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A B S T R A C T

Microgrid is an important component of the evolving smart-grid. It has the ability to increase reliability, decrease
costs, and enlarge penetration rates for distribution generation systems. However, the protection coordination
may get badly affected due to the bi-directional/variable power flow associated with microgrid system and
increasing penetration rates of distributed energy resources. Therefore, a proper protection strategy is highly
required to decrease the complexities associated with microgrid system. In this paper, a widespread literature
review on the current research and progression in the field of AC-microgrid protection is presented. The prime
objective of this survey is to extend the researcher’s database comprising relevant reference points which could
be highly beneficial to their future research work. This work comprises of the current status, major hitches and
existing research efforts focussed in the direction of providing a smooth relaying system under diverse MG
operating conditions. Moreover, the work concentrates on analysing the intelligent approaches/devices that help
transform the present protection schemes to become smarter.

1. Introduction

The concept of Smart-grid brings about a fresh dimension to the elec-
trical power system. The availability of floods of information along with bi-
directional energy flow makes the operation, control, and protection of the
present-day power system more challenging. A smart-grid can essentially be
viewed as a conglomeration of microgrids and distributed generators im-
pregnated in a conventional grid. Smart-grids have many unique physical
characteristics [1,2] such as self-healing, customer approachable, resilient
towards physical and cyber-attacks, facilitates optimized asset utilization,
environmental friendly, healthy communication channel backup, improved
efficacy, dependability and security of power distribution and usage [3,4].

The word “microgrid” has been described in several reports based
on diversified viewpoints [5,6]. The Department of Energy (DOE),
United States defined the “microgrid” in the following manner [7]:

“A microgrid is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that act as a single
controllable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-connected or
island-mode. A remote microgrid is a variation of a microgrid that op-
erates in islanded conditions.”

Similarly, it was defined by the International Council on Large
Electrical Systems (CIGRE) as [8]:

“Microgrids are electricity distribution systems containing loads and
distributed energy resources (such as distributed generators, storage de-
vices, or controllable loads,) that can be operated in a controlled, co-
ordinated way either while connected to the main power network or while
islanded.”
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Microgrid is an important component of smart-grid. It is a smaller
replica of the larger grid having all the components of the utility grid.
While smart grids are large scale happening at the larger utility level,
microgrids are smaller scale and can operate independently from the
larger utility grid [1]. Microgrids can be treated as means to integrate
distributed energy resources (DERs) to the low voltage (LV) networks at
the customer's end and in the process; the customer becomes an active
participant in the smart grid [9]. Thus, microgrids as a subset of the
main grid offer various benefits, for example, better system efficiency,
reduced cost, improved power quality and added system reliability
[10]. Moreover, the microgrid can be treated as a resilient resource and
play an important role in the development of a resilient electric power
system (EPS). Therefore, the use of microgrids in EPS can be an ad-
vantageous solution for improving the resiliency of transmission and
distribution networks. However, notwithstanding its immense ad-
vantages and almost indispensable as a technology to meet the growing
requirement of non-fossil fuel-based eco-friendly power, it comes with
its challenges in terms of implementation, operation, control and more
specifically protection of the smart grid [11,12]. The DERs are also
termed as micro sources. These micro sources could be sources pro-
viding AC or DC power outputs, such as Gas Turbines, Solar Power
Plants, Wind Power Generator, Fuel Cell, Small hydroelectric power
plant, Diesel generator, Combined Heat, and Power Sources, etc. Elec-
trical Storage System (ESS) is another integral part of a microgrid that
helps ensure reliable and stable power supply to the local loads in the
concerned microgrid. Battery Packs, Supercapacitors, Flywheels, etc.
are few forms of ESS which are generally employed in a microgrid.

A microgrid, which is essentially a power island that exchanges the
power with the main grid while operating in grid-connected mode. It
meets the power requirements of its local loads and the excess of power
produced is exported to the main grid. In the case of a deficit in pro-
duction, the microgrid imports the required power from the main grid.
This need-based exchange of power between the microgrid and the
utility not only calls for real-time load management but also makes the
power flow within the smart-grid (SG) bidirectional in nature. In this
context, it is noteworthy that the traditional power grid is a centralized
generation, long-distance meshed transmission lines, and radial dis-
tribution network. The SG, on the other hand, is a distributed genera-
tion, a network of power islands meeting the local power load, with bi-
directional power flow.

The foremost issue arising due to bidirectional power flow is that
the existing protection schemes in force for the radial power system
appear redundant. The DGs contributing to the fault currents result in
unpredictable operating times of the existing protection devices (PDs)
leading to loss of protection coordination [13]. Besides microgrids with
DGs of different capacities and types will have fault currents of varied
levels leading to further degradation of protection coordination. Pro-
tection issues such as 'Blinding' and 'Sympathetic Tripping' are the two
major events that are expected to take place due to loss of protection
coordination.

The topology of a microgrid and for that matter the microgrid em-
bedded smart-grid is a dynamic one [14] for the reasons such as the
introduction of new DGs or loads, islanding, fault conditions, scheduled
or unscheduled maintenance of system devices, etc. This dynamism of
topology of the microgrid, regardless of causes behind it, could impact
current direction, its magnitude and subsequent miss-coordination of
PDs.

A microgrid can be put to off-grid mode either intentionally as the
plan may be or gets cut-off automatically/unintentionally due to fault
in the main grid, an event known as islanding. This unintentional is-
landing also referred to as loss of mains (LOM) [15], may also take
place due to malfunctioning of circuit breaker connected to the source.
LOM is a situation where the microgrid gets disconnected from the
source but it continues to power the loads within its zone causing a
possible hazard to the utility workers unaware of the active islanded
microgrid. Hence it is required that the DGs within the microgrid must

be able to detect the islanding and get disconnected immediately, an
action which is known as anti-islanding. The IEEE 1547 standards
prescribe that the DGs must stop producing within 2 s of detection of an
islanding condition. There are ample numbers of methods of islanding
detection for the DG system cited in the literature. However, during
microgrid islanding, these methods may result in a 'nuisance trip'
causing islanding failure. Hence, the technical challenge lies here with
configuring of anti-islanding for DGs within the microgrid along with
the microgrid islanding detection. The technical challenge also lays
with the need for minimization of transients during islanding and em-
ployment of appropriate islanding detection techniques in non-detec-
tion zones (NDZ).

It is imperative that in the grid-associated mode of operation, the
fault current is of very high value as the fault gets feed by both the
utility and the DGs within the microgrid. Whereas the fault current is of
very limited value during the islanded mode as sources within the
microgrid are low capacity DGs. As such in the case of inverter-based
DGs, the fault currents are limited to a maximum of twice the rated
current based upon the rating of the devices. This compromises the
suitability of traditional overcurrent protection techniques. Thus, here
the challenge lies in identifying protection schemes suitable for both the
mode of operation of microgrids [16]. Another technical challenge that
a microgrid faces resides in the availability of low-cost technologies for
its safe and reliable operation, a concern rightly raised by the authors in
[17].

In the event of a fault, the DGs in a distributed network (DN) are
isolated immediately, as was the prevailing practice for quite a long
time. However, with substantially increased DG penetration, the in-
terruption of DGs amounts to a significant reduction of power supply
which is unsuitable from the utility and customer viewpoint. In this
context, the grid code mandates that the MG operation needs to be
continuous even in the course of the fault occurrences. Most of the
faults are temporary and of very short duration. Hence, the microgrids
are expected to have the fault ride-through capability [18] and low
voltage ride through (LVRT) capability [14] in a smart-grid scenario.
The issues and challenges with a smart-microgrid can be summarised as
follows [16,19]:

i. Unbalanced conditions in-between supply and load demand.
ii. Bi-directional energy flow.

iii. Low inertia leading to critical frequency abnormalities in islanding
operation.

iv. Limited short circuit capacity may initiate a noticeable drop in MG
fault level [6,20].

v. Scarcity of low-cost protective devices/technologies.

In this work, an attempt has been made to accumulate several ar-
ticles including both review and full-length research articles high-
lighting issues related to AC microgrid protection viewpoints. Initially,
the paper reviewed several review articles that are directly or indirectly
related to the scope of this survey. The details of outcomes from this
study are presented comprehensively with a critical analysis. Secondly,
a brief discussion is given on the existing microgrid protection issues
and their traditional protective solutions. The article also presents a
wide survey and review of recent techniques proposed by various re-
searchers to mitigate the effects of DG integration on distribution
system protection performance. The implementation challenges of these
techniques are discussed and proposals for the future are given. Thirdly,
the article highlights the importance of artificial intelligence and
computational intelligence on microgrid protection which have gained
huge attention over the last few decades. It is already stated that fast
islanding detection is one of the most vital areas of the microgrid
protection field. Therefore, brief analyses of islanding detection tech-
niques developed recently have been summarized in this article.
Finally, the article concludes with some future recommendations for
advancing the state-of-the-art MG protection system.
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The methodology adopted for the proposed review work on AC
microgrid protection is described as follows. The initial step of the work
involves the task of collecting existing articles, which directly/in-
directly related to the area of microgrid protection. The following
websites are considered for the above-mentioned task like IEEE ex-
plorer, Science Direct, Wiley, Springer, MDPI, Scopus, and Web of
Science. In the next step, the articles related to DC microgrid are ex-
cluded from the database with an intention to provide a fair and clean
review for only AC microgrid protection. In the subsequent step, the
remaining articles have been segregated into two distinct categories
like review and research articles. Afterward, in section 2, a compre-
hensive review of the existing survey articles based on AC microgrid
protections are carried out, and the gaps/shortcoming from these re-
views are highlighted. In the next section i.e. Section 3, 4 and 5, a
detailed analysis of the issues, challenges associated with AC microgrid
protections and the available solutions are discussed in a comprehen-
sive manner. In this section, the research articles from our collection
databases are used as references with an exclusion criterion (i.e. articles
published prior to a decade). In the subsequent section (Section 6), a
critical analysis has been carried out along with several miscellaneous
protection schemes and future scope. Finally, in section 7 the review
work is completed with several concluding remarks.

