Typically, hyper-parameters are selected to maximize
a carefully selected metric defined in terms of model-
ing accuracy, while model generalization is verified via
cross-validation. Some optimization methods employed
for this purpose are: (i) Grid search, which exhaustively
searches over the hyper-parameter space and is guided

by some performance metric; (ii) Random search,
which randomly samples the hyper-parameter space;
(iii) Bayesian optimization, which iterative selects
hyper-parameters in a way that balances exploration
(i.e., consider values that have not been explored before)
with exploitation (i.e., consider values that have shown
to yield good results) to obtain optimal results relatively
quickly; and (iv) Gradient–based optimization, which
involves the optimization of hyper-parameters through
gradient descent.

2) METHODS
As discussed earlier, model selection is guided by the amount
of a priori information available (i.e., description of the phe-
nomenon of interest, access to data, domain knowledge),
while the trade-off between realism and complexity usually
dictates the selection process. Even though it appears that
this process is based on intuition and experience rather than a
deterministic set of steps, there are methods that can not only
facilitate but improve this process. Some examples of such
methods are:
• Optimal Design of Experiments: When we wish to
decide among different models, we can design a set of
experiments that can help us identify the model that
best describes our data. In this case, we first need to
specify a model for the design and a carefully selected
statistical criterion; then, optimal design methods can
be used to reach an optimal design [203]. Within this
context, Bayesian experimental design [204] provides
a general theoretical framework that uses probability
measures to account for both prior knowledge and
observations collected during the experiment. The goal
is to design experiments that maximize the expected
utility of experimental outcomes defined usually in
terms of the accuracy of collected information and
the cost of experiments. Since experimentation is an
iterative process, optimizing the design of sequential
experiments [205]–[207] has also been studied in the lit-
erature starting from the pioneering work of Wald [205].
We emphasize that the ‘‘optimal design of experiments’’
framework enables us to carry out optimal tests between
specifiedmodels, where we can exploit multiple hypoth-
esis testing approaches (see Section X-K) to test and
decide amongst alternative hypotheses. Optimal exper-
imental design has also been used to efficiently generate
data for both model fitting and reduction [208], [209].
In general, non-optimal designs require a larger number
of experiments to achieve the same accuracy as the
optimal ones.
Experimental optimization is used in [210], where
authors develop a human seated postural control system
for patients with postural control deficit. The main idea
in their study is that human subjects tend to fatigue
quickly in motor control tests, which distorts the input
data; hence, there is a need to design experiments opti-
mally to get the best input data in the shortest possible
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time to avoid biased data due to fatigue. This leads
the authors to experimental optimization of their model
that minimizes the variance of the parameters gathered
in experiments. They show that their developed model
using the optimized data is more stable (has less vari-
ance) in helping subjects in controlling their seated pos-
ture compared to models using non-optimized data.

• Regression Analysis: As already discussed, a math-
ematical model consists of a set of equations that
expresses the relationship among model variables.
In many real problems, the relationship among model
variables is usually unknown and needs to be esti-
mated. To this end, we can employ regression
analysis [211], [212] to quantify the effect of indepen-
dent variables on dependent variables to determine
the appropriate model for our problem of interest.
Regression analysis can also be used to infer causal
relationships, but caution needs to be taken to avoid
misinterpretations [213], [214]. In all cases, the goal is
to estimate the regression function, which is a function
of an independent variable, i.e.,

Y ≈ f (X, β), (25)

where β denotes the unknown scalar or vector parame-
ters and X and Y represent the independent and depen-
dent variables, respectively. Note that determining the
distribution of the variance of values of the dependent
variables, as computed through the regression function,
is also of equal importance, since it is directly related to
the resulting estimation error.
Techniques for regression analysis can be categorized as
either (i) parametric (e.g., linear regression [215], [216],
ordinary least squares regression, nonlinear regres-
sion [217]), where the regression function is defined
in terms of a finite number of unknown parame-
ters, or (ii) non-parametric (e.g., Gaussian process
regression (Kriging) [218], kernel regression [219],
[220], regression trees [221], [222]), where the regres-
sion function belongs to a specified set of functions.
In both cases, the parameters or functions need to be esti-
mated from the data. The performance of such methods
typically depends on how well the regression approach
employed matches the process that governs the genera-
tion of data. In most cases, this process is unknown and
thus, assumptions need to be made, which can be tested
assuming we have access to a sufficient quantity of data.
An example application of a parametric regression anal-
ysis is presented in [223], where authors study the
relationship between the body mass index (BMI) and
physical activity in children and adolescents. By using
regression analysis, they are able to show that spending
more time on moderate-to-vigorous physical activity is
associatedwith lower BMI. A non-parametric regression
application is shown in [224], where a system is devel-
oped to classify lung nodules (an abnormal swelling of
cells in the body) as benign or malignant. By deploying

kernel regression models, authors are able to develop a
framework that has a 85% accuracy in clustering nod-
ules into their respective groups (benign and malignant),
beating other methods by ≈5%.

• Log–linear Analysis: In a similar vein, log-linear anal-
ysis [225] is used to determine if there is a statistically
significant relationship among three or more discrete-
valued variables [226], while accounting for the variance
in the available data. In this sense, the goal is to deter-
mine which model components need to be retained to
ensure an accurate representation of the data. To this end,
the likelihood ratio statistic of the form shown below is
calculated:

X2
= 2

∑
Oijln

Oij
Eij
, (26)

where Oij and Eij represent observed and expected fre-
quencies, respectively. If the resulting value is larger
than a critical value, we conclude that there exists a
statistically significant relationship among the variables
of interest.
As an example application, Christin et al. [227] study
the relationship between living with a chronic condi-
tion in adolescence, the quality of interactions between
adolescent and their parents, and the adolescent’s psy-
chological development by using log-linear analysis.
Their model shows that having a chronic disease is not
connected directly to poor parent-adolescent relations,
but they are connected indirectly by two variables —
sensation seeking and suicide attempt— in adolescent
psychological health.

3) CRITERIA
To facilitate the process of model selection, various criteria
have been proposed, which we summarize next:
• Akaike Information Criterion (AIC): It corresponds
to a metric that compares the quality of two models with
respect to the same dataset by balancing goodness-of-fit
(see Section VI-I) with model complexity (i.e., number
of variables present) [228]. In this context, we consider
a model with k parameters and define the AIC as:

AIC = 2k − 2 ln p(y|θ̂), (27)

where p(y|θ̂) denotes the conditional probability of the
observations (y) given the maximum likelihood estimate
(θ̂) of the parameters. We emphasize that the AIC pro-
vides a means of comparison of different models and
cannot provide a quality measure of a single model in
an absolute sense.
As a use case of AIC, Vigen et al. [229] compare
the information from self-reports and electronic health
records for four common comorbidities including dia-
betes, hypertension, myocardial infarction, and other
heart diseases in women diagnosed with breast cancer.
As part of their study, they show the Cox hazard ratio
(Section VIII-I) for these four comorbidities, based on
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two models: one with the model based on the self-
reported data and one based on medical records. They
use AIC as a metric to show which one of these two
models works better for predicting the hazard ratio.
The results show that for the hypertension and other
heart diseases, the latter works better; for diabetes and
myocardial infarction, the former model exhibits a better
performance.

• Bayesian Information Criterion (BIC): This criterion
is closely related to AIC, however it places more empha-
sis on penalizing the number of model parameters [230].
In particular, the BIC can be calculated as follows:

BIC = k · ln (n)− 2 ln p(y|θ̂), (28)

where n denotes the sample size.
As an example use case, Ide et al. [231] study the dif-
ference between effectiveness of treatments of hepatitis
C in different regions of Japan. They develop different
models that take various types of inputs and report BIC
to compare these models. They show that taking the
region as a variable input to the model, as opposed to
a fixed input, yields a lower BIC, which means that
regional differences may exist in treating the hepatitis C
virus infection in Japan. Another example usage of BIC
is presented in [232], where the authors detect patients
with recent transmission of tuberculosis (TB) for the
purpose of preventing future spread of the disease. They
show the input data features and discuss how some
data inputs are selected specifically for their case; for
example, since their study is conducted in Montreal,
Canada, they takeHaitian born as an input, as they know
it has an impact on their subject of study. They discuss
their algorithm selection process; they choose a logistic
regression algorithm (Section X-H) to predict whether
a given TB case was involved in a recent transmission.
They analyze the interaction of their input features by
comparing the base model’s BIC with BIC of a model
that has an interaction of two separate input features.
They determine that combining two features of ‘‘living
in an apartment’’ and ‘‘cavitary lesion on chest X-Ray’’
actually reduces the BIC and consequently yields a bet-
ter model for this problem.

• Deviance Information Criterion (DIC): This crite-
rion constitutes a generalization of both the AIC and
BIC [233] and is formulated in Eq. (29), as shown at
the top of the next page where n denotes the sample size
and θi is the parameter vector for the ith sample.
An example usage of DIC is presented in [234], where
the authors develop statistical models for polio out-
breaks in different countries. From these models, they
choose the best model by using DIC as the selection
metric. They show that their models are able to identify
polio outbreaks in different countries with specificities
mostly higher that 90%.

• Focused Information Criterion (FIC): Similar to the
previous criteria, the FIC selects the most appropriate

model among a set of available models for a given
dataset. However, it does not assess the overall fit of
the candidate models; instead, it directly focuses on
the parameter of interest [235]. In this sense, we first
need to determine exact or approximate expressions that
quantify each estimator’s quality and evaluate them for
the given dataset to select the model with the best esti-
mated quality. FIC plots, which display estimates along
with their FIC scores, are also often used to provide
an informative picture of all estimates across models.
Since the FIC focuses on a particular parameter of inter-
est, the form of the resulting expressions relates to the
problem of interest. FIC is used in [236] to distinguish
the best predictive models in personalized medicine.
Authors study prostate cancer patients and design a pre-
dictive model on whether the cancer cells have spread
away from the prostate or not, based on some input
features related to the tumor and the person. They use
FIC and AIC to select the best models and show that the
model selected by FIC is more accurate compared to the
one selected by AIC.

• Bayes factor: The goal of the Bayes factor is to decide
between two statistical models based on the probability
of amodelM given dataD determined by the Bayes rule:

Pr (M |D) =
Pr (D|M ) Pr (M )

Pr (D)
, (30)

where Pr (D|M ) denotes the probability that the set
of data D is observed under model M . In particular,
the Bayes factor K is defined in terms of the ratio of
the probabilities of observing the data D under the two
assumed models:

K =
Pr (D|M1)
Pr (D|M2)

, (31)

where a value greater than 1.0 suggests that modelM1 is
more appropriate than modelM2 to describe the data D.
More elaborate scales have been proposed (e.g., [237]),
where the different values of K can precisely quantify
the support of one model versus the other.
An example use of Bayes factor can be found in [238],
where the authors study the association between the
course of depressive symptoms in older adults and the
risk of dementia for them. They developmultiple models
with linear, quadratic, and cubic terms and compare
them against each other by using the Bayes factor. Their
best model shows that older adults with high depres-
sive symptoms show a higher probability of developing
dementia.

• Cross Validation: This technique assesses the quality of
a model by partitioning the available data into training
and testing subsets, performing model construction on
the former and validating model fit on the latter. In prac-
tice, multiple rounds of cross validation are performed
using different partitions and the results are averaged in
order to reduce variability. Cross validation is heavily
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DIC = −2
(
log p(y|θ̂ )− 2

(
log p(y|θ̂ )−

1
n

n∑
i=1

log p(y|θi)
))
, (29)

used by the algorithms in Section X to validate the
accuracy of their underlying models.

• False Discovery Rate (FDR): This criterion uses the
expected value of false prediction percentage:

FDR = E[Q] (32)

to quantify the rate of type I errors (i.e., the incorrect
detection of an effect that is not present), where Q is the
proportion of false predictionsmade by amodel (see also
Section VI). Ideally, we would like to select models that
have FDR values below a threshold q.
Nelson et al. [239] study coronary artery disease and the
genome locations (loci) that affect it by using FDR as
a metric. They extend on previous studies on the same
topic and by setting a 5% threshold for FDR, they show
that they are able to detect a new list of genes that are
associated with coronary artery disease risk.

• (Log)-Likelihood Ratio Test: This method constitutes
a statistical test that compares the goodness-of-fit of
two statistical models (i.e., which model is more likely
to have generated the available data) by computing an
appropriate ratio that captures the likelihood of the data
under the two models. This ratio is usually compared
against a threshold that enables us to decide in favor
of one model versus the other. The reader is referred to
Section X-K for a more detail discussion of the likeli-
hood ratio test.

• Mallow’s Cp: This criterion is used to assess the appro-
priateness of a regression model by computing the fol-
lowing index [240]:

Cp =
SSEp
s2
− (N − 2p), (33)

where p is the number of parameters in the model,
s2 denotes the mean squared error for the full model,
SSEp is the residual sum of squares for the subset model,
and N is the dataset size. The goal is to identify the
best model that includes a subset of parameters from
the initial model. Smaller values of Cp suggest that the
model is considerably accurate.
Luzak et al. [241] study the factors that influence lung
function in adolescents. They take early life events
and current environmental/lifestyle elements as input
and study their effect on allergic diseases in 15 year-
olds. Multiple models are developed and the best one
is selected based on Mallow’s Cp metric. The adopted
model shows that factors such as early lung infections
and indoor second-hand smoke exposure are major fac-
tors in allergic disease on lung function.

• Minimum Description Length (MDL): This princi-
ple is based on the idea of selecting the model that is

able to accurately represent the original dataset using a
shorter description [242] in an effort to balance fit with
complexity. It is based on information theory principles
(particularly the idea of compression), which exploits
regularities in data to describe them using fewer sym-
bols. The description length of a model is defined as:

D(Y ;M
θ̂ (Y )) = `(Y ;Mθ̂ (Y ))− log2 L(Y |Mθ̂(Y )), (34)

where Mθ denotes a parametric model indexed by a
parameter vector θ ; the L(·|Mθ ) is the likelihood func-
tion, Y represents the dataset, and θ̂ (Y ) is the maxi-
mum likelihood estimate of the parameter vector θ . The
first part of Eq. (34) captures the model complexity by
including the number of parameters in the model. On the
other hand, the second part of Eq. (34) represents the fit
of the model to the data. The MDL principle selects the
model with the minimum description length [243].
van Sloun et al. [244] propose a dynamic linear system
approach to detect and localize prostate cancer from
ultrasound images. Since they have access to a limited
set of observations, they apply the MDL principle to
select the model that best fits the available observations
while taking into account the complexity of the model.

• Minimum Message Length (MML): The main idea
behind this criterion is to select the least complicated
model even if the models from which we need to choose
exhibit different goodness-of-fit [245]. It constitutes a
Bayesian model comparison method, since it computes
and assigns a score to eachmodel based on the following
expression:

− log2(P(M ,Y )) = − log2(P(M ))− log2(P(Y |M )),

(35)

where − log2(P(M )) represents the number of infor-
mation bits needed to represent the model M , and
− log2(P(Y |M )) is the number of information bits used
to represent the data Y assuming they are encoded via
the model M (e.g., parameters, initial conditions). The
term − log2(P(M ,Y )) denotes the complexity of model
M for dataset Y in terms of the number of informa-
tion bits needed for representation. According to the
MML criterion, the model that generates the smallest
complexity (in terms of the information bits needed for
representation) is more likely to have generated the data.
Given its form, this criterion can be used to compare
models of different structure.
Ameli et al. [246] develop a system to detect fatigue
in patients who are undergoing chemotherapy. They
gather kinematic data from 23 body segments during a
six-minute walk test and cluster the data into different
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subcategories to find the physical performance status of
the patients which leads to classification of the patients’
fatigue. They fit multiple clusters to different portion of
the data and use MML to select the best models from
those. They demonstrate that their clusters show high
relation with the patients tiredness.

• Structural Risk Minimization (SRM): This method
attempts to balance model complexity with the model’s
fitting ability on the training data [247]. To this end,
it uses the VC dimension [248], which captures the
power of a model. To represent complexity and empirical
error to capture the fitting quality in the training data,
a more powerful model is more complex but might lead
to overfitting, while a less powerful one has limited
modeling capabilities but is less prone to overfitting. The
SRM process consists of the following four steps:

(1) Select candidate models for the given dataset,
guided by a priori domain knowledge.
(2) Order models in terms of increasing complexity.
(3) Determine each model’s parameters that yield the
minimum empirical risk defined as:

Rempirical ,
1
N

N∑
i=1

L(yi, δ(xi)), (36)

where L(·) is an appropriately defined loss function
(e.g., 0–1, squared error), {xi}Ni=1 is the number of
points in the training dataset, {yi}Ni=1 are the true but
unknown labels, and δ(·) is our prediction rule.
(4) Select the model that yields the minimum sum of
VC dimension and empirical risk.

In [249], a support vector machine (SVM)-based regres-
sion approach is devised to model the nonlinear relation-
ship between cardiovascular response and exercise. The
proposed formulation is essentially based on the SRM
principle and balances the quality of the approximation
with the complexity of the approximating function. The
authors are able to show that the relationship among var-
ious cardiovascular variables during steady-state incre-
mental exercise is nonlinear in nature, contrary to prior
work, while explicitly demonstrating the structure of the
nonlinearity.

• Stepwise regression: The goal of this method is to iden-
tify the minimum number of relevant predictive vari-
ables in a regression model automatically. To this end,
variables are added or subtracted from the set of relevant
predictors by evaluating a specific criterion at each step.
In practice, stepwise regression can be accomplished by:
(i) forward selection, where predictors are sequentially
added to the set at each step by selecting the variable
that gives rise to the most significant statistical improve-
ment of the model fit until improvement saturates;
(ii) backward elimination, where predictors are sequen-
tially subtracted from the set at each step by selecting the
variables that yields the least significant statistical loss;
and (iii) bidirectional elimination, which combines the

previous two approaches and simultaneously determines
which variables should be added and which should be
eliminated.
Grandner and Winkelman [250] study Nocturnal Leg
Cramps (NLC) and use forward stepwise regression to
find the most important factors that affect it. This tech-
nique shows that factors such as age, unemployment,
shorter sleep duration, higher BMI, and smoking play
a more significant role in higher NLC frequencies.

Even though we discussed a large number of criteria for
model selection, note that the most commonly used criteria
are the AIC, BIC, and the Bayes factor.

D. MODEL EVALUATION
One of the most important steps of the modeling process
is model evaluation, i.e., evaluating whether a model can
accurately describe the phenomenon or system of interest.
To this end, we first need to evaluate if the model we selected
is consistent with the available empirical data. Obviously,
if this is not the case, we must either appropriately modify
themodel or identify another model that is consistent with our
data. As already discussed, cross–validation can be employed
to validate the accuracy of a selected model and is heavily
used by the algorithms in Section X. Among the various
performance metrics discussed in Section VI, the follow-
ing metrics are also used for model evaluation: confidence
interval, confusion matrix, gain & lift chart, Kolmogorov-
Smirnov chart, χ2, ROC curve, Gini coefficient, RMSE, and
L1 version of RMSE. An accurate model will be able to match
the testing data, even though the parameter values of the
model were learned from the training data. Evaluating how
closely the predicted data matches the actual data requires
defining appropriate metrics, which can either evaluate the
appropriateness of model parameters or quantify the validity
of the general mathematical form of a model. In the former
case, loss (or utility) functions are used to penalize (or reward)
mismatch (match) between actual and observed data. The
latter case, however, is not so straightforward andmay require
the use of non-parametric statistics approaches [251], [252] to
evaluate the validity of the mathematical form of the model
(e.g., the ability of a probability distribution to accurately
describe the data). Other factors need to be also considered
while evaluating a model, such as consistency with unknown
data, generalizability, complexity, degree of confidence, and
cost. In general, a good model should be able to balance
accuracy with all or subset of the above factors.

E. LEARNING MODEL PARAMETERS (BOX T)
As already discussed earlier, a model typically includes a set
of parameters that need to be learned from the available data.
This problem is referred to as parameter estimation and vari-
ous approaches have been proposed in the literature to address
it. Next, we briefly go over the methods that have beenmostly
used in the healthcare domain and provide relevant examples.
For a more detailed exposition on the problem of parameter
estimation, the interested reader is referred to [253]–[257].
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1) LEAST SQUARES ESTIMATION
The main idea behind least squares estimation is to find the
unknown values of a set of parameters by minimizing the
sum of the squared deviations between the observed and the
estimated output of a model. In mathematical terms, the sum
of squared deviations is expressed as follows:

n∑
i=1

(yi − f (θ̂ ))2, (37)

where {yi} represent the observed output data sequence,
θ̂ = {θ̂1, θ̂2, . . . , θ̂K } are the unknown parameters and f (·)
represents the model type (e.g., linear, nonlinear). Depending
on the structure of the model, least squares minimization can
be either achieved analytically (by calculus for linear models)
or through an iterative numerical procedure (in the case of
nonlinear models).

Least squares estimation is used in [258], where authors
investigate the effects that informal care of older patients
by adult children have on formal care (done by a medical
professional) and the cost of healthcare. Authors model uti-
lization of formal care as a function of inputs such as informal
care, health, demographics, income, and other measures such
as insurance. They use least squares estimation to find the
parameters that best fit the formal care utilization function to
real world data. Their model shows that informal care done
by children can substitute not only nursing home and long-
term home heath care, but it can also reduce the number of
hospital care and physician visits.

