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A B S T R A C T   

Integration of photovoltaics into power grids is difficult as solar energy is highly dependent on climate and 
geography; often fluctuating erratically. This causes penetrations and voltage surges, system instability, ineffi
cient utilities planning and financial loss. Forecast models can help; however, time stamp, forecast horizon, input 
correlation analysis, data pre and post-processing, weather classification, network optimization, uncertainty 
quantification and performance evaluations need consideration. Thus, contemporary forecasting techniques are 
reviewed and evaluated. Input correlational analyses reveal that solar irradiance is most correlated with 
Photovoltaic output, and so, weather classification and cloud motion study are crucial. Moreover, the best data 
cleansing processes: normalization and wavelet transforms, and augmentation using generative adversarial 
network are recommended for network training and forecasting. Furthermore, optimization of inputs and 
network parameters, using genetic algorithm and particle swarm optimization, is emphasized. Next, established 
performance evaluation metrics MAE, RMSE and MAPE are discussed, with suggestions for including economic 
utility metrics. Subsequently, modelling approaches are critiqued, objectively compared and categorized into 
physical, statistical, artificial intelligence, ensemble and hybrid approaches. It is determined that ensembles of 
artificial neural networks are best for forecasting short term photovoltaic power forecast and online sequential 
extreme learning machine superb for adaptive networks; while Bootstrap technique optimum for estimating 
uncertainty. Additionally, convolutional neural network is found to excel in eliciting a model’s deep underlying 
non-linear input-output relationships. The conclusions drawn impart fresh insights in photovoltaic power fore
cast initiatives, especially in the use of hybrid artificial neural networks and evolutionary algorithms.   

1. Introduction 

Electricity is vital for economic development and technological 
growth [1]. It is a key factor in rapid urbanisation, and industrialisation, 
to the extent that economic growth is frequently measured in per capita 
power output of a country [2]. This ever-growing energy demand leads 
to an increased need for electricity generation and distribution. How
ever, globally, the reliance is on non-renewable pollution-causing fossil 
fuels for electricity production. Approximately two-thirds of the global 
carbon dioxide emissions are from such fuel sources whose current share 
of energy production, if maintained [3], will inevitably lead to a sig
nificant rise in average global temperature and other catastrophes. 
Already, the rise in average global temperature has been correlated with 
extreme weather patterns [4] namely: increase in violent storms, floods, 

heavy snowfalls and droughts. The World Meteorological Organization’s 
(WMO) provisional statement on the State of Global Climate mentioned 
that the year 2019 witnessed one decade of unprecedented elevated 
global temperature, retreating glaciers and record high sea levels due to 
greenhouse gas (GHG) emissions. The average global temperatures for 
the past five (2015–2019) and ten (2010–2019) years were the highest 
in recorded history. 

Surprisingly, the dire necessity for reducing GHG emissions has 
failed to abate the reliance on fossil fuels due to their perceived eco
nomics. The bright side is that the harnessing of renewable energies (RE) 
has recently brought sweeping changes in the arena of energy genera
tion and demonstrates the potential of clean and limitless energy for the 
future. Moreover, policies enacted by international organizations and 
major players in world economy regarding carbon taxation have paved 
the way for RE. Resolutions such as The United Nations Climate Change 
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Abbreviations 

AI Aerosol Index 
APVF Analytical PVPF 
ACO Ant colony optimization 
ASU Applied Science Private University 
ANN Artificial neural network 
AE Autoencoder 
AR Auto-regressive 
ARIMA Autoregressive integrated moving average 
ARMA Autoregressive moving average 
BP Back Propagation 
BPNN Back propagation neural network 
BR Bayesian Regularization 
BS Bootstrap technique 
CAS Chaotic ant swarm optimization 
CFS Climate Forecast System 
CMDV Cloud motion displacement vector 
CMV Cloud motion vectors 
CNN1D CNN with 1-D convolution layer 
CNN2D CNN with 2-D convolution layer 
CEEMD Complementary ensemble empirical mode decomposition 
CSP Concentrated solar power 
CRBM Conditional restricted Boltzmann machine 
CRPS Continuous Ranked Probability Score 
CNN Convolutional Neural Network 
CRrBMs Convolutional restricted Boltzmann machines 
DBN Deep belief network 
DCNN Deep convolutional neural network 
DL Deep learning 
DNN Deep neural network 
DRNN Deep recurrent neural networks 
DRBM Discriminative restricted Boltzmann machine 
ESN Echo State Networks 
ENN Elman neural network 
EMD Empirical mode decomposition 
ECMWF European Centre for Medium-Range Weather Forecasts 
EWMA Exponentially weighted moving average 
FBNN Feedback neural network 
FFNN Feed-forward neural network 
FF Firefly 
FPCT Fourier phase correlation theory 
FT Fourier Transform 
FOA Fruit fly optimization algorithm 
GPR Gaussian process regression 
GRNN Generalized Regression Neural Network 
GWC Generalized weather classes 
GAN Generative adversarial network 
GA Genetic algorithm 
GMS Geostationary meteorological satellite 
GOES Geostationary operational environmental satellite 
GW Giga Watt 
GDAS Global Data Assimilation System 
GFS Global Forecast System 
GHI Global horizontal irradiance 
GLCM Gray-level co-occurrence matrix 
GHG Greenhouse gas 
HEPSO High Exploration Particle Swarm Optimization 
HRRR High-Resolution Rapid Refresh 
IPSI Image-phase-shift-invariance 
IA Immune algorithm 
KDE Kernel Density Estimation 
KNN k-nearest-neighbours 
LVQ Learning vector quantization 
LS SVR Least-squares support vector regression 

LM Levenberg-Marquardt 
LLSR Linear least square regression 
LSTM Long Short Term Memory 
LUBE Lower Upper Bound Estimation 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MVE Mean Variance Estimation 
MW Mega Watt 
MIF Meteorological impact factors 
MSG Meteosat second generation 
MA Moving average 
MLP Multilayer perceptron 
MLPNN Multi-layer perceptron neural network 
MME Multi-Model Ensemble 
MPVF Multiplayer perceptron PVPF 
MLR Multiple Linear Regression 
NNE Neural Network Ensemble 
NARX Nonlinear autoregressive exogenous inputs 
nMAPE Normalized Mean Absolute Percentage Error 
nRMSE Normalized Root Mean Square Error 
NAM North American Mesoscale Model 
NWP Numerical Weather Prediction 
OS-ELM Online sequential extreme learning machine 
OF Optimal flow 
PIV Particle image velocimetry 
PSO Particle swarm optimization 
PSO-GA Particle Swarm Optimization- Genetic Algorithm 
PV Photovoltaic 
PVPF Photovoltaic power forecasting 
PI Prediction interval 
PICP Prediction interval coverage probability 
PIW Prediction interval Width 
PDF Probability Density Function 
QR Quantile regression 
RBFNN Radial basis function neural network 
RFR Random forest regression 
RAP Rapid Refresh 
RNN Recurrent neural network 
RCN Recursive convolutional networks 
RE Renewable energies 
RBM Restricted Boltzmann machine 
RoBM Robust Boltzmann machine 
RMSE Root Mean Square Error 
SD Seasonal decomposition 
SOM Self-organized map 
ST-PVPF Short-term PVPF 
SLFN Single layer feed forward networks 
SSHS Solar Space Heating System 
SF Spectral factor 
SVM Support vector machine 
SVR Support vector regression 
TGA Team Game Algorithm 
WMO The World Meteorological Organization’s 
COP21 United Nations Climate Change Conference 
WD Wavelet decomposition 
WNN Wavelet Neural Network 
WT Wavelet transform 
WSPR Weather statuses pattern recognition 
WTHD Weather type of historical data 

Symbols 
Pðt þ kjtÞ predicted power 
n number of historic measurements 
Δt step time difference 
ΔA Forecasted change response at spatial location 

R. Ahmed et al.                                                                                                                                                                                                                                  



Renewable and Sustainable Energy Reviews 124 (2020) 109792

3

Conference (COP21) in 2015 and joint presidential statements by the US 
and Chinese presidents on climate change signal new policies which 
hold promise for the implementation of REs [5]. The goals of the Eu
ropean Union are even more ambitious: to curtail GHG emissions by 
80% (from a 1990 baseline) and to produce 100% of the required energy 
from RE by 2050 [6]. Also, contemporary technological advances in 
extracting energy from wind, and especially solar, have become 
competitive and viable alternatives to fossil fuels [7,8]. 

Solar energy is the radiant energy from the sun, which produces 
massive amounts of electromagnetic energy by thermonuclear fusion of 
hydrogen gas. The average solar radiation intensity on the earth’s sur
face is 1367 W/m2 and the total global absorption of solar energy is 
approximately 1.8 � 1011 MW [9]. This amount of ubiquitous and 
limitless energy is more than enough to meet all power requirements on 
a global scale [3]. Fig. 1 illustrates the intensity of solar energy across 
the globe. Countries located in the geographical zones above 45�N or 
below 45�S latitudes have tremendous opportunity for harnessing solar 
energy. Regions in the Middle East, the Mojave Desert (USA), the Chil
ean Atacama Desert, the Sahara Desert, the Kalahari Desert (Africa) and 
the North-Western region of Australia are suitable for large scale PV 
installations. 

The current solar power plants are of two types: solar thermal sys
tems and solar photovoltaic (PV). Solar thermal technology concentrates 
sunlight, thereby increasing the temperature of heat sinks which pro
duce steam. The steam is used in steam turbines for large-scale elec
tricity generation. Thus, countries such as Spain and USA have been 
implementing concentrated solar power (CSP) for electricity [11]. 
Nevertheless, CSP requires large installations to be effective. In contrast, 
photovoltaics use the incident photons in sunlight to excite free elec
trons in embedded semiconductors, causing a charge build up and 
yielding electricity. These panels are functional at different scales and 
are often used on rooftops or open spaces, integrated into buildings or 
vehicle designs, or arranged in huge arrays in solar power plants. Over 
the past decades, PVs have been widely installed and their demand has 
increased as a direct consequence of their mass public appeal and 
reduction in tariff charge system [12,13]. Fig. 2 compares the global 
demand for PV and CSP technology. 

The graph illustrates the growth rates of PV and CSP technology for 
the duration 2000 to 2018. It is observed that global PV output tripled 
from 2005 to 2008, and is growing exponentially ever since (reaching 
99 TWh in 2012). In particular, the year 2015 saw total PV output reach 
250 TWh with the installation of 185 million units [5], while the 
contemporary total global CSP capacity was 4.7 TWh. Subsequently, the 
years 2016–2018 witnessed meteoric increase in PV power, with addi
tions of 97 GW (GW) in 2018; accounting for around half of the total 
renewable capacity growth. More specifically, solar PV capacity doubled 
from 2016 to 2017 and surpassed 30% in growth alone in 2018 (571 
TWh addition) [14]. This growth in PV power has resulted in its un
precedented contribution to global electricity generation by more than 
2% and extrapolation demonstrates its future planet-wide capacity of 
1700 GW by 2030 [15]. In contrast, the year 2018 saw the addition of 
600 MW of CSP capacity – the greatest annual expansion since 2013 and 
five times more than in 2017. From 2011 to 2017, CSP capacity 
increased an average of 25% annually. Finally, in 2018, global CSP 
output rose by only 8% (estimated) despite record-level additions. 
Therefore, the statistics succinctly demonstrate the waxing demand for 
solar energy, especially the preference for PV systems; furthering the 
requirement for accurate and reliable forecasting of PV power [14]. 

The remarkable two decades long growth in PV power is mainly due 
to reduction in the price of PV systems, increase in their efficiency, 
modularity in installation, low cost of maintenance and operation, long 
service life, lowering of CO2 emissions and environmental friendliness 
[16]. PVs are now competitive with fossil-fired technology in many 
countries. It is effective in standalone or grid-connected modes, but its 
efficiency varies considerably due to the fluctuations of incident solar 
energy on account of environmental conditions and geographical loca
tion. The weather of a particular geographical location varies at time
scales ranging from minutes to hours to multiple days, as well as across 
years and decades. PV output also depends on the sun’s movement, 
escalating in the morning, reaching maximum generation during 
mid-day and falling off at dusk. Thus, PV output is dynamic in nature 
and reliant on location and climate. 

The local solar radiation intensity varies with latitude, season, at
mospheric conditions (e.g. rain, snowfall, fog, humidity etc.), air quality 

Yt current observation 
bYt predicted value 
αðYt � bYtÞ adjustment factor 
p and q the number of processes 
αi and βj coefficients of AR and MA 
B backward shift operator 

σa variance 
SkðtÞ activation function 
Vkq connection weight 
k processing node 
gðwi ⋅xi þ biÞ activation function 
H output matrix  

Fig. 1. The world solar resources map [10].  
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and pollution index (smog) etc. Therefore, combining solar energy 
harvesting technologies with existing power systems (hybrid renewable 
energy systems) poses a significant, and as yet unmitigated, technical 
and stability challenge. The issues stem from continuous variation in 
solar irradiance, temperature, PV output, costly energy storage equip
ment, grid stability and seasonal effects. In addition, integrating PV 
power network as a back-up electric supply for meeting increased de
mand without the use of energy reserve devices is not technically viable; 
such a setup affects grid stability. In short, variations in meteorological 
states lead to uncertainty in PV output [16] precipitating intermittent 
penetrations, voltage surges, reverse power flows, variations in fre
quency harmonic distortion in current and voltage waveforms etc. Such 
unpredictable output considerably influences the reliability, stability 
and scheduling of the power system operation and economic dispatch 
[17]. Reliable PV output forecast will considerably decrease this un
certainty, enhance stability and improve economic viability. Therefore, 
at present, accurate PV power forecasting (PVPF) is a crucial research 
arena [18,19]. 