2. Critical review on existing survey articles

This section provides a brief chronological literature review on
survey articles published recently (within a decade) on microgrid pro-
tection perspective.

Huayllas et al. in 2010 presented state-of-the-art reviews on MG
systems along with the hurdles that are encountered for their in-
corporation into the main grid. Here, the authors have agreed with the
perspective reported in [18], where it was criticized the fact that ‘under
present grid protocols, all DG systems must shut down during times of
power outages; however, it is in this specific time when these onsite
sources could offer their utmost value by delivering power services to
locally connected loads’. The review presented by Basak et al. in 2012
[6] emphasizes the solution to two specific protection issues, viz; mi-
crogrid behavior during grid side fault and providing sufficient pro-
tection coordination when it operates in islanded mode.

The review presented by Bhaskara and Chowdhury in 2012 [20]
stresses the need for an appropriate control system designed to ensure
the operation of a smart grid under the four different modes as re-
cognized by the IEEE Std. 1547.4-2011, namely: area EPS-connected
mode, transition-to-island mode, islanded mode and reconnection
mode. Moreover, four different major control architectures have been
summarized, such as autonomous control architecture, hierarchical
control architecture, agent-based control architecture, and neural net-
work-based energy management systems. The review, however, makes
cursory reference to various protection issues including the issues as-
sociated with MG service restoration and the available various multi-
agent-based load restoration algorithms.

The study presented by Haron et al. in 2012 [21] highlights that a
proper microgrid protection scheme has the onus of detecting the short-
circuit occurrence and clearing the fault through the PDs, while pro-
tection coordination needs to confirm that the appropriate devices are
initiated to cut off the faulty sections. The combined implementation of
these procedures can ensure the effective operation of PDs in any DN.
The review provides a classification of all microgrid protection strate-
gies (MPSs) and the protection coordination methods accessible from
the literature until the publication of it. The flow chart related to this
study is shown in Fig. 1.

The review reported by Justo et al. in 2013 suggested that the set-
tings of the protective equipment’ need to be updated depending on the
mode of operation in view of different levels of fault current during
different modes [22]. The microgrid central controller (MGCC) com-
municates with each connected PDs and the DG unit controllers, to log

their ON & OFF status, rated and fault current contribution in order to
update the relay setting and detection of fault current direction, which
help in fault mitigation. The review identifies two different protection
strategies. The first one as a decentralized protection scheme wherein
each DG unit to have its own relay, an approach more effective for
phase-to-phase faults. However, the approach is restricted to low im-
pedance faults. The second one, which is a voltage based MPS that is
centralized in nature. The phase voltages are transformed into d-q-0
axes and compared with reference voltage via MGCC fitted with the
central protection unit (CPU). As soon as the change in voltage exceeds
its pre-set threshold limit, the PDs are triggered to aptly isolate the
faulted section. The schematic sketch of this type of protection ar-
rangement is presented in Fig. 2.

Gupta et al. in 2013 [23] have reviewed the several previously
published adaptive protection schemes (APS) and presented the tech-
nical challenges associated with them. The survey identifies all the
usual concerns of the protection of an MG. It gives specific thrust on the
need for a rapid and trustworthy communication system for the im-
plementations of APS. The authors consider this as the foremost chal-
lenging issue in the process of designing effective MPS in the SG sce-
nario. The prior knowledge of every state of the grid, the online
monitoring and calculation of short circuit fault current level for every
small change in grid configuration is needed for the reliable action of
any APS. This necessitates the use of high-speed, consistent and robust
communication systems with a backup so that the online relay setting
can be achieved automatically. As a result, these additional adaptive
features can increase the complexity and cost of the protection system.
Mirsaeidi et al. in 2014 [24] presented a systematic literature review of
the existing MPSs and its implementation challenges. The authors have
classified the MPSs into adaptive, distance, differential, voltage, over-
current and symmetrical current based schemes. Although the authors
have presented the concept of each MPSs in a constructive way, a de-
tailed comparative analysis of previously published work related to
each MPSs was ignored in this survey. Choudhary et al. in 2014 [25]
have presented a literature review on MPSs, where they classified the
protection schemes into improved current protection methods and wide
area protection (WAP) scheme.

The need for fault ride through keeping in requirement with grid
code compliance has been cited as a technical challenge in the litera-
ture. The reactive power management during fault occurrences based
on modern power electronic converter control can lessen the severity of
the fault and helps the EPS to ride through the fault. The survey article
presented by Beheshtaein et al. in 2015 provides a brief account of fault
ride-through and LVRT capability of EPS in a smart grid scenario in
accordance with the grid code requirements [26]. In [9], an extensive
literature review on future distribution networks with DG integration
has been done. The survey summarizes the adaptive protection schemes
under the category of traditional and non-traditional (communication-
based) methodologies. The non-traditional methodologies are further
categorized into centralized control and distributed control.

Hare et al. in 2016 presented the report on the reviewed fault di-
agnostic methods in a very unique way [27]. It provides a detailed
description of the fault universe (susceptible to all possible fault types)
of various components of the microgrid along with their causes and
effect. Further, the paper enumerates that all available fault diagnostic
methods as depicted in various literature basically fall under two ca-
tegories, namely, (i) model-based (MB) and (ii) data-driven based (DB).
In model-based approaches generally, data from the real system is
analyzed and compared with the output of a model of the healthy
system to identify the system's health. On the other hand, purely data-
driven approaches for fault diagnosis perform analysis of the experi-
mental data measured from the real physical system. Both the fault
diagnostic approaches are illustrated in Fig. 3. The paper also provides
a classification of all fault diagnostic methods falling under these two
categories of approaches. The review was done in [28] also depicts the
same.
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Brearley and Prabu [15] and Mirsaeidi et al. [24] have provided a
detailed account of available microgrid protection schemes, and dis-
cussed in details about the pros and cons of each scheme. Authors [15]
have additionally presented a classification of all such protection
schemes as shown in Fig. 4. Researchers [24] at the same time have
meticulously listed out the drawbacks of each protection schemes while
pointing out the employability of centralized monitor and control
through robust, reliable and resilient communication channel for de-
signing an effective microgrid protection scheme. The design of effec-
tive adaptive protection, differential protection, voltage based protec-
tion, over-current and symmetrical components based protection
schemes, etc. invariably rely on communication links.

The review presented in [29] pointed out that based on different

grounding configurations, microgrids may be of three types such as un-
grounding, uni-grounding, and multi-grounding systems, and accord-
ingly the operating principles of microgrid fault protection systems
would differ. The authors view that there have been no references for
specific applications of the existing AC microgrid protection systems
[29,30] to the aforementioned microgrid topologies and hence provide
a detailed review of the existing protection systems applicable to un-
grounded low voltage AC microgrids [29]. The review presented in [30]
provides a comprehensive literature survey on protection schemes
available for uni-grounded AC microgrid systems.

Habib et al. in 2017 presented the outcome of their study related to
the implementation challenges accompanied by the classical MPS [31].
One of the major challenges is to provide an adequate MPS for both
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grid-associated and grid-disconnected mode of MG operation [31]. One
of the major challenges is to provide an adequate MPS for both grid-
associated and grid-disconnected mode of MG operation. Moreover, the
protection strategy necessitates a fast, dependable ad robust commu-
nication system during this mode transition. Additionally, the study
reveals that the risk of the communication link and cybersecurity

threats remains a challenging task for implementing a reliable adaptive
protection scheme. Therefore, a contingency is highly necessary for the
event like communication failure, to prevent the maloperation during
the grid-connected and islanded mode of operation. In this regard, the
authors in [31] proposed an adaptive MPS utilizing the energy storage
devices to improve resiliency in contradiction of communication link
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failure.
Barra et al. in 2020 presented a detailed review of adaptive pro-

tection based microgrid protection schemes available in the literature
[32]. The main intention of the study was to provide a comprehensive
review of adaptive microgrid protection. A bibliometric analysis was
also presented in the study on adaptive microgrid protection. Singh and
Bansal [33] presented an up-to-date study related to the area of opti-
mization of micro sources based on the economic and reliability con-
straints. Sarangi et al. [34] and Mirsaeidi et al. [35] have elaborately
studied the issues, challenges and protective solutions of hybrid AC/DC
microgrid systems. Here, the authors have presented a well-organized
survey related to both AC and DC microgrid protection issues and
challenges. However, a detailed comparative analysis of previously
published work with respect to the output performance, merits and
demerits were overlooked in this survey.

