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Abstract: FastDu is a file system service that tracks file system changes by intercepting file system calls to 

maintain directory summaries, which play important roles in both storage administration and improvement of 

user experiences for some applications. In most circumstances, directory summaries are independently har-

vested by applications via traversing the file system hierarchy and calling stat () on every file in each direc-

tory. For large file systems, this brute-force traverse-based approach can take many hours to complete, 

even if only a small percentage of the files have changed. This paper describes FastDu, which uses a 

pre-built database to store harvested directory summaries, and tracks the file system changes by intercept-

ing file system calls, so that new harvesting is restricted to the small subset of directories that contain    

modified files. Tests using FastDu show that this approach reduces the time needed to get a directory     

summary by one or two orders of magnitude with almost negligible penalty to application-aware file system 

performance. 
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Introduction 

Directory summaries (e.g., total size of a directory tree 
and the number of files in the tree) are not only impor-
tant in storage management (e.g., understanding the 
overall file system make-up, estimating the amount of 
migration data between different tiers, and storage 
space reclamation), but are also very helpful for im-
proving user experience in many applications, such as 
the GUI front ends of cp, tar, brute-force file search, 

and anti-virus scanning. 
However, most file systems provide no active sup-

port of this kind of information, so this functionality is 
generally implemented independently by applications 
via a just-in-time traverse approach that traverses the 
target directory hierarchy and calls stat() on each file in 
the directory. Obviously, the performance of brute-     
force traverse-based approaches depends strongly on 
the number of files in the target directory tree. 

For large file systems that contain hundreds of mil-
lions or even billions of files, performing such a har-
vest on a relatively large directory (e.g., the users’ 
home directories) can take minutes or even hours due 
to the large number of disk seeks and (in the case of 
network file systems) communication overhead[1]. As 
an example, we have observed a commercial NFS file 
system taking more than five hours for executing a du[2] 
command on the /home directory containing 16 million 
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files. As modern file systems are becoming increas-
ingly large[3,4], such awkward solutions are becoming 

increasingly time- consuming, making them unaccept-
able sometimes. 

Given the inefficiency of the traverse-based harvest, 
other solutions have been proposed. The most com-
monly used approach uses a pre-built database gener-
ated and updated regularly (e.g., every day) by a peri-
odic scan (e.g., used by locate[5]). This manages to 
walk around the time-consuming traverse by doing it 
in the background, especially with improvements[1,6] to 
accelerate the scan. However, the results lag to some 
extent due to the delayed database updating, which 
restricts its usefulness. Another alternative used mostly 
by desktop search services is to update the database 
based on the file system event mechanism (e.g., 
“file-system-change notification” on Windows and 
“inotify” in Linux[7] ). This mechanism is able to pro-
vide real-time results, but may introduce too much 
runtime overhead depending on the operating system 
implementation (e.g., the memory consumption of ino-
tify[1]). In addition, updating the database with each 
file system change is inefficient since most file system 
changes will be overwritten by later changes. However, 
such approaches are worth exploring, especially when 
new notification mechanisms[8] become more mature. 

This paper describes FastDu, an approach that 
maintains directory summaries by tracking file system 
changes. FastDu operates by intercepting file access 
calls[9]  and passing the modification information to a 
user land daemon. The daemon adjusts the external 
database. Therefore, FastDu not only provides real-    
time enough results, but also significantly reduces the 
work involved with harvesting such information since 
the percentage of files changed in any given day is 
relatively small in most file systems[1,3,10,11]. An inher-
ent danger of hooking into the critical I/O path (i.e., 
intercepting file system calls) is that it may hurt appli-
cation-aware file system performance. Two optimiza-
tion methods, lazy re-harvesting and batch change 
propagation, are used here to minimize the impact.  

1  FastDu Design 

Two design choices were made in designing FastDu. 
First, unlike both the periodic scanning based and 
file-system-event based approaches, FastDu harvests 

the directory summaries by tracking file system 
changes. It operates by intercepting file system calls. 
The same approach was used by Dazuko[9], Connec-
tions[12], and TraceFS[13] to address similar require-
ments for different tasks. Since this can capture all the 
file system changes, this solution is usually able to 
provide better real-time support. Although there is a 
potential danger of hurting application-aware file sys-
tem performance, performance penalty is shown here 
to be minimal, if the system is carefully designed and    
optimized. 

FastDu only re-harvests the directory summaries 
before a query, rather than updating the database with 
each file system change, even if the latter would result 
in much better query performance. This is done be-
cause, on one hand, most file system changes are over-
written by subsequent changes so updating the data-
base with each change is inefficient, on the other hand, 
directory summary queries are much less infrequent 
than normal file system operations. 