2. Major factors affecting solar power forecast 

Different factors affect PVPF accuracy making such prediction a so
phisticated process. It depends on factors such as forecasting horizons, 
forecast model inputs and performance estimation. To achieve better 
precision, correlational analysis optimization and uncertainty estima
tion of PVPF models need to be carried out. 

2.1. Forecasting horizons 

The future time period for output forecasting or the time duration 
between actual and effective time of prediction is the forecast horizon 
[13]. Some researchers prefer three categories of the forecast horizon: 
short-term, medium-term and long-term, as in Refs. [20,21]. Others 
have added a “fourth” category [22] based on the requirements of the 
decision-making process for smart or micro grids [16], aptly termed 
“very short-term or ultra-short term forecast horizon”. However, as yet 
there is no universally agreed upon classification criterion [16,23,24].  

i Very short-term or ultra-short-term forecasting 

Very short-term forecasting is used in power system and smart grid 
planning with prediction period from seconds to less than 30 min [25]. 
Others have considered 1 min to 1 or several hours and even up to day 
ahead forecasting within this category. Such forecasts are highly bene
ficial to electricity marketing or pricing, power smoothing processes, 
monitoring of real-time electricity dispatch and PV storage control [13].  

ii Short-term forecasting 

This is popular in the electricity market, where decisions comprise of 
economic load dispatch and power system operation. It is also useful in 
control of renewable energy integrated power management systems. 
Generally, the temporal horizon is between 30 and 360 min [25]. 
However, some consider one to several hours, one day, or up to seven 
days as short-term forecast horizon [13]. For instance Ref. [18], pro
pounded that electric load patterns should be forecasted 2 days ahead 
for effective scheduling of power plants and for planning transactions.  

iii Medium-term forecasting 

Medium-term forecasting spans 6–24 h [25]; although, some have 
considered one day, one week and up to a month ahead as being in this 
category. It is essential for maintenance scheduling of conventional or 
solar energy integrated power systems consisting of high-end trans
formers and different types of electro-mechanical machinery [13].  

iv Long term forecasting 

Long-term forecasts predict scenarios more than 24 h in advance 
[25]. Nonetheless, some have categorized periods of a month to a year as 
long-term forecast [13]. Such prediction horizon is suitable for long 
term power generation, transmission, distribution and solar energy ra
tioning [26], as well as, for taking into account seasonal trends. How
ever, these models have reduced accuracy because weather fluctuations 
spanning one or few days cannot be predicted using such long horizons. 

The different time horizons add complexity; thus, an alternative is 
using short-term forecasting methods to extended horizons, i.e. long and 
medium-term predictions. Although, this may severely degrade the 
prediction accuracy [27]. Yet researchers [28–30] have developed 
medium-term and year ahead models for monthly power system 
scheduling, electricity pricing and load forecasting. 

The problems with forecasting as discussed above have prompted 
many researchers to develop a forecast horizon classification approach 
specifically for PVPF: intra-hour, intra-day and day ahead. These cate
gories often overlap with the short, medium and long-term categories 
described previously.  

i Intra-hour 

Also known as nowcasting, it involves forecast horizons from a few 
seconds to an hour [31]; thus overlapping with very short-term and 
short-term horizon categories. Intra-hour forecasts help ensuring grid 
quality and stability, as well as accurate scheduling of spinning reserves 

Fig. 2. Global installed solar power capacity, 2000–2018 [14].  
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and demand responses. Island grids and low quality power supplies, 
where high solar penetrations exist, rely on such predictions. It is also 
used in operation planning at distribution systems to reduce tap oper
ations in transformers and in formulating sub-hourly bids for electricity 
markets. Nonetheless, most distributed PV plants are generally unaf
fected by very short-term variability in power production due to their 
distributed and aggregate nature [32].  

ii Intra-day 

This forecast horizon spans 1–6 h and overlaps with short and 
medium-term categories. It finds use in controlling zone specific electric 
loads and in electricity trading outside the standard grid [33]. 

While few studies [34–36] utilized numerical weather prediction 
(NWP) for intra-hour predictions, it is a common tool in intra-day 
forecasts as it incorporates future atmospheric conditions in PVPF; 
increasing precision. This is because, NWP’s are effective for forecast 
horizons exceeding 4 h since they lack the required granularity at 
shorter time scales. 

Almonacid, et al. [37] developed an intra-day PVPF exploiting ANN. 
Their model accurately predicted 1 h ahead PV output with global 
horizontal irradiance (GHI) and cell temperature as inputs. The two 
inputs were derived from two non-linear autoregressive models which 
predicted GHI and atmospheric temperature from current and historical 
measurements. Subsequently, the cell temperature was obtained and the 
data used in an ANN model to obtain PV output predictions with 
normalized root mean square error (nRMSE) of 3.38%. 

Another intra-day ANN based PVPF used wavelet decomposition of 
power output combined with GHI and temperature predictions opti
mized with particle swarm optimization (PSO) [38]. It accurately fore
casted 1, 3 and 6 h ahead with uncertainty estimation via bootstrap 
method. 

Zhang, et al. [39] combined intra-day and day-ahead (discussed 
below) forecast horizons. They analysed four scenarios based on 
geographical aggregation and location, obtaining good predictions with 
nRMSE ranging from 2 to 17% for a single and a large ensemble of PV 
systems (64 and 495 GW), respectively. They demonstrated that spatial 
averaging minimized errors.  

iii Day-ahead 

Forecasts spanning 6–48 h are included in this category and overlap 
with medium and long-term horizons. Such models are used in utilities 
planning and unit commitment. Chen, et al. [40] proposed a 
self-organized map (SOM) PVPF model with day-ahead forecasting. 
Their model classified weather types (sunny, cloudy and rainy) in 
accordance with meteorological variables (solar irradiance, total and 
low cloud amounts), and harnessed ANN-RBFN for forecasting with 
MAPEs of 9.45%, 9.88% and 38.12% for sunny, cloudy and rainy days, 
respectively. 

Frequently, day-ahead forecasts use NWP outputs. Literature search 
demonstrates that only three intra-hour modelling studies, about 57% of 
intra-day forecasts and approximately 79% of day-ahead prediction 
approaches employed NWP variables. The reason: NWP improves ac
curacy when time horizons increase, feeding future meteorological 
trends to the models. 

Lu, et al. [41] evaluated day-ahead PVPF models which used ma
chine learning and NWP combined with: North American Mesoscale 
Model (NAM), Rapid Refresh (RAP) and High-Resolution Rapid Refresh 
(HRRR) methods. Their results verified that the blended model was 
superior to single models with 30% lower Mean Absolute Error (MAE), 
attributing it to the cancelation of systematic bias errors. 

[39] concluded that the ensemble approach was best for PVPF with 
hourly forecasts being more precise than day-ahead ones. Another 
important finding was that the difference in PVPF accuracy for different 
horizons (hour to day-ahead) increased with the area of distributed 

systems. 
Longer forecast horizons also exist, but PVPF involving 2 days or 

longer are rarer in extant literature. They are useful for unit commit
ment, transmission management, trading, hedging, planning and 
resource optimization [42]. Furthermore, when electricity production is 
lower than expected, 48 h ahead predictions are popular for economic 
dispatch and planning plant maintenance. 

Even longer horizons were discussed by researchers. Lin and Pai [43] 
forecasted monthly power output for an ensemble of PV plants in 
Taiwan. Seasonal decomposition (SD) was used to detrend data and 
account for seasonal effects. Subsequently, they employed least-squares 
support vector regression (LS SVR) to select the best input set, similar to 
Ref. [44] who applied GA for PVPF. The results demonstrated that the 
SD LS SVR was superior compared to the benchmarks, which consisted 
of autoregressive integrated moving average (ARIMA), generalized 
regression NN and LS SVR. 

Vaz, et al. [45] also investigated long-term horizons forecasts with 
nonlinear autoregressive with exogenous inputs (NARX). Their results 
outperformed the benchmarks which were persistence models for 4, 7 
and 15 days ahead forecasting (nRMSE was 20%). However, for longer 
horizons, i.e. 20 days to a month, the root mean square error (RMSE) of 
the proposed model increased to 24%; equalling persistence models’ 
performance. 

2.1.1. Dependence of PVPF accuracy on time horizon 
As discussed, many have studied forecast horizons, and it is observed 

that keeping forecast model and other parameters constant, forecast 
accuracy varies with the change in the time span [13]. Lonij, et al. [34] 
developed a 15–90 min time horizon PVPF and concluded that the 
model’s accuracy varied with horizon’s length, keeping all other factors 
constant. Likewise [46], found that the forecast error increased from 
3.2% to 15.5% for forecast horizons ranging from 20 to 180 s for the 
same dataset. As a consequence, researchers are developing a transcend 
system which can manipulate short-term temporal forecasting of PV 
output. 

Others have evaluated disparate multi-scale hybrid forecast models 
for solar irradiance with different forecast horizons. Horizons ranging 
from 5 to 30 min at 5 min increment and from 1 to 6 h in hourly in
crements have been studied. It was found that regardless of the type of 
model, the nRMSE values increased with forecast horizon’s duration. 
Furthermore, it was inferred that shorter time scales of learning data 
compared to that of test data did not increase prediction accuracy. This 
meant that increasing statistical information by using shorter time scales 
did not enhance accuracy; rather it could complicate the learning phase 
for longer time horizons [47]. 

The interplay of many inter-dependent factors also affects PVPF ac
curacy. To exemplify, cloud motion severely affects sunlight intensity; 
and thus PVPF, especially for minute-scale or ultra-short-term horizons 
(i.e. intra-hour). Hence, classification and prediction of cloud motion is 
crucial. Previous works [48–51] did not consider cloud motion, even 
those which involved 15 min time stamps, thus reducing accuracy in 
cloudy conditions and failing real-time grid dispatch requirements. 
Therefore, ultra-short-term PVPF are effective only in combination with 
weather classification techniques [40,48,52,53]. Such techniques are 
robust in mapping input-output for prediction in all-weather types. 

Another factor in cloud status based PVPF modelling is the use of 
ground-based sky images which have higher resolution than satellite 
imagery. Moreover, image processing and statistical techniques, e.g. 
linear extrapolation, can help predict cloud distribution using cloud 
motion displacement vectors (CMDVs). Wang, et al. [54] applied image 
phase shift invariance (IPSI) based CMDV calculation married to Fourier 
phase correlation theory (FPCT) to develop accurate minute-scale PVPF 
for different cloud scenarios. 

Finally, cloud conditions were also considered in intra-day PVPF 
models where satellite imagery was exploited. Kühnert, et al. [55] 
identified sources of such type of images: Meteosat second generation 
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(MSG), geostationary satellites of the European organization (EUMET
SAT); geostationary operational environmental satellite (GOES), for the 
Americas and geostationary meteorological satellite (GMS), for Japan. 
From the aggregate images, cloud-index can be estimated and cloud 
motion vectors (CMV) calculated. Subsequently, cloud movement pat
terns can be determined to generate predictions of GHI over hourly time 
scales. In the end, output maps are smoothed to curtail errors and pre
dictions of up to 5 h are possible. 

From the above discussion it can be concluded that as the length of 
the forecast horizon increases the accuracy of any PVPF modelling 
approach decreases and is significantly affected past a time span of 
24–48 h. This is because cloud cover and distribution, which are strongly 
correlated with solar irradiance, cannot be predicted with considerable 
precision for extended time periods due to its inherent stochastic nature. 
Also, intra-hour and intra-day forecast horizons are relevant to PV 
output predictions while longer time horizon forecasts i.e. day-ahead are 
more suitable for power system planning. Thus, the current review 
focused on the efforts of contemporary researchers who have been more 
interested in the accuracy of PVPF models, which are much higher for 
shorter time horizons, up to a day-ahead. This is also the reason why 
there are more works investigating short to medium-term forecast ho
rizons, frequently with weather classification, compared to longer time 
spans. The fewer studies related to long-term forecast horizons have 
mostly determined such forecast horizon models to be less accurate as 
cloud distribution and cover are dynamic and can only be predicted for 
short durations ahead of time with reasonable degree of accuracy. 
However, it must be mentioned that, long-term models have found use 
in predicting seasonal variations and their impacts on photovoltaics; i.e. 
for PV plant planning. 

2.2. Weather classification 

PV output is most strongly correlated with solar spectral irradiance; 
the latter depending on meteorological impact factors (MIF): aerosol 
distribution, wind speed and direction, humidity and cloud cover. Thus, 
changing weather status affects PVPF accuracy, and an effective PVPF 
model must integrate forecasting with weather classification for 
improving robustness. Indeed, state-of-the-art research demonstrates 
that weather classification is an indispensable pre-processing step, 
especially for short-term PVPF (ST-PVPF) [40,48,52]. 