Going through the review of all the survey articles published over
the last decade it can be inferred that the conventional grid system has
gone through a sea change in its topology, from a static one to a dy-
namic one. The generation of power is distributed with many con-
sumers and end-users chipping in as power producers. The flow of
power has become bi-directional. The operation, control, and man-
agement of power keeping in view reliability of power supply, stability
of the EPS and safety of the PDs, consumer devices and the grid as a
whole are becoming increasingly complicated and challenging. In this
context power system protection is of utmost importance and the most
challenging of all tasks in hand. The traditional protection techniques
fall apart and are becoming redundant. The need is of an appropriate
self-adaptive protection scheme which changes its settings as the con-
figuration of the grid and the system state keeps on changing. The
protection system is expected to detect, locate and mitigate the in-
cipient faults in the system through an extensive communication system
that collects data from numerous sensors in the EPS, analyze them in
order to detect a possible fault condition, classify the nature of the fault
and identify appropriate fault clearance mechanism. All these actions
need to be done fast, within the time span less than a standard fault
clearance time. Thus, the challenges lie in the processing of such a huge
amount of data, a task which is humanly impossible can best be handled
by application of Artificially Intelligent (AI) techniques. The review
article presented by Miraftabzadeh et al. in 2019 listed out the appli-
cation of various AI algorithms to short out issues related to various
aspects of the present smart microgrid system; however, it does not
identify much related to protection [36]. The authors in [37] review the
literature on big-data and its usefulness in addressing issues in a SG,
again not specific to protection challenges. It can be inferred that there
is a very limited literature review on the application of AI in microgrid
protection schemes. Thus, in this study, an attempt is made to review
each and every smart grid protection issue, available protection tech-
niques and application of AI to make the protection techniques self-
adaptive and smarter.

3. Microgrid protection issues and challenges

Before delving into the details of protection solutions, a brief re-
count of the situations that lead to the potential protection challenges in
a microgrid is made here. Fig. 5 depicts a typical connection diagram,
where the DGs are directly connected to the main utility grid with CB1
closed. The DGs along with the load is operating in grid-connected
mode. When CB1 gets opened, either due to grid fault or deliberate
action, the system structure that evolves is called as a microgrid. The
operation of DGs in an intentionally islanded mode is referred to as
microgrid operation. Fig. 6 depicts an organized presentation of dif-
ferent issues/challenges accompanied by microgrid protection.

A microgrid in grid-connected mode brings in with it many benefits
to the condition of the main grid, such as dependable backup during
utility outages, enhanced reliability, reduction in voltage sags, energy
saving through peak shaving, and dispensing with additional

investment for utility expansion in order to meet the future power re-
quirement. However, the microgrid technology comes with its own
technical challenges, as discussed in various survey articles which are
briefly accounted for in previous sections. The microgrid protection
issues as is being discussed in this section can be listed out as follows:

3.1. During grid-connected mode

During the grid-connected mode of microgrid operation, the fol-
lowing are the major challenges in the aspect of microgrid protection.

• Increased fault currents level
• Blinding protection
• Sympathetic tripping
• Reduction in reach of distance relays
• Relay interoperability
• Proper standardizations
• Grid code compliance

The situation which leads to these issues needs deliberation and is
provided here. A good protection system should essentially have these
features: (i) Selectivity (only the faulty part or the most minimal part of
the utility around the fault location should get isolated), (ii)
Redundancy (redundant functionalities of relays need to be planned in
a way as to act as backup protection), (iii) Grading of relays (to achieve
higher redundancy without compromising selectivity), (iv) Security
(avoidance of unnecessary disconnection of parts of the EPS due to
short-circuit (SC) events or transients which does not qualify as a fault).

Fig. 7 shows a radial distribution feeder. It carries unidirectional
current and the protection arrangement is very simple. A circuit breaker
or recloser having instantaneous and time over-current protection ele-
ment has been placed at the beginning of the radial feeder. The lateral
feeders are provided with fuses having inverse-time over-current (OC)
characteristics. Fig. 8 depicts the conventional time coordination be-
tween a CB, a recloser and lateral fuse for the said feeder. The PDs in
series are time coordinated in such a way that the device nearest to the
fault opens first to isolate the faulty section, allowing upstream PDs to
continue to carry the usual load current.

An auto-recloser, in its fastest mode of operation, is ready to act
ahead of the fuse, and therefore, doesn’t allow a temporary fault to
become a permanent one. This type of practice is known as fuse saving
[38]. The CB at the head of the feeder provides overall backup pro-
tection as its characteristic curve lies above those of all others. Gen-
erally, for proper PD (relay) coordination, relay pickup current setting
(Ipick-up) is fixed at 50% of the minimum line end phase-to-phase (LL)
fault current (ILL). Relay current setting of 125–200% of full load cur-
rent (Iload) i.e. Ipick-up greater than 125–200% of Iload prevents un-
necessary tripping of the feeder under overload condition. An in-
stantaneous element with a setting of 4–6 times the Iload or 125% of
triple-line fault (ILLL) at the first downstream PD is used to look after the
system against severe disturbances [39,40]. However, such time co-
ordination is lost, and system protection is severely affected when ei-
ther the magnitude or the direction of the fault current through any of
these PDs changes, which is the case that happens in the DG-infested
DN system as shown in Fig. 8, an example of DG based distribution
network [41,42]. Here, a distance relay (R) is installed at the end of bus
1 to protect against fault at sub-transmission line 1 (sub-TL1) and sub-
TL2, with an additional back-up relay setting. The load feeder and
collector feeders are equipped with encloser that comprises OC-phase
and earth fault relays. The impact of DGs to the protection system and
the consequences of relay discoordination are discussed one after an-
other in the subsequent section [43].

3.1.1. Fault current level variation
A DG unit, either a synchronous generator or an induction generator

or for that matter any other micro sources, when connected to the DN,
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contributes to the fault current level [39]. The level of contribution by
these DGs depends on the location, size, nature of interface with the
grid, grid impedance, mode of operation (grid-connected/islanding)
and network topology (mesh or redial) [44,45]. Let there be a fault
detected at bus 9 in the system as in Fig. 8. The bus 9 is at downstream
of PCC of DG1. Hence the total fault current at the fault location will be:

= + +I I I IFT FG FDG FDG1 2 (1)

where, IFT , IFG,IFDG1 and IFDG2are termed as the total fault current, fault
current supplied from the utility, fault current supplied from DG1 and
fault current supplied from DG2 respectively.

This substantial increase in fault current level will have two major
negative impacts on system protection:

(i) It will disturb the fuse-fuse, fuse-recloser and relay-relay co-
ordination [46].

(ii) All DNs are designed based upon a characteristic SC capacity.
The PDs employed, are chosen based on this SC capacity. The increased
fault current level due to DG contribution far exceeds this SC limit and
thus will surpass the thermal and mechanical endurance limit of PDs
endangering the network equipment.

3.1.2. Blinding protection
When the location of a DG is between the fault point and the feeding

station, the fault current as experienced by upstream PDs may be of the
decreased level. For example, if the fault location in the system shown
in Fig. 8 is at downstream of PCC of DG1 with the grid, the recloser-2
will only have fault current contributions of utility and DG1 through it,
which is less than the total fault current. In such cases, the upstream
PDs may not respond in time (i.e. delayed tripping/reduction in the
reach of relay/no tripping at all), a situation known as blinding pro-
tection [47,48]. Blinding protection generally happens at high im-
pedance points [43,49].

3.1.3. Sympathetic tripping
Assuming a situation, wherein an event of a high resistive triple-

line-ground fault at load feeder-2 initiates a high level of fault current
contribution from DG1. In such a case, the recloser-3 may get into
unnecessary operation. The protection scheme has thus lost its se-
lectivity, unnecessarily isolating a healthy feeder or the connected DG
units. This kind of scenario is known as sympathetic tripping.

3.1.4. Reach of distance relay
An impedance relay (also known as distance relay) is set to trigger

for faults occurring within a maximum distance (or at a certain time).
This value is known as its 'reach'. The distance of the relay location from
the fault is calculated based on the fact that impedance is directly
proportional to the length. In the event of a fault the measured im-
pedance (Z), which is the ratio of the applied voltage to current at relay

location, is less than the set impedance (Zset), i.e. Z less than Zset, the
relay gets activated to clear the fault. However, in a DG connected
system, the distance relay may not operate in its designated zone. As
soon as, a fault occurs downstream of PCC of DG with the utility, the
impedance measured by an upstream relay is superficially more than
the real fault impedance. Consequently, the relay grading gets affected
and they may not operate in their designated zones.

3.1.5. Choosing an appropriate interfacing transformer configuration
The three-phase transformer interconnection configuration and the

grounding scheme chosen is very vital for DG connection to utility as it
must be compatible with the grid in order to save the system from
voltage swell and overvoltages. According to IEEE 1547 standard, the
grounding scheme of the DG interconnection should not cause over-
voltage that exceeds the rating of the equipment connected to the area
EPS and should not dislodge the coordination of ground fault protection
of the area EPS.

3.1.6. Reclosing
The job of an auto recloser is to restore the system after a very short

interval fault, an act of utmost importance. However, in DG interfaced
DNs, two major issues are witnessed in this regard [46,50].

(i) The auto-recloser's attempt may not be successful as a result of fault
getting fed by the DGs.

(ii) Prior to reclosing, the utility and the microgrid (which is in is-
landed mode) make for two asynchronously operating systems,
providing active power imbalance and frequency mismatch.

In such circumstances, any attempt to reclose the switch is akin to
coupling two asynchronously operating systems. This may cause serious
damage to DGs and also may give rise to voltage and current swells in
the DN.

As such conventional reclosers are designed to reconnect the circuit
only if the utility side is energized and the other side is passive. In the
case of MGs, there are active sources on both sides of the recloser. The
reclosing scheme needs to be planned by keeping these factors in mind.