2) MAXIMUM LIKELIHOOD ESTIMATION
A basic measure of the quality of estimated parameters with
respect to observed data is the likelihood, which corresponds
to the joint probability p(y|θ ) of a set of observations y con-
ditioned on the unknown parameters θ . As a result, a natural
approach to parameter estimation is to select the set of param-
eter values that maximize the likelihood of the observed
data. This estimation approach is referred to as maximum
likelihood estimation and is formally defined as follows:

θ̂ = argmax
θ

p(y|θ). (38)

Similar to the least squares estimation, maximum likelihood
estimation can be achieved analytically by computing the
derivatives of the likelihood function with respect to all
unknown parameters and simultaneously solving the result-
ing equations. This in general generates intuitive results. For
instance, in the case of multinomial distributions, the max-
imum likelihood estimate coincides with the relative fre-
quency estimate.

Poletto et al. [259] develop a transmission model that mod-
els the spread of Middle East respiratory syndrome coron-
avirus (MERS-CoV) in different countries and use maximum
likelihood analysis to select the best parameters in the model.
They are able to show that outbreaks of MERS-CoV can
not have a self-sustained epidemic and most cases of the

epidemic are sporadic cases of zoonotic or environmental
transmissions.

Alternatively, in cases where the corresponding model of
interest is complex and equations cannot be solved directly,
the expectation-maximization (EM) algorithm [256] can be
used to find local maximum likelihood parameter estimates.
Typically, these models also involve latent variables (e.g.,
due to missing values in the data) and as a result, computing
the derivatives of the likelihood function results in a set of
equations in which the solution to the unknown parameters
requires the values of the latent variables and vice versa.
The EM algorithm, on the other hand, constitutes an iterative
algorithm that solves these equations numerically. The main
idea is to alternate between an expectation (E) step, which
generates a function for the expectation of the log-likelihood
function evaluated using the current value of the parameters
estimate, and a maximization (M) step, which estimates the
parameters by maximizing the expected log-likelihood func-
tion computed at the E step. Finally, the estimated parameters
are used to determine the distribution of the latent variables
in the following E step.

Schulam et al. [260] address the problem of nonhomo-
geneity among patients of diseases such as autism or car-
diovascular disease and point out that in order to have an
effective treatment for these patients, they need to be sub-
categorized into homogeneous classes where treatments have
similar influence. To this end, they propose the Probabilistic
Subtyping Model that clusters time series of clinical markers
and use EM to find the best parameter estimates for their
model. They evaluate their proposed model on multiple types
of diseases and illustrate that their model is able to discover
subtypes of these diseases. For example, when they track the
thickness of skin score (TSS) in Scleroderma patients, they
show 5 different possible trajectories for it through time that
most of the patient TSS values follow.

3) BAYESIAN ESTIMATION
In Bayesian estimation, prior knowledge with respect to
the unknown parameters is incorporated into the estima-
tion process along with the available set of observations.
This prior knowledge usually results from previous obser-
vations or engineering assumptions and takes the form of a
probability distribution over the model parameters. By incor-
porating this prior information about the parameters, a poste-
rior distribution for the parameters can be obtained through
Bayes’ rule:

p(θ |y) =
p(y|θ) · p(θ )

p(y)
, (39)

where p(θ |y) is the posterior distribution over the parameters
θ , p(y|θ ) represents the likelihood function of the data y
given the parameters θ , p(θ) denotes the prior distribution
over the parameters θ , and (y) is the marginalized like-
lihood. Note that it is usually better to work with prior
probability distributions that facilitate analytical tractability,
which are referred to as conjugate priors [254], such as
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FIGURE 10. Hidden Markov Model Schematic. Each shape represents a random variable, where circles
and hexagons denote hidden states and observations, respectively. Arrows denote conditional
dependencies between random variables.

the binomial-beta distribution pairs. At this stage, parame-
ter estimation is typically performed by selecting the set of
parameter values that maximizes the posterior distribution
defined in Eq. 39. This approach is referred to as maximum
a posteriori estimation and can be performed either analyt-
ically or using the EM algorithm discussed above. Alterna-
tively, one can adopt a more principled approach and uti-
lize the entire posterior distribution for performing statistical
inference (e.g., by marginalizing over the model parameters).
Finally, in certain cases where there are no closed form
expressions for the prior or posterior distributions, sampling-
based approaches [198] can be used along with density
estimation techniques [68] to approximate any probability
distribution of interest and perform parameter estimation.

Marlin et al. [261] show an example application of
Bayesian estimation by creating a model that captures pat-
terns in physiological data of patients and place the patients
that have similar patterns in their data in the same group.
Because the data for their model is gathered from patients
through time, it is sparse, have missing values, and in some
cases have high error rates. For the model to be smooth,
there is a need for smoothing the gathered data by taking
into account the values that were measured prior to the new
measurements for which the authors use Bayesian estimation
to create a degree of smoothness in the model. Authors show
that their model is able to distinguish among patients that
have a higher mortality rate and a lower mortality rate and
is able to have good trajectories for the physiological data of
the patients in time.

VIII. KNOWN MODELS
In this section, we will study a selected set of widely appli-
cable models, and discuss their characteristics. A large set
of these models have demonstrated to be a good fit in vari-
ous healthcare applications. The applicability of a particular
model to a given healthcare application depends on how well
the model can describe the phenomenon of interest as well as
its complexity. For example, although Model A may be more
accurate than Model B, it may also be a lot more complex.
Thus, if the application is more sensitive to execution time,
Model B may be preferred for that specific application. For
instance, Wang et al. [262] study mobile health monitoring

systems and the trade–off between latency and accuracy for
processing ECG data. They show that more accurate settings
will result in higher latency and to achieve lower latency in
data processing, accuracy of the results must be sacrificed.

A. HIDDEN MARKOV MODEL (HMM)
A Hidden Markov model (HMM) [263]–[266] is a statistical
Markov model, where the related process is modeled by a
Markov process with unobserved/hidden states. The Markov
assumption ensures that computations remain tractable by
imposing that future states depend only on the current state
and not on the entire history of the states. In this model,
the state of the process is not directly observed. Instead,
we have access to a set of noisy observations, which are
probabilistically related to the hidden state values. As a result,
the set of noisy observations provides some information about
the sequence of hidden states. HMMs are widely used in
various applications such as speech and handwriting recog-
nition [267], [268], bioinformatics [269], and activity recog-
nition [270].

The general architecture of an HMM is shown in Fig. 10.
Each shape represents a random variable, where circles
denote states (i.e., xk is the hidden state at time k) and
hexagons denote observations (i.e., yk is the observation
at time k). The arrows represent conditional dependencies
between random variables, and p(xk |xk−1) and q(yk |xk ) char-
acterize the state and observation transition probabilities,
respectively. We observe that due to the Markov property,
the conditional distribution of the hidden state xk at time step
k depends only the value of the hidden state xk−1 at time
step k − 1. Furthermore, the value of the observation yk at
time step k depends only the value of the hidden state xk at
time step k . In standard HMMs, the state space is discrete,
while the observation space can be either discrete or contin-
uous (e.g., Gaussian distribution).

The most common task performed in HMMs is inference.
A typical inference task pertains to the computation of the
probability of a specific observed sequence given the HMM
model parameters as shown in Eq. (40), as shown at the top
of the next page.
On the other hand, one may want to determine the probability
of a state subsequence based on a sequence of observations
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P(y0, y1, . . . , yL−1) =
∑

x0,x1,...,xL−1

P(y0, y1, . . . , yL−1|x0, x1, . . . , xL−1)P(x0, x1, . . . , xL−1). (40)

and the model parameters. Filtering refers to the problem
of determining the distribution P(xk |y0, y1, . . . , yk ) of the
hidden state xk at time step k given the history of observations
up to time step k . Smoothing, on the other hand, refers to the
problem of determining the probability P(xk |y0, y1, . . . , yL)
of hidden state xk at time step k given the history of obser-
vations up to time step n, where L > k . Last but not least,
finding the most probable sequence focuses on finding the
probability P(x0, x1, . . . , xL−1|y0, y1, . . . , yL−1) of the entire
sequence of hidden states that generated a specific obser-
vation sequence. For a detailed exposition of HMM models
and algorithms to accomplish the above tasks, the interested
reader is referred to [263]–[266].

HMMs arewidely used in the healthcare literature and have
witnessed great success. For instance, Qin et al. [271] use
hidden Markov models to detect if individuals are smoking
using data collected from mobile phone sensors. They are
able to demonstrate that their model achieves an averageAUC
of 0.66 in detecting smoking activity. As another example,
Son et al. [272] develop a smart asthma management system
that models a patient’s frailty as an HMM. Their proposed
system consists of a Bluetooth device attached to a rescue
inhaler, which records and transmits the usage patterns of the
inhaler. The collected data is fed into an HMM that keeps
track of the patient’s frailty in addition to providing decision
support for asthma management. The authors show that their
system is able to estimate the rescue inhaler usage while
providing a diagnostic classification on the asthma control
status with high accuracy compared to other methods.

B. TIME SERIES MODELS
Time series models are used to represent a series of
data points throughout time and can take various forms.
There are three broad classes of linear time series models:
(i) autoregressive (AR), (ii) integrated (I), and (iii) moving
average (MA). An AR model has the form of a stochastic
difference equation, where each time series variable linearly
depends on all previous variables of the time series and a
random variable term.

1) AUTOREGRESSIVE (AR) MODEL
In its simplest form, an AR model of order p (AR(p)) is
expressed as follows:

Xt =
p∑
i=1

αiXt−i + εt , (41)

where αi, i = 1, 2, . . . , p constitute the model parameters,
and εt corresponds to white noise.
Yu et al. [273] use an autoregressive model to predict

seizures in temporal lobe epilepsy. The input to their model

is raw EEG recordings and they model it using an AR model
and use the coefficients of the extracted model as features
of a logistic regression classifier to classify the state of the
EEG as preictal (before seizure) or interictal (during seizure).
The error rate of their classification scheme is 4.4%; see
Section X-H for a detailed description of Logistic Regression.

Another example of using AR models is presented
in [274], where authors classify EEG signals for use in a
brain-computer interface (BCI). They use a Support Vector
Machine (SVM) classifier to classify different tasks, such
as mental multiplication of two numbers, counting tasks,
and visualizing of a rotating 3D object, from EEG signals.
They use AR models to model the EEG signals and use the
coefficients of the model as inputs to their classifier. The
accuracy of their framework ranges from 80% to 100% for
different subjects; see Section X-A for a detailed description
of the SVM classifier.

2) MOVING AVERAGE (MA) MODEL
In an MA model, each time series variable linearly depends
on the current and previous variables of a stochastic sequence.
In its simplest form, an MA model of order q (MA(q)) is
expressed as follows:

Xt = εt +
q∑
i=1

βiεt−i, (42)

where βi (for i = 1, 2, . . . , q) constitute the model parame-
ters, and {εt−i}

q
i=0 represents a white noise sequence, which

is usually assumed to consist of independent and identically
distributed random variables, sampled from a normal distri-
bution with zero mean and variance σ 2.
An MA model is used in [275] for noninvasive central aor-

tic systolic pressure (CASP) estimation. For the process to be
noninvasive, authors use radial artery pressure waveform and
develop and validate an MA model based on the waveforms
to estimate CASP. They show that the output of their model
has high correlation with the real sensed numbers of CASP.

3) AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODEL
Combining an AR model with an MA model gives rise to
an autoregressive moving average (ARMA) model, which
has both AR and MA components. An ARMA model that
consists of p autoregressive terms and q moving-average
terms (ARMA(p, q)) is defined as follows [276], [277]:

Xt = εt +
p∑
i=1

αiXt−i +
q∑
j=1

βjεt−j, (43)

where terms αj and βj are defined earlier.
ARMA models are used in [278], where authors estimate

the radial artery blood pressure from blood pressure data
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that is obtained from noninvasive monitoring systems. They
model the transfer of blood from the heart to the fingertips
using an ARMA model and find the radial artery blood pres-
sure by sensing the blood pressure on fingers. They show that
although their model still has a non-negligible error, the bias
of their model is improved compared to other methods used
for the same application.

Generalizations of the above models such as the autore-
gressive integrated moving average (ARIMA) model,
the autoregressive moving average with exogenous inputs
(ARMAX) model, the autoregressive conditional het-
eroskedasticity (ARCH) model, and the generalized autore-
gressive conditional heteroskedasticity (GARCH) model
can be used to model more complicated trends in time
series.

Revels et al. [279] use an ARIMA analysis to model
obesity-related data and predict the percentage of the over-
weight people in the United States in coming years. They
gather data for the prevalence of overweight people among
adults from CDC (Center for Disease Control) and fit differ-
ent ARIMA models to forecast the change in the population
of overweight, obese, andmorbidly-obese people. Their mod-
els also show the prediction of healthcare costs of this issue
in the future.

An ARMAX model usage is presented in [280], where
authors model coronary heart disease development. Their
model takes different data such as blood glucose, cholesterol,
and blood pressure of individuals throughout multiple years
as inputs and predicts the severity of coronary heart disease in
subjects. Their model agrees with the already-implemented
clinical scores for the same disease and on majority of the
subjects; the ARMAX model has a ≤ 10% error rate com-
pared to the standard score.

For a detailed survey of different time series models along
with discussions regarding how to choose their order and
estimate the associated coefficients, the interested reader is
referred to [276], [277], [281], and [282].

C. STOCHASTIC STATE SPACE MODELS
Similar to time series models, stochastic state space models
can be used to represent a series of data points throughout
time. Within this context, the evolution of the data points in
time is modeled as a dynamical system subject to random
noise, where there exists a probabilistic dependence between
a latent state variable, known as the system state, and an
observed measurement, termed observation. Both the system
state and observation can be either discrete or continuous and
in that sense, HMMs constitute a special case of stochastic
space models with discrete system state and observations.
One of the most widely used stochastic state space models
is the general linear stochastic state space model, which
is described by Eq. (44) and Eq. (45), as shown at the bot-
tom of the next page where Eq. (44) describes the system
state evolution and Eq. (45), as shown at the bottom of the
next page represents the relationship between system state
and observations. Note that x(k) represents the state vector

(with the initial state x(0)), y(k) denotes the observation
vector, u(k) is a deterministic control input vector, 8(k) and
H(k) comprise deterministic coefficient matrices, and {w(k)}
and {v(k)} constitute white noise processes uncorrelated with
each other.

An example application of this model is presented in [283],
where the authors aim to remove ballistocardiogram (BCG)
components from an EEG signal induced by the strong mag-
netic field of MRI. Since BCG noise is induced on both the
EEG and electro-oculogram (EOG) signals, authors filter the
EOG signal and compare it to the EEG signal; using this
methodology, they find the common induced noise created
by the BCG. Note that because the BCG noise character-
istics change in time (e.g., consecutive heartbeats do not
have the same BCG characteristics), filtering of the noise
is achieved via a Kalman filter. The study shows that this
method is effective in removing the noise with real-time
response.

In many real-world applications, a nonlinear model is bet-
ter suited to describe the nonlinear phenomena that may take
place. In this case, the general nonlinear stochastic state
space model described by Eq. (46) and Eq. (47), as shown
at the bottom of the next page is widely used where Eq. (46)
describes the system state evolution and Eq. (47) represents
the relationship between system state and observation. Note
that it is usually assumed that both functions fk (·) and hk (·)
are continuous and continuous-differentiable with respect to
all the elements of the state and control input vectors. Further-
more, the noise sequences {w(k)} and {v(k)} satisfy the same
properties as in the case of the linear stochastic state space
model.

An example of nonlinear modeling is presented in [284],
where the authors study continuous glucose monitoring. The
problem that is addressed by the paper is that estimating the
errors of sensors or glucose pumps in the long-term is not
achievable with a linear model; therefore, it is modeled using
a nonlinear model using an extended Kalman filter (EKF).
The authors show that this model is able to estimate the blood
glucose levels with low error rates; furthermore, the error rate
decreases as the complexity of the EKF increases and more
data is available to use in the EKF.

Another study that uses a nonlinear model is conducted
in [285], where the authors detect regional heart motion
abnormalities by using an unscented Kalman filter (UKF).
This study models the dynamic behavior of the heart’s left
ventricle in time, which is a nonlinear system and the gathered
data for modeling is noisy; these characteristics make UKFs
a good fit for modeling and estimating the state of the left
ventricle. The estimated state produced by the UKF is then
classified by a classifier algorithm to detect abnormal cases
among the patients. Their system is able to achieve a ≈90%
accuracy in detecting these cases.

The most common tasks performed in stochastic space
models are parameter estimation and system state estima-
tion. Parameter estimation involves obtaining estimates of a
collection of parameters that appear in the stochastic space
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FIGURE 11. Markov Decision Process Block Diagram. Note that xi ∈ X and ui ∈ U .

model and can be achieved by any of the methods discussed
in Section VII-E. There are three types of system state
estimation:

(i) prediction, which focuses on estimating the state at a
future time k , given all past observations (including the
most recent observation at time j < k),
(ii) filtering, which focuses on estimating the state at
time k , given all past observations (including the most
recent observation at time k), and
(iii) smoothing, which focuses on estimating the state
at time k , given both past and future observations (i.e.,
observations available at a future time j > k).

The Kalman filter discussed in Section X-B, along with
its extensions, the Extended Kalman filter (EKF) and the
Unscented Kalman filter (UKF), are used for filtering, while
the other two tasks use the same principles as these filters
to perform prediction and smoothing. For a detailed exposi-
tion of stochastic space models and the related algorithms,
the interested reader is referred to [183], [255], and [286].

D. MARKOV DECISION PROCESSES
As shown in Fig. 11, a Markov Decision Process
(MDP) [182]–[184] is a stochastic control process that con-
sists of the following components:
• X = {xi ∈ R | i ∈ {0, 1, · · · , k, k + 1, · · · }}: a finite set
of process states (e.g., patient states, disease types).

• U = {ui ∈ R | i ∈ {0, 1, · · · , k, k + 1, · · · }}: a finite set
of control actions (e.g., medical tests, sensor types).

• P : X ×U×X → [0, 1]: a set of transition probabilities
between the process states that capture the dynamics of

the system model (i.e., how the system moves from one
state to another).

• ck : X × U → R: a function that assigns rewards (or
costs) to state transitions to model payoffs associated
with them.

Given an MDP, the goal is to select control actions that opti-
mize (minimize or maximize) a certain criterion. In practice,
there are three commonly used criteria:
• Total expected reward:

J = E
{ T−1∑
k=0

ck (xk , uk )+ ck (xT )
}
, (48)

where xk , uk and ck (xk , uk ) denote the state, the control
action, and the reward/cost at time step k , respectively.

• Total discounted expected reward is:

J = E
{ T−1∑
k=0

γ kck (xk , uk )+ γ T ck (xT )
}
, (49)

where 0 < γ ≤ 1 is a discount factor that weighs the
contribution of different states differently in time, and

• Average expected reward is:

J =
1
T
E
{ T−1∑
k=0

ck (xk , uk )+ ck (xT )
}
. (50)

The horizon length T can be either finite or infinite
depending on the application requirements and the optimal
decision strategy can be determined by using dynamic pro-
gramming (DP) techniques [183] (see also Section X-G1).

x(k) = 8(k − 1) · x(k − 1)+9(k − 1) · u(k − 1)+ w(k − 1), k = 1, 2, . . . , (44)

y(k) = H(k) · x(k)+ v(k), k = 1, 2, . . . , (45)

x(k) = fk (x(k − 1),uk−1)+G(k − 1) · w(k − 1), k = 1, 2, . . . , (46)

z(k) = hk (x(k))+ v(k), k = 1, 2, . . . , (47)
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FIGURE 12. Partially Observable Markov Decision Process Block Diagram. Note that xi ∈ X , yi ∈ Y , and ui ∈ U .

In [287], an MDP formulation was proposed to decide on
a planning therapy for individuals with spherocytosis, which
is a disease that results in chronic destruction of red blood
cells. The cost was defined in terms of quality adjusted life
years and the transition probabilities were estimated based on
factors such as risk of surgical mortality and natural causes
of death. Assuming year-by-year decisions, the authors were
able to determine the optimal treatment strategy in closed
form.

The goal of the work in [288] was to determine when
adherence-improving interventions are necessary based on
an individual’s electronic health record (EHR). To this end,
an MDP model formulation was proposed and the optimal
DP intervention strategy was evaluated for cardiovascular
disease management of 54,036 patients with type 2 diabetes.
It was shown that the use of such a framework can delay the
onset of adverse events or death and reduce expected costs
of treatment, hospitalization, and follow-up care. The authors
also provide structural results with respect to interventions of
different effectiveness and patients of different risk levels.

In many applications, a decision maker may have several
objectives (e.g., a doctor may wish to try a treatment, while
minimizing consequences, a health monitoring system may
need to operate under energy or time constraints). In this case,
one can use an MDP formulation, where the cost function
is defined as the weighted sum of the different objectives.
Alternatively, onemay use a constrainedMDP (CMDP) [289]
formulation, where one of the performance criterion is opti-
mized, while the rest are kept below some given thresholds.
Note that the basic components of the CMDPmodel coincide
with the MDP components.

Wang et al. [290] develop a framework based on CMDP
to obtain sensor signals from a mobile device to detect the
context of the environment and the state of the user. They cat-
egorize the state of the user as {stable, moving, in contact,
not in contact} and show that their framework can detect

the state with low error. The main contribution of the paper is
that it shows that by utilizing a framework based in CMDP,
they can reduce the number of sensing periods and increase
the battery life of the mobile device as a result.

E. PARTIALLY OBSERVABLE MDPs
In all the above models, we have assumed that the sys-
tem state is perfectly observable. Unfortunately, this is not
the case in many applications, especially in the healthcare
domain. A partially observable Markov decision process
(POMDP) [183], [185] is a stochastic control process that
assumes that system states are hidden, but the decision maker
has access to noisy observations. Furthermore, control actions
can either be used to drive the system into a particular state
(e.g., administer certain drugs to cure a disease) or infer the
system state (e.g., determine if a patient has a certain disease).