Yet, weather classification based PVPF models face difficulties con
cerning insufficiency of training datasets. In Ref. [53] the authors 
reclassified the standard 33 meteorological weather categories into 10 
weather classes by compiling several single weather types to constitute a 
single new weather type. In contrast, most studies have categorized 
weather data into less than four general types [40,48,53]. Wang, et al. 
[53] opined that separate PVPF model for each weather class increases 
forecast precision and mapping [53,56,57]. To accomplish this task, 
they employed generative adversarial network (GAN) to augment the 
training datasets used for each weather types; especially for extreme 
weathers which are under-represented; to train the individual con
volutional neural network (CNN) (base models). Thus, both original and 
generated solar irradiance data were utilized. The authors claimed that 
their GAN–CNN–based day-ahead PVPF model was more accurate than 
established approaches. 

Weather patterns are strongly correlated with PV output [53,58]; 
necessitating the inclusion of weather statuses in PVPF models [9,53, 
59–61]. Many research studies [40,48,52,53] have concluded that 
weather classification is an effective pre-processing step for improving 
prediction accuracy of ST-PVPF, especially for day-ahead forecasting 
[52,53]. employed SOM and learning vector quantization (LVQ) to 
classify historical data of PV power output [40,53]. also utilized SOM to 
categorize local weather types for day-ahead PVPF [53,56]. described a 
solar irradiance feature extraction and support vector machines (SVM) 
based weather pattern recognition approach for ST-PVPF [53,57]. 
studied data distribution in disparate classes of daily weather 

classification results for better PVPF. However, these researches have 
not fully investigated the establishment process of a precise and 
consistent weather classification model. Most considered it an extra
neous part of PVPF. In contrast [53], argued that weather classification 
should be used as a benchmark for selecting the most suitable fore
casting strategy for a given region and climate. Furthermore, they 
showed that single forecasting models (without weather classification) 
were significantly affected by the historical data of the previous three 
days and lacked the ability to predict the day-ahead weather type. In 
short they mentioned, finer the weather classification; better the pre
diction results. 

The literature abounds with comparisons of weather classification 
and PVPF models; often posing a daunting task for the researcher of 
PVPF to make the proper selection. In Ref. [53], the authors compared 
their GAN based weather classification approach, involving 10 weather 
classes, with five other established prediction models. For objectivity, a 
confusion matrix was employed [62]. This statistical tool uses a table 
layout to visualize classifier algorithms’ performance for comparison 
and verifies how often a classifier confuses two adjacent weather cate
gories and mislabels them. Three indices: PA (product’s accuracy), UA 
(user’s accuracy) and OA (overall accuracy) calculated the performance. 
The five common classifiers compared were: CNN with 1-D convolution 
layer (CNN1D), CNN with 2-D convolution layer (CNN2D), multilayer 
perceptron (MLP), and SVM and k-nearest neighbor (KNN). For all, 
weather classification and subsequent data augmentation via GAN for 
short sample size and data imbalance weather types the accuracy was 
improved. However, CNN2D, with its deep learning (DL) abilities for 
eliciting non-linear input-output relationships, performed the best, and 
so, the authors recommended GAN-CNN2D for PVPF modeling. 

Another weather classification and PVPF was detailed by Ref. [56], 
where simulation and case study based research work was utilized. The 
authors addressed extreme, short duration weather statuses, which are 
often missing from weather type of historical data (WTHD). This causes 
difficulties in model training for data driven modelling approaches. To 
mitigate, a solar irradiance feather extraction and SVM based weather 
statuses pattern recognition (WSPR) technique was designed to identity 
the missing WTHD from time series data. Subsequently, they used this 
technique to develop a ST-PVPF model using four generalized weather 
classes (GWC) for covering all weather types; thus, making the classifi
cation and prediction processes simpler and computation friendly. 

2.3. Forecast model performance 

Performance estimation is essential for evaluating a model’s fore
casting accuracy. Common tools include: Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 
(RMSE) [63,64] (see Table 1). MAE estimates the average significance of 

Table 1 
Abbreviations commonly used for forecast performance evaluations.  

Abbreviation Metric Description 

MAE Mean Absolute Error Evaluates uniform forecast errors of 
models 

RMSE Root Mean Square Error Measures overall accuracy of the 
forecasting models. However, square 
order increases the prediction error rate. 

nRMSE Normalized Root Mean 
Square Error 

Measures overall accuracy in a large 
dataset. However, square order 
increases the prediction error rate. 

MAPE Mean Absolute 
Percentage Error 

Evaluates uniform forecast errors in 
percentage for the forecasting models. 

nMAPE Normalized Mean 
Absolute Percentage 
Error 

Evaluates uniform forecast errors in 
percentage for large datasets 

nMAP Same as nMAPE  
rMAPE Same as nMAPE  
NRMSE Same as nRMSE   

R. Ahmed et al.                                                                                                                                                                                                                                  



Renewable and Sustainable Energy Reviews 124 (2020) 109792

7

the errors in a dataset of forecasts by averaging the differences between 
actual observations and predicted results of the entire test sample, giv
ing all individual discrepancies equal weight. Similarly, RMSE estimates 
the mean value of the error utilizing the square root of the average of 
squared differences between forecasted values and actual observations. 
Therefore, it is more robust in dealing with large deviations that are 
especially undesirable, giving the researcher the ability to identify and 
eliminate outliers. Also, normalized RMSE (nRMSE) is used in large 
datasets to evaluate overall deviations. Both (MAE and RMSE) average 
metrics, however, can range from zero to infinity [65,66]. In contrast, 
MAPE is a standard prediction technique that measures the accuracy of 
forecasting and justifies the prediction diversity for real datasets. Like
wise, for large datasets, normalized nMAPE is used for forecast evalua
tion. The equations of these metrics are as follows [26]: 

MAE¼
1
N

XN

i¼1
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�yj � tj

�
� (1)  

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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v
u
u
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nRMSE¼
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1
N
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�
�

1
N

PN
i¼1yi
� 100% (5)  

where yj and tj are the measured and corresponding predicted values of 
PV power and N is the number of test samples [26]. 

Some researchers [67], however, have opined that the use of statis
tical error metrics for model’s performance assessment is not sufficient. 
They suggested more application oriented evaluations, i.e. calculating 
the optimal accuracy of a particular forecast based on system economics 
and major planning aspects. The domains include: economic dispatch, 
optimal energy storage size, emerging energy market policies at local 
and international levels, profit maximization for energy market stake
holders and optimal reserve size determination. 

Irrespective of the performance metric employed, the goal of the 
researcher must be the objective evaluation of a particular forecast 
model so that practitioners are able to make the best decision in terms of 
design, installation and utilization of photovoltaics for grid applications. 

2.4. Forecast model inputs 

Inputs to forecasting models have direct influence on prediction 
accuracy; a key factor in determining model performance. Generally, 
imprudent input selection can cause forecast errors which increase time 
delay, cost and computational complexity. Thus, low accuracy rate 
could appear on high functional forecast models [16]. The inputs for PV 
systems are mostly meteorological parameters: solar radiation, atmo
spheric temperature, module temperature, wind velocity and humidity 
[68], barometric pressure [56,57,69] and aerosol changes [70–73]; all 
dependent on climate condition and geographical location. Hence, 
correlation between PV output and meteorological inputs varies and can 
be positive or negative; strong or weak [13].  

i Use of secondary data 

In Ref. [74], the influence of forecast horizon on PVPF accuracy was 
studied using numerically predicted weather data via support vector 

regression (SVR) [75]. compared two ST-PVPF models: analytical PVPF 
(APVF) and multiplayer perceptron PVPF (MPVF), with both models 
exploiting numerically predicted weather data and past hourly values 
for PV electric power production. The RMSE values were similar; vary
ing from 11.95% to 12.10%, with forecast horizon being all daylight 
hours for 24 h ahead predictions. The conclusion was: both approaches 
are suitable for PV output power prediction.  

ii Use of primary data 

Alomari, et al. [76] used two years’ worth of hourly PV power output 
data from solar power plant installed at Applied Science Private Uni
versity (ASU) in Amman, Jordan. Concurrent weather data measured at 
the same location was also considered. The data were analysed via ANNs 
optimized by the Levenberg-Marquardt (LM) and Bayesian Regulariza
tion (BR) algorithms. The models were able to correlate temperature, 
solar irradiance and timing with PV power generated for real-time 
day-ahead predictions. Finally, BR ANNs based PVPF model was 
selected on the basis of performance. 

2.4.1. Solar irradiance 
Solar irradiance is the radiant energy from the Sun emitted in the 

form of electromagnetic radiation. It is directly proportional to the 
amount of solar power that can be hasrvested and has the strongest 
correlation with PV power output. De Giorgi, et al. [77] proposed an 
artificial neural network (ANN) forecast model to analyse the correla
tions of inputs with model performance. The forecast errors were 
(NRMSE) 12.57%, 12.60% and 10.91% for input vectors of the historical 
PV output, solar irradiance and module temperature, respectively. 
Therefore, study of correlation between meteorological parameters and 
PV output is essential for forecast model designing. 

Fig. 3 represents the pattern of solar irradiance and PV output for a 
specific day. The experiment was conducted on the roof of an institu
tional building of the University of Malaya (latitude ¼ 03�090N; longi
tude ¼ 101�410E) Kuala Lumpur, Malaysia [68]. The PV power varied 
from 7 a.m. to 7 p.m. (day break to dusk) and its magnitude followed the 
trend of solar irradiance intensity. As the day progressed, the PV output 
increased and peaked during mid-day; the time when solar irradiance is 
most intense. 

Fig. 4 shows a positive correlation between PV power output and 
solar irradiance for the same experiment. The correlation coefficient R2 

was 0.988, indicating solar irradiance is a most significant input for the 
forecast. 

2.4.2. Temperature 
Temperature is a physical quantity which measures the intensity of 

heat available in a substance or object or environment. This input 
parameter is highly likely or unlikely is a coefficient to PV power gen
eration. Some research studies indicated that, there is inadequate 

Fig. 3. Solar irradiance and PV output curve for a specific day [13].  
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correlation between ambient temperature and PV output power. 
Fig. 5 represents the correlation between atmospheric temperature 

and PV output for the same research work. The correlation coefficient R2 

is less significant at 0.3776. The researchers also found that there was no 
correlation between atmospheric temperature and PV output during 
nightfall; for obvious reasons. 

2.4.3. Clouds 
Cloudiness is one of the most significant factors that determines the 

intensity of solar radiation incident on terrestrial surface. Furthermore, 
the fraction of solar energy that passes through the clouds is not constant 
and depends on the type and amount of cloud formations [78]. Cloud 
motion, birth, dissipation and deformation, cause fluctuations in sun
light intensity; thus affecting PV output [79,80]. Most investigators have 
used satellite images for cloud analysis [81–86] which lack precision for 
regional or low cloud formations due to low spatial and temporal res
olutions [87]; especially when applied to ultra-short-term forecasts. This 
has spurred the use of terrestrial sky imaging techniques. 

Raza, et al. [16] investigated PV output variations with solar irra
diance during cloudy, partially cloudy and clear sky days, and claimed 
that during cloudy days more noticeable fluctuations in solar irradiance 
were perceived compared to partially cloudy and clear sky days. Ogliari, 
et al. [88] demonstrated that for clear sky conditions, PVPF was highly 
accurate for day-ahead predictions. They compared the PV output using 
physical models, based on three and five parameters electric equivalent 
circuits, and statistical models of ANN [89]. Similarly, Alanazi, et al. 
[90] used meteorological data of past 15 years, GHI and clear sky irra
diance data for training their ANN and acquired good precision. 

Another study reported that PV output increased with the rise in 
ambient temperature, which is again related to cloud cover, by showing 
high correlation between the input and the output [13]. Raza, et al. [16] 
investigated the relationship between cloud cover and PV power output. 
They analysed PV output variation with solar irradiance during cloudy 
day, partially cloudy day and clear day. They claimed that during cloudy 

day more noticeable degree of fluctuations with solar irradiance are 
perceived compared to partially cloudy and clear day. Again, another 
approach has been the use of digital cameras for taking pictures of 
clouds. Sky imagers are used to capture cloud pictures from 
horizon-to-horizon for the purpose of modelling cloud cover and cloud 
motion [91,92]. The Solar Forecasting Initiative at the University of 
California Merced was able to use such information for terrestrial sur
face solar irradiance and power predictions. Very short-term forecasts 
(minutes ahead) of future cloud patterns over solar generation facilities 
is possible via such modelling initiatives [93]. Although, cloud cover 
based PV power output models suffer from two obvious shortcomings: 
cloud speed and forecast horizon [94]; they can be more accurate than 
satellite images for cloudy days [95]. 