3.1.7. Grid code compliance
The “grid code” is a technical code for connection and expansion of

the National Electricity Transmission System. It defines the parameters
that facilitate the integration of additional resources or new networks to
the existing grid with an intention to meet the required consumer de-
mand by ensuring safety, security and economic aspect. It is specified
by an authority responsible for the system integrity and network op-
eration. However, the timely elaboration in the grid code is highly
necessitated concerning the high penetration rate of DERs. The main
objective of an adjustment in the current grid code is to enhance the

Utility

Line1

Line 2

Line 3

DG1

DG2

DG3

Tie SwitchCB1

CB2

CB 3

HV/LV 
Substation 
transformer

Fig. 5. A typical DG connections to a Distribution Network.

B. Patnaik, et al. Applied Energy 271 (2020) 115210

7



stability of the utility grid [51]. The following is the examples related to
the requirement towards the elaboration of grid codes: By connecting a
wind-based DER to an electric network can increase its LVRT capability,
that is, the facility of a generating plant to continue its service to the
grid during voltage sags and to actively provide stability to an EPS by
injecting reactive power until fault clearance. However, the injection of
reactive power during fault occurrence may lead to endangering relays
coordination [52]. Furthermore, DERs should satisfy the grid code re-
quirements for protective relay coordination [53].

3.1.8. Standardization
The attention towards the design and placing of several Intelligent

Electronic Devices (IEDs) has been increased with an intention to les-
sening the degree of complexity of the future grid. The IEDs are the
devices that are added to an industrial control system to enable ad-
vanced power automation. Microprocessor-based voltage regulators,
protective relays, CB controllers, etc. with the ability of serial com-
munication with other devices are treated as IEDs. The developing
power distribution grid comprises several IEDs in order to handle the

Fig. 6. Microgrid Protection issues, challenges and protective solutions.
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complexity of the future power grid. Therefore, a highly immune
communication system needs to be developed to cope up with the
protection and control challenges, particularly when they are applied to
microgrids. Furthermore, this plug-and-play interaction of various
components in the grids requires proper standardization regarding
implementations.

3.1.9. Relay interoperability
The relay interoperability is one of the major challenges for smart-

grid strategies. This issue is also important for digital relays [54].
Compatibility and interoperability are amongst the major driving forces
overdue the creation of IEC 61850. These challenges generally address
issues such as integration of advanced digital protective devices with
classical/conventional systems, coordination of these devices in an ef-
fective manner aiming the future developments and limiting the cost to
make the system more economical.

3.2. During islanded mode of operation

In contrast to the protection issues associated with a DG connected
DN, as briefly discussed above, it would be interesting to observe the
challenges involved in microgrid operation i.e. when the microgrid is
operating as a stand-alone entity, what is referred as islanded-mode of
operation.

“Islanding is a situation wherein a microgrid operates in off-grid i.e. it

operates independently having got dissociated from the main grid. This
can happen intentionally in order to meet the peak demand, a very useful
aspect of microgrid islanding concept. However, the incidence of inten-
tional islanding is very limited. Islanding often happens unintentionally
due to faults in the grid, substation failure, malfunction of equipment,
etc.”

Occurrences of this unintentional islanding are very undesirable as
they pose a potential threat to the power system. Some of these threat
factors as follows:

(i) ominous fluctuation in voltage and frequency in the island that se-
verely affects the connected loads and devices

(ii) Loss of coordination of PDs, leading to the risk of auto-reclosers
completing the snapped circuit while the DGs in the islanded microgrid is still
active and feeding power to the connected loads. As both the grid and island
are out of synchronism with respect to each other, the reconnection at this
moment gives rise to huge electro-mechanical forces that can damage the
connected DGs. A reason why international standards, such as IEEE 1547
stipulates that the DGs must detect the development of an islanding condition
and get disconnected within a time period of 2 s.

(iii) unintentional islanding causes safety hazards to the unaware utility
personnel engaged in maintenance or repair works.

(iv) system reliability gets a serious setback due to transient overvoltage
during islanding.

The micro sources and energy source devices that essentially form
the soul of a microgrid need to be interfaced with the grid and the PCC

Utility

HV/LV 
Substation 
transformer

Circuit breaker 
(CB) CB

Auto Recloser

Sectionalizes

Load

Feeders

Fuse

Primary Bus bar

Fig. 7. Typical protection set-up for a simple radial feeder.

DG2

DG1
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Utility

Bus1

Bus 2

Fuse 1
Fuse 2

Main Substation 
transformer

Sub-TL2

Sub-TL1

Recloser 1

Recloser 2

Recloser 3

Recloser 4

Load feeder 2

Load feeder 1

Collector  
feeder 2

Collector  
feeder 1

Load

Load

Load

Bus 3
Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

R

Fig. 8. the conventional time coordination between a CB, a recloser and lateral fuse for the distribution network comprising DGs.
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within the microgrid by appropriate PE devices i.e., converters. During
islanded mode of operation, the DGs being the only sources of con-
tributors to the fault currents within the ambit of an MG, the fault
current level is very low in comparison to the same during the grid-
connected mode. The situation is not helped by the fact that these
converters have in-built current limitations. Mostly the contribution of
converter interfaced DGs to fault current is limited to twice the load
current. In such a situation some OC relay may not respond or some
may have delayed response to this low level of current. Faults remain
undetected leading to high voltage and prolonged presence of these
leads to system equipment damage. Besides as the maximum fault
current level is limited, the fault level along the feeder will be almost
constant. Hence, traditional current-based device discrimination stra-
tegies do not work.

The microgrid in islanded mode is a replica of a DN with DGs lo-
cated at various places with respect to loads. Hence there is variation in
magnitude and direction of SC current as well. Fluctuation in genera-
tion, continuous change in network topology and aperiodic load var-
iation adds to the woe. All these circumstances are needless to say lead
to relay coordination problems.

In short, while issues in grid-connected microgrids are due to high
level of variable and bidirectional SC current flow, low level of variable
and bidirectional SC current flow accounts for the protection issues in
the islanded mode of operation in an MG. Hence the protection stra-
tegies adopted for one mode of MG operation will not hold good for the
other mode. On this note, it is imperative that the detection of islanding
conditions is highly essential thus inviting the need for effective is-
landing detection methods (IDMs). At the same time, it is also realized
that a false alarm by these IDMs to grid faults of not so significant
magnitude and/or duration, may lead to unnecessary system dis-
turbance. In short, the microgrids must avoid islanding and should have
fault ride-through capability. Hence the IDMs to be employed are re-
quired to be highly accurate, reliable, dependable and fast-acting
techniques.

4. Microgrid protective solutions

An appropriate protective system is one of the most important ele-
ments of microgrid operation with respect to security, reliability and
stability viewpoint. However, the traditional/conventional protective
systems may be insufficient or incapable to protect the microgrid ef-
fectively due to the impact of DGs and their connection topology.
Several microgrid protection issues and challenges were already high-
lighted in section 4. These issues/challenges must be dealt with the
state when the utility-grid encounters abnormal conditions. In these
abnormal conditions, there are two most specific kinds of problem
which required proper attention. One is the characteristic of microgrids
during the occurrence of a fault on the grid side and later, offering
adequate protection coordination when it operates in islanded mode
[55]. The protection coordination should ensure the rapid isolation of
faulty feeder as well as islanding the microgrid from one another during
the occurrence of a fault. Moreover, intelligent protective relays are
demanded to be located cleverly all over the grid as well as the control
circuit to trip these relays in time. Consortium for Electric Reliability
Technology Solutions (CERTS) recommended essential guidelines and
viewpoints on the operation of a microgrid in abnormal conditions
owing to the incidence of short circuit fault [56,57].

In section 3, several discussions have been made about the pre-
viously published work on microgrid protection schemes. Fig. 1, Fig. 4
and Fig. 5 depict a few structures/classifications of MPS suggested by
the authors presented in [6,27], and [15] respectively. In contracts to
this, this paper proposed a more simple and unique architecture/
flowchart regarding the classification of MPS based on the possible
solutions related to the above-mentioned issues and challenges. The
proposed architecture of MPS types is detailed in Fig. 6.

4.1. Fault current limiter (FCL)

As stated by the LVRT or UVRT capability, the DERs should remain
connected during the fault periods. In this condition, the FCLs are
treated as one of the existing solutions to limit the faults [55,56]. The
FCLs are the devices that are used for limiting the fault current during
the fault in the transmission network without complete disconnections
[57,58]. It may be superconducting [59], inductive or solid-state de-
vices [60,61].

4.2. Virtual impedance

Virtual impedance (VI) has been suggested for several reasons, such
as improving system stability, improving damping, mitigating the effect
of uneven or resistive line impedances, and current limiting [62,63]. In
the case of fault occurrences in the microgrid system, VI is one of the
corrective measures to limit the fault currents [64,65]. Here, the VI is
used to reduce the voltage reference to limit the current [66,67]. In-
itially, Vilathgamuwa et al. [68] suggested the VI for current limiting. A
detailed analysis of virtual impedance including design and im-
plementation viewpoints for converter interfaced DERs system can be
accessed from [67].

4.3. Proper standardization

The plug-and-play interaction of various components in the grid
requires proper standardization regarding implementation. Table 1
presents several core-standards for the realization of the smart grid
suggested by international electrotechnical commission (IEC) [69].

