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A B S T R A C T

In this paper, an adaptive differential protection scheme is proposed for wind farm integrated power network.
Any fixed threshold setting based protection scheme is not always suitable for the different operating conditions
of power system. Considering the possible modulations in the fault signal, a particle swarm optimization (PSO)
based differential relay algorithm is proposed in this paper. The positive sequence current differential principle is
used. For different operating conditions, fault conditions and configurations of the system, the threshold value
can be calculated online. So, practically the method can be applied to any power system model and the impact of
dynamic operation of wind farm on the protection function is negligible. The threshold setting is designed
considering the fault location and fault inception angle. Initially, the most effective faults among all the possible
faults are identified with a single variable (fault location) objective function. Later, only single-phase-to-ground
fault is considered for threshold setting with all possible parameters. The method is tested using a standard
power system model integrated with wind farm and simulated using MATLAB R2016a software. Results prove
the efficacy of the method.

1. Introduction

Integration of large-scale renewable sources into existing power
system is increasing in recent years in view of reducing large carbon
emission and encouraging more utilization of green technologies [1]. As
the natural resources are plentily available with free of cost, bulk
amount of power generation from these sources are encouraged day-by-
day. On the other hand, the problem that arises due to the integration of
wind farm is the variable wind speed [2–5]. The variation in operating
conditions of wind farm (WF) leading to power, frequency and voltage
fluctuations may create new challenges for existing protection algo-
rithms. The conventional line protection schemes are based on prefixed
settings and practically not suitable for dynamic operating conditions of
the system [6,7]. To mitigate this issue, adaptive distance protection
schemes were proposed [7–11] considering the variations of large-scale
wind farms. The effect of variations in wind-farm parameters on the
reach setting is extensively studied and an adaptive protection scheme
for distribution and transmission lines including WF is proposed in
[11]. The procedure of distance relay setting is complex in the presence
of wind farm and the reliability of relaying function is poor in case of
remote end and high impedance faults [12]. Hence differential relaying
schemes [13–17] are applied for transmission line protection in

presence of wind farms. The advancement in communication technol-
ogies helps in developing more reliable differential relay schemes for
transmission network including WF [12]. But the performance of cur-
rent differential scheme presented in [13] is get affected by the pre-
sence of DFIG. Further, threshold setting is a challenging task due to
dynamic operations of wind farms. Later power and energy differential
schemes were developed and reported in [14–16]. Such differential
schemes generally malfunction under large power fluctuation condi-
tions initiated due to random change in the wind speed [17]. Under the
same scenario, the performance of Hilbert transform and Teager Energy
based differential scheme [18] is also not reliable. By considering the
existing drawbacks of aforementioned conventional techniques, new
strategies were proposed in [17,19]. But higher computational burden
and requirement of large training data are the major drawbacks of these
techniques. Considering the above-mentioned challenges, an adaptive
swarm intelligence-based threshold selection procedure is proposed to
the positive sequence current differential protection algorithm for
overhead lines. The adaptive threshold selection process enhances the
functionality of differential protection and hence guarantees the system
security during fault conditions. The proposed algorithm is tested for
several operating conditions including variations in wind speed, and
different fault cases. The impact of sampling frequency on the
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performance of proposed method is also tested. A standard power
network model integrated with wind farm is considered for analysis and
simulated using MATLAB R2016a software.

2. Power system model

The wind farm integrated power system model shown in Fig. 1 is
considered for analysis and verification of the adaptive threshold based
differential protection scheme. The line connected between buses W
and P is of 30 km. Wind turbines of capacity 9 MW (6*1.5 MW) are
connected on bus-W through a step-up transformer. The doubly-fed
induction generator (DFIG) based wind turbines consists of a wound
rotor induction generator with rotor side resistance of 0.016 p.u. and
reactance of 0.16 p.u. On stator side, the winding resistance and re-
actance are 0.023 p.u and 0.18 p.u. The system frequency is 60 Hz. The
stator winding is connected to the grid directly while the rotor is con-
nected through the AC/DC/AC IGBT-based pulse width modulation
(PWM) converter. In order to achieve desired accuracy, rotor side PWM
carrier frequency is set at 1620 Hz for the AC/DC/AC IGBT-based back
to back converter, and grid-side PWM carrier frequency is set at 2700
Hz. Other system parameters along with the specifications of individual
components are provided in the Appendix [20]. The signals are ex-
tracted with a sampling frequency of 1.2 kHz to implement the pro-
posed swarm assisted adaptive differential protection scheme. Model-
ling and simulation work are done using sim-powersystem toolbox and
algorithm is tested using MATLAB R2016a software.

