
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll01/15llpp337-343 2
Volume 16, Number 4, August 2011

FastDu: Efficient Directory Summaries Harvest
by Tracking File System Changes*

LIU Likun (), WU Nuo (), XU Chuncong (),
WU Yongwei (), YANG Guangwen ()**

Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science,

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract: FastDu is a file system service that tracks file system changes by intercepting file system calls to

maintain directory summaries, which play important roles in both storage administration and improvement of

user experiences for some applications. In most circumstances, directory summaries are independently har-

vested by applications via traversing the file system hierarchy and calling stat () on every file in each direc-

tory. For large file systems, this brute-force traverse-based approach can take many hours to complete,

even if only a small percentage of the files have changed. This paper describes FastDu, which uses a

pre-built database to store harvested directory summaries, and tracks the file system changes by intercept-

ing file system calls, so that new harvesting is restricted to the small subset of directories that contain

modified files. Tests using FastDu show that this approach reduces the time needed to get a directory

summary by one or two orders of magnitude with almost negligible penalty to application-aware file system

performance.

Key words: file system metadata; metadata crawl; file system changes; file system intercepts

Introduction

Directory summaries (e.g., total size of a directory tree
and the number of files in the tree) are not only impor-
tant in storage management (e.g., understanding the
overall file system make-up, estimating the amount of
migration data between different tiers, and storage
space reclamation), but are also very helpful for im-
proving user experience in many applications, such as
the GUI front ends of cp, tar, brute-force file search,

and anti-virus scanning.
However, most file systems provide no active sup-

port of this kind of information, so this functionality is
generally implemented independently by applications
via a just-in-time traverse approach that traverses the
target directory hierarchy and calls stat() on each file in
the directory. Obviously, the performance of brute-
force traverse-based approaches depends strongly on
the number of files in the target directory tree.

For large file systems that contain hundreds of mil-
lions or even billions of files, performing such a har-
vest on a relatively large directory (e.g., the users’
home directories) can take minutes or even hours due
to the large number of disk seeks and (in the case of
network file systems) communication overhead[1]. As
an example, we have observed a commercial NFS file
system taking more than five hours for executing a du[2]
command on the /home directory containing 16 million

Received: 2011-03-17; revised: 2011-06-12

** Supported by the National Key Basic Research and Development
Program (973) of China (No. 2011CB302505), the National Natural
Science Foundation of China (Nos. 60803121 and 61073165), and
the National High-Tech Research and Development (863) Program
of China (Nos. 2010AA012401 and 2009AA01A130)

** To whom correspondence should be addressed.
E-mail: ygw@tsinghua.edu.cn; Tel: 86-10-62797142

 Tsinghua Science and Technology, August 2011, 16(4): 337-343

338

files. As modern file systems are becoming increas-
ingly large[3,4], such awkward solutions are becoming

increasingly time- consuming, making them unaccept-
able sometimes.

Given the inefficiency of the traverse-based harvest,
other solutions have been proposed. The most com-
monly used approach uses a pre-built database gener-
ated and updated regularly (e.g., every day) by a peri-
odic scan (e.g., used by locate[5]). This manages to
walk around the time-consuming traverse by doing it
in the background, especially with improvements[1,6] to
accelerate the scan. However, the results lag to some
extent due to the delayed database updating, which
restricts its usefulness. Another alternative used mostly
by desktop search services is to update the database
based on the file system event mechanism (e.g.,
“file-system-change notification” on Windows and
“inotify” in Linux[7]). This mechanism is able to pro-
vide real-time results, but may introduce too much
runtime overhead depending on the operating system
implementation (e.g., the memory consumption of ino-
tify[1]). In addition, updating the database with each
file system change is inefficient since most file system
changes will be overwritten by later changes. However,
such approaches are worth exploring, especially when
new notification mechanisms[8] become more mature.

This paper describes FastDu, an approach that
maintains directory summaries by tracking file system
changes. FastDu operates by intercepting file access
calls[9] and passing the modification information to a
user land daemon. The daemon adjusts the external
database. Therefore, FastDu not only provides real-
time enough results, but also significantly reduces the
work involved with harvesting such information since
the percentage of files changed in any given day is
relatively small in most file systems[1,3,10,11]. An inher-
ent danger of hooking into the critical I/O path (i.e.,
intercepting file system calls) is that it may hurt appli-
cation-aware file system performance. Two optimiza-
tion methods, lazy re-harvesting and batch change
propagation, are used here to minimize the impact.