The modelling of the system’s elements and information exchange
between IEDs has been standardized through the standard IEC 61850.
The variants of IEC 61850 standard such as IEC 61850-7-420 and
61850-90-7 were designed later to provide some added features to a
primary standard such as power system modelling and communication
of distributed energy resources from diverse vendors. Ustun et al. [70]
presented the modelling of a MG protection system with logical nodes
provided in IEC61850 and IEC61850-7-420 communication standards.
The IEC 61499 standard was suggested to simulate the dispersed in-
dustrial-process measurement and control systems. The architecture of
the IEC 61499 standard is based on function blocks (FBs) summarising
functionalities, behaviours, and their signal interconnection. These FBs
could combine together to constitute a complex and hierarchical system
description. The use of FBs facilitates the implementation of the control
system [71]. It is already stated that a proper MPS must be comprised of
proper communication links, control system, and intelligent manage-
ment center. Accordingly, a capable standard essentially covers both
communications, modelling and distributed control. The combination
of IEC 61850 and IEC 61499 standards could meet the above-mentioned
necessities [71,72]. Additionally, IEC 61850 and IEC 61499 can be
sourced for the objectives of MG control and monitoring functions.
Andrei et al. [73] presented brief descriptions of IEC 61850 and ANSI
standards designed for the communication of IEDs in distribution sys-
tems.

Table 1
the core standards suggested by IEC.

Standard Intended for

IEC 61850 Power utility automation (Both control and monitoring
function)IEC 61499

IEC_ 61970/61968 Common Information Model (CIM) for energy and
distribution management

IEC TR 62357 service-oriented architecture
IEC 62351 security
IEC 62056 data exchange for meters
IEC 61508 functional safety
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4.4. Intelligent self-healing scheme

The smart-grid based power distribution systems have several added
features compared to conventional power distribution systems, such as
high reliability, self-healing action, self-sufficiency, and interactive
characteristics. Self-healing is one of the most important features of
smart-grid, which deals with the flexibility and fast recovery of the EPS
in response to the faulty conditions [74,75]. ‘Self-healing’ typically
talks about protective actions or to manage faulty events just after their
occurrence. Generally, the self-healing action is accomplished in two
phases [76]. In the initial stage, detection and localization of fault
conditions are carried out followed by an emergency reaction to
minimize its effect on the healthy system. In the next phase, several
further actions are taken out for improving the system conditions such
as system reconfiguration, load shedding or controlling dispatchable
generators’ output powers [77]. Fuzzy system based [78], multi-agent
system (MAS) [79,80], graph theoretic-based and heuristic search [81]
are few examples of self-healing approaches available in literature
which explain the complexity of restoration in EPS. Conversely, the
restoration task is highly challenging in microgrid environment owing
to the following issues: bidirectional power flow, mesh configuration
topologies, and limited capabilities of DERs [81,82].

4.5. Compatibility and interoperability test

It is already stated that the Compatibility and Interoperability (C&I)
are amongst the major driving forces overdue the creation of the IEC
61850 standard. The C&I assignment of all digital and intelligent pro-
tective systems necessitates a couple of tests, such as conformance and
performance test. The standard IEC 61850-10 provides direction for the
conformance test [83]. The conformance test is the initial step to va-
lidate the interoperability. The performance test as compared to the
conformance test provides more extensive evaluation and is used to
define the performance characteristics of the overall system [84]. The
literature related to performance testing of the protective system can be
explored from the references [85,86]. Moreover, Zhang et al. [54]
presented a methodology of the C&I test for the all-digital protective
system.

4.6. Microgrid fault detections

In an old-fashioned power distribution system, the protective sys-
tems are planned with an assumption of unidirectional energy flow and
are typically based on OC relays with discriminating abilities. As stated
by IEEE (2003) for any fault condition, DERs associated with the system
are tripped off. In other words, islanded conditions of DERs are not
acceptable. When the microgrid term is associated with a distribution
network, then the network becomes a multi-source power distribution
system. The philosophy of the microgrid protection scheme (MPS) must
ensure the safe and secure operation of the sub-system in both the mode
of the operation, i.e. grid-connected and autonomous mode of operation
[87]. Table 2 depicts a summary of different existing MPS in details. To
design a MPS that uniformly operates for both grid-connected and is-
landing modes of operation, the following features must be taken into
the account [21,88].

• The MPS should able to act in response to both distribution grid side
fault and microgrid fault.

• If the fault occurs within the microgrid, the MPS should be able to
isolate the least likely segment of the radial feeder bearing the fault
current to throw away the fault.

• The designed MPS must certify an effective operation of consumer’s
utensils.

• The designed MPS must have high selectivity for isolating the faulty
sections. Moreover, the protection system should be able to operate
selectively during various faults to disconnect the faulted section.

The sensitivity of the relays is essentially adjusted such that the high
redundancy can be achieved without disturbing the selectivity of the
MPS.

• The protection scheme should have high dependability irrespective
of the type of DERs (synchronous/induction based or rotating con-
verter based), the topology of microgrid system (radial/mesh) and
type of fault occurrence (low impedance or high impedance fault).

• The designed MPS should ensure a back-up protection which will
respond to the failure of primary protection.

4.7. Islanding detection

The unintentional islanding is one of the most important protection
issues of microgrid system. Failing to detect this condition i.e. unin-
tentional islanding may cause several hazardous threats to the utility
system as briefly described in section 4.2. Therefore, accurate and fast
islanding detection plays a vital role/contribution to the grid by facil-
itating the application of adoptive MPSs and active management.

Usually, the islanding detection methods (IDMs) are categorized
into two broad categories such as remote and local, based on the lo-
cation of measurement of the parametric signals. The local detection
methods are further sub-classified as passive, active and hybrid detec-
tion methods, based on the underlying principle and microgrid con-
figuration [82]. With the shift in research trends in IDMs and the in-
troduction of fast computational intelligence-based techniques, the
classification of IDMs can be further expanded by juxtaposing the
classification as in [153] with the third broad category of AI-based
IDMs. The working principle of the remote IDMs is based on commu-
nication between the utility and distributed energy resources. On the
occurrence of islanding, the trip signal is sent to the DGs. Local IDMs
rely on recognizing the variations in the observed system parameters
like voltage, current, frequency, phase angle, power, and harmonic
distortion, etc. on the DG side. The introduction of perturbations into
the system parameters and decision to island made based upon the level
of impact of these perturbations is the underlying principle of operation
of active IDMs. The measurable system parameters at the PCC or target
DG terminals, such as voltage, current, frequency, harmonics, etc. are
monitored and variations in these above a pre-set threshold value are
considered as an islanding condition.

In hybrid IDMs, the passive and active IDMs are used in conjunction
exploiting the strength of each other thereby serving more efficiently
and effectively in complex systems. Generally, the passive system acts
as a primary level while the active system acts as secondary. When the
primary fails, the secondary system takes over to detect the islanding
condition successfully. The use of signal processing (SP) based time–-
frequency techniques to effectively investigate disturbances in power
systems drew the attention of researchers and the same has been uti-
lized for feature extraction and analysis of signals for islanding detec-
tion. These SP based techniques are mostly used to improve the effec-
tiveness of passive techniques. In SP based islanding detection
techniques, the desired features are extracted from the input signal and
compared to a threshold value. Selection of appropriate threshold value
is quite a tricky task as for a high value of threshold islanding will not
get detected, while for a low value of threshold the DGs may get tripped
even for minor disturbances. To overcome such an issue, artificial in-
telligent (AI) based methods like intelligent classifiers are integrated
with passive IDM. The detailed analysis of the application of AI in the
detection of islanding events is presented in the next section. The ef-
fectiveness of these IDMs can be gauged by some vital performance
indices as presented in Table 3.

5. Adaptive microgrid protection

The sensitivity and selectivity issues faced by the traditional OC
relays during the fault protection in microgrid environment due to
different topology and mode of operation, turns the research trends
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towards the development of adaptive MPS [154]. The adaptive pro-
tection scheme (APS) is defined as an online protection scheme that has
the ability to modify the response of the relay according to the micro-
grid topology and mode of operation. This requires the assistance of a
dependable communication and high-speed data acquisition system
amongst the DERs, the protecting appliances and loads, etc. [155]. The
data processing unit computes the new-fangled value of the settings and
sends a control signal instantly to adjust the relay settings of APS. The
APS can be categorized into an adaptive overcurrent scheme, adaptive
differential scheme, and adaptive symmetrical components scheme. A
summary of the implementation strategies, challenges and im-
plementation issues of several existing APS are discussed in Table 4.

5.1. Wide area protection based adaptive MPS

Currently, the research on WAPS has gained huge attention owing
to the rapid development of smart grid communication infrastructure
by which a wide-area and wide-range of information exchange can be
easily achieved. Several works have presented the concept of WAP
schemes applied to the transmission and distribution network
[168–173]. These works have discussed wide-area differential protec-
tion, wide-area longitudinal protection, and wide-area sequence com-
ponents protection. However, the work on the application of WAP
concept to build an adaptive MPS still remains in the early phase. In this
regards, the following are the few works that show the concept of WAP
in microgrid environment.

Researchers [174,175] presented the concept of WAPS for the dis-
tribution network integrated with DERs. This WAPS principle is based
on an adaptive fault searching region lock matrix algorithm which is
used to identify the fault location and subsequently mitigate the fault
through appropriate control actions in a distribution network. The WAP
scheme is generally implemented in two stages. Firstly, the IEDs located
at different points of the network determine the fault search direction
by comparing the magnitude of branch current, which narrows down
the search space to two/three-branch buses. Secondly, the phasor re-
lationship between the current positive sequence component and load
current at both ends of the feeder is used to locate the faulted section of
the feeder by the help of the adaptive fault searching region lock matrix
algorithm. Since the algorithm considers the short circuit current di-
rection, it is therefore, capable of locating a single fault in a single-
sourced distribution network as well as multiple fault sections in a
multi-sourced distribution network. Wide area direction protection,
differential current protection, and distance protection are realized
based on the above principle. Gopalan et al. [176] discussed a wide-
area differential protection scheme to determine the faulted section in a
microgrid, to be used as primary protection. In case of failure of this
primary protection, backup protection equipped with current sensors

and Global Positioning System (GPS) coordinates is used to locate and
isolate the fault.