However, existing models are not very robust in determining cloud 
motion from sky images due to clouds’ complex motion patterns. 
Therefore, Zhen, et al. [51] established a new method of classifying sky 
images and subsequent model optimization. They analysed three 
mainstream methods, i.e. block matching, optical flow and SURF feature 
matching algorithms, and proposed a pattern recognition and PSO 
optimal weights based model for predicting cloud motion. This approach 
was used for PVPF using real-time sky image data and proved to be very 
effective. 

Wang, et al. [54] utilized historical cloud formation types and dis
tribution for predicting future sky status using CMDVs and FPCT to 
extract relevant information from sky images. Their method is suitable 
for very-short-time intervals (<1 min) under fast changing cloud speeds. 
This partly simplifies the complicated analysis involved in cloud motion 
studies and to aid in computation speed they applied an IPSI method 
with their CMDV calculations. Thus, their developed model is very 
conducive to short-time and ultra-short-time scale PVPF. It proved to be 
a better approach during simulations with secondary weather data than 
the original FPCT, optimal flow (OF) and particle image velocimetry 
(PIV) methods. 

Another cloud model was developed by Ishii, et al. [58], where 
fluctuations of weather based on cloud formation and PV power were 
considered. Their study was conducted on real-time weather data taken 
in Japan and using pc-Si, a-Si:H/sc-Si and copper indium gallium (di) 
selenide modules for PV panels. They claimed that the performance of 
PVs is influenced by solar spectrum even under identical solar irradiance 
conditions. Spectral factor (SF) index was used to indicate the solar 
irradiance between actual solar spectrums and standard AM1-5-G 
spectrum. Cases of clear sky and cloudy sky conditions were analysed 
and their effects on PV output quantified using the reciprocal of SF 
(SF� 1). It was found that only in fine weather, the SF� 1 predicted that 
solar spectrum has insignificant impact on PV output because of the 
“offset effect” in PVs. While, in case of extreme weather conditions in 
Japan, it was found that the performance of Si:H modules can vary by 
more than �10%. Thus, their SF� 1 factor could efficiently predict sea
sonal and location dependent variations in PV output based on cloud 
formation, and could also specify the best type of PV panels to be 
utilized. 

Detailed discussions on input selection, pre-processing and param
eter selection for PVPF in terms of weather classification are included in 
section 3. 

2.4.4. Wind speed and cell temperature 
Wind speed is a crucial input in PVPF models but due to its inter

mittent nature, it introduces significant uncertainties [96,97]. Its main 
role is in heat dissipation and reducing PV cell temperature. Generally, 
the efficiency of PVs depends on the temperature of the module, which 
rises during operation because of changes in ambient temperature or due 
to radiation absorbed by it. Therefore, both wind and cell temperature 
values are important and linked. 

In Ref. [98], the authors analysed wind speed and direction data 
from their ASU solar PV system for building their ensemble of ANNs 
models for PVPF. They found that wind direction data at 36 m altitude, 

Fig. 4. Correlation between solar irradiance and power output of PV 
panels [13]. 

Fig. 5. Correlation between atmospheric temperature and power output of PV 
panels [13]. 
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where their PV plant was installed, demonstrated binary or constant 
values during the past 1.6 years; and thus, it was excluded. However, 
wind speed was included and their ensemble model was superior to 
established approaches: smart persistence and individual ANN models. 

Raza, et al. [16] determined by inspection that PV output power 
pattern does not exactly follow wind speed pattern. During daytime, the 
PV output power is at a higher level compared to wind speed. Subse
quently, this output power decreases with increase in wind speed; 
however, similar observations were not made by others during the same 
period. Therefore, according to these researchers, the correlation be
tween PV output and wind speed is weak. 

[99,100] utilized cell (module) temperature of PV panels as input for 
their PVPF models, claiming that it is strongly correlated with PV output 
[101]. Ting-Chung and Hsiao-Tse [100] modelled cell temperature as a 
function of solar irradiance, ambient temperature and operating vari
ables related to PV cell technology, and compared it to real world 
measurements. Also, in contrast to Ref. [16], Schwingshackl, et al. [99] 
critically analysed different methods for the accurate estimation of PV 
module temperature and identified wind effects as a major factor. Thus, 
consideration of cell temperature is vital if PV outputs from different 
types of modules are to be compared and predicted, as each type of PV 
varies in its response to changing temperature of its cells. Indeed, such 
an investigation is recommended by Ref. [98] for aggregating the in
fluences of ambient temperature and global solar radiation on PV 
module technology. However, in Ref. [98], the researchers did not 
include cell temperature as an input in their ensemble of models 
approach to PVPF. Firstly, as cell temperature can be surmised and 
summarized from wind speed and ambient temperature. Secondly, at the 
current stage of their research only one PV power plant was considered 
with identical PV modules, thus negating the need for consideration of 
cell temperature. 

2.4.5. Timestamp 
The time stamp of the weather plays a significant role in the pre

diction accuracy of PVPF model. In Ref. [98] the current time stamp (in 
hours beginning from the start of each year data, represented as T (t, d)) 
was optimized by trial-and-error method and it was observed that the 
past i ¼ 5 days (used as an embedding dimension) tended to provide the 
most accurate day-ahead PVPF. 

The time stamp (hour of the day studied) introduces uncertainty in 
the forecast [98] which is significant during mid-day (due to higher 
weather variations) compared to that at early hours or late evenings. 
Furthermore, these uncertainties of power predictions change depend
ing on location and season. Therefore, to develop a new PVPF model for 
a new region, time stamp data must be optimized for obtaining the 
required optimum time period [98]. 

ANNs are recommended [98] for this purpose of PVPF as these net
works can elucidate the complex input/output relationships, like current 
time stamp and historical weather data with PV output. In Ref. [76] the 
authors also utilized time stamp (from the start of the current year Td(t)) 
and weather input vectors (Wd(t)) for the same time (t), with the period 
being past five days prior to day (d), to develop two ANN based PVPF 
models using LM and BR algorithms. 

2.4.6. Summary of model inputs 
Solar irradiation has the largest correlation with PV output 

compared to atmospheric temperature, cloud cover and other meteo
rological input parameters, such as dew point, relative humidity, pre
cipitable water, air pressure etc. Table 2 lists the correlation between 
meteorological parameters and PV output power [89]. 

The accuracy of a PVPF model can be enhanced by using many 
relevant inputs which are highly dependent on local weather conditions. 
However, imposing every input vector on a forecast model is neither 
viable nor computationally expedient. Therefore, a future challenge is 
designing a PVPF with optimum number of inputs based on their strong 
correlations with PV output. 

3. Input data processing techniques 

The quality of input data is crucial for accurate and reliable fore
casting. Many research projects have employed historic time series data 
of PV output as well as meteorological information of specific power 
stations and their geographical locations for modelling purposes. How
ever, these datasets often have intermittent static or spike elements 
caused by weather or seasonal variations, electricity demand fluctua
tions and power system failures. These are outliers which follow no 
trend, are influenced by chance events and significantly affect the 
forecast. Moreover, data may sometimes be corrupted or missing due to 
sensor defects or erroneous recordings. Therefore, it is imperative to pre- 
process distorted input data by reconstruction using decomposition, 
interpolation or seasonal adjustments [102] (i.e. data cleansing and 
structure change). To accomplish this, several techniques are mentioned 
in the extant literature such as wavelet transform (WT), trend-free time 
series, empirical mode decomposition, SOM, normalization and singular 
spectrum analysis [13], each of which has its own unique strengths and 
shortcomings. Bacher, et al. [103] and Kemmoku, et al. [104] reported 
that for solar power prediction, time series technique has been exploited 
on clear-sky index information for pre-processing input data in several 
research works. Sfetsos and Coonick [105] however disagreed with the 
concept and opined that it is random in behaviour and highly sensitive 
to weather changes. Thus, it yields poor learning rate of the input data 
which results in high prediction errors. Other studies showed solar 
irradiance information was more significant and effective in PV output 
forecast compared to time series of clear-sky index data. Reikard [106] 
used statistical tool to eliminate the seasonality trend from solar irra
diance data. Their study demonstrated amended learning rate with 
improved prediction accuracy for the developed model. Similarly, Baig, 
et al. [107] and Kaplanis [108] utilized a trend and de trend technique 
for solar irradiance dataset as it is quite complicated to precisely 
determine the trend of daily solar radiation due to everyday weather 
behaviour. In Refs. [109,110] Boland found low prediction error for 
periodic pattern of solar irradiance dataset using Fourier series 
transformation. 

Currently, among the data pre-processing techniques normalization 
[48,111] and WT [38,112] are broadly used as they can convert large 
input data to a smaller range hence improving computational economy. 
In normalization, the large number of data are compressed and trans
formed into a smaller range. The condensed data is confined between 
0 and 1 range to limit the regression error and maintain correlation 
among the datasets. For WT, the concept of a wavelet (miniature wave) 
with a zero-average value is employed and can produce time-frequency 
representation of the signal simultaneously and is used for decomposi
tion and reconstruction of signals [113]. It can overcome the problem 
with non-stationary datasets. Therefore, it has the ability to transform 
the signals into time-frequency domains and decompose the signals to 
one approximate set and several detailed sets [114]. 

Alomari, et al. [76] applied normalization to their data which con
sisted of global solar irradiance, temperature, PV power and time of year 
for developing next-day PVPF models. They claimed that normalization 
helped to achieve homogeneous data and reliable machine learning 

Table 2 
The correlation between PV output power and meteorological factors.  

Meteorological factor Correlation coefficient 

Solar irradiance 0.9840 
Air-temperature 0.7615 
Cloud type � 0.4847 
Dew point 0.6386 
Relative humidity � 0.4918 
Precipitable water 0.3409 
Wind direction 0.1263 
Wind speed 0.1970 
Air pressure 0.0815  
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experiments. Moreover, data filtering and association were utilized for 
weather and PV power data. This pre-processing filtered out any 
weather data with its associated PV power value missing or any PV 
power record with missing weather data [53,115,116]. detailed steps for 
efficient pre-processing:  

1. Negative solar radiation and missing associated production values 
are often observed in early and late hours of the day, due to solar 
radiation sensors offset and inverter failures, respectively. It is rec
ommended to set the radiation and PV output values to zero (0).  

2. Missing solar radiation, temperature and output power data, during 
mid-day, can be from solar radiation and temperature sensors mal
function, and inverter or network disruptions, respectively. The 
recommended step is to exclude these from analysis. 

3. Normalization of remaining data [range: 0, 1] will increase compu
tational speed, preserve input correlations and ensure fast conver
gence of ANNs [26,68]. 

GAN can also generate missing data or augment the time series data 
for inputs, such as creating more distinct instances of extreme weather 
data [53]; serving as a pre-processing technique. Furthermore, the GAN 
pre-processing step for generating distinct weather data for subsequent 
modeling by CNN was effective in addressing diminutive sample size of 
certain weather types during CNN training [53]. 

To reiterate, weather classification is an effective pre-processing 
tool; enhancing the accuracy of ST-PVPF [40,48,52]. Moreover, it can 
help select the optimum PVPF approach for the location and climate 
[53]. However, only weather classification is not sufficient in training 
high-capacity PVPF strategies, such as CNN [56,57]. Wang, et al. [57] 
claimed that small training data size can worsen the performance of 
most PVPF approaches. 

Zhen, et al. [51] discussed pre-processing of cloud images, classi
fying them based on brightness, size, shape, spectrum, texture features 
etc. Cloud texture was analysed using gray-level co-occurrence matrix 
(GLCM) and histogram equalization. Four GLCMs were generated for 
each sky image incorporating the corresponding energy, correlation, 
entropy and contrast values as the 4-dimensional texture feature vector 
of each image. Few others have documented such optimizations of 
extracting cloud features for efficient classification [53,117–119]. 

Nevertheless, no single pre-processing technique can be considered 
to be the best; it depends upon the nature of the datasets. Hence, the 
efficiency of a pre-processing technique is evaluated by: computational 
time, resources utilized, accuracy of the processed data, data fidelity, 
consistency of performance, adaptive nature, robustness and compati
bility with established forecast models. 

Another important factor is effective design of neural network. 
Network parameters, such as weights, biases, number of hidden layers 
and neurons in a layer, are crucial for prediction accuracy. Wang, et al. 
[53] used statistical loss functions LG to set the weights G’s of CNN for 
their technique and claimed that a well-designed network architecture 
with GAN support is best for deciding on the parameter values of weights 
and biases for a robust PVPF model. 

Parameter selection and optimization (weights and biases of neu
rons, and network architecture) was also addressed by Zhen, et al. [51]. 
They propounded that the complexity of cloud formation and motion 
cannot be done by a single traditional algorithm. Image processing 
based cloud pattern classification and PSO for optimal weights deter
mination were recommended. This combination approach was applied 
to three established models: block matching, optical flow and SURF 
feature matching, for efficiency comparison using actual sky images. 

Alomari, et al. [76] obtained excellent PVPF accuracy by using BR 
and LM back-propagation optimization algorithms for designing two 
different ANNs. BR technique suggested 28 hidden layers and all 
weather inputs while LM dictated 23 layers for the data, with the 
BR-ANN having a lower RMSE. 