3. Proposed method

In the proposed scheme, the current at buses W and P are measured
and the measurement from bus-W side is communicated to bus-P to
estimate the differential positive sequence current. At relay (Rp) end all
the computational work is performed. For any fault in the line between
buses W and P, the equivalent positive sequence network diagram for
the studied system (Fig. 1) is shown below in Fig. 2. EAW1 and EAP1 are
the positive sequence voltages of both the sources behind buses W and
P. The source impedances are ZSW1 andZSP1.

IW and IP are the positive sequence currents measured at bus W and
bus P during fault. By applying Kirchhoff's voltage law (KVL) to the
loop-1 (wind farm side) of Fig. 2, Eq. (1) can be obtained as follows:

+ + + =E I Z Z Z I Z( ) 0AW1 W SW1 LW1 F P F (1)

By taking, + + =Z Z Z ZSW LW F x1 1 , further Eq. (1) can be modified as

+ =E I Z I Z 0xAW1 W P F (2)

Similarly, for loop-2 the KVL equation will be

+ =I Z E I Z 0xP AP1 W F (3)

Considering = + +Z Z Z Zx SP LP F1 1 , Eq. (3) can be rearranged as
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By using Eqs. (5) and (6), the differential positive sequence current
during fault condition can be calculated as

=I I E
a

E a
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(7)

where =a 1 Z
Z2

x
F

and =a Z3
1
F
. By using Eq. (7), a fault condition can be

registered only when

>I IP W (8)

Hence for the reliable detection of fault condition within the pro-
tected section, selection of proper threshold is imperative. So, the op-
erating quantity of Eq. (8) is a function of (a, a1, a2) and can be written
as

= =I I E
a

E a
a

a E a a a a( , , )P W
AW1 AP1 1

2 AP1 3 1 2
(9)

In Eq. (9), EAW1 and EAP1 are constants and hence the function de-
pends on the values of a, a1, and a2. Further, the values of a, a1, and
a2depend on the fault location, fault impedance and fault inception
time. In this work the fault location (x) and fault inception time (ts) are
considered as operating variables for the generation of suitable
threshold for the system. So, by considering the variables x and ts, the
Eq. (9) can be further expressed as:

= =I I a a a g x t( , , ) ( , )sP W 1 2 (10)

The minimum value obtained from the function considering two
operating variables is selected as a threshold for the differential algo-
rithm. Out of the two variables, the magnitude of fault detection index
(FDI) varies significantly with respect to x. Hence, to obtain the optimal
threshold with respect to ′x′ the objective function of the problem can

Fig. 1. Studied power system.

Fig. 2. Positive sequence network during fault condition.
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be formulated by considering all 11-types of faults (AG, BG, CG, AB, BC,
AC, ABG, BCG, ACG, ABC, ABCG). The optimal threshold can be ob-
tained as

=
g x g x g x g x g x g x
g x g x g x g x g x

min
( ), ( ), ( ), ( ), ( ), ( ),
( ), ( ), ( ), ( ), ( )

AG BG CG AB BC CA

ABG BCG ACG ABC ABCG (11)

For the above objective function, the boundary values of fault lo-
cation (x) lies in between 0 to L.

x L0 (12)

where, L is the total length of the line in km. Instead of considering the
extreme line length limits, a small deviation (ξ) in both upper and lower
limit is applied. So, the fault location can be varied in between ξ and L-
ξ as mentioned in Eq. (13).

x L (13)

The threshold setting problem is extended as a multi dimensional
problem. Out of the different sub-functions, few sub-functions are less
influential and thus can be ignored. Fault involving more than one
phase is negelected and only single-phase-to-ground faults (LG) are
considered as a function to generate the reliable threshold. Considering
the LG faults, the modified objective function can be written as
[24–25].