Zhang et al. [177] presented a WAPS for active distribution net-
works (ADNs) with DERs. In this approach, a wide-area measuring
module was used to collect the faulty phase information from different
IEDs, and localization of fault was accomplished by the phase com-
parisons of distribution lines. The wide area measuring module is op-
erated for time-synchronous measurement and effective communica-
tion, which improves the speed and reliability of data transmission,
offering strong technological support to efficient phase comparison
approaches. On the other hand, establishing a wide-area communica-
tion system is comparatively costly. Moreover, the scheme doesn’t
support backup protection and the inability to detect the faults that
occurred in individual feeder branches, are treated as disadvantages of
this approach. Intending to improve the scheme suggested by Zhang
et al. [177], the same group of researchers have suggested a novel
concept of integrated WAPS using the fault component principle [178].
In this concept, the ADN is split into a number of integrated protection
units (IPUs). Afterward, the faulty feeder and faulty line are localized
by assessing the phase difference of the positive sequence current fault
components between the main feeder and slave feeders. The main ad-
vantage of the approach is that, albeit communication failure or data
loss in the integrated WAP system, the protection scheme can effec-
tively isolate the fault through proper coordination and cooperation
between the upstream and downstream IPUs.

5.2. AI-based adaptive MPS

AI refers to a broad spectrum of algorithms that have the ability to
learn and reason like humans. The authors in the review [179] opine
that AI can smarten the grid in many ways, such as in load forecasting,
scheduling, system monitoring, controlling, etc. It is well-known that
self-healing is a hallmark characteristic of a smart grid, for which smart
diagnosis is very essential [180]. Optimal relay co-ordination can also
be achieved through the application of AI. The article [181] provides a
review of all research articles on the application of AI in obtaining
optimal relay coordination, however in a traditional grid system.

Intelligent fault detection, classification, and location are highly
necessary for smart-MG for its effective control and operation. The in-
tegration of inverter-based DERs in MGs makes customary fault re-
cognition systems unsuitable owing to their dependency on significant
fault current levels. Several techniques were presented to resolve these
issues and have been an emerging topic for research over the last
decade. With the hypotheses related to smart-MG appealing maturing
alarm amongst electric utility industry (EUI) scientists, the significance
of developing a smart fault monitoring and identification scheme cap-
able of recognizing and locating different sorts of faulty events can‘t be

Table 3
Comparison of IDMs based on different performance indices.

Features Remote Local SP Based AI-based

Active Passive Hybrid

Operational principle Communication between
utility and DERs

Inject disturbance
to the inverter

Monitor the
change in bus
parameter

Both active and passive
operated simultaneously

Monitor the variation of
parameters w.r.t. time
and frequency

Feature extraction
with training and
testing

Impact on Power Quality X High X Very little X X
Non Detection Zone X Trivial Huge minor X X
Operating time Very less Greater than

passive IDMs
Slightly lesser
than active IDMs

Greater than active IDMs Very less Less

Impact on the distribution
system

X Direct impact X Fewer compared to
active IDMs

X X

Multiple DG operation Feasible Not Feasible Feasible Feasible Feasible Feasible
Cost of implementation X Fewer Fewer Insignificant Fewer Fewer
Effect of enhanced inverter-

based DG integration
X √ X √ X X
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overstated. A basic framework for fault detection, classification and
location is shown in Fig. 9. Several fault detection and classification
approaches based on intelligent classifiers were reported in recent years
[27,182,183].

There have been very limited research articles paying particular
attention to the area of AI implementation in protection aspects of a
microgrid embedded smart grid system. The AI methods generally used
in MPS are decision tree (DT), artificial neural network (ANN), prob-
abilistic neural network (PNN), adaptive neuro-fuzzy inference system
(ANFIS), random forest (RF), support vector machine (SVM), artificial
immune system (AIS), extreme learning machine (ELM), fuzzy logic,
etc. References [183] to [199], which are finger countable in numbers,
throw light on a few aspects of only microgrid fault protection issues.
Table 5 provides a brief summary of these articles.

To overcome the issue of proper thresholding in passive islanding
detection, the AI-based methods like intelligent classifiers are in-
tegrated with passive IDM as shown in Fig. 10. Table 6 provides a brief
summary of existing IDMs based on intelligent classifier.

The above-mentioned analysis and interpretation from Tables 5 and
6 infer that intelligent MPS is necessary for the smart operation of an
MG. Intelligent protection can be imparted by the application of ad-
vanced communication links and artificial intelligence-based methods.
From these tables, it can be analyzed that ANN, SVM, DT are most
popularly used classifiers albeit varying degrees of performance at the
varied level of system complexities considered for studies. The table 5 is
quite indicative of the fact that even though the recent research trend is
veering into the application of AI in power system and smart grid, there
have been very few research articles paying particular attention to the
area of AI implementation in protection aspects of a microgrid em-
bedded smart grid system. However, the applications of AI to solve the
other MG protection issue (i.e. unintentional islanding detection) have
been widely studied in the last decades. Therefore, table 6 concentrates
on the presentation of a few examples of this application which are
more recently published.

5.3. On-line relay coordination algorithm for APS

An APS for the transmission or distribution system should be self-
capable of adapting and implementing the required relay settings for
the stable operation of EPS [53]. Directional-OC (D-OC) relays based
protection is a common and economical choice for the interconnected
sub-transmission and distribution systems. It is used to measure the
fault current level in each phase and generate a trip command con-
sidering a particular operating time delay (OTD) [217]. This OTD
generally depends on relay-pickup and time setting parameters. In an
EPS, a successful operation of DOCRs is possible if the primary and
backup relays are arranged and coordinated properly [217]. The

mathematical optimization approaches have been successfully im-
plemented in the EPS without DERs to achieve the relay coordination
and minimise the relay operating time [111]. Few such examples of
optimization approaches are like: Linear programming (simplex and
generalised reduced gradient methods) [218], a simplex two-phase
method [92], dual simplex [219], binary programming [220] and
quadratically constrained quadratic programming [221]. Similarly, a
few researches cited the application of these techniques in DERs based
EPS [111,222]. Two such approaches (adaptive or non-adaptive) to-
wards the solution of D-OC relay coordination problem associated with
DG integrated interconnected EPS were suggested by El-Khattam et al.
[111]. The adaptive type approach relies on the selection of optimum
number of relays, their locations and adaptive relay setting. The other
one, i.e. non-adaptive approach implemented a training method to at-
tain optimum relay coordination status deprived of the variation of
original relay setting. Here, a two-phase LP optimization model was
used using GAMS software. A new D-OC relay protection coordination
approach was suggested utilizing the concept of dual setting [222].
Therefore, each D-OC relay has been associated with two pairs of set-
tings for the two possible directions; two TDSs, and two pick-up current
settings.

On the account of high penetration of DERs in the EPS, the co-
ordination becomes more complicated and therefore, the current re-
search trend has been shifted towards the development of more reliable
coordination strategies based on advanced optimization algorithm
(AOA). Some popular optimization techniques used for this purpose are
as follows: Ant colony optimization (ACO) [93], Cuckoo Optimization
Algorithm (COA) [223], Particle Swam Optimization (PSO) [224],
Genetic Algorithm (GA) [225], Teaching Learning Based Optimization
(TLBO), etc. [226]. The optimum coordination problem of D-OC relays
based on the AOA comprises of minimizing an objective function bound
by limits on problem variables (for example, overall relay operating
time) and specific coordination parameters. In this regard, the APS
should ensure the data updation corresponding to the state-of-the-art
parameter variations of the EPS, and subsequently execute the load-
flow and fault analysis to acquire input data utilized by the AOA [93].
In [93], authors have studied the ACO and GA for D-OC relays co-
ordination inside APS in the DG based EPS. Dehghanpour et al. [223]
introduced COA with its integration of Linear programming (LP) in
order to optimize coordination protection of D-OC relays in MG en-
vironment and calculate the optimal value of FCL at PCC. The optimal
settings of D-OC relays are determined for both islanded and grid-
connected mode of operations. A hybrid PSO-LP algorithm was pre-
sented by Papaspiliotopoulos et al. [224] for the optimal D-OC relay
coordination problem in DGs integrated electrical distribution system.
The studied approach was used to determine the pick-up current setting
and time-dial setting (TDS) of each D-OC relay and optimize the overall
relay’s operating time bound by specific constraints. Authors in [225]
have studied a MPS that depends on optimally sizing FCL and optimally
setting D-OC relays. The optimal settings of D-OC relays and size of FCL
were determined for both islanded and grid-connected mode of op-
erations. This approach was formulated as a constrained NLP problem
and was solved using GA. A similar approach was proposed by Ray
[226] using TLBO. OCRs are commonly used in MGs and it is essential
to improve the TMS of relays, which consecutively reduces the tripping
time of the relay. Avachat et al. [227] presented a Dual Simplex and
Revised Simplex optimization techniques for optimization of the TMS
value of OCR and thus to attain rapid fault clearance. The mis-
coordination issues due to dynamic characteristics of fault current that
arise in conventional OCRs based protective systems as a result of high
penetration of DERs into the distribution system is a key factor of
system reliability degradation. Implementation of directional-FCL
(DFCL) is one of the effective solutions to this issue, but the setting of
DFCL is still remaining a challenging task. In this regard, Arzinfar et al.
[228] proposed a novel strategy for the setting of DFCL parameters to
increase the OCRs coordination. El-Naily et al. [229] proposed a

Extraction of Current or Voltage 
Signals from the Selected Bus

Feature Extraction 
Methods

Fault 
Detector

Fault Classifier Fault Loactor

Classification 
Results
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Fig. 9. Typical flowchart of fault detection, classification and location [184].
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modifying OC relays coordination strategy based on a different objec-
tive functions for both phase and earth OC relays. The scheme does not
require any communication links for its operation. The proposed
strategy was helpful to improve the reliability of the MPS and decrease
the tripping time resulting from the coordination time needed for back-
up OC relays on previous substations.