A POMDP consists of the following components (see also
Fig. 12):

• X = {xi ∈ R | i ∈ {0, 1, · · · , k, k + 1, · · · }}: a finite set
of process states.

• U = {ui ∈ R | i ∈ {0, 1, · · · , k, k + 1, · · · }}: a finite set
of control actions.

• Y = {yi ∈ R | i ∈ {0, 1, · · · , k, k + 1, · · · }}: a finite set
of observations (e.g., results of medical tests).

• P : X ×U ×X → [0, 1]: a set of system state transition
probabilities.

• f : X × U ×Y → [0, 1]: a set of observation probabili-
ties that capture the relationship between states, control
actions and observations.

• c : X × U → R: a reward/cost function

Since the actual system state is hidden, decisions are based
on the history of observations and control actions performed
so far. More specifically, the belief state pk [183], which
is defined as the following conditional probability over the
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system states:

pk , [p1k , p
2
k , . . . , p

|X |
k ]T , (51)

where pik , p(xk = i|y0, . . . , yk , u0, . . . , uk−1), |X | is the
size of the state space, is used at each time step by the decision
maker to select control actions. Note that in contrast toMDPs,
where we have access to a finite number of states that are fully
observable, a belief state can take an infinite number of val-
ues. In POMDPs, we can use the same optimization criteria
as with MDPs and dynamic programming can be applied to
find the optimal decision strategy (see also Section X-G2).

In [35] and [188], a POMDP formulation was devised
to perform energy efficient physical activity detection for
obesity prevention using the KNOWME wireless body area
network (WBAN) [188]. The KNOWMEWBAN consists of
a set of biometric sensors (e.g., accelerometer, electrocar-
diograph) and a Nokia N95 mobile phone. The goal was to
design sensing strategies for the mobile phone to dynamically
decide from which biometric sensors to receive data at each
step, so that the physical activity of the individual is detected
(e.g., run, sit, stand, walk), while maximizing the lifetime of
the mobile phone. Sensors are heterogeneous in energy usage
and detection capabilities for different physical activities. The
authors derived the optimal sensing strategy via DP and three
low–complexity, near-optimal sensing strategies. Evaluation
on real data collected from the KNOWME network show
energy gains as high as 64% with detection error in the
order of 10−4. Main challenges of the study are the need
for personalization and the estimation of physical activities
transitions.

Another application of POMDP is shown in the COACH
system [21], which uses a single video camera to track and
assist individuals with dementia during the task of hand-
washing. A POMDP model was formulated to estimate the
individual’s level of dementia and assist him/her through the
various activity steps. Based on the individuals’ ability to cor-
rectly perform the handwashing task, there are three actions
of intervention: assistance prompts (e.g., task description, cue
the individual), do nothing, and call caregiver. The COACH
system has been tested with six individuals of varying degrees
of dementia achieving a 25% reduction on caregiver inter-
ventions. Main challenge is the need for personalization with
respect to system intervention and detection of certain steps
of the handwashing task.

F. SEMI-MARKOV MDPs AND SEMI-MARKOV POMDPs
We have so far focused on models where the time between
decisions is fixed. However, in some cases, such as phys-
ical activity tracking or treatment planning, decisions need
to be made continuously. Semi-Markov decision processes
(SMDPs) and partially observable SMDPs (POSMDPs) [190]
are generalizations of the MDP and POMDP stochastic mod-
els, where the time between state transitions may depend on
the selected control action or occur randomly. The optimal
decision strategy in these cases can be determined by using
techniques similar to MDPs and POMDPs [190].

FIGURE 13. Multi–Armed Bandit Block Diagram.

Wang et al. [291] develop a human activity recognition
framework through mobile sensing and real-time state esti-
mation with a semi-Markov-like mechanism. They optimize
their model to balance the battery power consumption and
error rate. Although they can achieve 0% error in their state
estimation, they show that by having an error rate of 1.66%
they can triple the lifetime of the battery in the mobile sensing
device.

G. MULTI-ARMED BANDITS
The Multi-Armed Bandit (MAB) [186], [187] problems con-
stitute a special class of decision-making problems that focus
on the trade-off between exploration (i.e., explore decision
options with the prospect of better rewards) and exploita-
tion (i.e., continue with decision options that are provingly
associated with high rewards). MAB formulations can be
used among others to model medical tests performed on
individuals to infer a disease or available treatments to treat a
disease.

In its simplest form (see Fig. 13), the decision maker has
access to K different arms (options), each of which has an
associated reward. At each time step, she decides to use
exactly one arm and observes the reward associated with it.
The goal of the decision maker is to maximize the reward
defined below by selecting to pull an appropriate arm at each
time step:

J = E
{ ∞∑
k=0

γ kr(xk (uk ))
}
, (52)

where γ ∈ (0, 1) is a discount factor, r(·) is a bounded
reward function, and xk denotes the state of arm uk that was
selected at time step k . Note that the state of the selected
arm evolves in a Markovian way with respect to a known
transition probability matrix P; alternatively, the states of the
rest of the arms remain the same. Another slightly different
formulation of the MAB problem focuses on minimizing the
regret; the goal of the decision maker is to maximize her
reward (orminimize her cost) with respect to the best decision
strategy that could be used if she had access to the rewards
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(or costs) of all arms [292]. The above formulation is known
as the stochasticMAB problem and can be solved via dynamic
programming (see also Section X-G3).

Various MAB formulations and algorithms have been pro-
posed and studied in the literature. Examples are the Marko-
vian MAB [186] (the reward of each arm follows a Markov
distribution), the adversial MAB [186] (the reward of each
arm is generated by an adversary), the contextual MAB [293]
(the decision maker has access to a context vector before
making a decision) and imperfect state MAB [294] (the state
of each arm is observed through noisy measurements).

An example application of MAB is presented in the
MyBehavior system [26], which focuses on inferring an indi-
vidual’s physical activity and dietary behavior and suggests
changes that can lead to a healthier lifestyle. The platform
that maximizes calorie loss while ensuring that the sugges-
tions are easy to adopt is based on a MAB formulation; the
EXP3 strategy [295] is used to select suggestions, where
beneficial behaviors are frequently adopted in contrast to less
beneficial ones. The MyBehavior system was evaluated dur-
ing a 14-week study with 17 participants, where it was shown
that subjects increased physical activity and decreased food
calorie intake. Another example is provided in [189], where
a contextual MAB formulation is proposed that matches
stress-coping interventions to individuals and their temporal
circumstances over time. The expected stress reduction of
each intervention was determined experimentally for each
individual at a given context.

For more information regarding the MAB problem and its
variants, the reader is referred to [186].

H. LATENT DIRICHLET ALLOCATION (LDA)
Latent Dirichlet allocation (LDA) [296], [297] constitutes a
generative probabilistic model used to describe collections of
discrete data such as text corpora and population genetics.
It constitutes a hierarchical Bayesian model according to
which, (i) each item of the collection is modeled as a finite
mixture of an underlying set of topics, and (ii) each topic
is modeled as an infinite mixture of an underlying set of
topic probabilities. Within the context of natural language
processing, this means that documents can be represented
as random mixtures of hidden topics, where each topic is
characterized by a distribution over words. In this sense,
LDA can be graphically represented as shown in Fig. 14,
where the outer rectangle represents documents, and the inner
rectangle denotes words. The generative process adopted by
LDA for each document w in a corpus D has the following
structure:

1) Choose the number of words N ∼ (Poisson(ξ )).
2) Choose the topic mixture θ ∼ Dir(α)
3) For each of the N words in the document:

a) Pick a topic zn ∼ Multinomial(θ)
b) Use the topic to generate the word itself.

An example application of LDA is shown in [298],
where the authors link the physical structure of drugs to

FIGURE 14. Latent Dirichlet Allocation Model.

the adverse events that are caused by them. The data
required for this tasks comes from adverse drug reaction
reports and the authors build a model based on LDA that
assigns topics to different reports. They also create repre-
sentative features for different drug structures, where drugs
that share some substructures are represented with fea-
tures that are shared among them. They design a predic-
tive model that relates drug structure features to topics of
the adverse event reports and show that their scheme per-
form better than other methods in predicting the outcome of
drugs.

I. SURVIVAL ANALYSIS/PROPORTIONAL HAZARD MODELS
Proportional hazard models analyze the time that it takes for
an event to occur. These models, if used to predict the survival
of a patient, find the most important features that affect the
length of the survival time. The Cox proportional hazard
model [299] is one of the most commonly used survival
analysis models and is described by Eq. (53), where x ∈ Rd

is the feature vector for an individual, h(t|x) is the hazard
value at time t for that individual, h0(t) is a baseline hazard
function, β ∈ Rd are the adjustable parameters, and d is the
number of features.

h(t|x) = h0(t) exp(βT x) (53)

Lusivika-Nzinga et al. [300] use a variation of the Cox
model to analyze howmultiple treatments change the survival
time of HIV-positive patients. The outcome of their model is
the probability of an adverse event for a patient and they show
that their model yields higher quality predictions compared to
other methods.

The Kaplan-Meier survival rate estimator is another model
that can be used to estimate the survival function. An
example of the Kaplan-Meier estimator is used in [301],
where authors profile the survival rate of dental restoration
materials.

IX. ALGORITHMS (BOXES A, O, T)
Before we study a set of known algorithms, we will pro-
vide an overview of their goals (Section IX-A), train-
ing process (Section IX-B), and implementation challenges
(Section IX-C).
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A. GOALS OF ALGORITHMS (BOX A, O)
In this paper, we study machine intelligence algorithms based
on their application goal using four different goals, which are
detailed below.

1) KNOWLEDGE DISCOVERY
Algorithms used for knowledge discovery aim at discov-
ering relations in a dataset. These algorithms work with
datasets that are not labeled and do not indicate any presump-
tion toward the data. Clustering and anomaly detection are
two applications that focus on extracting knowledge from
a dataset without knowing anything about it a priori. For
example, in [30], the Food and Drug Administration (FDA)
Adverse Event Reporting System database is analyzed (see
Appendix A) to identify previously-unknown drug pairs that
elevate the blood glucose level when used together.

2) CLASSIFICATION/DETECTION
When the data is divided into subpopulations
(i.e. classes or categories), an algorithm needs to learn the
relation between the input data points and the subpopulation
that input data points belong to. The goal is to classify a new
previously–unobserved data point into the subpopulation that
it belongs. The output of a classification algorithm is always
discrete, but the number of sub-populations varies based on
the application; for example, if the goal of the algorithm
is to detect a cardiac hazard among a set of three poten-
tial outcomes, {Healthy, LQT1, LQT2}, where LQT1 and
LQT2 are the Long QT Syndrome Type 1 and Type 2 cardiac
conditions [7], [10], this is a three-category classification
problem. Alternatively, deciding if a discharged patient will
return to the hospital in the next year or not, is a two-category
(i.e., Yes/No answer) classification problem.

3) REGRESSION/ESTIMATION
In some cases, the output is not categorized as subpopu-
lations, but is represented as a range of quantitative out-
comes that usually belong to a continuous set. For example,
predicting the next time that a discharged patient will be
re-admitted to the hospital is a regression problem; based
on the adopted model, it may have an answer such as
‘‘1–30 days’’ or ‘‘never.’’ In an example application of
regression Schulam and Saria [167] predict the evolution of
a patient’s health based on their initial health condition.

4) SEQUENTIAL DECISION–MAKING
In many medical applications, the goal is to infer/monitor a
medical phenomenon, or intervene so as to improve a certain
health condition, or both. In these cases, sequential decision-
making models —such as MDP, POMDP, and MAB — can
be used to model various decision-making tasks including
but not limited to exploiting the inferred information to make
decisions that can possibly improve the estimation or track-
ing task of interest. For example, Zois et al. [35] propose a
POMDP model to automatically decide which features to

use from ACC and ECG signals to improve the tracking
of the physical activity of an individual, while minimizing
communication energy consumption.

B. TRAINING COMPONENT (BOXES O, T)
Most machine intelligence algorithms require a learning
phase, during which the algorithm adjusts its internal param-
eters based on input-output data provided, and an application
phase, during which the algorithm predicts an output when
a previously-unknown input is provided. In general, seven
different learning methods are employed in practice, namely
unsupervised learning, supervised learning, semi-supervised
learning, active learning, reinforcement learning, learning
to rank, and structured learning. In this section, we discuss
how these methods are applied to healthcare and any issues
associated with them.

To train a machine intelligence algorithm, it is usually
necessary to have access to input-output data. For example,
consider an ECG recording for a cardiac patient, who had
a myocardial infarction (MI) 10 minutes after arriving at
an emergency room. When entering this ECG record in a
database that is associated with this patient, the ECG record-
ing corresponds to the input data, while the MI event corre-
sponds to the output data, which is provided by a medical
expert. The resulting status of the patient (referred to as the
‘‘end points’’ in medicine, which is ‘‘MI’’ in this case) is
commonly referred to as a label; a database containing such
labels is said to contain labeled data. Alternatively, if the raw
ECG recordings of the same patient are provided in a database
with no end points associated with these ECG recordings,
this database contains unlabeled data. The type of machine
intelligence algorithm that can be used for a given healthcare
application is determined by the labeling that is available in
the acquired data.

1) UNSUPERVISED LEARNING
Unsupervised learning [302], [303] allows machine intelli-
gence algorithms to operate on unlabeled data; because the
output values are not known, the goal of such algorithms is
knowledge discovery, as discussed in Section IX-A1. Clus-
tering is an example of an unsupervised learning algorithm,
which divides a dataset into multiple ‘‘clusters’’ that share
common characteristics. Due to the elimination of the output
pairs, a training phase is consequently eliminated in unsuper-
vised learning.

2) SUPERVISED LEARNING
Algorithms that use supervised learning [303]–[305] utilize
databases that contain labeled data. The labels that are pro-
vided in a given database are converted to quantitative output
values for use in machine intelligence algorithms; for exam-
ple, the aforementioned ‘‘MI’’ label can be mapped to a quan-
titative metric 1.000, while another label, such as ‘‘healthy,’’
can be mapped to 0.000. Such a label-to-quantity mapping
allows the algorithm to produce human-interpretable labels as
its output (e.g. ‘‘MI’’, which is interpreted as the ‘‘patient has
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a danger of heart attack’’), while operating internally using
purely quantitative values.

3) SEMI-SUPERVISED LEARNING
In semi-supervised learning [306], [307], the learning pro-
cesses use both labeled and unlabeled data. Typically,
we have access to a smaller amount of labeled data, while the
majority of the data is unlabeled. For instance, in [308], semi-
supervised learning is employed to improve the performance
of physical activity classifiers after they are deployed in the
field.

4) ACTIVE LEARNING
In many medical applications, it is often impractical to obtain
labeled data that is both correct and representative of all the
possible input-output relations. Active learning [200] is a
form of semi-supervised learning, in which the learning algo-
rithm interactively queries an expert (i.e., user or any other
information source) to obtain the outputs at unlabeled data
points. For example, in [309], active learning is applied to the
problem of medical image classification for heart disease and
breast cancer detection, where the goal is to select a number of
informative data points to maximize classification accuracy.

5) REINFORCEMENT LEARNING
Having the same motivation as active learning, reinforcement
learning [310], [311] adopts an agent-based approach based
on which learning input-output relations are modeled as an
interaction between an agent and its environment with the
goal of selecting actions to maximize some notion of cumula-
tive reward. This is in direct contrast to unsupervised learning,
where the goal is to find similarities and differences between
data points. One of the main challenges of reinforcement
learning is the trade-off between exploration and exploitation:
to maximize reward, the agent tends to select actions that
have been found to be effective in the past; on the other
hand, to discover such actions, the agent must select new
untested actions. Within the context of healthcare, reinforce-
ment learning is used to determine optimal structured treat-
ment interruption strategies for HIV infected patients directly
from clinical data [312].

6) LEARNING TO RANK
Learning to rank [313], [314] involves the construction of
ranking models typically for information retrieval systems.
The goal is to exploit techniques from supervised, semi-
supervised, or reinforcement learning to produce an accu-
rate ranking of data points for which the rank is unknown.
In the medical domain, learning to rank has been successfully
applied to predict a clinical score ranking for the severity of
a disease based on fMRI images [315].

7) STRUCTURED LEARNING
Structured learning [316] is essentially a special case of
supervised learning, where the focus is to learn the input-
output relation between data points and structured objects

(e.g., tree, Bayesian network, randomfield), rather than scalar
discrete or real values. Due to the complexity of the structured
objects (i.e., number of inter-dependencies among variables),
training in structured learning is frequently computationally
infeasible and approximate learning approaches are usually
employed. Within the context of medical applications, struc-
tured learning is employed in [317] to create a system that
extracts relevant information from narrative clinical discharge
summaries and generates an appropriate structured represen-
tation to enable fast and accurate clinical decision making.

8) TRAINING PROCESS
Using a large database containing labeled data, the training
process involves splitting the database into two parts; the first
part is used as the training data, which contains the majority
of the entries in the database, while the second part is the
test data, which contains the samples that are used to verify
the performance of the algorithm (e.g., by using performance
metrics described in Section VI). This process can also be
repeated by choosing a different training vs. test set and is
known as cross-validation. In many cases, a loss function
is defined, which is a function of the difference between
the predicted output data points and the real output data
points. The main goal of the training process is to minimize
this loss function by changing the internal parameters of the
algorithm. This minimization is achieved through methods
such as Gradient Descent that find the local minima of a
function.

9) TRAINING ISSUES
Two major issues in the training process are overfitting and
underfitting and are briefly described below:
• Overfitting: Overfitting arises when a model is exces-
sively complex resulting in an inability to generalize to
previously unseen data points. As a result, prediction
performance during testing may be poor, even though
the error during training may be minimal. Consider, for
example, the problem of fitting a polynomial to a set of
data points that exhibit approximately linear behavior
with small noise fluctuations. Selecting a high-degree
polynomial to describe the data in this case can poten-
tially lead to a large number of errors during testing,
since the underlying data trend is linear. Overfitting can
be avoided using various techniques such as (i) adopting
a simpler model, (ii) gaining access to more training
data, (iii) removing redundant features, (iv) performing
cross-validation, and (v) regularizing model parameters.

• Underfitting: Underfitting arises when the adopted
model is not able to completely capture the struc-
tural relations that characterize the available data. For
instance, assuming a linear model in the case of nonlin-
ear data will result in poor prediction performance.

C. ALGORITHMIC IMPLEMENTATION CHALLENGES
Application requirements and resource limitations gener-
ally dictate in which cases a machine intelligence algorithm
can be applied; for example, convolutional neural networks
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(Section XI) were not practically-implementable until 2005,
when the computational power of GPUs made them feasible.
There are multiple important factors that need to be consid-
ered when deciding which machine intelligence algorithm
is suitable for a given application. We briefly discuss these
factors in this Section.

1) ACCURACY/PERFORMANCE
Accuracy of a machine intelligence algorithm is a measure
of how successful the algorithm is in fulfilling its goal. For
instance, the methods proposed in [35] for physical activity
detection are evaluated with respect to average detection error
(i.e., how many times the algorithm mis-classifies a specific
activity on average), which is shown to be on the order
of 10−4. We discuss metrics used to quantify accuracy in
depth in Section VI.

2) ROBUSTNESS
Robustness measures how effective a machine intelligence
algorithm is when being tested with (i) datasets that con-
tain outliers or (ii) models that contain parameters that are
prone to errors. As an example of the latter case, if a lin-
ear model is assumed, but the actual correlation was super-
linear, the accuracy of the algorithm should not be impacted
significantly, i.e., the algorithm should be robust in handling
imperfect models. In [318], an automatic liver CT scan seg-
mentation —which is necessary for liver tumor ablations
and/or radiotherapy— is proposed that shows good robust-
ness behavior (F1-score = 94.2± 1.1%).

3) COMPUTATIONAL COMPLEXITY
Computational complexity is a theoretical measure of the
resources needed by a machine intelligence algorithm to
achieve its goal. In general, machine intelligence algorithms
need to be analyzed with respect to their time complexity
(i.e., execution time as a function of the size/dimension
of their input), storage space complexity (i.e., memory
needs as a function of the number of storage locations
used), input/output complexity (i.e., number of inputs and
outputs between internal memory and secondary stor-
age required) [319], and communication complexity (i.e.,
amount of communication required for distributed computa-
tions) [320]. Furthermore, since most machine intelligence
algorithms consist of a learning phase and an application
phase, we need to determine the computational complexity of
these two phases. Determining the computational complexity
of an algorithm is beneficial, since we can (i) decide which
tasks should be executed online or offline, (ii) determine stor-
age assignments (e.g., mobile phone versus remote server),
and (iii) suggest modifications that improve the computa-
tional requirements of the machine intelligence algorithm.
Let us consider the MIC–T3S algorithm for physical activity
detection [35] as an example; the time complexity of the
training phase is O(n4αL) and space complexity is O(n3α),
where n denotes the number of different physical activities,
α denotes the number of different sample combinations, and

L the planning horizon. The authors suggest to implement
this phase (training) offline. In contrast, for the application
phase, the time complexity isO(n4) and the space complexity
is O(n3α), which is executed online.