= g x t g x t g x tmin{ ( , ), ( , ), ( , ),}AG s BG s CG s (14)

Along with the variable ′x′, ′ts′ is also considered to convert the
single dimensional problem into two-dimensional problem. So, the time
constraint included in the new objective function can be written as

t t tsmin max (15)

In Eq. (15), tmin and tmax are the minimum and maximum limits of
fault initiation time expressed in seconds. The maximum and minimum
time limits should be selected in such a manner that the difference
between the maximum to minimum value is equal to exactly one cycle
time period i.e. 0.02 sec for 50 Hz and 0.0167 for 60 Hz. For each
objective function, subjected to corresponding constraints, the optimal
threshold value can be achieved by using any swarm intelligent opti-
mization technique. In this work, particle swarm optimization (PSO) is
used for this purpose. For random values of x and ts, different FDI can be
computed using for the differential positive sequence current using
Eq. (10). But the minimum FDI cannot be achieved by hit and trail
method. So, PSO technique is applied to achieve an optimal threshold
value. The applications of PSO technique in solving many engineering
problems are reported in [21–23]. PSO provides an optimum solution in
case where the threshold selection is a very complex task. Even with
complex problem, reliable and desired solution can be obtained using
PSO technique. In the initial iterative stage, the position of every in-
dividual swarm is pi

k and the velocity isvi
k. The best position of each

organism is pbest and the overall optimized best among all particles
isgbest. The velocity is updated by comparing the previous and the new
fitness values and accordingly the position of the swarm can be up-
dated. The velocity and position of each particle can be updated using
(16) and (17)

= + ++ ( ) ( )v v c r p p c r g pi
k

i
k

i
k

i
k1

1 1 best 2 2 besti i (16)

= ++ +p p vi
k

i
k

i
k1 1 (17)

In Eq. (16), c1 and c2 are acceleration constants, r1 and r1 are
random numbers varies from 0 to 1. ω is the inertia weight factor. As
mentioned in [22], several variants of PSO are proposed later after
conventional PSO to avoid pre-maturity caused by selection of control
parameters. The selection of inertia weight is complex [23] and several
mechanisms are available for its selection. To avoid pre-maturity con-
dition of PSO, the inertia weight factor can be set using (18)

=+ *k k
damp

1 (18)

In Eq. (18), ωdamp is the damping ratio of inertia weight. Depending
on the common parameters of PSO i.e. population number and iteration
number, extensive cases are simulated within the boundaries of the
variables for every iteration. However, the effectiveness of Eq. (18) on
threshold selection process is discussed in details in Section 6.

4. Simulation results

For the considered test system (Fig. 1), the optimal FDI can be ob-
tained by solving two stage problem. Stage-1 is a single variable pro-
blem in which x is varying and ts is treated as constant. But stage-2 is
considered as a multi-variable problem.

4.1. Stage-1:Threshold setting using single variable objective function

In this process, the objective function mentioned in Eq. (11) in-
volves all sub-functions including the different possible faults. For op-
timization of each sub-function, 50 iterations are considered with po-
pulation size of 100. For the given test system shown in Fig. 1, the first
constraint x is considered to be a variable and expressed as

x1 29 (19)

However, ts is taken as constant. After identifying the individual
optimal indices for all possible faults that occurred for the simulated
system, the overall unique optimum threshold index can be fixed by
using Eq. (11). The obtained optimal indices for all fault cases are
mentioned in (20)

= =min 0.6113, 0.5035, 0.3915, 2.1619, 2.1561,
2.1566, 2.3394, 2.3208, 2.3261, 4.6245 0.3915

(20)

The optimal threshold is obtained for CG fault and fault location
23.1587 km from bus-P. For the different types of fault, the optimal FDI
along with the critical fault locations are estimated using the proposed
method and presented in Table 1. For ABC and ABCG faults the same
optimal indices are achieved.

The solution obtained from stage-1 is enough to set optimal
threshold under normal operating condition. Fig. 3 shows the process of
identification of optimal index from initial iteration to final iteration for
all the possible LG faults. The optimal value obtained from a single
variable used in stage-I and shown in Fig. 4(a) and corresponding FDI
are shown in Fig. 4(b). The main advantage of applying swarm in-
telligence technique in threshold section procedure can be clearly ob-
served from Fig. 3 and Fig. 4.