6. Critical analysis and discussion

This paper presented a detailed analysis regarding the issues, chal-
lenges and protective solutions to AC microgrid protection. The con-
ventional MPS designed for passive radial distribution networks may
not work satisfactorily for the increasingly complex active distribution
system, i.e. microgrid system. Different network topology, diverse op-
erating principle based DERs, energy storage, and controllable loads
make the microgrid system based distribution network more complex in
nature. Therefore, the protective solution to this type of system needs to
be updated by considering some novel design philosophies of protective
devices, digital relays, PMU, smart sensors, and intelligent reclosers.
Concerning the further protection necessities demanded by the emer-
ging microgrid based distribution network, this article reviewed several
existing relaying algorithms based on the technical challenges available
in the literature followed by several suggestions recommended on the R
&D point of view. Form this survey, it is seen that nowadays, more
emphasis has been given to the design of adaptive protection schemes

as it provides a promising paradigm to microgrid protection. Each MG
has different priorities and complexities, which adds to difficulties in
the design of unique protective and coordination schemes. Therefore,
the protection engineer must utilize a complete checklist of issues/
challenges to consider during the design phase of the protection
strategy. Therefore, additional effort is still required in terms of over-
whelming the boundaries of planned MPS for all circumstances and
developments. Moreover, considerable research is still required parti-
cularly for the islanded MGs.

6.1. Resilience-oriented protection strategies to improve the microgrid
network resiliency

Stable and reliable power supplies are some of the features most
expected from an EPS. However, natural calamities, either foreseen or
unforeseen in nature, leaves behind major destruction in the power
system infrastructure. Continuity of supply is disrupted for a period
varying a short to prolonged period and sometimes complete blackout.
Power being the lifeline to most critical installations such as the supply
of water, operation of healthcare units, etc., it is imperative that the
power system should be incorporated with adequate features to get
back to operation in the shortest possible time. At least, it should be in a
position to supply installations engaged in post-calamity recovery ac-
tivities and hospitals with the shortest interruption or no interruption at
all, before the main grid gets back to life. In short, what is expected of

System Parameters Signals
(Voltage, Current, Frequency, 

Harmonics, etc)
Extraction at DG end

Data Acquisition Systems

Analyse the signal and 
measure the signal 

parameter

Feature extraction (using 
signal processing or 

non-signal processing 
technique)

Apply 
thresholding

Intelligent 
Classifier

islanding Non-
islanding

Compare
Training and 

testing

islanding Non-
islanding

Intelligent 
Passsive 

IDMConventional 
Passive IDM

Fig. 10. Typical flowchart of IDMs.
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the power system is high resiliency. Inherently most power systems are
designed to have a certain degree of resilience to system faults caused
by internal or external interferences. However, resiliency as an issue
has gained the attention of researchers and designers only after there
has been an unprecedented increase in the frequency of otherwise
rarely happening calamities with the potential of catastrophic devas-
tation, termed as “low probability high impact (LPHI)” events. The
cyber-physical component of a power system, which makes for the
backbone of the system, also comes under the devastating effects of
LPHI events besides vulnerability to man-made cyber-attacks. In this
context, cyber-physical resilience is of paramount importance as the
critical functionalities of the EPS must remain operational during and
after the LPHI events [230].

At this stage, it is important to note the subtlety in the difference
between “reliability' and ”resiliency“ of an EPS. The present EPS assures
the reliability of supply during normal and foreseeable abnormal con-
ditions and low impact damaging eventualities. Contrary to this, the
continuity of supply during LPHI events remains a challenging issue. So,
we can say, the existing EPSSs are reliable but not resilient. The re-
siliency of an EPS is defined as its ability to return to the equilibrium
(stable operation point) after a major disruption event [231]. 'Robust-
ness', 'resourcefulness', 'rapid recovery', and 'adaptability' are the four
features considered as the attributes of resilience by the National In-
frastructure Advisory Council (NIAC), USA [232]. What these attributes
refer to is indicated in Fig. 11. Rapid recovery and adaptability to an
unprecedented disruption, makes microgrid the most suitable solution
to enhance the resiliency of an EPS remarkably. Presence of renewable
energy sources, ability to feed critical loads during system con-
tingencies through the islanded mode of operation, operational flex-
ibility and self-healing capabilities are the features that qualify micro-
grids as the most suitable and effective resilient resources for service
restoration in the event of LPHI events.

Many strategies are employed to use the microgrids for fast system
recovery as a part of post-rehabilitation measures in the event of dis-
ruptions during LPHI disasters. One such strategy is to isolate the
outage area from the main grid and divide it into multiple self-sup-
ported microgrids. Another strategy is to couple a microgrid to other
microgrids in order to support the critical loads of the one having in-
sufficient supply [230,233]. The microgrids in such cases serve as a
local resource or as a community resource, either way enhancing the
resiliency of the EPS [234]. Microgrids can also be used as a black-start
resource to start the main generators [235]. Additionally, conversion of
existing EPS into tie connected microgrids [236], the formation of dy-
namic microgrids [237], or formation of networked microgrids [238]
are the strategies that can be employed to increase the system re-
siliency.

Another premise that is gaining ground amongst the researchers is
that a resilient microgrid in an EPS will inevitably contribute to an
increase in the overall resilience of the EPS. Hence, the development of
new strategies for the microgrid to enhance its own resiliency in the
event of major outages is another research area, in its nascent stage. In
this context, proactive scheduling [239], outage management [240]
and advanced operation strategies [240,241] are some of the options
discussed in various literature [242,243]. The authors in [244] share
the similar perception and opined that a microgrid to serve as an ex-
cellent resilient resource needs to be resilient itself to physical and
cyber threats. The study proposes a methodology for designing resilient
microgrids based on appropriate microgrid features selection through
careful evaluation of the factors, such as, threats, vulnerabilities and
consequences as viewed by the designers and site owners. It has been
ascertained in this study that protection is integral to stable, reliable
and robust operation of a microgrid. An appropriately designed mi-
crogrid protection scheme can further augment the resiliency of an EPS
to major outages. In this context, improving the protection strategies of
microgrids in order to increase the resilience of the network or design of
resilient-oriented protection strategies is a new area of research. There

are very few literatures that could be identified addressing this parti-
cular aspect of microgrid protection leaving future scope for research.
Authors in [245] list out the issues related to microgrid protection
schemes and microgrid islanding that are needed to be addressed to
make a network more resilient. In [246], a microgrid protection scheme
is proposed in order to discriminate between inverter faults in a PV
system and the distribution line faults. In a sense, the method enhances
the microgrid resiliency to faults but the protection scheme's con-
tributions in strengthening the system resiliency towards LPHI events
are not quantified.

Ample literature is available enumerating the developments in the
field of the resiliency of power systems and the role of microgrids as a
resilient resource, even though there are large numbers of issues yet to
be addressed. The study here only gives a cursory assessment in order to
give a peek into this aspect of power system protection as the primary
focus of this study has been limited to microgrid protection. However, it
can be stressed that there is a dearth of literature on the aspect of re-
silient-oriented microgrid protection schemes, leaving wide scope for a
further probe by researchers.

6.2. Impacts of flexible AC transmission (FACT) devices on microgrid
protection

The ever surging power demand is spurring the rapid expansion of
the power systems. However, in the process, it invites complexities due
to interconnected network and associated issues of system instability,
difficulty in control of power flow and compromises the reliability of
power supply, etc. The issues are more accentuated when the EPS is
more unbecoming of a traditional system, rather a smart one im-
pregnated with distributed generators and resources. One of the ways
out of this situation is to ensure the optimum flow of power through the
existing power system, thereby limiting the need for capacity expan-
sion. Incidentally, Flexible AC Transmission Systems (FACTS) is an
enabling technology in this respect. Enhancement of power transfer
capacity, bettering the control on power flow over the assigned route of
the transmission line, and ensuring optimal secured loading of the
transmission lines are the prime objective of FACTS devices [247].

There are abundant of literature on the applications of FACTS de-
vices in improving the MG performance through power quality im-
provement, reduced feeder losses, and bus voltage stabilization [248].
However, as much as FACTS as technology become imperative in the
smart grid scenario, the presence of FACTS devices in an MG itself
raises the concerns on the effectiveness of certain MG protection
schemes. For example, the distance protection scheme, one of the
widely used protection schemes for transmission lines could be ad-
versely affected due to the presence of static synchronous compensators
(STATCOMS) in the given transmission line. Subverting the adversities
associated with FACTS technology, while banking upon its immense
virtues in the improvement of power quality of an EPS, is a daunting
task and comprises an interesting research area yet to be fully explored.