In reality, computational complexity of machine intel-
ligence algorithms within the context of medical applica-
tions is usually evaluated with respect to the number of
seconds/minutes/hours/days required for the learning and
application phases.While a standard computational hardware
(such as a laptop) may be employed to derive —and report—
these runtime results, applications that can take advantage
of massive parallelism can significantly benefit from servers
that incorporate GPUs [321] and other specialized computa-
tional accelerators, such as FPGAs. An example of report-
ing the runtime of an algorithm is in [322], where authors
detect mitosis in a single breast cancer histology image using
deep convolutional neural networks, which requires roughly
8minutes. As far as the input/output complexity is concerned,
a 24-hour ECG recording with a 1000 Hz frequency and
12 leads with a precision of 16 bits, amasses 2GBs of data and
a collection of 1000 of these samples will have a size of 2 TBs.
Assuming the data is stored in an Solid State Disk (SSD) with
a reading speed of 500 MB/s, it takes more than an hour for
just transferring the files from the SSD to the memory of the
computer. If the data is stored in a hard drive rather than an
SSD, this time will be an order of magnitude longer; this is
not negligible and should be taken into consideration when
dealing with large databases on machines with slow disks.
Depending on the medical application of interest, it may be
possible to overlap input/output operations with computa-
tions; this provides an avenue to overlap a portion of the I/O
time with a portion of the actual computation time, thereby
reducing the apparent time complexity of the algorithm.

4) DATA SPARSITY
Data sparsity describes the situation where there is insuf-
ficient training data to enable accurate statistical deci-
sions. This a very difficult and serious problem, since most
machine intelligence algorithms require a significant amount
of accurate training data to achieve the desired perfor-
mance. Zhou et al. [323] develop a data-driven framework
that addresses data sparsity within the context of robust
patient phenotyping by exploring the latent structure of elec-
tronic medical records and apply it to the tasks of early
prediction of Congestive Heart Failure and End Stage Renal
Disease. Class imbalance constitutes a related problem,
where the data samples of a class are far less than the number
of data samples of another class. For example, the number
of newborn infants with the Long QT heart disease was
17 in a database of 43000 infants [324], which represents a
substantial imbalance between the available training samples
(17 vs 43000) for two classes (healthy vs. LQT). In [325],
the effect of class imbalance is investigated within the con-
text of computer–aided medical diagnosis when using neural
network classifiers and it is shown that standard backward
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FIGURE 15. A depiction of an SVM classifier that separates the data
points into two classes. The x1 and x2 axes show the input parameters
and the color of the data points indicate the class that the data points
belong to. The cyan line (in the middle) is the line that has the maximum
distance to both classes.

backpropagation is preferable over more elaborate optimiza-
tion techniques such as particle swarm optimization.

X. KNOWN ALGORITHMS
Due to the diverse training and performance metrics of
different machine intelligence algorithms (as detailed in
Section IX), a large set of them have demonstrated to be
a good fit in various healthcare applications. The key for
a machine intelligence algorithm’s applicability to a given
healthcare application is not only the parameters that are
associated with the algorithm, but also the demands of the
application. For example, although an Algorithm A may be
significantly more accurate than Algorithm B, it may also
be much slower. If the application is more sensitive to the
runtime, e.g., because of the criticality of the latency in deter-
mining an answer, Algorithm Bmay be preferred for that spe-
cific application. For example, Özdemir and Barshan [326]
analyze the daily activities of a person using wearable sensors
and aim to detect when the person falls. They use six different
classifiers for this purpose and show that the training and
testing time varies widely among these classifiers. Although
every classifier achieves high accuracy, one of them has a
response time of 33 seconds while the response time of the
others are under 100 ms; therefore, the first algorithm is
clearly not a good choice.

In this section, we will study a selected set of machine
intelligence algorithms, which have demonstratedwide appli-
cability, and elaborate on the characteristics and performance
metrics of these algorithms that enabled them to be utilized
in a given set of applications.

A. SUPPORT VECTOR MACHINES (SVM)
Support Vector Machines (SVMs) [327], [328] are used as
classifiers and determine the boundaries of the hyperplanes
that separate different classes in a dataset based on a distance
metric, i.e., maximum possible separation. A simple linear
SVM classifier is shown in Fig. 15, where the classifier
computes the line that separates the two classes to yield the
maximum distance between them.

Assume a dataset {(−→x 1, y1), ..., (
−→x n, yn)}, where

−→x i ∈

Rm is the ith input with m dimensions, and n is the number
of subjects in the training dataset. yi is the class that the
ith subject belongs to and can take the values of 1 and −1.
A linear SVM classifier tunes −→w and b in Eq. (54), so that
the constraints in Eq. (55) are met:

−→w · −→x − b = 0 (54)

yi(
−→w · −→x i − b) ≥ 1 for all 1 ≤ i ≤ n (55)

The SVM classifier described above performs linear clas-
sification. SVM classifiers can use nonlinear kernels to clas-
sify data sets that are not separable by a linear function. Some
of the common nonlinear kernels are polynomial and hyper-
bolic tangent kernels. SVMs can also be used for regression
and outlier detection. Many variants of SVMS are used in
the literature such as SVM-RFE (Recursive Feature Elimina-
tion) [329] and Least Squares Support Vector Machine [330].

SVMs are widely used in literature and have witnessed
great success. Patel et al. [15] estimate the severity of certain
Parkinson’s disease symptoms by feeding the accelerator
data acquired from a wearable monitoring system into SVM
classifiers. They reach estimation error rates less than 6%,
and get error rates as low as 1.2% by using more features
for their SVM.Koutsouleris et al. [18] use SVM classifiers to
analyze pre-processed MRI images and classify each image
as healthy vs. people who are at risk of early or late stages of
psychosis. Their scheme results in classification accuracies
of≈90% for each case. Another study using SVM classifiers
is presented in [12], where the authors detect obstructive
sleep apnea (OSA) by feeding single channel ECG recordings
into an SVM and detect apnea episodes in patients. Their
algorithm achieve accuracies of≈90% in best case scenarios.

B. KALMAN FILTERING
Kalman Filtering (KF) algorithm [331], [332] addresses the
problem of estimating the state of a discrete-time linear
dynamic system using multiple measurements, each of which
contain a certain amount of statistical noise. Kalman filters
work by determining the system state variables in two steps:
(i) Prediction step uses the current state of the system (at
time step k−1) to make a prediction for time step k , based
on a physical model and the (ii) Update step uses the actual
measurements (at time step k) to fine-tune this predicted
state to determine a more accurate state (at time step k). The
process continues to determine the next state (time step k+1)
by using the next step’s measurements (at time step k+1).
The connection among Kalman filters, belief propagation for
Bayesian networks, and some other related topics is studied
in [333]. An overview of Kalman filters is provided in [286].

Kalman filters compute the least-squares estimate of the
new state of a linear system from their previous state, which,
in essence, is a recursive computation; because of this recur-
sive nature of Kalman filters, they are very computationally
efficient for a large number of measurements. As first pro-
posed by Kalman [331] and Kalman and Bucy [332], this
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FIGURE 16. Interconnection of system block diagram and Kalman filter block diagram.

sequential structure of the problem can be taken advantage
of to estimate at each time step by means of a simple equa-
tion that only involves the previous state estimate and the
new measurement(s). Due to their low computational cost,
the KF filter and its extensions have found a wide appli-
cation domain, including target tracking [334], aircraft and
spacecraft guidance, navigation and control of vehicles [335],
robotic motion planning and control [336], physical activ-
ity tracking [27], and central nervous system movement
control [337].

Consider the discrete-time linear dynamic system charac-
terized by the following state and observation equations:

xk+1 = Akxk + Bkuk + wk , (56)

yk+1 = Ck+1xk+1 + vk+1, (57)

where k = 0, 1, . . . , xk ∈ Rn denotes the state vector,
yk ∈Rm denotes the observation vector, wk ∈Rn and vk ∈Rm

denote the state and observation noise vectors, respectively,
and matricesAk ,Bk , andCk are assumed to be known. In this
model, random vectors wk and vk are mutually uncorrelated
jointly Gaussian white noise sequences with known positive
semi-definite covariance matrices Qk an Rk , respectively.
Furthermore, uk is a known control vector, the initial state
vector x0 follows a multivariate Gaussian distribution, which
is uncorrelated with wk and vk .

For each k = 0, 1, . . . , Kalman filter provides the best
linear state estimator x̂k+1|k+1 for the system state xk+1
(at time step k + 1) in terms of the measurement sequence
{y1, y2, . . . , yk , yk+1}. The following set of equations consti-
tute the Kalman filtering algorithm:

x̂k+1|k+1 = x̂k+1|k +Gk+1(yk+1 − Ck+1x̂k+1|k ), (58)

x̂k+1|k = Ak x̂k|k , (59)

Gk+1 = 6k+1|kCT
k+1

(
Ck+16k+1|kCT

k+1 + Rk+1

)−1
,

(60)

6k+1|k = Ak6k|kAT
k +Qk , (61)

6k+1|k+1 =

(
I−Gk+1Ck+1

)
6k+1|k , (62)

for k = 0, 1, . . . , where x̂0|0 = mx0 denotes the mean of the
multivariate Gaussian distribution model, 6k+1|k represents
the prediction error covariance matrix and 6k+1|k+1 denotes
the filtering error covariance matrix. Figure 16 illustrates
the system model along with the standard KF. Due to the
wide applicability of the Kalman filter, various extensions,
including the Extended Kalman filter (EKF) [255] and the
Unscented Kalman filter (UKF) [338], have been proposed
in the literature and accommodate more sophisticated and/or
nonlinear discrete-time dynamic systems. Furthermore, in an
effort to improve performance, Kalman smoothers, which
utilize future measurements to provide better state estimates,
have been devised for linear and nonlinear systems fol-
lowing similar principles. Detailed descriptions and a sur-
vey of different family of Kalman filters can be found
in [255] and [286].
Zois et al. [27] use a Partially ObservableMarkovDecision

Process (POMDP) formulation in addition to Kalman-like
filters and smoothers to detect the activity of individuals;
the data from the individuals is acquired from a WBAN
(Amobile phone, three accelerometers and one ECG sensor).
In their application, they show that their proposed approach
achieves a detection accuracy as high as 87%, while smooth-
ing can improve the achieved accuracy by an additional 2%.
Messer et al. [339] develop a predictive low glucose sus-

pend (PLGS) system coupled with an artificial pancreas tech-
nology that reduces hypoglycemia. Their system takes the
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FIGURE 17. An example decision tree that classifies subjects heart beats into normal and arrhythmia based on certain features extracted from their ECG
signals.

data from a continuous glucose monitor and uses a Kalman
filter to predict low glucose. The authors’ goal is to analyze
the behavioral differences among different age groups on
the number of times they check their blood glucose levels
during night time while using this PLGS system. They test
their system in a clinical trial and report that the younger age
groups tend to have more blood glucose checks and boluses.

Chen et al. [340] study personalized medicine by develop-
ing a Markov Decision Process (MDP) model that chooses
appropriate therapy for breast cancer patients based on
their response to previous treatments. Their model suggests
to change medication in patients based on the effective-
ness of their previous treatment. Their primary goal is to
choose among four possible hormones for therapy instead of
chemotherapy and assign rewards to the models that chooses
the hormones over chemotherapy that leads to positive out-
comes and reduced chemotherapy side effects. To find a
solution for their model, they use Kalman Filters and compare
their result with a standard breast cancer treatment. They
show that their model results in higher rewards compared to
standard treatment and has a much higher clinical benefit rate
(≈90% compared to ≈80%).

C. DECISION TREES
Decision Trees [341] (DTs), also known as ‘‘Classification
and Regression Trees (CART)’’ [222], create a tree structure
based on the input data. This tree splits the data according

to different attributes at each level in a sense that the most
discriminative features are placed closer to the root of the
tree and the search is fine-tuned as it progresses through the
branches. An example of decision tree algorithm is shown
in Fig. 17 where the algorithm is applied to the heart arrhyth-
mia database in [3]. The algorithm takes variables such as
QRS duration, heart rate, T interval, P interval, and QT inter-
val and classifies the subjects into two classes of subjects with
normal heart beat and the subjects with heart beat arrhythmia.
Note that Fig. 17 is simplified as in all the different types of
arrhythmia are bundled together and the depth of the tree is
fixed to 4.

One of the main benefits of DTs is that they are readable
by humans. Some of the most utilized decision trees are
Iterative Dichotomiser 3 (ID3) [342], c4.5 [343], c5.0, and
Chi-squared Automatic Interaction Detection (CHAID).

The study in [20] utilizes DTs to predict the possibility of
hypertension in people by taking biometric variables, lifestyle
variables, and demographic variables as input. Authors use
C5.0 and CHAID algorithms in addition to other machine
intelligence algorithms to achieve their goal. In their appli-
cation, CHAID yields the highest accuracy with a predictive
rate of 64%.

D. ENSEMBLE ALGORITHMS (META-ALGORITHMS)
Ensemble algorithms are methods that use multiple
other algorithms to achieve higher prediction accuracy.
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Ensemble algorithms also reduce the chances of overfitting
in machine intelligence algorithms.

1) RANDOM FORESTS
Random Forests is a meta-algorithm that utilizes multiple
decision tree algorithms [344]. For a given dataset with high
dimensional inputs, a random forest creates multiple subsets
with lower dimensional inputs. These subsets are used to
create decision trees separately and for a new entry, each
decision tree makes an independent decision. Random forests
take the output of all the smaller decision trees and make a
final decision based on a majority vote. Ramon et al. [345]
use First Order Random Forest (FORF) [346] to predict the
survival of intensive care unit patients. They compare the
results obtained from this algorithm to other algorithms such
as decision trees and naive Bayes. They show that FORF has
an accuracy of 82% when it is used to predict survival of a
patient after one day in ICU and has comparable performance
compare to other algorithms which have prediction accura-
cies of 79% to 88%.

Hijazi et al. [10] show that Random Forests and SVMs
are among the most successful machine learning tech-
niques to identify cardiac hazards (excluding Deep Learn-
ing Networks). While SVMs are good at identifying the
most useful features of an ECG, Random Forests are
good at classifying ECGs into certain cardiac hazard
categories.

2) BOOSTING ALGORITHMS
Boosting algorithms are meta-algorithms that work with
many weaker classifier algorithms. They take the output
of a set of weaker learners into consideration and cre-
ate a final output that is a stronger learner. One of the
commonly used boosting algorithm is Adaptive Boosting
(AdaBoost) [347]; in AdaBoost, the best predictive algo-
rithm is chosen and then new algorithms are trained by
putting more emphasis on the data points that are mis-
predicted by previous algorithms. After training all of the
algorithms, AdaBoost votes on the output of these algorithms
and makes a final prediction. Mozos et al. [121] develop a
stress detection system using AdaBoost as one of their clas-
sifier algorithms. They work with 18 subjects and achieve
accuracies between 87% and 99% by using the AdaBoost
algorithm.

E. ASSOCIATION RULE MINING
Association Rule Analysis [8] is designed to explore the
entries of a database to find the features that appear in
the data entries more frequently. For example, Adverse
Event (AE) databases are composed of pairs of drugs and
AEs, where each pair corresponds to a drug —taken by an
individual— and an AE that has followed, such as a heart-
burn or a heart attack. An example of this database looks like:
{{Drug I, AE I}, {Drug II, AE II}, {Drug I, Drug II, AE I},
{Drug I, Drug III, AE III}, {Drug I, Drug II, AE I}, {Drug II,
Drug III, AE II, AE IV}, ...}.

In this specific set, the following associations are denoted:

• {Drug I, AE I} means that Drug I is associated with
Adverse Event I,

• {Drug II, AE II} means that Drug II is associated with
Adverse Event II,

• {Drug I, Drug II, AE I} means that taking Drug I and
Drug II together is associated with the occurrence of
Adverse Event I,

• {Drug II, Drug III, AE II, AE IV} means that taking
Drug II and Drug III together is associated with the
occurrence of two Adverse Events, AE II and AE IV.

Association rule mining algorithms search these databases
to find the data entries that appear to be correlated to each
other, where in the case of AE databases, the analysis may
yield the results that Drug VI and AE I appear to be cor-
related and show up in the data entries as pairs. There are
multiple algorithms that are used for this analysis, where the
Apriori algorithm is one of the most frequently used ones.
Harpaz et al. [348] use the Apriori algorithm to analyze the
FDA AERS (Adverse Event Reporting System) database.
One of the issues with studying relations between drugs and
adverse events is that these relations are only studies for
single drugs and single adverse events; it is not possible to
study all of the drug combinations and determine whether
these combinations result in adverse events in clinical trials.
The goal of this study [348] is to uncover links between
unknown multi-item drug combinations and adverse events.
Apriori algorithm helps the authors to analyze all drugs-
AE pairs and single out some previously unknown multi-
item AE associations. Note that this study does not prove
that the AEs are the result of the drug combinations; rather,
it narrows down the possible suspects for further analysis. For
example, 67% of the drug-AE interactions —that the algo-
rithm discovers— are already known to the medical society,
although the algorithm generates another 33% as candidates
for further study. While some of this newly-discovered 33%
may be pure false-positives, some important interactions can
also be discovered. In addition to drug-event associations,
authors also discover drug-drug associations; although 91%
of the drug-drug interactions are already known (78% due to
being commonly prescribed together, 4% known drug-drug
interactions, and 9% due to confounding), a new set of 9% is
added to the repertoire of ‘‘suspect drug-drug interactions,’’
which may yield to useful new discoveries.

F. k-MEANS ALGORITHM
K-means algorithm is a clustering algorithm with the goal of
clustering n observations into k clusters, where each observa-
tion is a member of a cluster with the closest mean. A sample
result of using this algorithm is shown in Fig. 18, in which
a 2 dimensional input space (x1 and x2) —with 3 possible
outputs— is clustered using the k-means algorithm.

Sanchez-Morillo et al. [349] utilize the k-means algorithm
in the prognosis of patients with Chronic Obstructive Pul-
monary Disease (COPD). They focus on the early detection
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FIGURE 18. A depiction of the k-means algorithm where the input space
has two axes, x1 and x2, and there are three possible output classes, each
shown by a different color.

of Acute Exacerbation of Respiration Symptoms (AECOPD);
to achieve their goal they design a mobile health system
questionnaire that asks the participants of the study about
their mood and medical records on a daily basis. k-means
algorithm takes this information and clusters them into dif-
ferent classes, where each class represents a different level
of severity of symptoms. The output of the classifier is the
used to predict exacerbation by checking if the symptoms are
worsening for at least two consecutive days. Within 15 par-
ticipants in the study, exacerbation is predicted with a 84.7%
accuracy.

G. DYNAMIC PROGRAMMING
Dynamic Programming (DP) is a mathematical optimization
method of solving a complex optimization problem using a
simple three-step approach: (i) divide the original problem
into a set of simpler sub-problems in a recursive manner,
(ii) solve each of the sub-problems, and (iii) determine the
global solution by carefully combining the solutions of the
sub-problems. In comparison to a greedy algorithm, which
selects the locally optimal solution that is not necessarily
globally optimal, DP guarantees that the acquired solution
will be globally optimal. We underscore that a problem needs
to exhibit the optimal sub-structure property (i.e., an optimal
solution to the problem can be constructed efficiently from
optimal solutions of its sub-problems) to be able to use DP to
solve for the optimal solution.

Problems that involve decisions over time can often
be divided into smaller sub-problems and solved recur-
sively. In fact, dynamic decision problems formulated using
the sequential decision-making (SDM) models exhibit this
structure and can be solved recursively via DP; examples
of SDM models are Markov Decision Processes (MDPs),
Partially Observable MDPs (POMDPs), and Multi-Armed

Bandits (MABs). The main idea is to divide a multi-period
decision problem into a sequence of decision steps over
time (Bellman’s ‘‘Principle of Optimality" [183], [350]).
This is achieved by defining a sequence of value functions
J1(z1), J2(z2), . . . , Jn(zn), where zk , k = 1, 2, . . . , n repre-
sents the information available at time step k based on which
a new decision will be made. The value function at each
time step k can be determined by working backgrounds in
time (i.e., from the value function at time step k + 1) using
the DP equation (also known as Bellman equation). This is
usually achieved by optimizing a simple function (e.g., sum,
product) of the gain of a specific decision at time step k
and the function J k+1(zk+1) at the new information state if
this decision is made. Finally, J1(z1) at the initial informa-
tion state corresponds to the value of the optimal solution,
while the associated optimal decision variable values can be
extracted by tracing back the set of performed calculations.

1) MDP STRATEGY
The optimal decision strategy of the MDP formulations given
in Section VIII-D can be easily determined following the
above procedure. In particular, we can recursively compute
the value function for all states xk ∈ X for an arbitrary finite
horizon T as shown in Eq. (63), as shown at the bottom of the
next page for k = 0, 1, . . . ,T − 1, where J k (·) is the value
function for time step k , P(xk+1|xk , uk ) denotes the transition
probability of moving from state xk to state xk+1 when control
action uk is executed, ck (xk , uk ) the reward/cost at time step k
associated with state xk and control action uk amd γ ∈ (0, 1]
is a discount factor that weighs the contribution of different
states differently in time. The optimal control action for state
xk is shown in Eq. (64), as shown at the bottom of the next
page.

In the case of infinite horizon, the optimal value function
satisfies the fixed-point equation shown in Eq. (65), as shown
at the bottom of the next page where P(x ′|x, u) denotes
the transition probability of moving from state x to state
x ′ when control action u is executed, and c(x, u) represents
the reward/cost associated with state x and control action
u. To solve the above fixed-point equation, techniques such
as value iteration [351], policy iteration [352], and linear
programming [183] are usually employed.