By applying conventional methods, the threshold value can be se-
lected using regular trial and error method. But from Fig. 3, it can be
understood that due to large variations in threshold value during LG
fault, in between 10 to 30 km fault location, such a trial and error
process is not suitable. But the proposed threshold searching method
using PSO technique is able to identify optimal value of ϑ within
minimum number of iterations and the obtained solutions are reliable
as evident from Fig. 4(a) and Fig. 4(b). The surfaces generated from
PSO show the importance of application of swarm intelligence to op-
timal threshold setting problem.

However, stage-2 is employed to generate more reliable detection
index by including fault inception time which is discussed below.

Table 1
Optimal indices obtained for different faults with ts=0.4 sec and fault resistance
=1Ω.

Fault Type Location (km) FDI Fault Type Location (km) FDI

AG 28.8205 0.6113 AC 28.8631 2.1566
BG 28.8247 0.5035 ABG 28.8955 2.3394
CG 23.1587 0.3915 BCG 28.9696 2.3208
AB 29.0000 2.1619 ACG 29.0000 2.3261
BC 28.7340 2.1561 ABC 28.8924 4.6245
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4.2. Stage-2: Threshold setting using multi variable objective function

Out of the 11 sub-functions in the main objective function, only
three sub-functions corresponding to LG faults (AG, BG and CG) having
minimum threshold indices, hence for stage-2 the objective function is
mentioned Eq. (14). Along with the constraint mentioned in Eq. (19),
the following constraint is included for the initiation of fault.

t0.4 0.42s (21)

Test system presented in this paper is operating at frequency of 60
Hz. But for 50 Hz operating system, a time margin of 0.02 sec is allo-
cated to fault initiation for adapting the optimal value. Using the pro-
posed approach with all constraints are taken into consideration, the
FDI generated by PSO for all LG faults from the initial iteration to final
iteration is presented in Fig 5. The total surface generated by PSO for a
CG fault is presented in Fig. 6.

By using PSO, the optimal solution is achieved at 18.9150 km from
bus-P with a fault initiation time of 0.4044 sec for AG fault. The fault
resistance corresponding to optimal index is fixed and considered as 1Ω
in the entire simulation studies in the stages of optimal threshold se-
lection procedure. Table 2 shows the critical values of fault location,
fault inception time for all the LG faults. Finally, the optimal index
considered as a threshold for the given test system is obtained as
0.3137. Similar to stage-1, surfaces of variables generated by PSO are
presented in Fig. 7 to show the strength of swarm intelligence appli-
cation in this paper.

In Fig. 8, the obtained optimal threshold values for different LG

faults are plotted. Further the performance analysis of proposed method
is tested for random faults as illustrated in the following case studies.

4.3. Response for LG Faults

The proposed optimal threshold searching process using two ob-
jective functions mentioned in Eqs. (11) and (14) are tested for different
possible cases simulated for LG faults. A total of 5 trails are executed
with a population size of 100. For each trail, 50 iterations are con-
sidered. Therefore, for two objective functions, 150000 LG faults are
simulated as per Eq. (22).

=
total number of simulations in LG fault case

type of LG faults no of objective functions
no of trails population size number of iterations

( )*( . )
* ( . )*( )*( ) (22)

Few cases are simulated to check the proposed threshold setting
mechanism applied to differential protection scheme. For AG fault in-
itiated at 0.4 sec and 18 km from bus P, the obtained results are shown
in Fig. 9(a). Fig. 9(b) shows the response for CG fault created at 24 km
from bus P with a fault initiation time of 0.6 sec. for both the cases, fault
resistance is 30 Ω. The FDI is more for AG fault case as compared to CG
fault. But still the optimal threshold is reliable can able to detect the
fault using differential principle. In both cases, trip signal is generated
between 2-5 msec.