1 FastDu Design

Two design choices were made in designing FastDu.
First, unlike both the periodic scanning based and
file-system-event based approaches, FastDu harvests

the directory summaries by tracking file system
changes. It operates by intercepting file system calls.
The same approach was used by Dazuko[9], Connec-
tions[12], and TraceFS[13] to address similar require-
ments for different tasks. Since this can capture all the
file system changes, this solution is usually able to
provide better real-time support. Although there is a
potential danger of hurting application-aware file sys-
tem performance, performance penalty is shown here
to be minimal, if the system is carefully designed and
optimized.

FastDu only re-harvests the directory summaries
before a query, rather than updating the database with
each file system change, even if the latter would result
in much better query performance. This is done be-
cause, on one hand, most file system changes are over-
written by subsequent changes so updating the data-
base with each change is inefficient, on the other hand,
directory summary queries are much less infrequent
than normal file system operations.

1.1 Architecture

Figure 1 illustrates the FastDu system architecture.
From the application’s perspective, FastDu is a file
system service separating from the file system that
takes in a directory identification and returns a just-in-
time summary related to that directory. Internally, the
FastDu system consists mainly of: a stackable
in-kernel tracer that monitors file system changes as
they happen, a FastDu database that holds the sum-
mary and modification information for each directory,
and a FastDu daemon service responsible for updating
the database with the changes captured by the tracer
and for answering directory summary queries from
applications. When the service receives a query request
from an application, it looks in the database to deter-
mine whether the information from the database is
up-to-date. The information is returned to the applica-
tion if up-to-date, otherwise a re-harvest is launched on
the related directories and the new result from the
re-harvest is returned. When any change to a file is
captured by the in-kernel tracer, the tracer marks all the
ancestor directories as changed and notifies the dae-
mon service. The ancestor directories are marked as
changed so that any given directory always reflects the
latest changes in that directory.

LIU Likun () et al. FastDu: Efficient Directory Summaries Harvest …

339

Fig. 1 Architecture of FastDu

The file system remains unchanged, since the only information required by FastDu can be gathered either by a transparent
tracing module or directly from existing file system interfaces.

1.2 Interfaces

The core FastDu interface can be expressed as
AggregatedProperty[] QueryDirStatistics(path, <dev,

ino>)
(1) The first input parameter path denotes the full

path of the directory being queried. This is required for
the lazy database update when outdated summaries are
detected during query processing, because only inode
information is kept in the database and standard file
systems do not provide interfaces to traverse a sub-tree
with only this information (Section 1.3).

(2) The second input parameter is the <dev, ino>
pair, in which dev denotes the device number holding
the queried directory and ino denotes the inode number
of the queried directory. dev is required since directo-
ries in different file systems may have the same ino.

(3) The return value is the AggregatedProperty array,
each element of which is a <key, value> pair in which
key denotes which aggregated property (e.g., total size
of the sub-tree or file count in the sub-tree) and value
denotes the associated value.

Internally, FastDu maintains a set of directory sum-
mary records. Each record is a tuple:

{<dev, ino>, mtime, dutime, Aggregated-
Property[]}
in which <dev, ino> and AggregatedProperty[] are as
just described, mtime denotes the timestamp of the
newest change in this directory tree, and dutime de-
notes when the last harvest was performed. The record
is up-to-date if and only if mtime < dutime.

1.3 Lazy re-harvesting and delayed database
updating

Updating the database on every change is inefficient as
most changes are quickly overwritten. FastDu is un-
able to update the database on each individual due to
the lack of the full path in change information from the
kernel, which is designed purposely to minimize ano-
nymity introduced by the database and to minimize the
tracer overhead and system resource consumption.
Thus, the summary of a changed directory is re-har-
vested only during query processing.

To determine whether a summary record is outdated,
FastDu keeps timestamps for both the latest change
happen, mtime, and last re-harvest performed on the
target directory, dutime. Whenever a queried record
from the database satisfies mtime > dutime, a
re-harvesting is launched. The path information re-
quired to launch the re-harvesting is provided by the
application, as shown by the interface in Section 1.2.
During the re-harvesting, dutime for each touched di-
rectory is also updated. mtime is updated under the
following circumstances:

(1) before a query is performed;
(2) during a re-harvesting after all the subdirectories

have been updated; and
(3) an excessive period, timeout, (e.g., more than

30 min) after the last harvest.
The first case ensures that each query will get

up-to-date results. The second case makes sure that
mtime correctly indicates the record status with the

 Tsinghua Science and Technology, August 2011, 16(4): 337-343

340

delayed change propagation described here; and the
third case helps reclaim the kernel resource (in par-
ticular memory) used to track file system changes. This
lazy re-harvest allows many changes, such as those
written to a large file, to be absorbed by a change
buffer in the kernel, significantly reducing the changes
that must be processed by the daemon service as well
as related context switches.