The study presented in [288] uses an MDP formulation
for the design of adherence-improving interventions for the
cardiovascular disease management of 54,036 patients with
type 2 diabetes based on individual electronic health records.
The study focuses on adherence to statin (the most com-
mon medication for lowering cholesterol) treatment. Their
Active Adherence Surveillance (AAS) system, which is cre-
ated by the MDP algorithm, is compared to an Inactive
Adherence Surveillance (IAS) system. AAS observes the
patients and assigns a health state to them during consecutive
epochs. These states are adherence states, showing the level
of patient’s adherence to their medication, and absorption
state, showing the occurrence of the event the medication was
supposed to prevent. The decision maker is supposed to make
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a decision about intervening with the patient at each epoch.
The algorithm is designed to calculate the probability of an
event happening during an epoch and provide decision sup-
port for intervention. The study shows that AAS increases the
life expectancy years of a male individual by 0.19 years and
by 0.17 years a female individual. Furthermore, AAS reduces
the cost of intervention, statin treatment, and hospitalization
care for patients with cost savings of $1800 for male and
$1700 for female patients.

2) POMDP STRATEGY
In POMDPs, the actual system state is hidden; although
the same dynamic programming principles apply, the related
equations are a function of the belief state. In particular,
the value function J k in this case has the form shown
in Eq. (66), as shown at the bottom of this page where
pk represents the belief state at time step k , c(uk ) =
[c(1, uk ), . . . , c(|X |, uk )]T is the reward/cost vector at time
step k associated with control action uk , 1|X | is a column vec-
tor with |X | ones, P(uk ) is the transition probability matrix,
1(yk+1, uk ) = diag(f (yk+1|1, uk ), . . . , f (yk+1||X |, uk )) is
the diagonal matrix of observation probabilities, and 8(·)
is a function that captures the evolution of the belief state
over time and is described according to update rule shown
in Eq. (67), as shown at the bottom of the next page. The opti-
mal control action for belief state pk then follows Eq. (68), as
shown at the bottom of this page.

The main challenge of solving a POMDP via dynamic
programming is that the belief state is uncountably infinite.
Fortunately, the associated value functions are piecewise
linear and convex/concave [353], enabling us to determine
the optimal decision strategy in finite time. A significant
amount of research effort has been made in developing effi-
cient methods for solving POMDPs [354]. Current state of

the art (e.g., point-based approaches [355], sampling tech-
niques, and problem structure exploitation) has made the
solution of POMDPs with millions of states computationally
feasible [356].

Hoey et al. [21] study a POMDP formulation to track an
individual’s upper-limb reaching rehabilitation progress over
time and adjust the level of difficulty based on their current
abilities. Their system couples a POMDP model to a haptic
robotic device and the task for the patient is reaching a target
in a virtual game. The system takes inputs such as the time it
takes for the patient to reach the target and the posture of the
patient to adjust the goal of the game and issues break periods
for the patient. Although the POMDP-based algorithm issues
a higher number of break periods, its target distance decision
agrees with the therapists 94% of the time.

3) MAB STRATEGY
Irrespective of the characteristics of a particular MAB for-
mulation, the associated optimization problem can be solved
using DP. For instance, in the case of a stochastic MAB
problem, the DP recursion takes the form shown in Eq. (69),
as shown at the bottom of this page where r(·) represents a
bounded reward function, x(u) denotes the state of arm u, K
is the number of different arms (options), and Px(u),k denotes
the transition probability associated with the state of arm u at
time step k . In 1979, Gittins showed that the optimal decision
strategy for this problem is equivalent to selecting the arm
with the highest Gittins index at each time step [357]:

v(x0(i)) = max
τ>0

E
{ τ−1∑
k=0

γ kr(xk (i))

∣∣∣∣x0(i)}

E
{ τ−1∑
k=0

γ k
∣∣∣∣x0(i)}

, (70)

J k (xk ) = min
uk∈U

[ ∑
xk+1∈X

P(xk+1|xk , uk )ck (xk , uk )+ γ
∑

xk+1∈X
P(xk+1|xk , uk )J k+1(xk+1)

]
, (63)

µk (xk ) = arg min
uk∈U

[ ∑
xk+1∈X

P(xk+1|xk , uk )ck (xk , uk )+ γ
∑

xk+1∈X
P(xk+1|xk , uk )J k+1(xk+1)

]
. (64)

J (x) = min
u∈U

[ ∑
x ′∈X

P(x ′|x, u)c(x, u)+ γ
∑
x ′∈X

P(x ′|x, u)J (x ′)
]
, (65)

J k (pk ) = min
uk∈U

[
pTk c(uk )+ γ

∑
yk∈Y

1T
|X |1(yk+1, uk )P(uk )pkJ k+1(8(pk , uk , yk+1))

]
, (66)

pk+1 =
1(yk+1, uk )P(uk )pk

1T
|X |1(yk+1, uk )P(uk )pk

. (67)

µk (pk ) = arg min
uk∈U

[
pTk c(uk )+ γ

∑
yk∈Y

1T
|X |1(yk+1, uk )P(uk )pkJ k+1(8(pk , uk , yk+1))

]
. (68)

J (x(1), . . . , x(K )) = max
u∈{1,...,K }

[
r(x(u))+ γ

∞∑
k=1

Px(u),kJ (x(1), . . . , x(u− 1), k, x(u+ 1), . . . , x(K ))
]
, (69)

VOLUME 6, 2018 46463



O. R. Shishvan et al.: Machine Intelligence in Healthcare and MCPSs: Survey

FIGURE 19. A comparison of fitting a classifier to a sample dataset using linear regression and logistic regression.
The x-axis is the input space and the y-axis is the output, which can take two possible values (0 and 1). It is apparent
from the figure that a logistic regression model suits this relationship better than linear regression, due to the sharp
transition of the output from 0 to 1.

where x0(i) denotes the initial state of arm i. This suggests that
the optimal decision strategy has a very efficient implemen-
tation using the following three steps: (i) determine v(x0(i)),
i = 1, 2, . . . ,K , (ii) pull arm µ = argmaxi v(x0(i)) until
the minimum time that the maximum value in Eq. (70) is
achieved, and (iii) repeat this process indefinitely.

Rabbi et al. [26] design a system named MyBehavior;
they use a MAB formulation to infer an individual’s physical
activity and dietary behavior and suggest changes that can
lead to a healthier lifestyle. The MyBehavior system takes
automatic sensing and manual user input information as raw
data. It includes 800 categories of activities and has over
8000 food items, which the user manually logs. The adopted
MAB algorithm analyzes these inputs and suggests behavior
changes for a healthier lifestyle. This approach is specifi-
cally useful, because it observes the past frequent calorie
loss patterns to suggest eliminating less effective calorie loss
behaviors; the goal of the algorithm is to have the user adopt
these more effective patterns. The system was deployed for
14 weeks with 16 users and showed that on average, users
followed 1.2 suggestions per day, walked 10 more minutes
per day, burnt 42 more calories by exercise per day, and
reduced their calorie intake by 56 points per meal.

H. LOGISTIC REGRESSION
Logistic Regression [358] is a classification model that pro-
vides a ‘‘probability’’ of a given data point belonging to a spe-
cific class. It is especially useful when a regression problem
has a dichotomous (binary) dependent variable; in this case,
linear regression models fail in creating good boundaries for
classification. An example of how this method is used is
shown in Fig. 19 where the x axis shows the input and the
y axis is for the output which can take two possible values,

0 and 1. It is apparent from Fig. 19 that the logistic regression
model can perform a better classification, as compared to a
linear regression model.

Logistic regression follows Eq. (71) where x is the input
and y is the output that can take two possible values; α and β
are the components that are learned and dictate the shape of
the curve. In this specific case x is only one dimensional.

y =
1

1+ e−αx+β
(71)

Neuvirth et al. [17] study the probability for future emer-
gency care need for a diabetic patient Their features includes
lab test results, medicine, diagnosis, and medical procedures
and they use LR in addition to other methods such as kNN
algorithm to identify the patients-at-risk and predict their
future visit to hospitals. Logistic regression achieves the
highest c-index and AUC as a stand-alone algorithm with
a c-index of 0.666 and an AUC of 0.713. Another study
utilizing logistic regression is [28], where the authors develop
a mood detection system. Authors feed various types of input
data (Head movement, eye blink, pupil radius, user inter-
actions with computers, etc.) to a logistic regression algo-
rithm, as well as other classifiers, and classify the mood of
subjects into one of three distinct states: {Positive, Neutral,
Negative}. The participants of the study are 27 users and
many metrics for this classification scheme are reported.
F-1 score and AUC of the three states are reported as 0.84 and
0.95 for the {Negative} state, 0.59 and 0.79 for the {Neutral}
state, and 0.71 an 0.91 for the {Positive} state.

I. NAÏVE BAYES
Naïve Bayes methods are algorithms that are based on the
Bayes theorem and have a naïve assumption that features are
independent from each other. This algorithm calculates the
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FIGURE 20. Multiple examples of classifying data points, using the k-Nearest Neighbors (kNN) algorithm. The data points on the plots are the
input data points that belong to three different classes. The input space is covered by the horizontal and vertical axes and the output space
(i.e., the classification) is shown by the color of each data point. The difference between the plots is the in the number of neighbors (k) that
were considered for classification; based on the number of neighbors (k) considered for each point (k = {1, 5, 15} in this specific case),
the boundaries of the classes change.

probability of a given point belonging to a class based on
the conditional probability of inputs given the output. The
general Naïve Bayes model is given in Eq. (72) where the
input vector (−→x ) has d dimensions and y is the output.

Pr(y|−→x ) =
Pr(−→x |y) Pr(y)

Pr(−→x )
=

Pr(y)
d∏
i=1

Pr(xi|y)

Pr(−→x )
(72)

Assuming that the output can take two possible values
(0 and 1), we can decide that which value of y is more proba-
ble by using Eq. (72) and calculating the ratio in Eq. (73) for
a given input. All of the values on the right side of Eq. (72)
are calculated using the training set.

Pr(y = 0|−→x )

Pr(y = 1|−→x )
=

Pr(y = 0)
d∏
i=1

Pr(xi|y = 0)

Pr(y = 1)
d∏
i=1

Pr(xi|y = 1)

(73)

Using a wireless chest belt (reading ECG and respiration)
and a hand sensor for skin conductance and EMG signals,
Wijsman et al. [29] classify the mental condition of a patient
into two possible categories: {Stress, Non-stress}. They use
multiple types of classifiers, but the one with the least amount
of error rate is Linear Bayes Normal with an error rate of 0.21.

J. k-NEAREST NEIGHBORS (kNN)
The k-Nearest Neighbors (kNN) algorithm [359] is a clas-
sification and regression algorithm that classifies the new
input data by considering the previously-observed neighbor-
ing points of it. An example of the kNN algorithm is shown
in Fig. 20, where there are 3 classes for the data points,
denoted by three different colors. kNN algorithm is executed
for the dataset by setting ‘‘k’’ to be 1 (a single neighbor), 5
(the datapoint and 5 of its neighbors), and 15; the new data

points that are fed into the algorithm are classified based on
the shade of the color that the data entry falls on for each
one of these cases. Addition of each data point makes the
boundaries between pairs of classes sharper.

Lan et al. [360] use kNN and 2 other classifiers on EEG
signals to estimate the cognitive state of subjects between
4 activities of {slow walking, navigating and counting,
communication with radio, studying mission map}.
They implement a majority vote of these classifiers to finalize
their decision and achieve an 80% accuracy on their classifi-
cation scheme.

K. LIKELIHOOD RATIO TEST
A Likelihood Ratio Test is a statistical hypothesis test
used to determine whether a single hypothesis —out of a
number of mutually exclusive alternative hypotheses— is
true or not [255], [257], [361], [362]. In a typical case,
we have access to a random observation vector y and we
want to choose among possible hypotheses; each hypothesis
is described by an a priori probability denoted by Pi. Under
each hypothesis Hi, the observation vector is probabilisti-
cally described by a known and well–defined probability
distribution denoted by P(y|Hi). The goal is to maximize the
probability of a correct decision, which is achieved by choos-
ing the hypothesis based on maximum a posteriori (MAP)
probability rule [363] as follows:

Ĥ = argmax
i
[P(Hi|y)], (74)

where P(Hi|y) =
P(y|Hi)Pi
P(y)

. In the simple two–hypothesis

case, this is equivalent to the following comparison:

P(y|H1)P1
P(y)

R
P(y|H0)P0

P(y)
, (75)

which indicates that H1 holds if the left-hand-side is greater
than or equal to the right-hand side and similarly for H0
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(ties are broken arbitrarily). Rearranging terms above, we get:

L(y) ,
P(y|H1)
P(y|H0)

R
P0
P1

, η, (76)

where L(y) is referred as the likelihood ratio and η is the
threshold. Thus, the above comparison is known as the like-
lihood ratio test. In the multiple hypothesis case, we perform
a set of binary threshold comparisons to reach a decision,
i.e., for all i, j, j> i:

P(y|Hj)
P(y|Hi)

R
Pi
Pj
. (77)

In many situations, the cost of a wrong decision is highly
asymmetric; in such a case, only the threshold η is affected
and the associated test is called a Bayes test. For a detailed
description of the likelihood ratio test and other related
tests, the interested reader is referred to [255], [257], [361],
and [362].

One example application of this algorithm is in [364],
where authors predict hospitalizations due to heart diseases.
The authors take the available electronic health records of
patients and predict whether they will be hospitalized in the
coming year. They test and compare many algorithms such as
SVMs, logistic regression, and likelihood ratio test and pro-
vide ROC curves for these classifiers. They also demonstrate
the features that LRT takes as significant and non-significant
features; their study reports the number of emergency room
visits in the previous year as ‘‘significant’’ and sex as ‘‘non-
significant’’ factors.

L. SCORING SYSTEMS
In medical applications, scoring systems are classification
models that help physicians make a quick risk prediction for
a medical condition just by adding and subtracting the values
of some physiological input parameters. The main benefit of
these systems is that they do not need extensive training or a
computer to be calculated. There are many scoring systems in
use today such as SAPS III [365], which predicts themortality
of ICU patients, QRISK2 [366] which is a prediction score for
cardiovascular diseases, and Eagle score [367] which gives a
probability for a patient dying during heart surgery.

Historically, scoring systems are developed but by experts,
rather than machines. Recently, machine intelligence algo-
rithms have been employed to develop new scoring sys-
tems in an automated fashion. An example is Super-sparse
Linear Integer Model (SLIM) [368], which is a machine
learning method for creating scoring systems. One exam-
ple of using this algorithm is shown in [141] where the
authors develop a scoring system for sleep apnea detection
using SLIM. The authors propose a medical scoring sys-
tem with 5 physiological input parameters, where the score
is 0 initially and progressively increases/decreases as each

parameter is —potentially— added:

Size-5 SLIM Score
for Sleep Apnea

=



add +4, Age ≥ 60
add +4, Hypertension
add +2, BMI ≥ 30
add +2, BMI ≥ 40
add −6, Female.

(78)

A cumulative score of greater than 1 indicates the presence
of obstructive sleep apnea with False Positive Rate (FPR)
of 20%. The authors also develop a more sophisticated scor-
ing algorithm with 10 physiological input parameters includ-
ing information such as smoking habits, diabetes patients
(again, the score is 0 if none of the 10 parameters have been
added):

Size-10 SLIM Score
for Sleep Apnea

=



add +16, Age ≥ 30
add +12, Age ≥ 60
add +12, BMI ≥ 25
add +2, BMI ≥ 30
add +10, BMI ≥ 35
add +4, BMI ≥ 40
add +6, Diabetes
add +4, Hypertension
add +2, Smoker
add −14, Female.

(79)

A total cumulative greater than 29 indicates the presence of
OSA with an FPR of 20% and True Positive Rate (TPR)
of 65%.

XI. ARTIFICIAL NEURAL NETWORKS
The development of Artificial Neural Networks (ANNs) were
inspired from the way any living organism performs its life
functions using a sophisticated network of neurons; the neu-
rons and a network of their connection through synapses
forms aCentral Nervous system,which performs three impor-
tant functions: (i) collect and pre-process the data from sen-
sory inputs in the body, (ii) process the collected data in a
centralized location (the brain), and (iii) transmit the com-
puted motor response back to the body to activate muscles,
tentacles, or other parts of the body that can generate a
motion.

ANNs and their highly-popular variant Deep Learning
Networks have evolved based on this bio-inspired structure
of neural nets; ANNs receive computer data and pre-process
it followed by a processing network and output the result in
an easily-interpretable form. In healthcare computing, they
have foundwide-spread use due to the unparalleled prediction
performance they boast.

In this section, we will investigate their computational
infrastructure of ANNs (Section XI-A) and their specific
usage in healthcare applications (Section XI-B). We will
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FIGURE 21. Common architecture of a fully-connected artificial neural network with n inputs, k hidden layers, and m outputs
(on the right). Inner structure of a neuron used in artificial neural networks is shown on the left-side box; ωij are the weights
by which inputs to the neuron (x1, x2, . . . , xn) are multiplied before they are summed. ‘‘Bias’’ is a value by which this sum is
augmented and f () is the activation function, which is used to introduce a non-linear component to the output. A set of
commonly used activation functions are tabulated in Table 2.

study different types of ANNs in the following subsec-
tions: Feed-forward Neural Networks (Section XI-C), Prob-
abilistic Neural Networks (Section XI-C2), Radial Basis
Function Networks (Section XI-C1), Deep Belief Net-
works (Section XI-D), Convolutional Neural Networks
(Section XI-E), and Recurrent Neural Networks
(Section XI-F).

A. COMPUTATIONAL STRUCTURE OF ANNS
As opposed to the stricter models studied in Section VII, an
ANN can be thought of as being a highly-flexible model that
is constructed through the connection topology of the neurons
and the layers within the ANN. Because of their flexibility,
ANNs are very popular in problems that do not have well-
defined features, as opposed to the strict feature definitions
that we investigated in Section V. The number of layers in a
neural network is an indicator of the complexity of the model;
problems that require complex models typically need deeper
networks. Most ANN structures consist of an input layer,
one or many hidden layers, and an output layer. A general
structure of an artificial neural network is depicted in Fig. 21,
which shows a network that has n neurons in its input layer,
k hidden layers, and m outputs.

1) NEURONS
The basic building block of an ANN is a neuron. The inner
structure of a neuron is shown in Fig. 21 (left), where the neu-
ron collects data from multiple inputs and multiplies them by
their assigned constant weights. The sum of these weighted
inputs is then biased by a constant value (‘‘Bias,’’ as shown
in Fig. 21) and the result is passed through an ‘‘activation
function.’’ The output of the neuron is determined by the
result of the activation function.

2) ACTIVATION FUNCTIONS
A list of commonly used activation functions is provided
in Table 2. The presence of activation functions is a necessity
to introduce non-linearity in the functionality of a neuron
and to a neural network in general. If the activation function
is a linear function (e.g., the identity function in Table 2),
the entire network becomes a linear combination of its
inputs, which will not capture the nonlinear relations in the
data.

Logistic (Sigmoid) function introduces the non-linearity
that is needed, while keeping the output range between 0 and
1. This output range-limiting property eliminates the danger
of the internal values in the ANN spiralinging out of control,
which will cause convergence issues.

Step Function achieves the same non-linearity goal as the
logistic function, however, the derivative of the step function
is discontinuous at 0, making its use tricky in algorithms that
rely heavily on derivatives.

Hyperbolic Tangent is very similar to Sigmoid. The only
difference is that tanh() is an odd function and some research
argues that odd functions converge faster when the network
is being trained.

Rectifier Linear Unit (ReLU): ReLU activation function
remedies some of the problems that arise in deeper networks,
when activation functions with limits on their values are used.
Activation functions such as the step function or sigmoid
usually saturate when the number of layers increases; this
means that adding new layers to the network increases the
computational complexity of its training network without
benefiting its performance, because the neurons in the early
layers saturate. Introduction of ReLU solves the neuron-
saturation problem in deep networks without increasing com-
putational complexity, because it is very easy to calculate.

VOLUME 6, 2018 46467



O. R. Shishvan et al.: Machine Intelligence in Healthcare and MCPSs: Survey

TABLE 2. Common activation functions for neurons, represented as f ()
in Fig. 21.

Note that ReLU is still a non-linear function and it is sufficient
to capture the nonlinearity in the data in most cases.

Parametric ReLU: Parametric ReLU is like ReLU activa-
tion function with addition of another parameter (α), which
can be learned during the training phase. Having a non-zero
output for negative input values proves useful for certain
algorithms.

SoftPlus: SoftPlus function acts almost exactly the same
way as ReLU, with the difference that it is differentiable
for all the input values, as opposed to ReLU, which is not
differentiable at x = 0.

Radial basis functions (RBFs) are a group of functions,
whose values depend on their distance from some point c
in the input space. In applications where the distance of the
input to some given data points in the input space is important,
RBFs are suitable candidates for activation functions of neu-
rons. One of the most commonly used RBFs is the Gaussian
form that is shown in Table 2.

B. CHARACTERISTICS OF ANN-BASED ALGORITHMS
ANNs include a large family of structures based on the way
neurons are connected to each other and each of these struc-
tures has its unique characteristics. Different subcategories
of ANNs share some common characteristics, despite being

suitable for different applications. In this section, we discuss
these common characteristics, which involve how an ANN
handles the input data and/or data features, as well as how
the training is performed in the ANN.