4.4. Response for double-line (LL and LLG) Faults

For the multi variable objective function in stage-2, double-phase
and symmetrical faults are not considered during optimal threshold
selection process because the FDI generated during such faults are more
than LG faults. Hence only 75000 simulation cases are tested in stage-1
using PSO. However, few case studies are investigated to show the ef-
fectiveness of the proposed method. In this case, BC fault with a fault
resistance of 5Ω, fault distance of 10 km from bus P and fault initiation
time of 0.55 sec is considered. Fig. 10 (a) shows the results for the BC
fault case. From Fig. 10(a), the trip signal in generated after 3 msec.
Fig. 10(b) shows the performance of the proposed method for ACG fault
with a fault distance of 28 km from bus P, fault time and fault resistance
are 0.42 sec. and 40Ω respectively. By the optimal threshold value, the
fault during ACG fault is detected just after 3 ms of fault initiation.

4.5. Response for symmetrical faults

For symmetrical faults, 5000 simulation cases are tested during
optimal threshold setting procedure. For symmetrical faults, indices are
larger than other faults. For an ABC fault with 5Ω fault resistance, 20
km fault distance from bus P and 0.5 sec fault initiation time, response
of the method is shown in Fig. 11(a). In Fig. 11 (b) result for ABCG fault
ts is 0.3 sec, fault resistance 20Ω and x is 15 km from bus P. The fault is
detected after 4 ms of fault initiation in both the ABC and ABCG fault
cases.

Fig. 3. Optimal threshold searching pattern using PSO for LG faults using stage-
1.

Fig. 4. Surfaces generated by PSO in the search process of AG fault under stage-
1.

Fig. 5. Variation of threshold from initial iteration to final iteration for stage 2 of AG fault.

C.D. Prasad, et al. Electric Power Systems Research 187 (2020) 106452

4



4.6. Response during varying fault location and inception time

In the first case, the fault resistance and inception time are con-
sidered as 10Ω and 0.3 sec. The FDI at various locations of the line for
AG, AB, ABG and ABCG fault cases are simulated. A total of 120 cases
are investigated and results are shown in Fig. 12. The results for un-
symmetrical faults are shown in Fig. 12(a) and in Fig. 12(b) the FDI for
ABCG fault case is provided. The optimal threshold for the studied test
system is obtained as 0.3137. For all the fault cases, the calculated
indices are lie consistently above the threshold. Next, the values of both
fault location and inception time are varied. The value of ts is varied

from 0.2 to 0.6 and two fault cases are tested. Fault resistance is 10Ω.
For BG and ABCG fault cases results are shown in Fig. 13. A total of 40
cases are tested. From the analysis it is understood that through the
optimal threshold value reliable detection of fault under varying fault
location and inception time is possible.

Fig. 6. FDI generated by PSO for CG fault in case of stage-2.

Table 2
Optimal indices obtained for LG faults using stage-2, fault resistance= 1Ω.

Fault Location (km) Inception (sec) FDI

AG 18.9150 0.4044 0.3137
BG 18.9863 0.4102 0.3228
CG 20.9928 0.4155 0.3203

Fig. 7. Pattern of variations of (a) Location for AG fault. (b) Inception for AG fault. (c) Location for BG fault. (d) Inception for BG fault from initial to final iterations
by PSO.

Fig. 8. FDI plots for single-line-to-ground faults.
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4.7. Response during varying fault resistance

The fault resistance is varied in the range of 5Ω to 100Ω and re-
sponse of the method is tested. The fault inception time is 0.3 sec and
fault location is 25 km. Different LG faults are created and computed
values of FDI for individual fault cases are shown in Fig. 14. Due to
increase in the fault resistance, differential positive sequence current
value reduces but with this also the computed FDI values lie above the
threshold. So, even with high fault resistance path also accurate de-
tection of different faults is possible.

4.8. Impact of varying wind speed

The optimal threshold value is also tested against varying wind
speed of wind farm within acceptable limits. AG faults with different
fault locations are simulated for varying wind speed condition and re-
sults are demonstrated in Fig. 15. For x =5 km from bus P, FDI is
highlighted in red color and similarly black, blue and green colors are
used to highlight the FDI plots for x =10, 15 and 20 km. In Fig. 15 (a),
the results are provided for increasing wind speed conditions and in
Fig. 15 (b) results for decreasing order of wind speed are provided. In
all test cases, fault incepted at 0.3 sec. and fault resistance is of 10 Ω.
Results prove that under varying wind speed condition also the per-
formance of the proposed method is accurate.