A few proposed MG fault detection and protection performance
improving schemes in the presence of certain FACTS devices at different
test conditions are cited here in this section. Thyristor controlled series
capacitors (TCSC) is one of the most effective FACTS devices which
provides series compensation. But, the TCSC control mechanism brings
about many changes in the system parameters such as change in load
currents and line impedances, causing concern about maloperation of
traditional protection relays. Besides TCSC dynamics cause over-
reaching and loss of security, adding to the aforementioned problem.
The authors in [249] have proposed a new approach to have enhanced
fault detection and location based on traveling waves and fast discrete
S-transform (FDST) for TCSC compensated lines connected to wind
farms. Authors in [250] emphasize the need for a relaying strategy for
transmission lines including a unified power flow controller (UPFC) and
wind farms. UPFC suitably assists in the compensation of wind farm
connected transmission systems. However, UPFC in a transmission line
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presents a different impendence calculation inside from the one while
outside of it. This can lead to maloperation of protective relays. The
paper presents a highly reliable decision tree-based intelligent differ-
ential relaying scheme for a wind farm connected transmission system
with UPFC compensator. Similarly, authors in [251] have proposed a
potentially better protection scheme based on adaptive distance relay
setting for parallel transmission lines connected to wind farms and in-
cluding a UPFC.

6.3. Miscellaneous microgrid protection scheme

Ghadiri and Mazlumi [252] proposed a Self-Organizing Map (SOM)
clustering algorithm for digital OC relays provided with a number of
settings. The stated APS focuses on solving the miscoordination
amongst primary and back-up relays. The scheme is helpful to improve
the coordination between OC relays and operating time of relays.
Strezoski et al. [253] proposed an APS for microgrid system comprising
inverter and induction based DERs. The posed APS satisfy the fault ride-
through requirements for reactive current injection. As per the DER’s
disconnection times, extremely accurate time-intervals are fabricated,
wherein the fault currents through the relays may significantly vary, in
advance to the operation of the relays. According to these time-intervals
and the corresponding fault current values, the relay operation times
are iteratively calculated with a high accuracy, which subsequently
confirms highly accurate coordination of protective appliances. Sharma
and Panigrahi [254] proposed a phase-OC relay which was helpful in
mitigating sympathetic tripping in-ring distribution network. The un-
necessary relay operation in the distribution network was limited by
dumping some additional features on the traditional OC relay co-
ordination problem using the Shannon–Wiener DE algorithm. In this
work, the author tested each and every kind of fault except single-line
to ground fault.

Manditereza and Bansal [255] proposed an innovative voltage-
based relaying protection scheme. The relaying algorithm does its
protection work by active power differential and sensitivity calculations
through voltage measurements in a stated protection zone. The relaying
algorithm was modelled in Dig silent Power Factory software and
mounted at the nodes of an MG test system. The performance of the
relaying scheme was examined under diverse faulty environments.

Esfahan and Mohammed [256] proposed an intelligent-MPS to deal
with extreme fault currents in the distribution system and the un-ne-
cessary installation of FCLs. This MPS utilizes communication cap-
abilities defined in IEC 61850 to design smart cascading switching ac-
tions to isolate the faulty feeder from the healthy parts. Actually, it was
defined as a supervisory MPS along with the conventional distance
protection, which was the key protection of high voltage transmission
systems. The suggested MPS will trigger if the fault current exceeds the
braking capability of CBs; otherwise, the conventional distance pro-
tection will operate fault clearance. Jarrahi et al. [257] suggested a new
fault detection and classification algorithm for MG using the current-
only signal. As stated by the proposed approach, the Teager–Kaiser
energy operator based index for squared three-phase current signal
shows a change in the studied MG during the fault occurrence. Fur-
thermore, a simple rule-based method was recommended for fault
classification that classifies the fault type within half-cycle after change
detection. The method was found to be very firm, simple, and cost-
effective.

6.4. Open research issues and further discussion

In this section, several innovative thoughts or research ideas are
stated for the future research and development of advanced microgrid
protection scheme.

• Design of more robust MPSs needs to be done which are less sen-
sitive to types of loads, inverter-based DERs (IDERs), and MG net-
work topologies. These schemes may include traveling wave con-
cept, PMU based approach, pilot-protection, and should be adaptive
in nature. Moreover, it is also required to design APS for MG sta-
bility when power swing and out-of-step protection function may no
longer be applicable with IDERs.

• Designing an appropriate fault location technique is often a chal-
lenging task in the evolving MGs. Therefore, more research in the
direction of developing new MG fault location techniques is needed
in the near future.

• There is hardly any article addressing the implementation of AI in
specific areas of smart grid protection such as loss of protection
coordination, fuse saving, blinding protection, sympathetic tripping,

Attributes of Resilience 
as defined by 

NIAC, USA

RESOURCEFULNESS
 Ability to effectively manage a 

disaster and mitigate the 
damage by exercising available 
options and prioritising critical 

loads & revising the scheduling 
of resources

ROBUSTNESS
Ability to stay operational in the 

event of LPHF events 

RAPID RECOVERY
Ability to bounce back to 

normalcy as fast as possible 
after a disaster through 
contingency plans and 
emergency operations 

ADAPTABILITY
 Ability to learn new lessons 

from a catastrophe and 
adapting itself to face the next 
eventualities by adopting new 

tools and technologies. 

Fig. 11. Attributes of resilience of a microgrid.
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device discrimination etc. during on-grid and off-grid mode of op-
eration of a microgrid. The research addressing these specific areas
of AI application in smart grid protection is apparently minimal and
leaves a wide scope for further attention by researchers.

• Deep Learning (DL) is one of the new evolving AI techniques which
has several advantages as compared to conventional ML techniques.
However, very few researches have been reported in last couple of
years focussed on DL applications in MG protection. Therefore, the
application of DL in MG protection is still a future scope.

• During the implementation of smart adaptive MPSs, the risk of
communication link failures and cyber-attacks are few major chal-
lenges for the protection engineers. The cyber-attacks in MG com-
munication networks create disturbances in the authenticity of data
exchanged during the transfer of messages between different IEDs,
severely compromising the performance of MG protection [258].
Therefore, this is a high time to consider these challenges as future
scope and work for the betterment of MPS.

• The transition of old-fashioned power-grid into smart-microgrid
(SMG) can additionally be enabled by the application of the internet
of thing (IoT). Both the IoT-based SMG and smart-grid have several
different security issues and challenges owing to the involvement of
intelligent technologies in the old-fashioned power-grid. The se-
curity issues that a smart or intelligent grid must deal with are as
follows: Eavesdropping, Data tampering, Authorization and control
access, Spoofing, Malicious code and Cyber-attacks. These issues get
automatically accrued to a IoT based smart grid apart from the usual
challenges of implementing IoT itself. These security issues and
challenges may hold up the growth and incorporation of IoT-based
power facilities [259]. Controlling and protecting the MGs via IoT
thus still remains an unsolved research domain.

• Further research on advanced sensing and measuring devices and
equipment needs to be done. This may include high-frequency
sensing, dynamic and low-cost sensors for varying MG fault cur-
rents, relays having improved directional elements and non-elec-
trical sensors. Moreover, the design of advanced current inter-
rupting equipment such as solid-state CBs and improved MCCBs are
also highly essential for smart MG protection.

• Several research works are available enumerating the developments
in the field of the resiliency of EPSs and the role of MGs as a resilient
resource, even though there are large numbers of issues yet to be
addressed. High penetration of non-conventional energy sources
(NCES) may cause unintentional islanding that may lead to the loss
of robustness and ingenuity, and therefore, decrease in EPS resi-
lience. Thus, such particular MPS should be developed which are
applicable to EPS with large penetration of NCES and proficient in
dealing with LPHI events.

• Wide area situation awareness (WASA) comprises of a collection of
several advanced tools/technologies to boost EPS monitoring in-
frastructure and presents a dynamic view of the grid functionalities
for the grid-operators [260]. The foremost objectives of the WASA
are to supervise the EPS modules and to identify, prevent, and
handle the problem before its occurrences. The WASA scheme col-
lects a large stream of information from outsized topographical
areas to build an automatic monitoring infrastructure (AMI) for the
power grid [261]. As a result, the wide-area managements, wide-
area communications system, and wide-area protection system
(WAPS) can be achieved through the application of WASA infra-
structure. In this regard, some recent works in this domain, espe-
cially microgrid are still in their early phases.

• Design of new MG protection standards which can spot the gaps in-
between real-time power projects and its current solutions, and
guide the future research development.

7. Conclusion

This paper has presented a detailed analysis regarding the issues,

challenges and protective solutions to AC microgrid protection. The
development of microgrid architecture for the solution to the green-
house effect and global warming is still emergent and encouraging re-
search field. The control and protection of microgrid are more chal-
lenging as compared to conventional distribution networks due to the
bi-directional power flow and varying topology characteristics. This
work comprises the current status, major hitches and existing research
efforts focussed in the direction of providing a smooth relaying system
under diverse microgrid operating conditions. Initially, the paper re-
viewed several survey articles that are directly or indirectly related to
the scope of this work. The detail outcomes from this study are pre-
sented comprehensively with a critical analysis. Secondly, a brief dis-
cussion is given on the existing microgrid protection issues and their
traditional protective solution. Thirdly, the article highlights the im-
portance of artificial intelligence and computational intelligence on
microgrid protection which has gained huge attention in the last dec-
ades. The article also presents a wide survey and review of recent
techniques proposed by various researchers to mitigate the effects of DG
integration on distribution system protection performance. In addition,
we have presented several key challenges that are directed towards
several open research scope. We hope that this survey will be helpful for
the readers/researchers to gain an absolute picture and deep vision into
this area.
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