1) HANDLING DATA
The dimensionality of the data determines the complexity
of an ANN; increased dimensionality in the raw input data
typically brings about the need to turn this raw data into
features (see Section V). However, the mapping from raw
data to features is not readily available for every application.
One of the most exciting properties of ANNs is their ability
to work with high dimensionality data for which the features
are not known. To handle these different data dimensionality
scenarios, ANNs could be categorized by purpose as follows:
• Data Features as Input:When the features are available
in an application (for example, QT andRR intervals in an
ECG signal), the required data input to an ANN is sub-
stantially lower, which requires much simpler ANNs. In
these scenarios, the computational burden on the ANN
is reduced due to existing knowledge of the application.
Zhang et al. [369] create a pathological brain detection
system that takes slices of brain images, extracts features
from these images using a fractional Fourier transform
and feed these features into an ANN to classify the brain
images as pathological vs. healthy. In this specific exam-
ple, the computational burden of feature extraction is
shifted outside the ANN, because the readily-calculated
features are the input to the ANN rather than the raw
brain image data.

• RawData as Input: For cases where the data is complex
and data features are not well-defined, an ANN can
accept raw data as input, which will require the ANN to
handle feature extraction internally. Intuitively, feature
extraction implies dimensionality reduction on the data.
Based on this insight, there doesn’t even have to be a
clear transition from raw data into features; each layer
of the ANN can be taught of as being a dimensionality
reducer and the entire network of the ANN is some
representation of the data features. In this way, for higher
dimensionality data, it is logical to expect a deeper ANN
to be able to extract the features. The structural flexibil-
ity of an ANN allows it to be adapted to take image,
video, audio, time series, and text data as input, with
1D, 2D, or 3D dimensions. An ANN input can be more
than one type of input data (e.g. video and audio) or a
combination of raw data and features. Huang et al. [370]
study fetal cardiac screening videos using deep neural
networks. The goal of the application is to find the angle
of an ultrasound video and the location of the heart
in the images. The deep neural network takes the raw
ultrasound video as input, which is 3D, and is able to
achieve near-human accuracies in both angle detection
and heart localization.

• Data Features as Output: Some ANNs are used to
extract features from raw data. These features can be
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used as input to other algorithms that do not have the
capability to work with raw data efficiently. For exam-
ple, Zhang et al. [371] study emotion recognition in
speech in a noisy environment; they use an autoencoder
(which is a type of an ANN described in Section XI-
D) to find and enhance the features of the input audio
signal. The extracted features by the ANN are then
fed into a conventional SVM to classify the emotion.
They show that their enhanced features extracted by the
autoencoders beat the baseline (which includes features
extracted by standard digital signal processing tech-
niques) in every case.

2) HANDLING TRAINING
Training of ANNs is typically achieved through a process
called backpropagation using the Gradient Descent algo-
rithm. Backpropagation examines the output error for a given
input and propagates back from the output layers towards the
input layers and by adjusting the parameters of the network to
reduce the error. The number of parameters in an ANN may
pose an overfitting problem, which can be overcome by using
conventional as well as ANN-specific techniques. One case of
the latter is the dropout technique, in which only half of the
neurons are randomly selected and trained and the other half
are ignored at each training step.

Training an ANN is usually a computationally intensive
task and more complex forms of ANNs were not feasible
to use until the emergence of high computation capability
of GPUs in recent years [321]. The inherent parallelism of
an ANN utilizes the GPU architecture in an efficient way in
contrast to other general structure processing units, such as a
CPU.

C. FEEDFORWARD NEURAL NETWORKS
In applications where the data is provided in a time-
series, or speech recognition applications where the data
consists of words in a sentence, references to previous and
current data elements must be made for a neural network
to produce its output. Alternatively, in a feedforward neural
network, none of the connections of neurons loop back to
previous ones, i.e., every neuron is front-connected; there-
fore, the output of a feedforward neural network at a given
point in time depends only on a single input at that same
time. A fully connected network (shown in Fig. 21) is a com-
mon architecture of feedforward neural networks, in which
every neurons in one layer is connected to every neuron
in the previous and next layer. Fully connected networks
are best suited for shallow networks, because the output of
the neurons that use sigmoid or hyperbolic tangent as their
activation function saturate on deeper networks due to the
limits on their output (see Section XI-A1), making the ben-
efit from the added layers marginal or none. Furthermore,
the number of parameters in a network grows rapidly, making
deeper feedforward networks computationally expensive; this
in turn makes training expensive and increases the proba-
bility of overfitting. Note that these problems are fixed in

FIGURE 22. Structure of an RBF network with three input features and
four neurons in the hidden layer using Gaussian Radial Basis Function as
activation function.

convolutional neural networks, as will be investigated in
Section XI-E.

An example application of feedforward neural networks is
presented in [372], where authors design a hearing loss detec-
tion system for sensorineural hearing loss disease patients.
This system extracts features from the brain tissue MRI
images using signal processing algorithms. These features
are then provided to a feedforward neural network with one
hidden layer which detects sensorineural hearing loss with a
95% accuracy. Another application that uses a simple fully
connected neural network is shown in [373], where the possi-
bility of adverse events happening to ICU patients after their
admission is studied. Input features to the network include
patients’ vital signs and laboratory results; the output of the
network is a prediction of whether the patient will develop an
adverse event in the next 4 hours or not. The system achieves a
≈78% of positive prediction rate with an AUC of 0.92, which
is more effective compared to other studies and the standard
scoring system.

1) RADIAL BASIS FUNCTION (RBF) NETWORKS
A Radial Basis Function (RBF) neural network is a spe-
cial type of feedforward network with a well-defined struc-
ture [374], consisting of three layers of neurons as shown
in Fig. 22. These layers are the input layer, a single hidden
layer, which uses RBF as its activation function, and an output
layer, which outputs the weighted sums of the neurons in the
hidden layer.

A study that uses an RBF network is conducted in [375],
where the authors detect tremors in Parkinson’s disease
patients using deep brain electrodes that gather data from
the subthalamic nucleus. Frequencies in a time window of
one second are fed into an RBF network as inputs and
the network classifies the pattern as either tremor or non-
tremor. The system achieves a ≈90% accuracy in detecting
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FIGURE 23. General structure of a probabilistic neural network. The network takes n dimensional inputs and has
k number of classes in the data. N1 through Nk refer to the number of data points that belong to each class (i.e.
N1 is the number of training data points that belong to class 1). This makes the number of neurons in the pattern
layer equal to total number of data points in training data.

tremor patterns. In another study, researchers use an RBF
network to identify cerebral vascular accidents by using CT
images [376]. The input space for the RBF network consists
of 51 features extracted from CT images and the output of
the network is the classification of different regions of the
images as normal vs. abnormal regions. Their work achieves
specificity and sensitivity as high as ≈97.6%.

2) PROBABILISTIC NEURAL NETWORKS
A Probabilistic Neural Network (PNN) [377] is another type
of a feedforward neural network with a well-defined struc-
ture. PNNs consist of four layers, which are called the input
layer, pattern layer, summation layer, and the output (deci-
sion) layer as shown in Fig. 23. Although PNNs usually use
RBF activation functions in their pattern layer, the primary
difference between an RBF and a PNN network is that the
number of neurons in a PNN depends on the number of the
data entries as well as the number of classes in the data,
whereas structure of an RBF network is independent from the
input data.

Wang et al. [378] use a PNN to classify 8 classes of
heartbeats, including 7 types of arrhythmia and normal heart
beat. Although they extract 200 features from each heartbeat,
they reduce the input space using dimensionality reduction
techniques such as LDA and PCA (see Section V-A). They
achieve more than 99% accuracy in classifying the heart
beats into these 8 categories. Another study that uses a
PNN is presented in [379], where authors use an Enhanced

Probabilistic Neural Network (EPNN) [380] to classify
patients with Parkinson’s disease from a set of given standard
inputs. There are three classes in the study, which are sub-
jects with Parkinson’s disease, healthy controls, and patients
who are diagnosed with Parkinson’s disease but have normal
dopaminergic functional imaging. They show that an EPNN
can achieve a 92.5% classification accuracy, which is higher
compared to other algorithms such as k-NN and DT.

D. DEEP BELIEF NETWORKS
Deep Belief Networks (DBNs) are a type of deep neural
network mostly used for extracting features from raw data.
DBNs can be used in unsupervised learning (see Section V-
A9). They reconstruct the input by first building a lower-
dimension version of it in the hidden layers and rebuilding
a higher dimension output from these hidden layers. In this
way, the hidden layers function as extracted features from the
input data. DBNs are mostly composed of multiple layers of
Restricted BoltzmannMachines [103] or Autoencoders [104].
These structures can be trained using a Greedy algorithm
separately, which makes them a suitable candidate for deep
networks by reducing the training time. When used with
supervised training, DBNs can also be used as effective
classification networks. A sample structure for a stacked
autoencoder is shown in Fig. 24.

The study in [106] uses DBNs to extract features frommul-
timedia (audio/video) inputs and an SVM to perform emotion
recognition. Although their classification method is not an

46470 VOLUME 6, 2018



O. R. Shishvan et al.: Machine Intelligence in Healthcare and MCPSs: Survey

FIGURE 24. The structure of a stacked autoencoder, which is trained by replicating the input data at the output. During
the training, the hidden layers form a lower-dimension representation of the data, from which the output is
reconstructed. Therefore, the hidden layers function as features of the input data.

FIGURE 25. The structure of an example convolutional neural network (CNN). The network takes a 42×42 framr (of pixels) and passes it
through a convolution layer that has three 3×3 filters, yielding a layer with three 40×40 frames. These frames are then passed into a
pooling layer that pools 2×2 frames into a single 1×1 cell and shrinks the size of each frame from 40×40 to 20×20. Another iteration of
convolution and pooling results in nine 9×9 frames which are then fed into the fully connected layers.

ANN, their main contribution is the extraction of the features
from multimedia inputs with various types of DBNs, with the
eventual goal to use an SVM for the actual classification task.
They show that their method for feature extraction achieves
a better accuracy when compared to conventional feature
selection techniques by having ≈4% higher accurate classi-
fication. In [381], another DBN-based emotion recognition
system is introduced; this study conceptualizes how the rec-
ognized emotions of a presenter in a smart classroom can be
used to determine how effectively the presenter is building a
rapport with the audience (i.e., the students). This information
is fed back to the presenter in real time in order to allow
the presenter to adjust their nonverbal behavior, such as hand
gestures, body language, and intonation. This study is based
on the fact that the communication among humans is heavily
influenced by these nonverbal cues [382], [383] and presen-
ters who can effectively use their nonverbal communication
component can deliver a much more memorable lecture by

activating both analytical and emotional memories that are
a part of the human brain [384]. Note that this separation
of the two different parts of the human brain is also termed
‘‘System 1’’ and ‘‘System 2’’ [385] in psychology.

Another application that uses DBNs is presented
in [386], which focuses on clustering genes that are rel-
evant to glioblastoma (a type of brain tumor) prognosis.
1100–1400 input features are selected from the genes of
patients and fed into different DBNs and their dimen-
sionality is reduced to 100–200 features. These reduced-
dimensionality features are then used as an input into a
clustering algorithm, which is able to distinguish among six
different subgroups of patients. Authors show that patients in
each cluster show similar prognosis for their glioblastoma,
while the prognosis differs with patients in other subgroups.
Hu et al. [387] detect Alzheimer’s disease by using fMRI
data. In the preprocessing phase, they capture time series
signals of 90 regions of interest in the brain and convert this
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data into a 90 × 130 matrix to generate the input data for a
DBN that reduces the number of features. A softmax layer
is used as a classifier to detect if the patient has Alzheimer’s
disease. They report an accuracy of 87.5% in detecting the
disease, which is higher than other methods such as an 82.1%
accuracy achieved by an SVM.

E. CONVOLUTIONAL NEURAL NETWORKS
One of most commonly used form of deep neural networks is
Convolutional Neural Networks (CNNs), which have shown
widespread success in analyzing images. The internal layers
of a CNN are not fully connected; each neuron in a layer is
only connected to neurons in its neighborhood in the previous
layer. This limited connection structure helps CNNs find
local features from low abstractions in the first layers (e.g.,
detecting horizontal or vertical lines) to higher abstractions
in the final layers (e.g., detecting complex structures like
faces). CNNs use activation functions with no restriction on
the output value (such as ReLU), which avoid the possibility
of neuron saturation in deeper networks (see Section XI-A2).
CNNs are composed of two layers: the convolution layer,
which facilitates the computation of local features and the
pooling layer, which reduces data dimensionality in a local-
ized region of neurons by using aggregation functions that are
applied to these local features (such as max, average).

An example structure of a CNN network is shown
in Fig. 25. CNNs typically have a few layers of fully con-
nected networks followed by a softmax layer in their final
layers, especially for classification problems. There are some
established CNN architectures such as Lenet-5 [388] which
was introduced in 1989, GoogLeNet [389], AlexNet [390],
VGG [391], and Network-In-Network [392]. Although the
idea of CNNs is not new, they have received growing interest
in recent years due to the increase in the computational power
of computers that utilize computational accelerators such as
GPUs [321], [393].

CNNs are widely used in different research topics and
have shown near-human accuracies in many applications. For
example, Gao et al. [394] analyze CT image slices to detect
Interstitial Lung Disease (ILD) using CNNs. They define five
classes of outputs including a healthy class and four different
ILD classes. Their network achieves an AUC of 0.99 using
4 layers of convolution and pooling followed by two fully
connected layers and a softmax layer at the output. Another
application that takes images as inputs is presented in [156]
where the CNN takes histology images as inputs and detects
different regions of the image as benign or malignant glands.
They achieve an F1 score of 0.9 and also report Hausdorff
distance for the masks of benign and malignant glands that
they create compared to the real mask.

Salvador et al. [395] develop a system that detects normal
andmalignant tissues during surgical procedures from a video
feed. The nature of their problem requires analyzing a vast
amount of data in real-time to provide a feedback to the
surgeon about detected cancer tissues. They use deep learning
techniques and a hardware accelerator in their system to

FIGURE 26. A sample recurrent neural network (RNN), in which the
output of a neuron is connected to the input of a neuron in previous
layers, creating a feedback cycle in the network. This property of RNNs
allows them to ‘‘remember’’ previous data points.

achieve low latency for their processing time. They report
their full system time as being between 42 to 77 seconds
for different input sizes. Another application that takes input
data from images in a video feed is presented in [396] where
authors develop a framework that uses a video feed from
ICU for non-contact vital sign monitoring. In this application,
patient vital signs, such as heart rate, respiratory rate, and
oxygen saturation, are estimated from skin regions in a video.
The CNN that they develop analyzes the images, detects
whether the patient is in the image or not, and if the patient is
present, finds the regions in the image that show the skin of
the patient. They study 30 infants in NICU and show 98.75%
accuracy in detecting the skin regions in the images.

The structure of CNNs is flexible and they can be config-
ured to take types of data other than images. For example,
Krizhevsky et al. [390] detect 5 types of arrhythmia in the
ECG data. Since the ECG data is a one dimensional input,
they develop a novel 1-D convolutional neural network that
takes ECG recordings as input. They show how the neurons
are connected in their network and describe the training
process. Their final system has accuracies as high as 99% in
detecting different types of arrhythmia.

Another arrhythmia detection framework that uses CNNs
is presented in [397], in which the dataset includes more
than 60,000 ECG recordings that are annotated by clinical
ECG experts into 12 different classes of heart beat arrhythmia
and are used to train a 34-layer CNN to differentiate among
these classes of arrhythmia. They show that their network can
classify the recordings better than the cardiologists; the CNN
achieve an overall F1 score of ≈0.81, while cardiologists
reach an F1 score of ≈0.75.

F. RECURRENT NEURAL NETWORKS
Recurrent neural networks (RNNs) are a special type of ANN
in which there are feedback paths from neurons to other
neurons that are in the previous layers. This property allows
RNNs to base their classification not only on continuously
incoming data, but also the data that has entered the ANN
(and has been computed by the network already) at a previous
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FIGURE 27. General structure of an Elman network.

time. A simple RNN is depicted in Fig. 26. RNNS have been
shown to be effective in processing natural language and time
series data like audio [398]. Some variants of RNNs have
been applied to medical data successfully, which are briefly
described below.

1) ELMAN NETWORKS
Elman Networks [399] were created by adding a layer of con-
text to a feedforward neural network with one hidden layer as
shown in Fig. 27. Elman networks were originally designed
for language processing, but they have proved to be useful
for all applications that have sequential input. For example,
Chu et al. [400] use Elman networks to detect whether an
elderly patient fell while walking. They collect their data by
placing a sensor board in the patient’s pocket and using the
accelerometer from the board, they detect a fall incident with
high accuracy.

2) LONG SHORT-TERM MEMORY (LSTM)
LSTM [401] is a type of an RNN that has mechanisms to
store data values for either long or short periods of time.
The unit that remembers the values is called the LSTM unit
and it stores values without applying an activation func-
tion which avoids any distortion in the data. The benefit
that LSTMs provide is that they are designed to remember
data for long periods of time as opposed to other mod-
els that struggle with remembering older information. An
example application of LSTMs is provided in [402] where
authors develop a variant of LSTMs for the purpose of
subtyping patients based on their electronic health records.
They create two networks; (i) one for a diabetes diagno-

sis based on hospital visit information, which achieves a
96% accuracy and (ii) another one for predicting Parkin-
son’s progression. They show that their prognosis analysis for
Parkinson’s disease has better performance compared to other
methods.

3) BIDIRECTIONAL RECURRENT NEURAL
NETWORKS (BRNN)
BRNNs [403] are another type of RNN that allow access
to future input data in their current state. This means that
the output is influenced by both the past and the future
information; this makes BRNNs a suitable candidate for the
data that needs to be analyzed within a given context. For
example, Ma et al. [404] use BRNNs to analyze electronic
health records. The goal of their study is to predict the
(t + 1)th visit to the hospital by a patient, given the infor-
mation of that patient’s visits to a hospital from time 0 to
time t . They test their model and show that their approach
beats baseline by at least 2% more accuracy in diagnosis
prediction.

4) COMBINING DIFFERENT TYPE OF ANNS
Some applications use two different types of networks simul-
taneously. For example, Shin et al. [158] develop a system
that reads a chest X-ray image, detects any abnormality in
the image, and adds a description to the image based on
the abnormality that it finds. They combine two networks,
a CNN that is responsible to classify images and an RNN that
generates annotations for the images. Their reported results
show that their system is able to achieve acceptable results
for the annotations that it has created.
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FIGURE 28. Components of a Medical Cyber Physical System (MCPS) for applications such as remote patient health monitoring. The real-time
data is acquired either from the patient’s body or their environment (e.g., temperature); this data can be augmented with historical medical
records from either public sources or other collaborating hospitals’ databases. The pre-processing and aggregation component allows the raw
data to be turned into features before being transmitted into the cloud. The cloud uses the algorithms that are thoroughly studied in this
paper, while the end result can be observed by either a human (medical personnel) or another machine (actuator). The feedback received
from the human or the machine can be fed back into the training engine to further train the algorithms.

XII. MEDICAL CYBER PHYSICAL SYSTEMS (MCPS)
While the algorithms and models that are described in this
paper can work on historical medical data that is stored in
a database, a Medical Cyber Physical System (MCPS) —
depicted in Fig. 28— can acquire and process patient health
data in real time [55]. A typical application of an MCPS
is remote patient health monitoring [7], in which a patient
is monitored through a set of body-worn sensors and the
acquired data is pre-processed and transmitted into the cloud.
The execution of most of the algorithms that are described in
this paper takes place in the cloud and the results are presented
to a medical professional through a mobile device. However,
in certain applications, a task split betweenmobile acquisition

devices and the cloud has been proposed, where a portion
of the overall algorithm executes in the mobile devices to
ease the burden in the cloud and avoid network congestion.
For example, the KNOWME network [188] describes an
application where a light version of the algorithm is run on
the mobile device that is used to collect data from the patient
and present real-time physical activity tracking information.
The components of an MCPS are detailed below.

A. DATA ACQUISITION
Data acquisition in an MCPS corresponds to Box D in Fig. 1.
Various data that is simultaneously gathered from a variety
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of sources are fed into the machine intelligence algorithms.
These sources can be:

1) PATIENT
The data that is acquired from the patient includes multi-
ple physiological signals such as Electrocardiogram (ECG),
skin temperature, surface EMG, gait (posture), blood glu-
cose, or respiratory rate, depending on the purpose of the
health monitoring application. For example, while monitor-
ing for cardiovascular diseases benefits from obtaining ECG,
gait, and respiratory rate data, Parkinson’s disease patients
benefit from gait monitoring, but not so much from ECG [5].
In practice, commercially-available skin-worn sensors [49]
are capable of measuring a variety of physiological signals,
including but not limited to ECG, EMG, acceleration, etc.
and are continuously developed to incorporatemore advanced
bio-sensing capabilities [48], [50]. Battery-based sensors [49]
suffer from the problem of continuously having to power the
sensors; while this is not a problem in application where the
monitoring duration is much shorter than the battery life of
the sensor [5], in applications where the sensor is used a
long period of time, passive RFID sensors is preferred [405].
Furthermore, a set of sensors that are built into today’s smart-
phones (or other mobile devices) can be utilized for data
acquisition. These types of sensors are termed non-dedicated
sensors [406], because they are not dedicated to a single task;
rather, they can be used in any application that can utilize
them in a soft-sensing setting [407].

2) EXTERNAL DATA
In addition to the data acquired directly from the patient’s
body, auxiliary data, such as environmental information, may
be used in context-aware applications. This auxiliary data
provides information about the state of the patient at the
time of the data acquisition. For instance, Bisio et al. [408]
describe an application thatmonitors patients suffering from a
set of mental and physical disabilities (called co-morbidities)
at home, using smartphones that collect different parameters,
such as acceleration data, audio information, WiFi connec-
tion, and the time of the day. Using these parameters, this
application is able to localize the patient, identify if the patient
is alone, and their current physical activity. Note that in cases
where the smartphones of users other than the patient are
being used, issues such as the trustworthiness of the acquired
data [409] arise. Furthermore, in such scenarios, incenting
other users to contribute the data from their smartphones is
a challenge [410], [411].