4.9. Impact of fault parameter on detection time

Fig 16 (a) show the response times of various unsymmetrical faults
(AG, AB and ABG) during varying fault location condition. In Fig. 16 (b)
the results for ABC fault cases are provided. For all cases, fault re-
sistance of 5 Ω is considered. For AG fault initiation time is 0.3 sec and
0.35 sec for AB fault. In case of ABG and ABCG faults, initiation time is
0.4 sec. However, irrespective of type, location and initiation time,
detection time is less and results are accurate.

4.10. Response during dynamic operating conditions

The proposed intelligent threshold setting mechanism is further
tested for dynamic operating conditions of the wind farm integrated
power system. The variation of control parameters, wind speed and
power variations are taking into consideration. It is to be noted that
PSO assisted threshold setting mechanism is an off-line process because
in practice dynamic operating of wind farm cannot be considered online
to modify the threshold value. PSO assisted threshold setting equations
are developed based on the variations of the control parameters using
curve fitting technique. These equations can directly generate suitable
threshold values based on the corresponding change in the test system
without any computational burden on the relay. In this way, the
practical implementation of the proposed scheme can be validated
during different operating modes of the system. For this purpose, two
control parameters known as DC bus voltage regulator (kpv) and speed
regulator (kps) are considered to develop direct PSO assisted threshold
setting equations obtained by PSO curve fitting. Different optimal
threshold values achieved through the PSO technique for various con-
trol parameters are computed and reported in Table 3–6.

The predicted optimal threshold values are achieved from the linear
regression models developed by optimal threshold values achieved by
using PSO technique. In Table 3, the DC bus voltage regulator is de-
creased from its operating value and thus the fitting equation can be
written as

= +k0.0029 0.3397pv (23)

With the help of Eq. (23), threshold values can be predicted for
different voltage regulator values. The percentage of absolute error
indicates that the optimal threshold value is nearly equal to the oper-
ating threshold value. Similarly, other equations can be obtained for DC
regulator gains, and speed regulator gains as mentioned in Table 4–6
and can be represented as

= +k0.000299 0.3148pv (24)

= +k0.0092 0.3419ps (25)

Fig. 9. Results for LG faults. (a) AG-faults. (b) CG-faults.

Fig. 10. Results for double-line faults. (a) BC-faults. (b) ACG-faults.
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Fig. 11. Results for Symmetrical faults. (a) ABC-faults. (b) ABCG-faults.

Fig. 12. Results for different fault location at fault resistance=10Ω and ts = 0.3 sec. (a) AG, AB, ABG faults. (b) ABCG faults.

Fig. 13. Results for different fault location at fault resistance=10Ω and ts = 0.3 sec. (a) BG faults. (b) ABCG faults.

Fig. 14. Results for different fault resistances with ts =0.3 sec and x=25 km. (a) AG faults. (b) BG faults. (c) CG faults.
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= +k0.000488 0.3180ps (26)

Once these equations are available, then the threshold values can be
automatically adjusted based on the dynamic conditions of the system
and hence reliable protection operation can be ensured.

4.11. Influence of sampling frequency

The influence of the change in sampling frequency on the threshold
setting mechanism is tested and discussed in this section. To conduct
the test, different LG faults are created by varying the fault parameters.
Results are reported in Table 7. The objective function of the proposed

intelligent threshold setting scheme is designed based on the maximum
peak value of the differential positive sequence current component and
therefore the change in sampling frequency effect is negligible on the
overall performance of the scheme, which can be observed from
Table 7.

4.12. Impact of variation in wind power

Wind power varies dynamically and due to this the operation of
preset threshold based protective relay may face challenges. In order to
test the response of the proposed method under such a condition, an
unsymmetrical fault during varying wind power condition is simulated.

Fig. 15. Impact of variation in wind speed. (a) Increasing order. (b) Decreasing order.

Fig. 16. Response time during varying fault parameters. (a) AG, AB, ABG faults. (b) ABC faults.