1.1  Architecture 

Figure 1 illustrates the FastDu system architecture. 
From the application’s perspective, FastDu is a file 
system service separating from the file system that 
takes in a directory identification and returns a just-in-     
time summary related to that directory. Internally, the 
FastDu system consists mainly of: a stackable 
in-kernel tracer that monitors file system changes as 
they happen, a FastDu database that holds the sum-
mary and modification information for each directory, 
and a FastDu daemon service responsible for updating 
the database with the changes captured by the tracer 
and for answering directory summary queries from 
applications. When the service receives a query request 
from an application, it looks in the database to deter-
mine whether the information from the database is 
up-to-date. The information is returned to the applica-
tion if up-to-date, otherwise a re-harvest is launched on 
the related directories and the new result from the 
re-harvest is returned. When any change to a file is 
captured by the in-kernel tracer, the tracer marks all the 
ancestor directories as changed and notifies the dae-
mon service. The ancestor directories are marked as 
changed so that any given directory always reflects the 
latest changes in that directory. 
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Fig. 1  Architecture of FastDu 

The file system remains unchanged, since the only information required by FastDu can be gathered either by a transparent 
tracing module or directly from existing file system interfaces. 

1.2  Interfaces 

The core FastDu interface can be expressed as 
AggregatedProperty[] QueryDirStatistics(path, <dev, 

ino>) 
(1) The first input parameter path denotes the full 

path of the directory being queried. This is required for 
the lazy database update when outdated summaries are 
detected during query processing, because only inode 
information is kept in the database and standard file 
systems do not provide interfaces to traverse a sub-tree 
with only this information (Section 1.3). 

(2) The second input parameter is the <dev, ino> 
pair, in which dev denotes the device number holding 
the queried directory and ino denotes the inode number 
of the queried directory. dev is required since directo-
ries in different file systems may have the same ino. 

(3) The return value is the AggregatedProperty array, 
each element of which is a <key, value> pair in which 
key denotes which aggregated property (e.g., total size 
of the sub-tree or file count in the sub-tree) and value 
denotes the associated value. 

Internally, FastDu maintains a set of directory sum-
mary records. Each record is a tuple: 

{<dev, ino>, mtime, dutime, Aggregated-
Property[]} 
in which <dev, ino> and AggregatedProperty[] are as 
just described, mtime denotes the timestamp of the 
newest change in this directory tree, and dutime de-
notes when the last harvest was performed. The record 
is up-to-date if and only if mtime < dutime. 

1.3  Lazy re-harvesting and delayed database  
updating 

Updating the database on every change is inefficient as 
most changes are quickly overwritten. FastDu is un-
able to update the database on each individual due to 
the lack of the full path in change information from the 
kernel, which is designed purposely to minimize ano-
nymity introduced by the database and to minimize the 
tracer overhead and system resource consumption. 
Thus, the summary of a changed directory is re-har-
vested only during query processing. 

To determine whether a summary record is outdated, 
FastDu keeps timestamps for both the latest change 
happen, mtime, and last re-harvest performed on the 
target directory, dutime. Whenever a queried record 
from the database satisfies mtime > dutime, a 
re-harvesting is launched. The path information re-
quired to launch the re-harvesting is provided by the 
application, as shown by the interface in Section 1.2. 
During the re-harvesting, dutime for each touched di-
rectory is also updated. mtime is updated under the 
following circumstances: 

(1) before a query is performed; 
(2) during a re-harvesting after all the subdirectories 

have been updated; and 
(3) an excessive period, timeout, (e.g., more than 

30 min) after the last harvest. 
The first case ensures that each query will get 

up-to-date results. The second case makes sure that 
mtime correctly indicates the record status with the 
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delayed change propagation described here; and the 
third case helps reclaim the kernel resource (in par-
ticular memory) used to track file system changes. This 
lazy re-harvest allows many changes, such as those 
written to a large file, to be absorbed by a change 
buffer in the kernel, significantly reducing the changes 
that must be processed by the daemon service as well 
as related context switches. 

To minimize the normal file system workload inter-
ference caused by storing the harvested changes, such 
as mtime updating, a change is only propagated to the 
database if and only if the new mtime is greater than 
and the old mtime is less than the dutime, which is re-
ferred to as delayed change propagation. The correct-
ness of such optimization is ensured by the second 
case. 

The core loop of the daemon service is outlined as 
Algorithm 1 as follows. 
Algorithm 1: The core loop algorithm of the daemon 

service 
while Not completed do 

event wait for next event; 
if event is query then 

harvest changes from tracer; 
update mtimes if needed; 
R get directory statistic from the DB; 
if R is outdated then 

traverse to update R and store to the DB; 
adjust dutime and mtime for R in the DB 

end 
send R as response; 

end 
if event is timeout then 

harvest changes from tracer; 
for change C do 

if C.mtime > dutime and old_mtime <  
dutime then 

update mtime for C in the DB; 
end 

end 
end 

end 

1.4  Batch change propagation 

Propagating each file system change to the daemon 
service is inefficient since most changes will be 
quickly overwritten, usually within several seconds. 