3) SOCIAL NETWORK DATA
Rather than obtaining data from physical sensors such as
GPS, temperature sensors, and barometers, social network
data corresponds to information collected from cyberspace,
which is generated by users in online social networking sites
such as Twitter and Facebook. For example, in [412], authors
address various problems, including —but not limited to—
tracking and localizing illnesses over time and by geographic

region, and inferring symptoms and medication usage by
analyzing user messages on Twitter. Social network data
can be used to augment patient bio-signals to determine the
likelihood of a remotely-monitored patient being impacted by
an epidemic.

4) HISTORICAL DATA
A corpus of long-term patient health records, stored either
within the hospital that houses the primary physician of the
patient or other collaborating hospitals (Box DB in Fig. 1),
can prove invaluable in providing training data for the
machine learning algorithms. A sample medical record is
available at [413], which includes an example personal health
record including medications that the patient takes, history of
symptoms due to various medical conditions, a summary of
the doctor notes during physical exams, and lab tests reports.

B. DATA AGGREGATION AND PRE-PROCESSING
Analyzing large and complex datasets generally requires a
large amount of memory and computation power. At the same
time, using a large number of variables that are repetitive
and non-discriminatory in nature negatively impacts the clas-
sification performance of algorithms by causing overfitting
issues that lead to poor generalization. Before the acquired
patient data is transmitted to the cloud, feature extraction
(Box FE) and feature aggregation (Box FA) steps are per-
formed by a nearby, computationally-capable device. Typi-
cally this device is referred to as a concentrator [414] within
the IoT field or a cloudlet [415]–[418], within the mobile
cloud computing field.

C. STORAGE OF HEALTH RECORDS
The largemedical record database (BoxDB in Fig. 1) consists
of two components:

1) REAL-TIME DATA
The aggregated features that are transmitted by the cloudlet
arrive in the cloud to be processed by machine intelligence
algorithms. This new data serves two purposes; (i) it must be
compared against the permanent database to determine if the
doctor has to be warned of a newly-developing patient health
condition, (ii) it must be used to appropriately ‘‘update’’ the
training engine to eventually become a part of the permanent
database, i.e., machine knowledge.

2) MEDICAL DATABASE
This permanent database contains not only the data about
the remotely-monitored patient, but also all medical data of
other patients that are being cared for by the same healthcare
organization. Having a database that includes a large number
of patients with similar health conditions allows machine
intelligence algorithms to work more accurately [10].

D. DATA PRIVACY ENGINE
Medical information that is personalizable is termed Pro-
tected Health Information (PHI) [54]. In the USA, the privacy
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of PHI is strictlymandated byHealth Information Privacy and
Accountability Act (HIPAA) laws [54]. To prevent violation
of the HIPAA laws (and similar laws around the globe),
anMCPS consists of a component that encrypts/decrypts data
that is being transmitted between any two nodes of the MCPS
that can be temporarily intercepted by adversaries [419], with
the intention to steal or modify the acquired patient medical
data. For example, an adversary can intercept the Bluetooth
communication of the WBAN on the patient’s body with
the intention to infer the patient’s health condition, even if
in rough form (e.g., healthy vs. abnormal), without actually
accessing the data [414]. This type of an attack is defined
as a side channel attack. A survey of a rich set of encryp-
tion algorithms, adversary models, and side channel attack
methods are surveyed in [55]. Note that there is no specific
‘‘Box’’ that the Data Privacy Engine corresponds to in Fig. 1;
this is because every box along with the transmission medium
between any two boxesmust be protected via this engine. As a
result, this engine can be thought of as a large umbrella that
covers the entire MCPS.

E. VISUALIZATION ENGINE
In its raw or even pre-processed format, the amount of
data that is available in the permanent medical database is
beyond the processing capabilities of the human brain [37].
A visualization algorithm (considered to be a part of Box A
in Fig. 1) is responsible for substantially reducing the amount
of information displayed to a medical professional by using
intuitive visual representations of the patient medical data.
In [37] and [47], authors describe a 24-hour ‘‘ECG clock’’
that is capable of visualizing 24-hour patient Holter ECG
recordings, as well as illustrating the ‘‘predicted’’ patient
health condition to provide decision support to a doctor. The
ECG clock reduces 100s of MB of ECG information into a
single plot that allows the doctor to monitor 20–30 cardiac
patients within less than a minute, without losing any critical
information.

F. ANALYTICS ENGINE
Also considered to be a part of Box A in Fig. 1, this
engine uses data mining techniques to find patterns that
are related to the onset and evolution of diseases in the
medical database. Findings of this engine can be appli-
cable either immediately to a patient who is being mon-
itored or not. In the former case, various fast methods
(e.g., [420]–[422]) have been developed to analyze generic
time-evolving sequences for (i) estimation/forecasting of
missing/delayed/future values, (ii) outlier detection, and
(iii) frequent values identification, while considering mem-
ory and storage requirements. In contrast, in the latter case,
traditional data mining techniques (e.g., [423]–[425]) can
be used to make long term inferences; they can be utilized
to continuously learn biological characteristics of diseases,
which can eventually facilitate the diagnosis and prognosis
of future patients. When there is a need for computationally
intensive operations, offline computation can be utilized for

resource efficiency, i.e. by performing computationswhen the
demand for premium computational resource is low.

G. INFERENCE ENGINE
As the most important functionality of Box A in Fig. 1,
the inference engine is responsible for making inferences
in real-time to provide decision support to doctors for the
patients that are being monitored or inform the patients about
their health status. All of the surveyed machine intelligence
algorithms in this paper can serve to provide this functional-
ity. Due to its real-time requirements, this engine is charac-
terized by significantly stricter computational requirements
than the analytics engine, thereby requiring computational
resources at a time when they may be expensive. The infor-
mation that was extracted by the analytics engine is usually
used to accelerate this online portion of the MCPS to reduce
the associated computationally intensive operations.

H. TRAINING ENGINE
Most of the algorithms — except data mining methods —
that are used in the inference engine require training to be
effective. Represented as Box T in Fig. 1, the goal of the
training engine is to determine the predictive relationship
between input and output variables [68] by combining data
from the historical database, real-time database, and feedback
from the doctor or the patient. For example, the study in [10]
evaluates a scenario in which a large hospital database [2] is
used for the diagnosis of cardiac conditions. Features such
as QT, RR, JT, QTp, JTp, which are extracted from the ECG
signals of the patients in the database, are used as input vari-
ables. The same database provides an annotation file, which
indicates whether a patient has a known cardiac condition
such as long QT1 (LQT1) or long QT2 (LQT2) syndrome.
This annotated information is used as output variables in
machine intelligence algorithms. Training of the algorithms
is achieved by using these input-output pairs; the accuracy
of the algorithms —utilized in this study— improve steadily
with an increasing number of training pairs.

I. ACTUATORS
An actuation mechanism is considered to be one of the
observers in Box O of Fig. 1. This mechanism refers to the
actuators (e.g., a robotic surgery arm) and the software that
controls the actuators. In its simplest form, the actuator can be
an insulin injection device with no follow-up feedback to the
system [24] or a robotic surgery arm that continuously mea-
sures the location of the arm to aid in the adjustment, as well
as auxiliary feedback from the doctor who is performing the
surgery [41].

J. MEDICAL PROFESSIONAL
As the primary observer of the remote health monitoring
results, nurses, doctors, and other medical staff are repre-
sented as Box O in Fig. 1. Their primary function is to
provide feedback to the MCPS to help the machine intelli-
gence algorithms in understanding the end points, as well
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as perform in-hospital measurements of the patient vitals
(e.g., blood pressure, heart rate, weight, etc). In its simplest
conceptualization, medical professionals can be thought of as
being the ‘‘human’’ portion of anMCPS, while all of the other
components are the ‘‘machine.’’

XIII. CHALLENGES AND OPPORTUNITIES
Despite its potential to revolutionize the medical field, uti-
lization of machine intelligence has been at a limited scale
in healthcare applications. Any notable application has been
either in a research project setting or a very limited applica-
tion to a highly restricted area of medicine. In this section,
we provide a list of the challenges in integrating machine
intelligence into healthcare applications in four different cat-
egories.

A. SYSTEM LEVEL IMPLEMENTATION CHALLENGES
One of the most important challenges in deploying a full scale
Medical Cyber Physical System (MCPS) is that due to the
complexity of even the simplest system, deployments have
been limited to individual applications; a generalized system
that collects data for a multitude of applications, aggregates
them, and uses them as a unified database for multiple appli-
cations has been unrealistic. A conceptual MCPS scenario is
proposed in [5], where the authors describe an MCPS that
can handle three applications, namely Chronic obstructive
pulmonary disease (COPD), Cardiovascular Diseases (CVD),
and Parkinson’s Huntington’s Diseases (PD/HD). The pro-
posed system collects all patient data about these three dis-
eases (and potentially some more in the future) and saves
them under a single database. The application of the machine
intelligence algorithms and data analytics on this common
patient database eventually allows the doctors to use the
results as a decision support tool. While this recipe for a
system sounds like the start of a new digital era in healthcare,
many challenges can plague such a deployment. They are as
follows:

1) COST
Cost is an important factor that needs to be considered dur-
ing the system implementation phase. It is usually dictated
by the amount of storage (i.e., cache memory) required
on the chip, which is directly related to the area of the
chip. On-chip memory needs to be optimized, while main-
taining low off-chip memory bandwidth [426]. In many
cases, this leads to custom designs that fit the specific
application needs. For instance, Lee and Verma [427] design
a custom processor that integrates a CPU with config-
urable accelerators for EEG-based seizure and ECG-based
cardiac-arrhythmia detection. When cloud computing is
being used as the execution platform of the algorithm,
the cost of an algorithm is directly proportional to its run-
time; as an example, Kocabas et al. [428] study the cost of
computationally-intensive medical applications and note that
the resource requirement of an application is not necessarily
an ‘‘incremental’’ value, because all cloud service providers

(e.g., Amazon Elastic Cloud 2 [9]) rent computational
resources in different ‘‘packages,’’ where each package
implies a set of CPU, GPU, and storage resources.

2) ENERGY/POWER CONSUMPTION
Medical Cyber Physical Systems (MCPS) usually consist
of a combination of battery-powered (e.g., sensors, mobile
phones), passive (e.g., battery-less sensors), and outlet-
powered devices (e.g., IoT concentrators). Having the poten-
tial to revolutionize health care, their sustainability is of
utmost importance and mandates energy-efficient operation.
To this end, it is crucial to characterize the energy/power
consumption of the three fundamental processes that take
place in anMCPS: (i) sensing, (ii) computation, and (iii) com-
munication. For example, since battery-operated devices have
limited power, it is necessary to decidewhether data should be
processed/preprocessed locally on these devices or transmit-
ted to a more computationally-capable outlet-powered device
(e.g., cloud server or a cloudlet [411]). On the other hand,
the amount of power consumed for sensing and communica-
tion needs to be considered. The above considerations have
a direct impact on the Quality of Service (see Section XIII-
A3) for anMCPS. Zois et al. [35] propose an energy-efficient
sensing mechanism in a WBAN equipped with a set of
biometric sensors and a mobile phone for physical activity
monitoring of individuals and show energy gains as high as
68%, compared to prior work.

3) QUALITY OF SERVICE
The quality of service achieved by an MCPS refers to the
overall performance offered by such a system and can be
quantified using the metrics: latency, availability, and relia-
bility.
Latency is a measure of the time delay between the onset

of a medical event (e.g., heart-attack, stroke, seizure) and the
detection of such an event by an MCPS. Tolerance to latency
is frequently dictated by the medical application of interest in
conjunction with the system characteristics (e.g., communi-
cation protocols) and determine whether a specific machine
intelligence algorithm is suitable for a given application.
Shoeb and Guttag [429] propose an SVM–based classifier
that detects the onset of an epileptic seizure based on EEG
and ECG data with a mean latency of 4.6 seconds.
Availability, on the other hand, describes the amount of

time a system is functioning, and is purely dictated by system
characteristics (e.g., communication protocols, software and
hardware components). Still, since MCPSs perform time–
sensitive tasks, it is imperative to use machine intelligence
algorithms that are robust with respect to system availability.
Reliability is a measure of the ability of a system to perform

its task under varying system characteristics and constraints
(e.g., communication protocols, software and hardware com-
ponents, channel characteristics and interference, calibration
issues). Biason et al. [430] propose a framework that exploits
both physical activity characteristics and channel state
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information to perform reliable and energy-efficient physical
activity detection using an energy-constrained WBAN.

4) CONSTRAINED DEPLOYMENT
MCPS technology should neither be intrusive (i.e., it should
not intervene with the daily activities of the monitored indi-
vidual) or cause health risks. For example, a limited number
of sensors should be put on or inside the human body and
custom system designs must be devised to minimize health
risks (e.g., strangulation hazards, antenna radiation) dur-
ing deployment. Unfortunately, these design choices directly
affect the type of machine learning algorithms that can be
used in practice. In [431], a micro–power EEG acquisition
SoCwith integrated seizure detection processor is designed to
enable continuous on–scalp EEG monitoring without the use
of cables that can pose a severe strangulation hazard during
convulsions.

5) SECURITY & PRIVACY
Patient medical data constitutes sensitive information and
inappropriately sharing and using it can significantly compro-
mise the privacy of patients. However, data sharing between
healthcare organizations, transmission of confidential med-
ical data via wireless media and processing of such data
constitute vital requirements for the wide deployment of
MCPSs. In [432], a system-based on the concept of fully
homomorphic encryption is proposed to enable privacy-
preserving health monitoring via the extraction of rele-
vant information from encrypted patient medical data. The
authors demonstrate, through numerical simulations, that
the proposed framework can be used to securely transfer
and analyze ambulatory health monitoring data in real time.
They use a public cloud service provider, such as Microsoft
Azure or Amazon EC2, as the processing platform.While the
privacy of the data is also a concern when a private cloud is
being used (e.g., the datacenter of a hospital), data privacy
concerns are exacerbated when a public cloud is used. Cloud
service providers are required to sign a Business Associate
Agreement (BAA) to serve as the cloud service provider for
the storage and processing of medical data [432].

6) INTEROPERABILITY
As already discussed in Section XII, MCPSs consist of het-
erogeneous subsystems that exchange data using a variety of
protocols. To ensure the seamless interaction of these com-
ponents and the optimum overall performance of the system,
it is necessary to enable (1) processing and computation
across various data formats and standards and system con-
figurations, (2) across various data transfer standards (e.g.,
Bluetooth, ZigBee), and (3) plug and play device interaction.
In [433], a framework is proposed that can abstract different
and incompatible devices in order to support interoperability
in a consistent technology-independent manner and enable
the seamless application of machine learning techniques to
infer individual behaviors and habits without human inter-
vention. The authors anticipate that the proposed framework

can be used to timely detect and prevent health hazards in
a smart home environment, especially in the case of the
elderly or individuals with chronic diseases.

7) DATA CONSISTENCY
In an MCPS, patient data is fragmented over multiple devices
(i.e., mobile phones, computers, cloud) and over time. At the
same time, procedures such as laboratory tests and medica-
tion orders vary by patient and are, in practice, obtained in
an unscheduled manner. To make things worse, data may be
missing, due to system failures or because there was probably
no provision for collecting such information. Thus, one of the
main challenges in anMCPS is to ensure that the performance
will not be degraded due to data consistency issues. In [434],
a variety of methods (i.e., mean, hot–deck and multiple impu-
tation, multi-layer Perceptron, self-organization maps, and k-
nearest neighbor) are combined with artificial neural network
models to impute absent values in a breast cancer dataset
in order to predict early breast cancer relapse. The authors
numerically show hat the machine learning-based imputation
methods outperform statistical-based methods.

8) PERFORMANCE IMPROVEMENT AFTER DEPLOYMENT
In many medical applications, classifiers are trained before
deployment and/or require training data to be manually added
after deployment. At the same time, statisticalmodels and dis-
tributions of features change over time due to the progression
of diseases, interventions, and other factors. To maximize the
performance of an MCPS, automatic ways of improving the
performance of machine intelligence algorithms after deploy-
ment have been proposed. Longstaff et al. [308] compare
active learning with three different semi-supervised learn-
ing methods and observe that the former approach leads to
the highest improvement. However, democratic co-learning
proves to more appropriate in the case where initial accuracy
is low and user interaction needs to be avoided.

B. DATA CHALLENGES
The amount of data that is available for certain applications is
far beyond the processing capability of traditional processing
platforms; this Big Data problem was initially described
using 3 V’s [407]:
• Volume of data denotes the scale,
• Velocity of data implies the speed at which new data is
arriving (e.g., streaming), and

• Variety of data signifies the amount of different types of
data available.

This was recently expanded to 5 V’s by adding:
• Veracity, which implies the uncertainty (accuracy) of
existing data, and

• Value, which implies its ability to provide statistically-
meaningful information.

The true potential of the machine intelligence algo-
rithms can only be harnessed when a significant amount
of high quality data is available to train them. For certain
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applications, it is very hard (and expensive) to collect data,
since they require expensive equipment to acquire it; for
example, capturing functional MRI (fMRI) data requires
expensive MRI devices, which are only available in large
HCOs. The available data also contains missing or unreliable
samples; for example, continuous ECG data collection using
Holter devices is known to have segments in the data, where
one or more electrodes are completely disconnected. This
not only complicates algorithm design by requiring appro-
priate mechanisms to address such reliability issues, but also
reduces the effectiveness of the data collection subsystem.
In certain applications, having two sets of data that provide
complementary pieces of information cannot be obtained in
a practical setting. One such example is the combined infor-
mational value of EEG and fMRI data; while EEG provides
high temporal but poor spatial resolution, fMRI has exactly
the opposite characteristics by providing high spatial but
poor temporal resolution. Therefore, one would expect the
combination of the two to provide a more complete source
of information for algorithms use for determining brain func-
tion. However, obtaining both EEG and fMRI is impractical
in a regular healthcare setting. Even though abundance of
data can be problematic as we already discussed, not having
sufficient amount of data is also an issue. Last but not least,
noise models for the existing data are generally unknown,
which reduces the usefulness of the data.

C. ALGORITHMIC CHALLENGES
While obtaining a sufficient amount of reliable data presents
the problems mentioned in Section XIII-B, designing algo-
rithms that are accurate enough to be used in decisions that
involve human lives is a challenge of its own, even when the
required data is available. Furthermore, algorithms or models
for certain scenarios do not exist, such as models to capture a
patient’s health over time. Existing algorithms must be very
accurate to provide support for the decisions that healthcare
officials make. If the outcome of the algorithms cannot pro-
vide any additional insight to the doctors, they will not be
adopted, because the experience of a doctor, combined with
the incredible ability of the human mind to make associations
in the existing data creates a formidable ‘‘competitor’’ for any
machine intelligence algorithm. The only way an algorithm
can be useful is when it can use its advantage in applications
that require sophisticated computations on a vast amount
of data, potentially gathered from different sources. From
a practical standpoint, effective use of these algorithms can
include simple and intuitive visualizations to the doctors that
are based on the processing of vast amount of data (e.g.,
the ECG visualization scheme in [37]), while enable them
to make accurate, quick and efficient decisions. Furthermore,
since most doctors are typically specialized in one area (e.g.,
oncology), algorithms can provide an advantage by incorpo-
rating domain knowledge frommultiple domains. Last but not
least, sequential decision making algorithms can automate
certain medical processes and significantly improve patient’s
health when doctors are not available.

From the application point of view, one of the most impor-
tant challenges is personalization of the algorithms; it is very
challenging to tune an algorithm using one patient’s data and
be applicable to another patient without any modification.
Due to the highly sophisticated inter-related processes in a
human body, every person may have different sensitivities to
different algorithmic parameters. This implies that different
bio-markers may have different significance for different
patients. As a consequence, on one hand, incorporating awide
array of biomarkers can improve the personalization aspect
while significantly increasing dimensionality; on the other
hand, using a limited set of input parameters can improve gen-
eral algorithmic accuracy by eliminating issues such as over-
training, however, may not work as well for different patients.
This creates a very important algorithmic challenge: how to
design algorithms that use the least amount of input parame-
ters (whether biomarkers acquired from a patient or environ-
mental data) and the least amount of sensitivity for patient-
to-patient variability.

One last challenge with designing algorithms is the depen-
dence on the dataset when testing their functionality. When
an algorithm is designed, it is typically tested with a single
database. However, it may not produce the same results when
tested with a completely different dataset, because standard-
ized methods for creating the database do not exist or some
databases may include data from different sources. As an
example, the THEW ECG database [2] contains patient
records frommultiple countries in multiple decade time span.
Patients in different geographic regions may be exposed to
different environmental factors, highly variable diets, and
physical activity habits. Testing an algorithm with such
diverse data (although the data is restricted to ECG record-
ings) creates interesting challenges for algorithm design;
determining which data points to include/exclude may mean
the difference between eliminating invaluable data that would
have otherwise yielded much more generalizable results ver-
sus eliminating data that would unnecessarily create distant
(or even outlier) data points.