The LM optimization approach was first reported in Ref. [120] and 

successfully applied to ANNs in Ref. [121]. It is considered to be the 
fastest back-propagation supervised algorithm for training feed-forward 
ANNs. BR algorithm was introduced in Refs. [122,123] and adapted for 
use in Ref. [124]. Both algorithms determine an ANN’s error derivatives 
regarding weights and biases, and output a Jacobian matrix; this being 
used to calculate performance by mean squared errors [121]. 

Finally, post-processing is a requirement prior to any model’s fore
cast evaluation. The two most popular post-processing approaches are 
anti-normalization [48] and wavelet reconstruction [125]. If normalized 
data are utilized in the prediction model, then the forecast should first be 
anti-normalized in order to elucidate the actual forecasted PV power and 
subsequently to assess the model’s performance. Similarly, wavelet 
reconstruction is employed to obtain the actual forecasted PV power if 
the model’s input data were initially pre-processed using wavelet 
decomposition (WD). The adaptation of the model based on new 
real-time or secondary data, as they become available, is a crucial step in 
improving the prediction accuracy of PVPF models and, hence, a rec
ommended post-processing step further discussed in section Online 
PVPF and Sequential Extreme Learning Machine [126]. 

4. Optimization of input parameters 

The proper selection of inputs, in terms of number and type, is a 
prerequisite to improved forecasts. Redundant or weakly correlated in
puts will introduce undue complexities in computation, whereas the 
absence of a major parameter can severely offset the predictions. Thus, 
optimization algorithms are essential for helping select the most 
important input parameters. 

The literature describes many optimization techniques for inputs of 
PV output models: PSO [127], grid-search [128], fruit fly optimization 
algorithm (FOA) [129], firefly (FF) [130], ant colony optimization 
(ACO) [131], chaotic ant swarm optimization (CAS) [132], chaotic 
artificial bee colony algorithm [133] and immune algorithm (IA) [134]. 
While each has its pros and cons, genetic algorithm (GA) based opti
mization is the most popular and effective in optimizing weights and 
inputs for forecasting models, and works well with ANN. Tao and Chen 
[135] optimized the input weights for their back propagation neural 
network (BPNN) model using GA and obtained better forecast accuracy. 
Similarly, Pedro and Coimbra [33] claimed that their ANN forecasting 
model for PV power was enhanced by GA optimization. 

In Ref. [51] paper, it was claimed that PSO is similar to GA and is also 
an iterative optimization algorithm. The system is initialized as a set of 
random solutions in PSO, and the optimal values are searched itera
tively. Compared with GA, it is easier to achieve convergence and does 
not need to be adjusted for too many parameters [136,137]. At present, 
PSO is widely used in function optimization, neural network training 
and parameter selection, fuzzy system control, and in other applications 
as a substitute for GA. However, PSO has a higher tendency than to get 
isolated in local extrema. 

5. Classification of PV power forecasting techniques 

Several modelling approaches: physical, statistical, artificial intelli
gence (including deep neural network), ensemble and hybrid based 
prediction models have been utilized for PV output forecasts. Some re
searchers have compared different forecast models. Almonacid, et al. 
[138] compared an ANN model for PV output forecast with three con
ventional mathematical schemes. The forecast accuracy of ANN was 
much superior. Similarly, another researcher Oudjana, et al. [139] 
compared forecasting techniques between ANN and regression model 
for a particular PV power plant in Algeria. Again ANN displayed higher 
accuracy. Yet others [24] have compared several different forecasting 
approaches taking into account the techniques, the spatial-temporal 
horizons, the metrics assessment employed, the input and output pa
rameters modelled, the computational time, the benchmark models 
referred, the advantages and the disadvantages etc. From such 
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exhaustive comparisons it is clear that PV power output forecasting 
accuracy depends on the type of modelling utilized, and hence, some of 
the important ones are discussed below: 

5.1. Persistence forecast 

Persistence model is popular for very short-term and short-term 
forecasting. It has less computational cost, low time delay and reason
able accuracy. This technique adopts the concept of today equals 
tomorrow, in other words, the conditions of climate (i.e. solar irradi
ance) a day ahead is expected to remain similar to the day before [140]. 
For instance, if today is a sunny day with 30� Celsius then the model 
would predict that it will be a sunny day with 30 �C temperature 
tomorrow. Therefore, it can reckon GHI instantly by decomposing the 
forecasting GHI information into the computation clear-sky GHI and 
project the clear-sky index. However, the clear-sky index does not 
respond to the variation of solar zenith angle due to weather conditions 
such as cloud, rainfall, storm etc. at the forecasting time window [141]. 
The equation of forecast model using this approach is described as 
[140]: 

Pðtþ kjtÞ ¼
1
T
Xn� 1

i¼0
Pðt � iΔtÞ (6)  

where k is the forecasting time period and PðtþkjtÞ is the predicted 
power for time t þ k at time instant t. The forecast interval period is T 
and n is number of historic measurements. Pðt � iΔtÞ is real power 
measured for time t and time steps i within T and Δt is step time dif
ference of the measured time series. 

This model generally endorses the performance of other forecasting 
paradigms. Hence, different models are benchmarked against it when 
climate conditions remain persistent up until next day; however, with 
increase in time horizon, the accuracy of this model decreases 
drastically. 

5.2. Physical model 

Physical forecasting involves: air pressure, surface roughness, tem
perature, orography, impediment, disruption and obstructions, of lower 
atmosphere for future predictions [142–144]. This technique is gener
ally more reliable in long-term forecasting [102]. Based on this method, 
the NWP technique amalgamates meteorological information and at
mosphere model equations for arriving at predictions. This model is 
usually categorized into two types based on scale, i.e. mesoscale model 
and global model. Mesoscale model deals with the atmospheric features 
for a restricted area such as regions, countries or continents [145]; 
whereas global model delineates the features of the atmosphere on a 
global scale. Furthermore, for this global NWP model, there are about 15 
weather services available that are active in data acquisition: Global 
Forecast System (GFS), Climate Forecast System (CFS) and Global Data 
Assimilation System (GDAS) etc. which are managed by government 
sponsored organizations such as the US NOAA and European Centre for 
Medium-Range Weather Forecasts (ECMWF). NWP models can forecast 
climate status more than 15-days ahead [146] and use a set of numerical 
equations for the physical state and the dynamic characteristics of the 
atmosphere, simultaneously. Mathematically NWP can be represented 
as: 

ΔA
Δt
¼FðAÞ (7)  

where, ΔA is the change in the value of the forecasted response at a 
particular spatial location; Δt is the change in time or temporal horizon; 
and FðAÞ represents variables which change the value of A. 

However, for PV output power prediction, the model employs 
particular weather characteristics such as GHI, relative humidity, wind 
speed and direction [147–149] and so the forecast quality is better if the 

weather variables remain stable [150]. In contrast, erroneous forecasts 
occur when there exist abrupt changes in values of meteorological 
variables. 

5.3. Statistical techniques 

Statistical approaches use historical time series and real-time 
generated data. It consumes fewer input data compared to DL 
methods and shows better performance in short-term prediction than 
NWP models. The statistical models use pure mathematical equations to 
extract the pattern and correlation from past input data. Generally, the 
basic algorithm possesses curve fitting, moving average (MA) and auto- 
regressive (AR) models [151]. These models reduce error by estimating 
the difference between the actual past measured value and the predicted 
value of PV output. Hence, prediction accuracy depends on the quality 
and dimension of the data. Statistical techniques can be divided into two 
groups: machine learning, i.e. artificial intelligence and time series 
based forecast models [16]. 

5.3.1. Time series based forecasting techniques 
Time series provides statistical information to foresee the nature of 

the quantified element. These observations are generally recorded over 
time at successive points in regular intervals such as quarterly, monthly, 
weekly, daily or even hourly and minutes, depending on the variable’s 
response with time [24]. The motivation of time series analysis is to 
predict the forthcoming value by evaluating the pattern of past infor
mation. For instance, Cornaro, et al. [152] employed statistical methods 
to establish the correlations between the meteorological past data and 
hourly solar irradiance. Established techniques are: exponential 
smoothing, autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA).  

i Exponential smoothing 

Exponential smoothing method or exponentially weighted moving 
average (EWMA) is a unique technique that adopts exponential window 
function for statistical analysis of historical time series data to make 
predictions. Generally, it allocates an unequal set of weights over equal 
weights to historical observations, thereby exponentially reducing the 
data from the most recent to the most distant data points. However, it 
can easily learn and make determination from assumptions. The tech
nique was first formulated by Brown [153] and has since seen many 
applications. Overtime, it was extended by Holt in 1957 and by Winter 
in 1960. It is thus called Holt-Winter’s method [154]. The governing 
equation is as follows: 

bY tþ1 ¼ αYt þð1 � αÞbY t ¼ bY t þ αðYt � bY tÞ (8)  

where, current observation is Yt; predicted value is bYt; and smoothing 
constant is α, which remains between 0 and 1. Therefore, the forecasting 
equation outputs the predicted value at t þ 1 which is equal to the sum 
of the last predicted value bYt and the forecasted adjustment factor 
αðYt � bYtÞ.  

ii The autoregressive moving average model (ARMA) 

ARMA is a time series statistical analysis frequently used in fore
casting. The model has been evaluated by many researchers in different 
applications of forecasting (solar and wind forecasting) and it has 
consistently performed with good prediction accuracy. The model in
corporates two polynomials: AR and MA for forecasting the PV output 
from historical data [155]. The mathematical expression is as follows 
[18]: 
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XðtÞ¼
Xp

i¼1
αiXðt � iÞ þ

Xq

j¼1
βjeðt � jÞ (9)  

where, predicted PV output is represented through function XðtÞ which 
is a combination of AR and MA functions. p and q indicate the number of 
processes or the order, while αi and βj are the coefficients of AR and MA 
models, respectively. eðtÞ is randomly generated white noise; it is not 
correlated with a model’s predictions. ARMA models are very flexible 
and can represent several different time series by using different orders. 
Furthermore, this model can recognize when there is an underlying 
linear auto-correlation structure. Mora-L�opez and Sidrach-de-Cardona 
[156] in their research adopted ARMA models to investigate the sta
tionary and sequential features of the global irradiation time series and 
forecast its pattern. Similarly, Hansen [157] found ARMA model was 
suitable in stationary data analysis. However, the approach requires 
static time series data which is a significant disadvantage.  

iii Autoregressive integrated moving average (ARIMA) 

ARIMA is also known as Box-Jenkins model and was developed by 
George Box and Gwilym Jenkins in 1976 [158]. ARIMA model is an 
extended version of ARMA and it is a popular time series analysis 
technique as it supports standard level of forecast accuracy for short 
term horizon. Moreover, this model has the ability to clip non-stationary 
values from the analysed data. Its structure consists of autoregression 
(AR), integration (I) and moving average (MA) to evaluate and predict 
time series characteristics [118]. The general form of ARIMA ðp; d; qÞ
model of time series X1;X2;X3 is as follows: 

ΦpðBÞΔdXt ¼ΘqðBÞat (10)  

ΦpðBÞ¼ 1 � ∅1B � ∅2B2…∅pBp (11)  

ΘqðBÞ¼ 1 � θ1B � θ2B2…θqBq (12)  

where, the backward shift operator is B; backward difference is Δ ¼ 1�
B and BXy ¼ Xy� 1; Φp and Θq are polynomial numbers of order p and q, 
respectively. As a result, the ARIMA ðp; d; qÞmodel is a composite sum of 
autoregressive part ðpÞ, an integrating part IðdÞ ¼ Δ� d, and a moving 
average part ðqÞ. The variables in Φ and Θ are precisely selected so that 
the zeros of all polynomials fall out from the unit circle to evade the 
creation of interminable processes. To consider the arbitrary disturbance 
taken from a fixed distribution with zero mean and σa variance at ; at� 1;

at� 2 are introduced as white noise process. Therefore, the intrinsic 
characteristics of the time series can be comprehend by the white noise 
process and backshift operator. Hansen [157] integrated ARIMA to 
predict global irradiance field and to summarize the coupling procedure 
between AR and MA as well as how it treats non-stationary series. 
Reikard [106] used ARIMA method to forecast solar radiation and 
compared the predicted results with those of an ANN based model. The 
outcome indicated that the ARIMA model at 24 h time span estimated 
more accurately than the other models studied. Similarly, Cadenas, et al. 
[159] found ARIMA model has very close accuracy rate with ANN based 
models. In another approach, an ensemble technique was used to 
combine statistical models with other models to generate a hybrid and 
thereby to exploit the strengths of all the member models. These com
pound models generally have better performance compared to conven
tional ANN or statistical models. 

5.3.2. Machine learning forecast techniques 
The other statistical modelling harnesses the advances in machine 

learning, an approach which is based on computing or artificial intelli
gence. The method relies on the ability of AI to learn from experience 
with historical data and to further hone its predictive abilities via 
training runs. Powerful computers are required to run numerous 

iterations before a final prediction can be achieved. It can perceive 
impossible representations without any preordained formulas or equa
tions. Its applications abound: pattern recognition, data mining, classi
fication problems, filtering and forecasting. The main techniques of 
machine learning are ANN, multi-layer perceptron neural network 
(MLPNN), recurrent neural network (RNN), feed-forward neural 
network (FFNN) and Feedback neural network (FBNN). 