To minimize the normal file system workload inter-
ference caused by storing the harvested changes, such
as mtime updating, a change is only propagated to the
database if and only if the new mtime is greater than
and the old mtime is less than the dutime, which is re-
ferred to as delayed change propagation. The correct-
ness of such optimization is ensured by the second
case.

The core loop of the daemon service is outlined as
Algorithm 1 as follows.
Algorithm 1: The core loop algorithm of the daemon

service
while Not completed do

event wait for next event;
if event is query then

harvest changes from tracer;
update mtimes if needed;
R get directory statistic from the DB;
if R is outdated then

traverse to update R and store to the DB;
adjust dutime and mtime for R in the DB

end
send R as response;

end
if event is timeout then

harvest changes from tracer;
for change C do

if C.mtime > dutime and old_mtime <
dutime then

update mtime for C in the DB;
end

end
end

end

1.4 Batch change propagation

Propagating each file system change to the daemon
service is inefficient since most changes will be
quickly overwritten, usually within several seconds.

Furthermore, batch propagation will improve the
efficiency by significantly reducing the communication
overhead and kernel-user context switches.

The batch propagation enables FastDu to perform
early change combination, which greatly helps reduce
kernel resources (e.g., memory). Specifically, the tracer
maintains a set of changes that have occurred but have
not been propagated to the daemon service. Here, a
change is a triad {dev, ino, timestamp} in which time-
stamp denotes the change time. When a file is changed,
the tracer generates triads for all the directories on the
path and adds them to the set. If a triad with the same
dev and ino already exists, the timestamp is updated.

2 Implementation

The prototype implementation of FastDu had the three
components shown in Fig. 1, a stackable tracer, a dae-
mon service, and a FastDu database.

The tracer sits at the system call (VFS) layer in the
kernel and watches application activities to trace all
file system calls. This component was implemented by
modifying the DazukoFS[9]. Unlike DazukoFS which
communicates with user-land applications during most
file system operations, this tracer used a change buffer
and batch change propagation analyzed and described
in Section 1.4. The tracer is operating system specific,
and FastDu currently runs exclusively under Linux 2.6
kernels. However, similar system call tracing infra-
structures exist in other systems, such as Windows,
so FastDu can be easily ported to other systems.

The FastDu database stores directory summaries and
change information using BerkeleyDB[14] which are
updated according to the algorithms described in Sec-
tion 1.3. The key of each record is the <dev, ino> pair;
and the value of each record is the summary informa-
tion for the directory.

The daemon service runs as a privilege background
process so that it can traverse the file system without
encountering permission problems. It communicates
with the FastDu applications via a local network. Ap-
plications specify each query as a <dev, ino> pair. The
daemon service returns the directory summary by
looking in the FastDu database, during which it also
updates the database if needed according to the algo-
rithm described in Section 1.3. The daemon service
harvests file system changes from the tracer via
Linux’s proc file system by reading a specific file

LIU Likun () et al. FastDu: Efficient Directory Summaries Harvest …

341

under the /proc directory. Harvests are scheduled with
a fixed delay or before a query is performed.

3 Evaluation

The FastDu evaluation consists of two parts. The first
part compares the performance of getting directory
summaries via FastDu with the traditional brute-force
namespace-traverse-based solution. As expected,
FastDu was much more efficient. The second part
evaluated the impact of FastDu on an application-
aware file system performance via several typical tasks
and iozone, a widely adopted file system benchmark. It
turns out that the performance penalty of intercepting
file system calls is minimal.

3.1 Experimental setup

All experiments were run on machines with Intel (R)
Core (TM) i3 @2.93GHz, 4 GB of main memory, and
1 TB Samsung 7200 RPM hard drives running Ubuntu
Linux 8.04. Unless otherwise specified, each experi-
ment was run ten times with the average reported.
Snapshots from two production file systems were used
to evaluate the benefits of FastDu, as summarized in
Table 1. Server A is a storage appliance used by more
than 100 university researchers for code development,
paper writing, and data analysis. Server B is a file
server used by more than 3000 students at another
university for personal data backup and online shar-
ing[15]. The snapshots were collected at 3:00 a.m. each
day during the period from Sept. 1, 2010 to Sept. 14,
2010 using a modified version of fsstats[1,16].