D. LEGAL AND POLICY CHALLENGES
Most of the challenges described in Sections XIII-A–XIII-C
also present legal problems for HCOs, in many aspects. The
HIPAA laws in the US require careful handling of protected
health information (PHI) [432] to avoid the exposure of the
personal medical records to unauthorized parties, or even
adversaries [55]. Protecting data privacy of PHI becomes
challenging for the following reasons:

(i) Data acquisition is typically performed by sensing
devices that have severe power limitations, which makes
it difficult for them to implement strong encryption; this
in turn provides a weak link for potential attackers [5].
(ii) Even if the data acquisition is secure, the transmis-
sion of the acquired data requires communication pro-
tocols that incorporate strong security; battery power-
limited sensing devices cannot implement strong secu-
rity measures from the acquisition to the cloud.
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(iii) If an HCO uses public cloud services, the data
is exposed in case of an attack on the cloud service
provider (e.g., Amazon EC2).
(iv) Although advanced encryption algorithms (e.g.,
Fully Homomorphic Encryption) allow the processing
of the data in public clouds, without the cloud service
provider being able to observe the data, these algorithms
are impractical [6], [435].

In addition to data privacy, the aforementioned 5V problem
exacerbates the situation. The sheer volume of the acquired
data, in the case of remote health monitoring, implies that
storing the raw data is simply impractical. If the HCO stores
just the data features, they may not be as useful for the
algorithms that are introduced in the future, which require a
different set of features to operate. Furthermore, storing only
a part of the information presents a potential legal issue in the
case of medical malpractice.

One potential alternative to turning the data into features
at the time of acquisition (i.e., pre-processing) is to save all
of the raw data and perform all of the necessary computa-
tions at the time the data is needed in the future (i.e., post-
processing). This significantly increases the requirement for
storage resources and shifts the computation burden to the
future. To deal with this significant computational require-
ment, one potential solution is for different HCOs to share a
pooled infrastructure, which includes storage and computa-
tional resources. However, this also creates a legal concern:
who will be the responsible HCO in case there is a malprac-
tice arising from potentially incorrect data? One possibility
is that there will be businesses in the future, which focus
on these shared database infrastructures [7]; such business
establishments can actually help make the algorithms work
better, because algorithms can benefit from data coming from
different data sources, potentially at different geographic
locations.

XIV. CONCLUSIONS
In this survey, a comprehensive discussion of machine intel-
ligence algorithms, which are used in healthcare applications
and medical cyber physical systems (MCPS), is provided.
This survey centers around describing a conceptual diagram
that unifies every healthcare application of interest; further-
more, it enable us to divide a medical cyber physical system
into functional units and provide summarized information
in a concise manner. These units are D: data source, FE:
feature extraction, FA: feature aggregation,M: modeling, A:
algorithms, T: training,O: observer, andDB: database. Units
D, FE, and FA exist in every application scenario, while the
source of the data being used in the algorithms or models
(D) usually come from a variety of sources, including but not
limited to existing databases, remote health monitoring, and
social networks. The goal of units FE and FA is to identify
useful information for further processing, while substantially
reducing the amount of information that the algorithms need
to process. The modeling step (M) and the algorithms (A)

constitute the heart of a medical cyber physical system, where
the former step enable us to represent the structure and char-
acteristics of a healthcare application while the latter step is
used for discovery of new knowledge, classification and esti-
mation tasks as well as automated decision making. A nec-
essary step for both models and algorithms is Training (T),
although unsupervised learning algorithms do not require this
step. Last but not least, the observer (O) represents the end
user (e.g., a doctor), while the database (DB) represents a vast
amount of already available medical data. While discussing
the different functional units, we have attempted to provide
a summarized tutorial and an overview of the huge literature
that relates to the functionality of each unit. In an effort to pro-
mote further research, a list of opportunities and challenges
are provided.

APPENDIX A
HEALTHCARE DATASETS
Having a sufficient amount of high quality data is crucially
important in developing and testing newmachine intelligence
algorithms. This motivated the development of publicly-
shared medical databases both for educational and research
purposes. It is also necessary that these databases contain
data that conforms to known data storage standards to reduce
the probability of misinterpretation when the data is being
shared among different research, professional, or educational
entities. Some of these standards are:

(i) Health Level 7 (HL7), which is a set of international
standards used whenmedical data is transferred between
different applications and has many related standards to
it such as

– Clinical Document Architecture (CDA) [436],
– Continuity of Care Document (CCD), and
– Structured Product Labeling (SPL).

(ii) Digital Imaging and Communications in Medicine
(DICOM) [437], which is a standard for multidimen-
sional data ranging from time series to four-dimensional
data, and
(iii) Continuity of Care Record (CCR), which pro-
vides electronic summaries of patients’ health, espe-
cially when it is meant to be transferred to another
healthcare organization.

Some databases use file formats that are not standardized
(like the formats shown above); for this reason, their use is
typically limited. However, they are open-source and docu-
mentation about their file structure is readily available. Some
examples of these file formats are shown below:

(i) The ISHNE [44] format, which is for storing ECG
data that is acquired by Holter devices,
(ii) The BCI2000 [438] format is for storing EEG data,
and
(iii) the General Data Format for Biomedical Signals
(GDF) [439] format is for storing generic time series
biomedical signals.
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The following are some representative medical datasets
that span a wide range of healthcare applications (in alpha-
betical order):

1) Alzheimer’s Disease Neuroimaging
Initiative (ADNI):

â http://www.adni-info.org/
ADNI is a multi-center study focused on Alzheimer’s
disease (AD). The study is Designed to track the pro-
gression of AD and define the course of the disease
by using various biomarkers such as lab results and
providing MR images in addition to PET images for
the patients.

2) Adverse event report datasets:
These databases contain adverse events, which are
related to drugs and medications; they can be used for
discovering previously unknown effect of drugs or side
effects due to the interaction of —two or more of—
these drugs.

• FDA’s Adverse Event Reporting
System (AERS):

â https://open.fda.gov/data/faers/
The Food and Drug Administration Adverse Event
Reporting System (FAERS) collects reports related
to adverse events, errors in medication, and com-
plaints on the quality of medicinal products that are
submitted to the FDA. The data is submitted volun-
tarily form healthcare professionals and consumers
and is publicly available.

• Canada Vigilance Adverse Reaction Online
Database:

â http://hc-sc.gc.ca/dhp-mps/medeff/databasdon/
index-eng.php
The Canada Vigilance Adverse Reaction Online
Database is designed to collect suspected side
effects of health-related products. These reports
are submitted by consumers, healthcare profes-
sionals, and manufacturers.

• European database of suspected adverse drug
reaction reports:

â http://www.adrreports.eu/
European Economic Area (EEA) also keeps track
of suspected side effects of medicine and provides
access to them publicly.

3) BCI Competition [440]–[442]:
â http://www.bbci.de/competition/

Multiple Brain-Computer Interface (BCI) datasets
are available thorough BCI competitions which
were held to validate signal processing meth-
ods and classification algorithms for the interface
between human brain and machine. The datasets
provided for the competitions include various types
of data such as EEG or Magnetoencephalogra-
phy (MEG) and have different applications such
as controlling a speller, motor imagery, and finger
movements.

4) BioGPS [443]:
â http://biogps.org/

BioGPS is a portal that aggregates gene annotation
resources into a centralized database. Different gene
portals have annotations for genes based on their spe-
cialized focus and BioGPS aggregates these annota-
tions to provide an exhaustive description for genomics
data.

5) ClinicalTrials.gov:
â https://clinicaltrials.gov/

ClinicalTrials.gov is a web-based tool that keeps
records of clinical studies conducted on volunteer
human subjects on different diseases and health con-
ditions. These records include the disease, the medical
procedure, location of the trial, description of the study,
outcome of the study, and other relevant information.
The database is public and is maintained by the US
national Library of medicine, which is a part of NIH.

6) DICOM Library:
â http://www.dicomlibrary.com/

DICOM Library is an online sharing platform for med-
ical signals, images, and videos. Users can upload
anonymized data in the DICOM format through the
website and share it with other healthcare professionals
and researchers. This medium is free to use and is
funded by the European Union.

7) Digital Database for Screening Mammography
(DDSM) [444], [445]:

â http://marathon.csee.usf.edu/Mammography
DDSM is a mammography database with the goal of
algorithm development for screening and diagnosis of
breast cancer. The data includes images of breasts in
addition to information of the patient associated with
the mammography images. Data is categorized into
different classes such as normal, benign, and cancer and
is publicly available.

8) The Federal Interagency Traumatic Brain Injury
Research (FITBIR):

â https://fitbir.nih.gov/
FITBIR is an informatics system that shares traumatic
brain injury data among researchers and is built by a
partnership between NIH and DoD. The data submit-
ted to FITBIR includes imaging data in addition to
biomarkers and other features such as outcome assess-
ments from traumatic brain injury patients.

9) Genomic Data Commons (GDC):
â https://gdc.cancer.gov/

The Genomic Data Commons (GDC) provides DNA
and RNA sequencing data targeting cancer genomic
studies. This program is supported by the National
Cancer Institute (NCI) and is a sharing platform for data
from various cancer research programs.

10) HCUPnet:
â https://hcupnet.ahrq.gov/

The Healthcare Cost and Utilization Project (HCUP)
provides a query system that can be used to research
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hospital-related data such as utilization, access,
expenses, results, and quality. This platform is cre-
ated by Agency for Healthcare Research and Quality
(AHRQ) and has hospital in-patient, surgery, and emer-
gency department data in addition to healthcare data at
the county level.

11) The Interactive Emotional Dyadic Motion Capture
(IEMOCAP) [446]:

â http://sail.usc.edu/iemocap/index.html
IEMOCAP is an audio-visual database of emo-
tional expressions. The database includes acted videos
accompanied by speech, motion capture of face, and
text transcripts, which are annotated and classified into
different emotional categories.

12) International Skin Imaging Collaboration (ISIC):
â http://isdis.net/isic-project/

Melanoma project of the International Skin Imaging
Collaboration has an open-source public access archive
that includes dermatology images for skin lesion diag-
nosis purposes. Dermatology images lack standards;
for this reason, creating a collection of dermatologic
images under the ISIC Archive helps with both devel-
oping standards in skin imaging and material for devel-
oping clinical decision support algorithms.

13) Japanese Society of Radiological Technology
(JSRT) Database [447]:

â http://www.jsrt.or.jp/data/english/
JSRT database is a chest image database, which
includes both images with chest nodules and images
without chest nodules. The images are accompanied by
other data such as the age and gender of the patient, and
the location of the nodule.

• SCR database: Segmentation in Chest Radio-
graphs [448]:
â http://www.isi.uu.nl/Research/Databases/SCR/
SCR database is based on the JSRT database
and contains chest radiograph images for seg-
mentation purposes. The images available in the
JSRT database are presented with their anatomical
structures, which are broken down into separate
sections.

14) MEDLINE R©/PubMed R©:
â https://www.ncbi.nlm.nih.gov/pubmed

Medical Literature Analysis and Retrieval System
Online (MEDLINE) is a database of biomedical liter-
ature and life sciences that gathers their journal cita-
tions and abstracts and is maintained by United States
National Library of Medicine. PubMed is the search
engine that is based on MEDLINE and links the users
to full text of literature when available.

15) mPower: Mobile Parkinson Disease Study [449]:
â http://parkinsonmpower.org/

mPower is a dataset for Parkinson’s disease, which
gathers its information through a mobile application by
taking surveys from participants and recording mobile

phones’ sensor data. The participants in the database
are volunteers and anyone can join the study.

16) National Biomedical Imaging Archive (NBIA):
â https://imaging.nci.nih.gov/ncia/

NBIA is a repository that is maintained by the National
Cancer Institute. It gathers in vivo images in DICOM
format; it allows searches to be performed on the
images.

17) National Database for Autism Research (NDAR)
[450]:

â https://ndar.nih.gov/
NDAR is a database that is maintained by the National
Institute of Health. It contains clinical and image data
on patients with autism. This database collects data
both from labs and research papers and provides tools
for users to perform searches.

18) NeuroVault [451]:
â http://www.neurovault.org/

NeuroVault is a repository for MRI and PET stud-
ies, which stores datasets that are created in different
studies. The goal of the database is collecting and
sharing statistical maps related to the human brain.
The website also provides tools that helps researchers
process/manipulate with the MRI and PET images.

19) Open Access Series of Imaging Studies (OASIS)
[452]:

â http://www.oasis-brains.org/
The goal of the OASIS platform is to make brain MRI
images freely available. The two datasets available
include ‘‘MRI Data in Nondemented and Demented
Older Adults’’ and ‘‘MRI Data in Young,Middle Aged,
Nondemented and Demented Older Adults.’’

20) Open fMRI [453]:
â https://openfmri.org/

Open fMRI is a platform that collects and shares free
raw magnetic resonance images in addition to EEG
time series signals. Users can get data from the database
free of charge and the project accepts new submitted
datasets.

21) Open-i (Open Access Biomedical Image Search
Engine) [454]:

â https://openi.nlm.nih.gov/
Open-i is a service provided by National Library of
Medicine that is able to search and retrieve medical
images from all available open source literature. The
images, including charts, clinical images, graphs, etc,
can both be searched with a text or an image query.

22) Open PHACTS [455]:
â http://www.openphacts.org/

Open PHACTS is a platform that links multiple phar-
macological datasets and provides them in a uni-
fied medium. These datasets indicate the relationship
between the compounds of different drugs, their tar-
gets, the diseases that they are used for, etc. The data
can be used to discover new drugs or side effects of the
existing drugs.
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23) Pedro Hispano Hospital (PH2) dataset [456]:
â https://www.fc.up.pt/addi/ph2%20database.html

PH2 database is collection of dermoscopic images of
melanoma patients. The dermoscopic parameters of
each image are assessed and annotated by an expert.

24) PhysioNet [457]:
â http://physionet.org/

PhysioNet is a collection of recorded physiological sig-
nals such as ECG data, gait and balance signals, image
databases, and other forms of signals. The PhysioNet
collection contains many subsets that are frequently
used in the literature:

• MIMIC-III [458]:
â https://mimic.physionet.org/

Medical Information Mart for Intensive Care III
is a database containing health-related data for
patients who stayed in Critical Care Units.

• The Apnea – ECG database [459]:
A dataset of ECG recordings during sleep from
sleep apnea patients. Waveforms in the database
are annotated with apnea marks.

25) Parkinson’s Progression Markers Initiative (PPMI)
[460]:

â http://www.ppmi-info.org/
PPMI is a study that collects clinical and imaging
data in addition to biological samples that are used
to track the progression of Parkinson’s disease. This
data includes motor assessment, MRI imaging, DNA
testing, plasma and urine collection, etc. It is available
to academic researchers at no cost.

26) SpineWeb:
â http://spineweb.digitalimaginggroup.ca/

SpineWeb is a collection of datasets related to spinal
images. This collection includes datasets with various
types of images such as MRI or CT. SpineWeb also has
tools related to the spinal images and publicly available
at no cost.

27) The Cancer Image Archive (TCIA) [461]:
â http://www.cancerimagingarchive.net/

This cancer image archive is a collection of multiple
cancer related image databases for public download.
The datasets images are mostly in DICOM format and
supporting data for the images such as treatment details
and outcomes are accompanied by them. This platform
is supported by the Fredrick National Laboratory for
Cancer Research.

28) Telemetric andHolter ECGWarehouse (THEW) [2]:
â http://thew-project.org/

THEW is a database that has multiple sets of ECG
data recordings related to different cardiovascular
diseases. The datasets include patients with LQTS,
chest pain, acute myocardial infarction, exercise test,
etc.

29) UCI machine learning repository [3]:
â http://archive.ics.uci.edu/ml/

UCI machine learning repository is a collection of
datasets in different fields; some of these datasets are
related to healthcare. Most notable medical datasets are
as follows:

• Diabetes 130-US Hospitals for Years
1999-2008 Data Set [78]:
A clinical care dataset of diabetic patients collected
throughout 10 years within various US hospitals.
The data is related to patients who have stayed in
hospital for a duration of 1–14 days.

• Thyroid Disease Data Set:
A combination of multiple datasets related to thy-
roid disease.

• Parkinson’s Telemonitoring Data Set [462]:
A dataset of voice measurements from patients
with early-stage Parkinson’s disease recorded
through a six month trial by telemonitoring devices
that captures the progression of the disease.

• Diabetic Retinopathy Debrecen Data Set (The
Messidor Database) [463], [464]:

â http://www.adcis.net/en/Download-Third-
Party/Messidor.htmldownload-en.php
A set of images focusing on diabetic retinopathy
including eye fundus color images.

• Parkinson Speech Dataset with Multiple Types
of Sound Recordings Data Set [147]:
A collection of recorded sounds of patients with
Parkinson’s disease and healthy subjects.

• Mammographic Mass Data Set [465]:
A dataset on mammographic masses images
divided into benign and malignant cases.

• Breast Cancer Wisconsin (Original) Data Set
[466]:
699 of clinical cases for breast cancer.

• Thoracic Surgery Data Data Set [467]:
A dataset related to post-operative life expectancy
of patients with lung cancer, indicating whether
the patient survived one year after their opera-
tion or not.

• Heart Disease Data Set [468]:
920 records of data related to heart disease patients.

APPENDIX B
MACHINE INTELLIGENCE TOOLS, PROGRAMS,
AND LIBRARIES
Due to the significant amount of research that has been
conducted in machine learning approaches in the past few
decades, a rich set of open-source machine learning tools
and libraries are available for testing newly-developed ideas
in healthcare. A list of these tools along with a short
description for each tools are provided in this section. While
a large portion of these tools are applicable to a much
wider range of applications, they can be used in health-
care applications either right out of the box or with minor
modifications.
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1) Caffe [469]:
â http://caffe.berkeleyvision.org/

Caffe is a deep learning framework written in C++.
For computing platforms that incorporate GPUs,
CUDA [321] version is also available. It has com-
plete bindings to Python and MATLAB and is
widely used in research projects that involve deep
learning.

2) DIGITS (NVIDIA Deep Learning GPU Training
System):

â https://developer.nvidia.com/digits
DIGITS is a deep neural networks (DNN) design tool
for image classification and object detection tasks.
DIGITS is an interactive tool, so there is no need for
programming or debugging. It is an open source project
and can be customized and extended to suit healthcare
applications.

3) ELKI [470]:
â http://elki.dbs.ifi.lmu.de/

Environment for Developing Knowledge Discovery in
Database (KDD)-Applications Supported by Index-
Structures (ELKI) is an open source software for
data mining and is implemented in Java. The empha-
sis of ELKI is on clustering and and anomaly
detection.

4) IBM SPSS Software:
â http://www.ibm.com/analytics/us/en/technology/

spss/
IBM Social Package for the Social Sciences (SPSS)
software is a platform that provides statistical analysis
and machine learning algorithms in addition to other
applications such as text analytics. Although it was
at first designed for social sciences, it is now widely
used in the healthcare industry. This tool is not free of
charge, but provides discounted versions for academic
purposes.

5) LIBSVM [471]:
â http://www.csie.ntu.edu.tw/c̃jlin/libsvm/

LIBSVM is an integrated software for various machine
intelligence algorithms available in C++ and Java. It
also has extensions in many programming languages
such Python, R, Matlab, etc. It has many different Sup-
port VectorMachine (SVM) formulations implemented
and provides a graphic interface to its users.

6) Python Libraries:
Some machine learning packages for the Python pro-
gramming language are as follows:
• scikit-learn [472]:

â http://scikit-learn.org/
A machine learning library for Python, which has
many implemented algorithms for tasks such as
classification, regression, clustering, etc.

• PyBrain [473]:
â http://pybrain.org/

Python-Based Reinforcement Learning, Artificial
Intelligence and Neural Network (PyBrain) library

is an open source easy-to-use library for Python
that is best suited for building neural networks.

• Orange [474]:
â http://orange.biolab.si/

Orange is a machine learning tool based on Python
that has a visual programming front-end with inter-
active data visualization. This makes Orange a use-
ful tool for smaller datasets that are plotted easily
and also a useful tool for teaching.

• PyMVPA [475]:
â http://www.pymvpa.org/

MultiVariate Pattern Analysis (MVPA) is machine
intelligence Python package that is mostly suited
to be used in the neuroimaging domain.

• Theano [476]:
â http://deeplearning.net/software/theano/

Theano is a Python library for deep learn-
ing frameworks that can both utilize CPUs and
GPUs. It provides support for optimized math-
ematical expressions used in machine intelli-
gence algorithms, especially expressions with
multi-dimensional arrays. Major developments for
Thenao have ceased.

7) SHOGUN [477]:
â http://www.shogun-toolbox.org/

Shogun is an open source machine learning
toolbox implemented in C++, which can provide
efficient implementations of ML algorithms and can
interface with many programming languages. It also
runs natively under all major operating systems and
provides APIs for most of standard algorithms includ-
ing classifiers, regressors, and neural networks.

8) SVMlight [478]:
â http://svmlight.joachims.org/

SVMlight implements Support Vector Machines
(SVMs) in the C programming language and is free
for scientific use. This tool only focuses on SVMs and
provides a variety of support for them.

• SVMperf [479]:
â http://www.cs.cornell.edu/People/tj/svm_

light/svm_perf.html
SVMperf is based on SVMlight and provides much
faster training on large datasets.

9) TensorFlow [480]:
â https://www.tensorflow.org/

TensorFlow is an open source library for data com-
putation; it can implement neural networks efficiently.
TensorFlow was originally developed by Google and
has C, C++, and Python APIs. It works on various
hardware structures such as CPUs, GPUs, or even
mobile devices.

• SkFlow:
â https://github.com/tensorflow/skflow

SkFlow (Scikit Flow) is a combination of the
scikit-learn library for Python and TensorFlow.
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It provides a simplified interface for for Tensor-
Flow and it is now integrated as a part of Tensor-
Flow.

10) WEKA [481]:
â http://www.cs.waikato.ac.nz/ml/weka

The Waikato Environmet for Knowledge Analysis
(WEKA) is an open source suite written in Java that
supports several standard data mining tasks, such as
clustering, classification, regression, and feature selec-
tion.
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