Furthermore, batch propagation will improve the     
efficiency by significantly reducing the communication 
overhead and kernel-user context switches. 

The batch propagation enables FastDu to perform 
early change combination, which greatly helps reduce 
kernel resources (e.g., memory). Specifically, the tracer 
maintains a set of changes that have occurred but have 
not been propagated to the daemon service. Here, a 
change is a triad {dev, ino, timestamp} in which time-
stamp denotes the change time. When a file is changed, 
the tracer generates triads for all the directories on the 
path and adds them to the set. If a triad with the same 
dev and ino already exists, the timestamp is updated.  

2  Implementation 

The prototype implementation of FastDu had the three 
components shown in Fig. 1, a stackable tracer, a dae-
mon service, and a FastDu database. 

The tracer sits at the system call (VFS) layer in the 
kernel and watches application activities to trace all 
file system calls. This component was implemented by 
modifying the DazukoFS[9]. Unlike DazukoFS which 
communicates with user-land applications during most 
file system operations, this tracer used a change buffer 
and batch change propagation analyzed and described 
in Section 1.4. The tracer is operating system specific, 
and FastDu currently runs exclusively under Linux 2.6 
kernels. However, similar system call tracing infra-
structures exist in other systems, such as Windows,  
so FastDu can be easily ported to other systems. 

The FastDu database stores directory summaries and 
change information using BerkeleyDB[14] which are 
updated according to the algorithms described in Sec-
tion 1.3. The key of each record is the <dev, ino> pair; 
and the value of each record is the summary informa-
tion for the directory. 

The daemon service runs as a privilege background 
process so that it can traverse the file system without 
encountering permission problems. It communicates 
with the FastDu applications via a local network. Ap-
plications specify each query as a <dev, ino> pair. The 
daemon service returns the directory summary by 
looking in the FastDu database, during which it also 
updates the database if needed according to the algo-
rithm described in Section 1.3. The daemon service 
harvests file system changes from the tracer via 
Linux’s proc file system by reading a specific file    
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under the /proc directory. Harvests are scheduled with 
a fixed delay or before a query is performed.  

3  Evaluation 

The FastDu evaluation consists of two parts. The first 
part compares the performance of getting directory 
summaries via FastDu with the traditional brute-force 
namespace-traverse-based solution. As expected, 
FastDu was much more efficient. The second part 
evaluated the impact of FastDu on an application-    
aware file system performance via several typical tasks 
and iozone, a widely adopted file system benchmark. It 
turns out that the performance penalty of intercepting 
file system calls is minimal. 

3.1  Experimental setup 

All experiments were run on machines with Intel (R) 
Core (TM) i3 @2.93GHz, 4 GB of main memory, and 
1 TB Samsung 7200 RPM hard drives running Ubuntu 
Linux 8.04. Unless otherwise specified, each experi-
ment was run ten times with the average reported. 
Snapshots from two production file systems were used 
to evaluate the benefits of FastDu, as summarized in 
Table 1. Server A is a storage appliance used by more 
than 100 university researchers for code development, 
paper writing, and data analysis. Server B is a file 
server used by more than 3000 students at another 
university for personal data backup and online shar-
ing[15]. The snapshots were collected at 3:00 a.m. each 
day during the period from Sept. 1, 2010 to Sept. 14, 
2010 using a modified version of fsstats[1,16]. 

Table 1  File system snapshots used to evaluate FastDu 

File 
system 

Number of 
files 

Number of 
directory 

Used capacity 
(TB) 

Server A 16.3 million 1.4 million  1.70 
Server B 3.4 million 0.3 million 15.10 

 

3.2  Performance 

The FastDu evaluations used the merit speedup ratio 
which is the time for a task without FastDu divided by 
the time with FastDu enabled. These tests used the 
standard du task which calculates the total size of a 
directory tree. 

Point-in-time file system statuses were constructed 
from snapshots of the two production file systems. 

First, an empty file system was created. Then, a small 
file (8 KB, in particular) was created for each path in 
the first snapshot with the size and timestamp then ad-
justed using truncate() and utime() to reflect the meta-
data status in the snapshot. Files were not filled to ac-
tual size due to the disk capacity limitation, and empty 
files were not used to avoid having all metadata clus-
tered together. The tests will underestimate the benefits 
of FastDu because the seek time between metadata 
readings for large files is significantly under repre-
sented. For all subsequent snapshots, the differences 
between adjacent snapshots were used to change the 
file attributes as just described. 