Table 1 File system snapshots used to evaluate FastDu

File
system

Number of
files

Number of
directory

Used capacity
(TB)

Server A 16.3 million 1.4 million 1.70
Server B 3.4 million 0.3 million 15.10

3.2 Performance

The FastDu evaluations used the merit speedup ratio
which is the time for a task without FastDu divided by
the time with FastDu enabled. These tests used the
standard du task which calculates the total size of a
directory tree.

Point-in-time file system statuses were constructed
from snapshots of the two production file systems.

First, an empty file system was created. Then, a small
file (8 KB, in particular) was created for each path in
the first snapshot with the size and timestamp then ad-
justed using truncate() and utime() to reflect the meta-
data status in the snapshot. Files were not filled to ac-
tual size due to the disk capacity limitation, and empty
files were not used to avoid having all metadata clus-
tered together. The tests will underestimate the benefits
of FastDu because the seek time between metadata
readings for large files is significantly under repre-
sented. For all subsequent snapshots, the differences
between adjacent snapshots were used to change the
file attributes as just described.

The tests were performed as follows. A FastDu da-
tabase was pre-built based on the first file system
status. And then the following steps were repeated: (1)
enabled the FastDu tracer, (2) patched the current
status to reflect the change for the next status, (3) per-
formed a modified du using FastDu service on the file
system root and then disabled the FastDu tracer, and (4)
performed the standard du. Both the file system and
operating system caches were cleared before each du
was performed to ensure the results were comparable.

Figure 2 shows the speedup ratio results. Except for
Server A on Sept. 11, the speedup ratio is greater than
one hundred, meaning that for most of the time,
FastDu can make getting summary information for
large directories 2-3 orders of magnitude faster, de-
pending on the number of changes in the target direc-
tory. The much lower speedup ratio of Server A on
Sept. 11 is due to the importation of several projects
containing many files. The existence of such exception
may imply automatic FastDu database background
refreshing could be useful when large file system
modifications are detected.

Fig. 2 FastDu speedup ratio

 Tsinghua Science and Technology, August 2011, 16(4): 337-343

342

3.3 File system impact

An inherent danger of hooking into critical I/O paths is
that it may hurt application-aware file system per-
formance. Obviously, such impact depends on the
work involved with each file system call in the tracer.
This effect was evaluated using five typical file system
tasks and the iozone file system benchmark. The five
tasks were (1) untar, unpacking the kernel source code
in the experimental file system, (2) tar, to reverse the
untar process with /dev/null as the output file, (3) cp,
to duplicate the kernel source directory from the ex-
perimental file system to a target directory on the same
file system, (4) rm, to remove the kernel source direc-
tory using the rm -rf command, and (5) make, to com-
pile the kernel in the experimental file system. The
kernel source code used in the tests is 2.6.20.20. To
reduce the compile time, the kernel configuration was
minimized by turning off all optional modules. The
experiments were performed on a newly created ext3
file system. All tests were run ten times with FastDu
tracer enabled and ten times with FastDu tracer dis-
abled. Both the file system and operating system
caches were cleared before each run.

The average experiment results shown in Table 2
show that enabling the tracer has little impact to the
application-aware file system performance. The two
shortest tasks even have better performance with the
tracer enabled, implying that the impact is even less
than the impact of uncertain factors in the environment,
such as operating system scheduling. However, for the
longer tasks, the impact was small but distinguishable.
Given the great performance improvement in getting
directory summaries, this impact seems worthwhile
most of the time.

Table 2 Impact of FastDu of typical storage tasks

No FastDu FastDu
Task

AVG* (s) STDEV+ AVG* (s) STDEV+

Untar 14.9 0.7 15.1 0.7
tar 5.5 0.3 5.3 0.1
cp 68.1 1.3 68.3 0.8
rm 4.2 1.0 3.6 1.9

make 219.4 0.9 219.4 1.4
*AVG is the average time in terms of seconds consumed by
each task and +STDEV is the corresponding standard deviation.

The impact of the tracer on the data path was also
measured using iozone on the same file system using

iozone -s 512m -i 1 -i 0 -y 1k -q 8m –C
Linux was forced to use 256 MB memory by setting

the boot time parameter mem=256 m, to ensure that
iozone would get accurate results. Both the file system
and operating system caches were cleared before each
run to ensure that the results were comparable.