Table 3
Optimal threshold values for different DC regulator gains.

kpv Fault location by PSO (km) Inception time by PSO (s) Optimal threshold by PSO Predicted Optimal threshold Absolute Error in %

0.8 17.8774 0.4045 0.3341 0.3374 0.9817
4 20.9475 0.4128 0.3339 0.3281 1.7370
8 18.9150 0.4044 0.3137 0.3165 0.8926

Table 4
Optimal threshold values for different DC regulator gains.

kpv Fault
location by
PSO (km)

Inception
time by PSO
(s)

Optimal
threshold by
PSO

Predicted
Optimal
threshold

Absolute
Error in %

8 18.9150 0.4044 0.3137 0.3172 1.1120
20 26.0564 0.4047 0.3256 0.3208 1.4830
40 19.8190 0.4127 0.3259 0.3267 0.2585
80 24.6125 0.4043 0.3383 0.3387 0.1137

Table 5
Optimal threshold values for different speed regulator gains.

kps Fault location by PSO (km) Inception time by PSO (s) Optimal threshold by PSO Predicted Optimal threshold Absolute Error in %

0.3 20.2755 0.4128 0.3383 0.3391 0.2483
1.5 17.6800 0.4128 0.3338 0.3281 1.7076
3 18.9150 0.4044 0.3137 0.3143 0.1913

Table 6
Optimal threshold values for different speed regulator gains.

kps Fault
location by
PSO (km)

Inception
time by PSO
(s)

Optimal
threshold by
PSO

Predicted
Optimal
threshold

Absolute
Error in %

3 18.9150 0.4044 0.3137 0.3195 1.8379
10 23.2504 0.4127 0.3296 0.3229 2.0374
20 25.3704 0.4045 0.3298 0.3278 0.6156
30 16.8376 0.4130 0.3296 0.3327 0.9267
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ABG fault with fault resistance of 20 Ω is created at 0.35 sec. The fault
location is 18 km from bus-P. Three cases of 33%, 67% and 100% wind
power penetration levels are investigated considering the ABG fault
condition. The obtained results are depicted in Fig. 17. It is to be noted
that, the optimal threshold value in the proposed work is designed for
100% wind power penetration level. Hence, the impact of variation in
the wind power has negligible impact on the response of the proposed
method which can be observed from Fig. 17.

5. Comparative assessments and discussion

For comparative analysis the existing threshold selection approach
as reported in [12] is considered and responses of both proposed and
existing methods are verified for high impedance and low impedance
fault cases.

5.1. High impedance faults

The high impedance faults often occur in distribution network and
the condition may develop if the path will be a high impedance surface

Table 7
FDI for different sampling frequencies.

Fault Fault location (km) Fault inception time (s) Fault resistance (Ω) Sampling frequency
0.3 kHz 0.6 kHz 1.2 kHz 2.4 kHz 6 kHz

AG 12 0.406 20 0.6892 0.6893 0.6901 0.6778 0.6807
BG 08 0.415 30 0.5604 0.5603 0.5607 0.5643 0.5652
CG 18 0.411 45 0.3967 0.3967 0.3967 0.3960 0.3983

Fig. 17. Results for varying wind power penetration level.

Table 8
HIF model parameters.

Cases Vp (kV) Vn (kV) Rp (Ω) Rn (Ω)

Case-I 0.24±4.2% 0.23±2.2% 15~25 15~25
Case-II 0.24±4.2% 0.23±2.2% 100 ~150 100~150

Fig. 18. High impedance fault model.

Fig. 19. Comparative analysis results for high impedance fault cases. (a) Case-I and (b). Case-II.

Fig. 20. FDI values obtained by PSO at different inertia weights.

Table 9
Comparison of optimal FDI's for various inertia weights of PSO.

Inertia weight case Fault location Fault inception Optimal FDI

0.2 20.9246 0.4132 0.3319
0.8 18.5949 0.4045 0.3220
Proposed 18.9150 0.4044 0.3137
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such as concrete, tree, or asphalt. The fault possesses nonlinear char-
acteristics and the fault current may be in the order of normal load
current, which makes the relay unable to take accurate decision [26]. In
order to investigate the response of the method for such a condition,
two different fault cases are simulated and the details of high im-
pedance fault parameters are provided in Table 8. The high impedance
fault model as shown in Fig. 18 is used and simulated using MATLAB
R2016a software. The fault is created in between bus P and W.