5.3.2.1. Artificial neural network. ANN mimics the information pro
cessing mechanism of the human brain. It has a unique ability to 
approximate nonlinear functions with high fidelity and accuracy; and is 
being utilized in such diverse fields as meteorological predictions, 
finance, physics, engineering and medicine. Fig. 6 is a basic represen
tation of the network. 

The basic ANN architecture is divided into three sections: input 
layer, hidden layer and output layer, comprising artificial neurons and 
connections. As a similitude of biological neurons, each artificial neuron 
of a neural network is an activation node where all information pro
cessing and decision making activities take place. A particular activation 
node takes input from a previous node and applies machine learning 
parameters to generate the weighted sum. This processed information is 
then passed on to an activation function to compute the composite 
prediction. This generated prediction is progressively processed until it 
reaches the desired output. The most frequently used activation func
tions are Sigmoid, Hyperbolic tangent sigmoid, Gaussian radial basis, 
Linear, Unipolar step function, Bipolar step function, Unipolar linear 
function and Bipolar linear function. Along with different activation 
functions, in the last few decades, ANN forecasting techniques have 
undergone many modifications to accommodate disparate input-output 
projections and architectures.  

i Multi-layer perceptron neural network (MLPNN) 

Many researchers treat MLPNN model as a benchmark [160,161]. It 
is a technique for elementary and effective ANN approach to designing 
and prediction. It is so powerful that this network is used in universal 
approximation, and in nonlinear modelling and complex problems 
which cannot be solved by an ordinary single layer neural network 
[162–164]. Generally, MLP is a composite of three or more layers of 
incoherently activating nodes. These nodes in any layer are connected 
through a certain amount of weight to other nodes in the next layer. 
Therefore, it has the capability to correlate the input and output rela
tionship through adequate learning. The correlation between the num
ber of nodes and the hidden layer are essential. Hegazy, et al. [165] 
observed that a single hidden layer is adequate enough to design a 
complicated nonlinear function having a sufficient number of hidden 

Fig. 6. Basic structure of ANN [24].  
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nodes. However, overfitting and training difficulties occur due to the 
rise in the number of nodes [166]. Fig. 7 shows the simplified structure 
of an MLPNN with eight inputs for solar power prediction.  

ii Recurrent neural network (RNN) 

RNN is a prominent class of ANN which can learn and process 
different complex and compound relationships as well as computational 
structures. This network provisionally relies on time series data by 
feedback system to inherit the previous time step values; demonstrating 
temporal dynamic characteristics. The model has a simple structure with 
built-in feedback loop which allows it to act as a forecasting engine. RNN 
output of the concerned neural layer is summed with the next input 
vector and fed back into the same layer which is the only layer in the 
entire network. Hertz, et al. [167] extensively discussed the basic 
application of RNN model. The applications are incredibly versatile 
ranging from speech recognition to driverless cars. In another research, 
a RNN model is highlighted by Elman [168] where the architecture has a 
feedback loop that can communicate with the hidden layer of the 
network and the input layer. Jordan, et al. [169] proposed a slight 
modification to the network architecture by connecting the feedback 
loop from the output layer to the input layer. All these feedback loops 
help to reduce the learning error. In RNN, each active neuron is con
nected with all the other processing neurons and to itself. Hence, the 
output result of RNN is inclined to the feedback signal at the previous 
time step and the input signal. Williams and Zipser [170] conducted a 
series of experiments on RNN at real time to analyse the learning rate of 
the model. The activation function of RNN is the weighted sum of input 
signals and feedback. Thus, the activation function equation is as 
follows: 

SkðtÞ ¼
Xpþ1

p¼1

�
WikXpðtÞ

�Xq

q¼1
VkqYqðtÞ (13)  

where, SkðtÞ is the activation function at the given time t when pro
cessing node k and the connection weight is Vkq that corresponds with 
node q which is connected with node k, and pþ 1 is the value of the bias. 
Fig. 8 illustrates the relationship.  

iii Radial basis function neural network (RBFNN) 

RBFNN is a quicker and better approach to machine learning than 
other ANN approaches. Hence, it is used in approximation, time series 
prediction, classification and system control. The structure uses radial 
basis functions as activation functions. This network generally has two 
layers. The characteristics are merged together with radial basis acti
vation function in the first layer, and then the output of the first layer is 
used to compute the same output in the next time step. Both layers can 
be identified through their synaptic weight. The weighted value of the 
first layer is generated from the input information while the weight of 
the second layer needs to be determined from the calculation. The 
RBFNN can learn through unsupervised method as only input data is fed 
into the network. The network equation is as follows: 

YkðxÞ¼
XM

j¼1
WkjφjðxÞ þWko (14) 

Other methods in ANN for forecasting PV output involve: BPNN 
[171,172] and Elman neural network (ENN) [173,174]. A major con
dition for accurate and consistent forecasting for all techniques is a 
reliable historical data set. Therefore, various methods are used to 
pre-process and post-process input data before forecasting [175], e.g. 
empirical mode decomposition (EMD) [176], trend-free time series 
[177], normalization [48], WT, complementary ensemble empirical 
mode decomposition (CEEMD) [102] etc. 

Another versatile ANN approach is the synergy of two or more 
different methods to exploit the best attributes of each; hybrid modelling 
technique. Such models have highly accurate and consistent forecasts. 
To exemplify, WT, ANN and SVM were incorporated together into a 
hybrid model by Colak and Qahwaji [178], coupling of fuzzy interfer
ence model with RNN for solar power generation was done by Yona, 
et al. [179], PSO amalgamate with enhanced NN was shown by Amjady, 
et al. [180], hybrid GA and ANN for short-term wind power prediction 
was discussed by Zameer, et al. [143], and yet other types of hybrid 
techniques of forecasting were detailed by Qureshi, et al. [64].  

iv Extreme learning machine (ELM) 

Extreme Learning Machine is an advanced data driven approach for 
single layer feed forward networks (SLFN) [115]. The network has high 
enumerate capacity compared to back propagation and gradient descent 
algorithms with minimum training error and smallest norm of weights. 

Fig. 7. Multi-layer perceptron neural network [16].  
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Therefore, it demonstrates faster learning speed and easier imple
mentation with respect to standard ANNs [181]. Subsequently, it is 
preferred as a simple algorithm with smaller training input data re
quirements. Al-Dahidi, et al. [115] used ELM for PVPF due to their 
simplicity, computational economy and superior generalization ability. 
Fig. 9 is a typical ELM’s flowchart [26]. 

Huang, et al. [182] proposed modified algorithm of ELM in 2006 
[183], where SLFN weights from inputs to the hidden neurons were 
randomly classified to transform a linear system, while output weights 
were extracted analytically through Moore Penrose generalized inverse 
of the hidden layer output matrices. Fig. 10 is a generalized structure of 
this modified ELM. 

The network structure includes input, hidden, and output layers 
illustrated in Fig. 10. The network output value yi 2 Rn is premeditated 
based on N training samples ðxi; tiÞ 2 Rn� Rm; i ¼ 1; 2;…;N, K hidden 
neurons and an activation function gðwi ⋅xiþbiÞ by the following 
equation: 

yj¼
XK

i¼1
βigðwi ⋅ xi þ biÞ ; j¼ 1; 2;…;N (15)  

where, wi and βi are the connecting weight vectors of input and output 
neurons to the ith hidden layer neuron respectively, and bi is the bias of 
that network. The above equation can be represent as simplified matrix 

Fig. 8. Basic architecture of Recurrent Neural Network [16].  

Fig. 9. Flowchart of ELM [26].  

Fig. 10. ELM model structure [184].  
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format if the number of training set samples is equal to the number of 
neurons in the hidden layer, that is yj ¼ tj [184]. 

Hβ¼T (16) 

The hidden layer output matrix H is 

H¼

2

4
hðx1Þ

⋮
hðxN Þ

3

5¼

2

4
gðw1⋅x1 þ b1Þ…gðwK ⋅x1 þ bKÞ

⋮⋯
gðw1⋅xN þ b1Þ…gðwK ⋅xK þ bKÞ

3

5

N�K

(17)  

β¼

2

4
β1
⋮

βK

3

5

K�m

T ¼

2

4
T1
⋮

TK

3

5

K�m

(18)  

β is output weight and T is expected output target. 
Hossain, et al. [185] proposed another ELM model which exhibited 

high forecasting accuracy and learning rate capability compared to SVR 
and ANN. The study showed that for hourly ahead PV power prediction 
the RMSE ranged between (55.32–89.55)% in training phase with 
0.2496s computational time; while, it ranged between (54.96–90.41)% 
during validation runs with average 0.0153s computational time. In 
contrast, for next-day PVPF, the RMSE ranged between (13.83–21.84)% 
in training with 0.220s computational time and (17.89–35.39)% on 
validation trials with 0.0335s average computational time. 

In Ref. [98], the authors mentioned that PVPF accuracy could be 
improved with ELMs or echo state networks (ESNs) as base prediction 
models for the ensemble approach; the former approach being corrob
orated by Al-Dahidi, et al. [98].  

v Online PVPF and sequential extreme learning machine (OS-ELM) 

When new data becomes available from same or other closed PV 
plants, or when the environment in which the PV plant is operating 
undergoes major changes (evolves); updating the PVPF model is 
necessary. In the first case, availability of additional patterns can be used 
for enhancing the prediction accuracy; whereas, in the second case, an 
evolving environment entails that the prediction model(s) be informed 
or updated for the new operating conditions [115]. 

In Ref. [98], the authors discussed the updating of their PVPF model 
with new data from a PV plant. In some studies, error back propagation 
(BP) learning algorithm had been exploited to make ANN base-models 
adaptive to new data as it became available during testing, validation 
or implementation phase. Ding, et al. [186] had previously developed an 
improved BP-ANN for more precise 24 h ahead PVPF under different 
weather patterns. In general, the internal parameters of ANNs (i.e. 
weights and biases) are initialized randomly and subsequently updated 
by iteration via BP to reduce error between model prediction and actual 
PV power production [115,187]. 

In another study [98], the authors made similar claims as in 
Ref. [76], stating that LM and BR are popular error BP algorithms for use 
in model updating with new real-time data, as also corroborated by 
Ref. [187]. Once such an ANN is trained, it can be used online for PVPF 
using any test or real world pattern in an adaptive fashion [98]. How
ever, although the availability of new data needs an online learning 
algorithm, the traditional BP-ANN approach is neither the most effective 
nor the most efficient solution. It suffers from catastrophic forgetting of 
previous patterns when the prediction model is re-trained with newly 
obtained data. Moreover, it is computation intensive and lacks good 
generalization capabilities. 

A better solution was proposed by Al-Dahidi, et al. [115] who 
employed ELM and optimized its internal parameters using an exhaus
tive search process for predicting day-ahead PV output. The approach 
was used, in an online setup, for a 264 kWp PV system installed on the 
roof of the engineering faculty at the Applied Science Private University 
(ASU), Amman, Jordan. They compared their forecast accuracy by uti
lizing three different statistical measures, namely: RMSE, MAE and 

WMAE; concluding that their predictions were superior to the BP-ANN 
based PVPF method being currently used at the site [76,116]. Further
more, the researchers validated using their case study that their ELM 
approach was better in terms of overall simplicity, computational time 
and generalization capability. The faster and more accurate prediction 
accuracy of ELM stems from the way its internal parameters are opti
mized. In ELM, the parameters, i.e. network weights, are initialized 
randomly (for input-hidden neural layers) and then calculated analyti
cally (for hidden-output neural layers) as opposed to employing BP al
gorithm to iteratively set the parameters (weights and biases) in 
BP-ANN, which increases computational demand. A comprehensive 
literature search elicits that there are very few studies on the capabilities 
of ELM data-driven models for online PVPF [115]. [182,188] also 
corroborated the findings that the ELM approach was superior in terms 
of generalization and computational economy. Yet another research 
group, Behera, et al. [26] proposed an enhanced ELM based PVPF 
method by tuning the network weights using different PSO techniques. 
Their results surpassed the state-of-the-art BP-ANN approach. 

Nevertheless, ELM only takes historical dataset as input for model 
training, which must therefore be re-trained when new data are ac
quired. As such, for PVPF at seconds, minutes or hour time-based reso
lutions, an alternative method with sequential updating capability is 
required to follow the chaotic and non-stationary PV power patterns 
[126], with the goal of even better prediction accuracy. Indeed, online 
sequential extreme learning machine (OS-ELM) has been successfully 
exploited to address these requirements. 

OS-ELM was developed where recursion for the training of new 
datasets is applied to upgrade the output weights in real time. It feeds 
the trained model chronologically with new incoming datasets through 
chunk-by-chunk, block-by-block or one-by-one learning mode [184]. 
The size of the sequential blocks can be fixed or variable. This algorithm 
is inspired from ELM, therefore, the number of hidden layer neurons and 
the corresponding biases are selected arbitrarily; making OS-ELM faster, 
more accurate and the state-of-the-art compared to its predecessor in 
online PVPF applications [126,189].  

vi Ensemble of models approach to PVPF 

The ensemble of models approach, which aggregates the predictions 
of multiple independent base prediction models, has been effective in 
PVPF [190–192]. An example of this is the ensemble of ANNs [98]. 
Weight vectors, internal parameters of ANN, link input nodes to hidden 
layer, thereby establishing effect of the inputs on the response and biases 
of the hidden neuronal layer. The output layer, connected to the hidden 
layer by weights, predicts PV output via activation function. This is 
parallel processed by a group of ANNs, i.e. base prediction models; the 
final linear sum being the output of the ensemble approach (for ANN) at 
a particular time stamp of a specific day. 