The average results are shown in Fig. 3. Although
the file system throughput varies with different record
sizes, both the read and write throughput show very
little difference for each record size when the tracer is
enabled and disabled, meaning that the tracer has little
impact to the data path. Both the read and write
throughput can be less (e.g., 256 KB record size for
write) and greater (e.g., 8 KB record size for write)
when the tracer is enabled than when the tracer is dis-
abled, implying that the tracer impact is even less than
the impact of uncertain system factors. The figure
shows surprisingly high read throughputs for 1 KB and
2 KB record sizes, but the reason is not known. All ten
tests showed this trend, but this does not influence the
tracer evaluation.

Fig. 3 Impact of FastDu measured with iozone

4 Conclusions and Future Work

Directory summaries can be efficiently maintained by
tracking file system changes and intercepting file sys-
tem calls. This file system interception solution has
minimal impact on the application-aware file system
performance if carefully designed and optimized. Lazy
re-harvest and batch change propagation can be ex-
ploited to reduce the impact. These conclusions are
confirmed by tests with FastDu, a file system service
prototype that intercepts file system calls to maintain-
ing directory summaries.

FastDu will be improved by adding the hard
link support, one desired but missed feature of our

LIU Likun () et al. FastDu: Efficient Directory Summaries Harvest …

343

prototype, by storing additional information for
hard-linked files, and by treating them specially when
the database is updated. FastDu will also be enhanced
to harvest customized summaries.

References

[1] Liu Likun, Xu Lianghong, Wu Yongwei, et al. Smartscan:
Efficient metadata crawl for storage management metadata
querying in large file systems. Technical Report
CMU-PDL-10-112. Carnegie Mellon University, USA,
2010, 10-112.

[2] The Open Group. Estimate file space usage commands &
utilities reference. The Single UNIX Specification: The
Authorized Guide to Version 3, UK: the open group publi-
cations department, 2002: G906.

[3] Agrawal N, Bolosky W J, Douceur J R, et al. A five-year
study of file-system metadata. ACM Transactions on Stor-
age, 2007, 3(3): 9.1-9.32.

[4] Walter C. Kryder’s law. Scientific American Magazine,
2005, 8(1).

[5] The Open Group. The find utils. The Single UNIX Speci-
fication: The Authorized Guide to Version 3, UK: the Open
Group Publications Department, 2002: G906.

[6] Soules C, Keeton K, Morrey C. Scan-lite: Enterprise-wide
analysis on the cheap. In: Proceedings of the 4th ACM
European Conference on Computer Systems. Nuremberg,
Bavaria, 2009: 117-130.

[7] Streicher M. Monitor Linux file system events with inotify.
http://www.ibm.com/developerworks/linux/library/l-ubuntu-
inotify/index.html?ca= drs, September 2010.

[8] Paris E. Fanotify: The fscking all notification system.

http://http://lwn.net/Articles/339253/, February 2011.
[9] Ogness J. Dazuko: An open solution to facilitate on-access

scanning. In: Proceedings of Virus Bulletin Conference.
Toronto, Canada, 2003: 1-5.

[10] Satyanarayanan M. A study of file sizes and functional
lifetimes. In: Proceedings of the Eighth ACM Symposium
on Operating Systems Principles. New York, USA, 1981:
96-108.

[11] Roselli D, Lorch J R, Anderson T E. A comparison of file
system workloads. In: Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference. Berkeley,
USA, 2000: 4-4.

[12] Soules C A, Ganger G R. Connections: Using context to
enhance file search. In: Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles. Brighton,
UK, 2005: 119-132.

[13] Aranya A, Wright C P, Zadok E. Tracefs: A file system to
trace them all. In: Proceedings of the 3rd Conference on
File and Storage Technologies. San Francisco, California,
USA, 2004: 129-145.

[14] Olson M A, Bostic K, Seltzer M. Berkeley DB. In: Pro-
ceedings of the FREENIX Track. Berkeley, CA, USA,
1999: 6-11.

[15] Xu Pengzhi, Huang Xiaomeng, Wu Yongwei, et al. Cam-
pus cloud for data storage and sharing. In: Proceedings of
Eighth International Conference on Grid and Cooperative
Computing. Lanzhou, China, 2009: 244-249.

[16] Dayal S, Unangst M, Gibson G. Static survey of file system
statistics. http://www.pdsi-scidac.org/fsstats/index.html,
September 2010.