In Case-I, the fault detection index is computed using conventional
positive sequence current differential scheme. Then through the se-
lected threshold based on proposed method and existing method are
checked against the detection of the fault. From Fig. 19 (a) it can be
observed that the FDI lies below the threshold selected using existing
technique and consistently lie above the optimal threshold selected
using proposed technique. For Case-II shown in Fig. 19 (b), the optimal
threshold is working correctly. So, the threshold selected based on trial
and error method cannot be reliable always. But the optimal threshold
will be more effective in detecting fault in power network.

5.2. Discussion

As mentioned in Section 3, the application of PSO provides optimal
threshold which is able to detect all possible faults in transmission lines.
The proposed algorithm is a population search-based technique which
initializes the process with random solutions. So, for the identification
of the optimal threshold values, multiple executions are required so as
to eliminate the pre-maturity condition of PSO and to achieve best
minimum value (global optimum) through the objective function. On
the other hand, selection of control parameters will also influence the
convergence of the technique to achieve global optimum solution of the
problem especially inertia weight factor. Instead of taking existing in-
ertia weight strategies [23], a simple dynamic inertia concept is used in
this paper to update the inertia weight for next iterations towards
global optimum solution. The optimal threshold of 0.3137 is identified
at 18.915 km from bus P during AG fault using the proposed PSO. The
obtained FDI value is compared with the constant inertia weight based
PSO assisted values and the results are presented in Fig. 20. The ob-
tained optimal indices achieved through PSO solution for different fault
locations and inception time are provided in Table 9. From the cases

mentioned in Table 9, it is clear that identification of optimal threshold
is difficult by conventional approaches because every case produces
different solution close to actual solution. But by using proposed
method minimum FDI can be achieved. In this process, control and
common parameters are maintained as same for different inertia
weights. The threshold setting mechanism is important in relaying for
the secure and reliable operation of fault detection and the proposed
PSO yields better threshold compared to conventional mechanisms.

From the comparative results it is observed that, the proposed PSO
yields better solution than conventional PSO. This proves the efficacy of
the proposed method as compared to conventional PSO and existing
approaches in detecting fault when applied to a wind farm integrated
power network.

6. Conclusions

In this paper, an innovative threshold selection process is presented
for differential protection algorithm applied to wind farm penetrated
power network. The method uses swarm intelligence technique. The
conventional differential scheme suffers from threshold setting problem
especially in presence of dynamic operating conditions of power system
due to integration of wind farms. To mitigate this, PSO assistance is
provided to the differential protection scheme so that overall reliability
can be improved. Under dynamic operating conditions of wind farm,
the response of the method is accurate. The most accurate minimum
threshold identified through PSO gives high reliability and it cannot be
achieved through conventional trial and error method of threshold
setting. The computational burden by the proposed approach is negli-
gible as compared to existing relay schemes. The threshold setting
process is based on off-line calculation, and hence even with the dy-
namic operating conditions of wind farm the speed and reliability of
operation will not be compromised.
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Appendix

Component Specifications

Transformer (T1) 1975/575 V, 1.5/0.9 MVA, magnetizing inductance =2.9 p.u.
Transformer (T2) 575 V/25 kV, 1.75 × 6 MVA, R1=R2=0.00083 p.u, L1=L2=0.025 p.u, Rm=Lm=500 p.u
Transformer (T3) 25/120 kV, 47 MVA, R1= R2=0.00267 p.u, L1= L2=0.08 p.u, Rm=Lm =500 p.u
Grounding Transformer 25 kV, 100MVA and R0 = 0.25, X0 = 0.75 p.u
Line Filter C=120 kvar, Q= 50
Choke R = 0.003 and L = 0.3 p.u
Source (Grid side) Vs = 120 kV Z1s = 0.576 + j5.76 O, Z0s = 1.728 + j17.28 Ω
Line parameters Z1L =0.0201 + j0.2868 Ω/km and Z0L =0.1065 + j0.8671 Ω/km
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