Moreover, ensemble’s forecast accuracy can be improved by gener
ating diversity among its base prediction models [190–192]. This is 
accomplished by: 1) using disparate prediction methods (SVMs, ANNs 
etc.); 2) employing the same prediction model, but with differential 
parameter settings (for example, varying the number of hidden neurons 
and neuronal layers); and 3) training the individual models by utilizing 
different datasets [98]. For the last approach, techniques like boosting 
[193], Bootstrapping AGGregatING (BAGGING) [191,194] and Ada
boost [195] are popular. 

Single or uniform models lack robustness and flexibility; and there
fore, cannot consistently perform accurate PVPF, especially during 
weather fluctuations [98]. This is the niche for ensemble approach 
which has consistently shown higher forecasting accuracy while simul
taneously quantifying their associated uncertainties [25,196]. 

In Ref. [98], the authors implemented an Ensemble of ANNs, whose 
base-models were optimized and diversified using statistical tools to 
develop a robust and comprehensive day-ahead PVPF model. The 
model, thus developed, was applied to a PV system in ASU, Jordan and 
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the results compared against established forecasting approaches: smart 
persistence and single optimized ANN; revealing that the ensemble 
approach was far superior in prediction and tackling uncertainties. 
Other researchers include Omar, et al. [197] who developed ensembles 
of MLP feed-forward ANNs models that receive weather forecasts of the 
next day as an input and produced more generalized one day-ahead 
production predictions as an output for a solar facility; and Pierro, 
et al. [198] who developed a Multi-Model Ensemble (MME) that aver
aged the 24 h-ahead PVPF obtained by the best different data-driven 
base models fed with different NWP input data. 

5.3.2.1a. Uncertainty prediction and classification of its sources. Un
certainty, a major issue in all PVPF models, must be quantified as a post- 
processing step for improving accuracy [98]. Various sources of uncer
tainty affect grid operations [98,199] and can be classified into three 
types: (1) due to input, i.e. measurement errors related to weather 
variables; (2) due to intrinsic variability/stochasticity of the funda
mental physical processes; and (3) inherent in the model’s structure, i.e. 
parameters selected and training datasets utilized for model building 
purposes. 

For example, during real-time data collection, the authors [98] 
identified that the variability in individual model’s prediction in their 
ensemble of models approach to PVPF was significant at mid-day 
because of high uncertainty in weather conditions at the ASU PV plant 
site. This variability was much less in early mornings and late evenings 
on account of small variability. This is an instance of the second kind of 
uncertainty source (i.e. intrinsic variability/stochasticity of the funda
mental physical processes). 

5.3.2.1b. Uncertainty quantification techniques. Although uncer
tainty quantification is vital to energy and utilities market stakeholders 
[192,200], there is scarcity of research in this arena; most PVPF research 
focusing instead on accuracy of prediction. 

In Ref. [98], two established performance metrics for uncertainty 
quantification were cited: prediction interval coverage probability 
(PICP) and prediction interval Width (PIW) [201]. Furthermore, the 
authors [98] embedded the Bootstrap technique (BS) in their model for 
quantifying uncertainty, which has proven performance in prediction 
interval (PI) estimation for industrial sector [199,201]. Also, BS is easy 
to integrate with ensemble of ANNs’ architecture. Furthermore, the 
simplicity, lower computational efforts and ease of interpretation makes 
BS a very suitable technique for uncertainty quantification, especially in 
neural network based approaches. 

Uncertainty prediction can be enhanced by defining wider PIs which 
achieve the highest confidence level compared to established ap
proaches [98]. The authors included all three categories of uncertainty 
measure for high accuracy:  

1. Errors in model input  
2. Unpredictability inherent from stochasticity of physical processes  
3. ANN base model error 

Uncertainty quantification involves defining lower and upper limits 
or prediction intervals (PIs) of PV output within which the true “a priori 
unknown” output power value is expected to fall with a predefined 
confidence level of α%. Usually, α value is near 90% [201,202]. In 
Ref. [98], time stamp was used to calculate the uncertainty as bPensemble 
(t, d), at time t of day d. 

Other well-established uncertainty quantification techniques 
include: Percentile (10th and 90th percentiles for PI’s lower and upper 
bounds, respectively and α ¼ 80%) [203]; Non-parametric Kernel 
Density Estimation (KDE) (Probability Density Function (PDF) of the 
power predictions estimated the base prediction models of the ensemble, 
i.e. summation of the Gaussian kernel functions assigned to each of the 
predictions to obtain the final PDF, whose 10th and 90th percentiles are 
the lower and upper bounds of the PI, respectively) [204]; and Mean 
Variance Estimation (MVE) (uncertainty distribution following Gaussian 

distribution function whose variance is determined by employing ANN 
designed following a process similar to that followed in the BS) [205]. In 
Ref. [98], uncertainty quantified via BS was found superior to the al
ternatives: KDE and MVE, for obtaining the target coverage level of 0.8 
at all-time instances of the day. 

Yet other uncertainty estimations exist, such as: Delta [206,207], 
Lower Upper Bound Estimation (LUBE) [208] etc. which have demon
strated utility under varied industrial applications [201,207,209]. 

5.3.2.2. Deep learning. Currently, the state-of-the-art in machine 
learning is deep learning (DL) or deep neural network (DNN). This ANN 
can learn from voluminous input data and uses improved learning al
gorithm, better parameter analysing methods and numerous hidden 
layers [210]. DL is an unsupervised machine learning technique 
implying that its algorithm can predict the outcome by perceiving the 
pattern in the input. First proposed by Hinton in 2006 as ‘layer-wise 
greedy learning’ [211], DL has enhanced ability to determine local op
tima and depict assemble rates. It beat the world’s Go Game champion 
Lee Se-dol in Korea in 2016 under the Google deep learning project 
[212]. 

Some researchers [65] claimed that deep convolutional neural 
network (DCNN) consistently outperforms other models in forecasting 
from different data sets as demonstrated by its statistical evaluations. In 
terms of forecasting reliability, sharpness and overall continuous ranked 
probability score (CRPS) skill, forecast models developed from proba
bilistic combination with WT, DCNN and Quantile regression (QR) 
models are very effective. 

There are mainly four types of deep learning, a restricted Boltzmann 
machine (RBM), deep belief network (DBN), autoencoder (AE) and deep 
convolutional neural network (DCNN). 

RBM is generative stochastic in nature and uses input data to learn 
probability distribution. Paul Smolensky in 1986 developed the idea and 
later Hinton applied it. This method is employed in data classification, 
collaboration, filtering and dimension reduction [212]. Different hy
brids of RBM have been developed: discriminative restricted Boltzmann 
machines (DRBMs) [213], conditional restricted Boltzmann machines 
(CRBMs) [214] and robust Boltzmann machine (RoBM) [215]. 

Further modification by Hinton led to stacked architecture of RBM 
known as DBN, a MLP with latent variables that can form the Bayesian 
probability generative model, but its training method is entirely 
different. In brief, DBN is a combination of RBMs and a classifier that can 
train hidden layers simultaneously whose attributes are the same as 
RBM’s. Such arrangement ensures that when the first iteration is done its 
output acts as an input for the next RBM layer. This is a continuous 
process that progresses until it reaches the output layer [216]; thus, it 
can learn patterns progressively. When the learning process is complete, 
it recognizes the distinctive patterns in a data set. Hinton and Nair 
harnessed this pattern recognition capability of DBN to identify a 3D 
object [217]. It is still a developing field and research is ongoing on the 
development of image and speech recognition hybrid models 
[218–220]. 

Another DL approach is the autoencoder (AE). Bourlard and Kamp 
[221] used a MLPNN for information processing in auto-association 
mode for compressing data dimension. Although an unsupervised 
learning algorithm, AEs can learn generative models of data for the 
purposes of forecasting [222]. It achieves this by learning to encode the 
information from the input layer and later reconstructing it after the 
decoding process. The main advantage is that AEs can filter out noise 
during data extraction. 

A special subset of DL algorithm, convolutional neural network 
(CNN) is a novel approach where the connectivity principles between 
synthetic neurons mimic the organization of animal visual cortex. Be
sides, it learns to recognize patterns usually through highlighting the 
edges and pixel behaviors that are generally observed in various images 
in its layers. 
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It is currently the best available tool for machine handwriting 
recognition, face detection, behaviour recognition, speech recognition, 
recommender systems and image classification. The computational 
model utilized is called Neocognitron [223] which relies on linear or 
nonlinear filters to extract the features from an image. To function 
effectively, CNN consists of several blocks such as convolution, activa
tion and pooling, all functioning together for feature extraction and 
transformation [224]. It has a deep neural architecture and usually 
comprises four types of layers [225], namely:  

1., Convolutional layer, which extracts feature representations of the 
inputs.  

2., Pooling layer, which connects the previous convolutional layer. 
The aim of pooling layer is to aggregate the input features by 
reducing the resolution of feature maps.  

3., Fully connected layer, which lies between pooling and logistic 
regression layer and transports the learned distributed feature 
representations to one space in order to perform high-level 
reasoning. All the neurons of previous layer are connected to 
every single neuron of the current layer.  

4., Logistic regression layer is the last layer in CNN. Softmax function 
is usually employed as the activation function of logistic regres
sion layer for output generation. 

Compared with the traditional fully-connected neural networks, the 
obvious advantage of CNN is the reduced number of parameters to be 
estimated due to the weight sharing technique. As well, CNN layers 
consisting of small kernel sizes provide an efficient way for extracting 
hidden structures and inherent features. 

Along with structural performance advantages, CNNs have other 
practical functionalities, such as excellent data processing with grid 
topology features [226]. Consequently, CNN is commonly employed in 
image processing; however, its application in weather classification for 
PVPF is less common [53]. In this type of approach, a weather classifi
cation problem, which is predominantly a pattern recognition task, is 
transformed into an image processing undertaking; thereby improving 
the classification accuracy. 1-D solar irradiance and other time series 
arrays are first converted into a 2-D image for feature extraction, and 
then reconverted to a 1-D vector for classification purposes. 

For even more enhanced performance, hybrid CNNs are being 
developed, such as recursive convolutional networks (RCNs) [227]. 
Others, Desjardins and Bengio [228] incorporated RBMs in CNN to 
develop the convolutional restricted Boltzmann machines (CRrBMs). 
Jarrett, et al. [229] proposed another novel hybrid model that merges 
convolution with an AE, and Mathieu et al. introduced the Fourier 
Transform (FT) on CNNs for fast training procedure [230]. 

For forecasting the behaviour of atmospheric elements, such as wind 
intensity, Hu, et al. [63] employed DL with a de-noising AE to pre-train 
the NN from old wind farm data in order to accurately predict wind 
power generation for newly developed wind farms. Another researcher, 
Qureshi, propounded the application of DL for short-term wind power 
prediction [64]. The forecasting strategy utilized deep belief network for 
meta-regression and an AE for base regression. It has been aptly named 
DNN-MRT; another very effective hybrid model. Finally, for PVPF pur
poses, a variety of approaches have been investigated. Yang, et al. [52] 
used SOM and LVQ to classify historical PV output data. Chen, et al. [40] 
adopted SOM and used it to classify local weather type for next-day 
forecasts from online time series data. Wang, et al. [56] extracted 
solar irradiance features using SVM and performed pattern recognition 
of weather statuses for ST-PVPF. Furthermore, SVM and KNN ap
proaches were used for adequate sample size determination. However, 
all these models suffered from a common issue; shallow learning models. 
These are unable to determine the deep non-linear relationships be
tween input and output, especially when large quantities of complex 
data are involved. These can be addressed using CNN which can eluci
date the intrinsic abstract features and high-level invariant structures in 

data [231]. Indeed, previous studies agree that CNN classifications are 
best achievers in various applications, outperforming classical intelli
gence methods such as SVM [232]. Table 3 lists ANN based and Table 4 
catalogs some DNN based prevalent PV forecasting techniques. 

The techniques used in the optimization and evaluation of PV output 
forecast models are varied and situation specific. The disparate input 
parameters (location and climate dependent) make comparison among 
the models complicated; requiring specialized methods to gain useful 
insights. 

The time series data either from primary (experimental observations) 
or secondary (published data from different meteorological stations) 
sources frequently contain periodic oscillations and spikes. Such outliers 
can severely degrade the quality of data and are cleansed using WT 
method. Another common problem is missing data in the time series due 
to sensor error and faulty data management system. Such missing data 
have to be reconstructed before any modelling using similarity tech
nique or interpolation. Hence, along with different models, any com
parison has to consider the pre-processing methods utilized to improve 
data quality. 