The tests were performed as follows. A FastDu da-
tabase was pre-built based on the first file system 
status. And then the following steps were repeated: (1) 
enabled the FastDu tracer, (2) patched the current 
status to reflect the change for the next status, (3) per-
formed a modified du using FastDu service on the file 
system root and then disabled the FastDu tracer, and (4) 
performed the standard du. Both the file system and 
operating system caches were cleared before each du 
was performed to ensure the results were comparable. 

Figure 2 shows the speedup ratio results. Except for 
Server A on Sept. 11, the speedup ratio is greater than 
one hundred, meaning that for most of the time, 
FastDu can make getting summary information for 
large directories 2-3 orders of magnitude faster, de-
pending on the number of changes in the target direc-
tory. The much lower speedup ratio of Server A on 
Sept. 11 is due to the importation of several projects 
containing many files. The existence of such exception 
may imply automatic FastDu database background 
refreshing could be useful when large file system 
modifications are detected.  

 
Fig. 2  FastDu speedup ratio 
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3.3  File system impact 

An inherent danger of hooking into critical I/O paths is 
that it may hurt application-aware file system per-
formance. Obviously, such impact depends on the 
work involved with each file system call in the tracer. 
This effect was evaluated using five typical file system 
tasks and the iozone file system benchmark. The five 
tasks were (1) untar, unpacking the kernel source code 
in the experimental file system, (2) tar, to reverse the 
untar process with /dev/null as the output file, (3) cp, 
to duplicate the kernel source directory from the ex-
perimental file system to a target directory on the same 
file system, (4) rm, to remove the kernel source direc-
tory using the rm -rf command, and (5) make, to com-
pile the kernel in the experimental file system. The 
kernel source code used in the tests is 2.6.20.20. To 
reduce the compile time, the kernel configuration was 
minimized by turning off all optional modules. The 
experiments were performed on a newly created ext3 
file system. All tests were run ten times with FastDu 
tracer enabled and ten times with FastDu tracer dis-
abled. Both the file system and operating system 
caches were cleared before each run. 

The average experiment results shown in Table 2 
show that enabling the tracer has little impact to the 
application-aware file system performance. The two 
shortest tasks even have better performance with the 
tracer enabled, implying that the impact is even less 
than the impact of uncertain factors in the environment, 
such as operating system scheduling. However, for the 
longer tasks, the impact was small but distinguishable. 
Given the great performance improvement in getting 
directory summaries, this impact seems worthwhile 
most of the time. 

Table 2  Impact of FastDu of typical storage tasks 

No FastDu FastDu 
Task 

AVG* (s) STDEV+ AVG* (s) STDEV+

Untar  14.9 0.7  15.1 0.7 
tar   5.5 0.3   5.3 0.1 
cp  68.1 1.3  68.3 0.8 
rm   4.2 1.0   3.6 1.9 

make 219.4 0.9 219.4 1.4 
*AVG is the average time in terms of seconds consumed by 
each task and +STDEV is the corresponding standard deviation. 
 

The impact of the tracer on the data path was also 
measured using iozone on the same file system using 

iozone -s 512m -i 1 -i 0 -y 1k -q 8m –C 
Linux was forced to use 256 MB memory by setting 

the boot time parameter mem=256 m, to ensure that 
iozone would get accurate results. Both the file system 
and operating system caches were cleared before each 
run to ensure that the results were comparable.  

The average results are shown in Fig. 3. Although 
the file system throughput varies with different record 
sizes, both the read and write throughput show very 
little difference for each record size when the tracer is 
enabled and disabled, meaning that the tracer has little 
impact to the data path. Both the read and write 
throughput can be less (e.g., 256 KB record size for 
write) and greater (e.g., 8 KB record size for write) 
when the tracer is enabled than when the tracer is dis-
abled, implying that the tracer impact is even less than 
the impact of uncertain system factors. The figure 
shows surprisingly high read throughputs for 1 KB and 
2 KB record sizes, but the reason is not known. All ten 
tests showed this trend, but this does not influence the 
tracer evaluation. 

 
Fig. 3  Impact of FastDu measured with iozone 

4  Conclusions and Future Work 

Directory summaries can be efficiently maintained by 
tracking file system changes and intercepting file sys-
tem calls. This file system interception solution has 
minimal impact on the application-aware file system 
performance if carefully designed and optimized. Lazy 
re-harvest and batch change propagation can be ex-
ploited to reduce the impact. These conclusions are 
confirmed by tests with FastDu, a file system service 
prototype that intercepts file system calls to maintain-
ing directory summaries. 

FastDu will be improved by adding the hard     
link support, one desired but missed feature of our 
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prototype, by storing additional information for 
hard-linked files, and by treating them specially when 
the database is updated. FastDu will also be enhanced 
to harvest customized summaries. 
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