The data size or length is another important factor and the current 
literature review performed highlights the need for further in
vestigations into the effect of data length employed in forecasting [211]. 
Too short or too long data lengths adversely affect a model’s precision. 
In general, the forecast is better with longer and quality training data. 
Thus, some researchers have used different sized data sets, determined 
using clearance index, indicating sunny or cloud covered days, to 
analyse the effect of various data lengths on forecast accuracy. This 
could be a method for comparing across different data sets, the perfor
mance of varied forecast models. 

Sufficient length of time series data, which contains the salient fea
tures of the forecasted data set and the weather conditions of a particular 
region, is very essential. A mixture of sunny and cloudy days is more 
common in winter months than in the summer. Thus, models trained on 
winter time series data are usually more robust than those trained on 
summer data for most locations. However, the literature also indicates 
that longer training data sets are not necessarily comprehensive, i.e. 
they may not necessarily contain more training samples. Rather, repe
tition of data and patterns can abound in such long data. Therefore, 
training models on such data is computationally expensive without any 
added benefit. This review thus evaluated models based on the use of 
techniques to ensure quality training data with sufficient sample size. 

Another important issue is data resolution; too high data resolution, 
as in data taken every few minutes usually has inherent high un
certainties which can cause problem in pattern recognition; an impor
tant aspect in determining the complex relationships between input and 
output. Conversely, too low resolution, as in data taken every half hour 
to an hour has inadequate training patterns and can cause problems in 
model’s convergence, repetition of patterns in data and failure to model 
the relationship between input and output parameters. The optimum 
solution is the use of intermediate temporal resolution data sets for 
effective training, testing and prediction purposes. Therefore, in the 
evaluation of any model’s forecasting ability, the type of data resolution 
used was assessed. 

A prescribed solution to these problems of data length and resolution 
has been the use of optimization techniques. Many researchers have 
used statistical or evolutionary algorithm (GA, PSO etc.) based ap
proaches to select optimum training data sets. In the case of neural 
networks, suitable neural layer architecture and the number of hidden 
layers have also been optimized. In the current review, therefore, 
emphasis was given to modelling approaches with optimization. 

Yet others have used data normalization techniques to reduce the 
domain and range of the data for ease of comparison and modelling, 
usually bringing all data within a range of 0–1. A large data spread in 
one of the meteorological factors being considered as a model input can 
cause too much weightage being assigned to it and also improper output 
of the activation functions used in NN. Normalization during pre- 
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processing of input data can help to reduce these problems and make 
comparison among different sized data sets possible; nevertheless, the 
normalized data need to be de-normalized in post-processing in order to 
make sense of the forecasts, an added complication. Other approaches 
have applied equal weight aggregation methods, which average the final 
forecast of various neural networks, and trimming aggregation tech
niques, to excise extreme data points. The same techniques can also be 
used to compare the performance of various models developed from 
different data sets; however, there are no exact methods in determining 
the values of trimming parameters making the process less amenable to 
objective inquiry. 

Another key issue has been the use of appropriate evaluation tech
niques for model performance. A common approach is benchmarking 
against established models and data. This has been exploited by 
numerous researchers with the persistent model being a favourite. 
Others have compared their results with meteorological and physical 
models used in weather forecasting, and some have developed experi
mental setups to make direct objective comparison of their developed 
models. A more proven model evaluation approach is the application of 
statistical measures. Many statistical tools are available, among these, 
RMSE is very robust and effective due to its ability to handle outliers and 
spikes in data. 

Thus, comparing the performance of different forecast models is a 
complicated affair; nonetheless, this paper has highlighted the major 
concerns in the various models discussed and has taken an objective 
approach. It is hoped that the contrasts made among the different 
models, although based on different data sets and criteria, will help give 
future researchers a starting point in deciding which type of approach to 
use based on their specific requirements. 

6. Motivation for the review 

The uncertainty inherent in harnessing solar energy due to its 
dependence on meteorological parameters makes PVPF essential for 
efficient planning and integration of PVs in micro and national grids. 
From the comprehensive and critical review above it is lucid that over 
the past two decades many different approaches to the modelling and 
forecasting of PV output have been attempted with varying degrees of 
success. Nevertheless, the conventional and statistical methods in fore
casting have not been up to the par in terms of reliability, accuracy and 
computational economy. The obvious choice is the machine learning 
approach in the form of ANN or its hybrids, which can handle large 
amounts of data and generate accurate predictions for short to medium 
temporal horizons, without the need for complex mathematical re
lationships or physical representations. Thus, the demand on the re
searcher’s and the practitioner’s skills and effort is reduced; making the 
ANN approach easily reproducible for different sets of initial scenarios 
and locations. 

Not surprisingly, researchers have exploited the flexibility and 
robustness of ANN based forecasting and the literature abounds with 
descriptions of various modelling approaches. Among these, DNN is 
promising for its ability to fathom non-linear and highly complex re
lationships between numerous inputs and the forecasted response. More 
specialized forms such as RNN and CNN are fast gaining popularity. 
These approaches have already proven their versatility in other dispa
rate applications. 

Even more sophisticated approaches are recently available such as 
DCNN and deep long short term memory (DLSTM); the latter is a state- 
of-the-art technique which exploits the benefits of memory loops inte
grated in a DNN, allowing the neural net to learn from data sets at a 
faster pace. Thus, it is hoped that the comprehensive review will aid 
future researchers as well as utilities operators to gain valuable insight 
into the need and the modes of forecasting for PV power output. The 
knowledge gained may also help policy makers and energy market 
participants to make more effective and profitable decisions concerning 
the implementation of hybrid PV integrated electric grids for local or Ta
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national consumption. 

7. Conclusion 

The dynamic nature of solar irradiance affects the reliability of PV 
incorporated systems. Sporadic penetrations due to sunlight intensity 
variations lead to voltage and power fluctuations; disrupting utility 
companies, energy markets and power distribution. Reliable forecasting 
is the solution and can be classified from ultra-short term to long term 
forecasts; with current research and industry focus mostly on transcend 
systems for short-term next-day predictions as these are more accurate 
and can address the vagaries of cloud cover. On the other side, long term 
forecast have gained importance for long duration power system plan
ning purposes. 

However, precise predictions are challenging and disparate ap
proaches involving physical, statistical, artificial intelligence, ensemble 
and hybrid models have been investigated. Among these ANN, espe
cially CNN or its hybrid forms, often in ensemble arrangement, hold 
most promise for forecast accuracy, especially for short-term forecast 
horizons. 

Moreover, forecast horizons, model’s performance estimation, input 
selection and its correlation analysis with optimization, data pre and 
post-processing, time stamp and weather classification, network 
parameter optimization, adaptive neural architecture, and uncertainty 
quantification must be considered for designing an effective PVPF. 
Forecast horizons impact a model’s prediction accuracy. In general, the 
longer the forecast horizon, the greater is the chance of forecast error. In 
contrast, ultra-short-term forecasting suffers most due to the vagaries of 

nature, i.e. cloud cover and its turbulent movements. Alongside a 
model’s performance estimations by employing statistical measures: 
MAE, MAPE or RMSE; economic analysis metric may be incorporated for 
more practical assessment of PVPF models. There is no single perfor
mance measure for all situations, rather the researcher or practitioner 
must decide on the best evaluation method being cognisant of the 
strengths and weaknesses of each. 

Also, model inputs must be amenable to correlational analysis, with 
strongly correlated inputs being most important. Improper inputs cause 
high forecast errors leading to time delays, cost overruns and compu
tational complexities. Common inputs include meteorological data, for 
instance: solar irradiance, atmospheric temperature, wind speed and 
direction, and humidity. Furthermore, PV module (cell) temperature is 
another, albeit system related, input. Among these, solar irradiance is 
most positively correlated with PV output. 

Nevertheless, including many inputs considerably increases the 
complexity and computational time of a model. Hence, optimizing for 
the most strongly correlated inputs is essential for efficient PVPF and is 
usually done using evolutionary algorithms. 

Also of concern is pre and post-processing of data. Cleansing and 
restructuring of historical datasets is mandatory as is its augmentation, 
since they contain intermittent static, spikes or missing instances 
precipitated by weather fluctuations, seasonal variations, electricity 
demand shifts or sensor failures. WTs and normalization are popular, 
while GAN is gaining ground for data augmentation purposes. 

Another pre-processing technique, weather classification, has been 
recommended by scholars. It accounts for change of solar irradiance due 
to change in weather and 33 major types have been categorized, with 

Table 4 
Forecasting techniques using Deep Neural Network.  

Author Year Forecasting Model Description  

Wen, et al. [250] 2019 DNN and LSTM A coupled DNN-LSTM approach was used to predict the load and PV output in a 
micro-grid. For better prediction, the inputs were optimized with PSO. The 
hybrid was better than MLPNN and SVM in terms of total forecasting cost and 
reliability. 

MAPE 7.43% 

Siddiqui, et al. [251] 2019 DCNN and LSTM A twin stage DNN model forecasted solar-irradiance from cloud cover videos. 
The first stage was a DCNN which encoded the sky images. Then, LSTM as the 
second stage used metrological parameters for predictions. The model 
outperformed GFS and ECMWF. 

nMAP<22% 

Lee, et al. [252] 2018 DCNN and LSTM Twin DNN model was employed to generate day-ahead solar power forecast 
from time series data obtained from PV inverters and national weather centre 
reports. The two DCNN with different filter sizes extracted short-time local 
patterns and a LSTM captured the long-time features in the data. The approach 
outperformed linear regression, RFR, SVR and other traditional models. 

RMSE 9.87% 

Zhang, et al. [253] 2018 DCNN Several DCNNs were exploited to predict solar power generation. High- 
resolution weather data with various spatial and temporal connectivities were 
used to understand cloud movement and its correlation with solar energy 
utilization. The prediction accuracy was better than the persistent and SVR 
models. 

rMAPE 11.8% 

Haixiang, et al. [254] 2018 DCNN and Variational 
mode decomposition 

A hybrid approach based on DCNN for short term PV output forecasting. A 
variational mode decomposition technique extracted different frequencies from 
historical data to form two-dimensional datasets that correlated both daily and 
hourly timescales through convolution kernels. The model outperformed SVR, 
GPR and RFR techniques. 

RMSE< 4% 

Srivastava and Lessmann [255] 2018 LSTM A DNN married to LSTM predicted day-ahead global horizontal irradiance from 
satellite data. The model outperformed Gradient Boosting Regression, FFNN and 
Persistence methods, with an average forecast skill of 52.2% over the persistence 
model. 

RMSE <29.26 Wm-2 

Zhang, et al. [31] 2018 LSTM Three DNNs were analysed: deep MLPNN, DCNN and deep LSTM in terms of 
forecasting of PV output on minute scale. The LSTM based model demonstrated 
the best performance. 

RMSE< 21% 

Wang, et al. [65] 2017 DCNN, WT and QR A hybrid approach merging WT, DCNN and QR was used to enhance the 
prediction capability over BPNN, SVM and SVM integrated WT methods. 

RMSE<15% 

Alzahrani, et al. [66] 2017 DRNN DRNN was employed for forecasting solar irradiance. Inputs were cloud cover, 
scattering of sunlight, overcast sky and clear-sky datasets. The model 
outperformed SVR and FFNN approaches. 

RMSE 8.6% 

Gensler, et al. [256] 2016 AE and LSTM A hybrid DL algorithm comprising AE and LSTM was developed which 
outperformed MLPNN and physical forecasting models. Comparison also 
showed its superiority over DBF and deep LSTM. 

RMSE <7%  
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recommendations for merging these into 10 classes being presently 
under consideration. This is also inseparable from cloud motion and 
categorization studies, which exploits image processing based pattern 
recognition. Such techniques are generally employed with time stamp of 
day and month of the year. 

For optimization of network parameters (weights and biases), GA 
and PSO have gained prominence. In addition, design of adaptive 
network features to handle newly available data from same or different 
PV plants for online PVPF applications has been solved using OS-ELM, 
which is more efficient than the state-of-the-art BP-ANN. In this re
gard, ensemble of base prediction models comprising many ANNs or 
ELMs, have also shown potential. 

Subsequently, post-processing to interpret the predictions and to 
make it adaptive to newly available data for online applications is vital. 
Both primary (from experiments) and secondary (from NWP) data have 
been used in this regard. Often researchers have used a single PV plant, 
while some have used aggregate readings from distributed PV systems 
spanning large areas. 

Finally, all the various components of a PVPF model must have 
synergy in order to implement the predictions and derive benefits. 

8. Scope of future work 

The vagaries of weather give the impression that RE based, especially 
PV integrated, hybrid electric grids are difficult to realize. However, 
advances in mathematical modelling, physical representations, statisti
cal analysis and computing power have made forecasting a viable op
tion. Many agencies have shown initiative to support research in this 
direction and, as a response, considerable research findings are avail
able. Still, the existent forecast models are either too specific to a spatial- 
temporal horizon or are circumscribed for a particular region. The 
current need, therefore, is for a more versatile forecasting approach 
which is unbounded by such limitations and can be reproduced for 
varying initial conditions at different geo-climatic conditions. The 
obvious contender for this is ANN, more specifically the DNN approach, 
along with its derivatives such as DLSTM and DCNN. More research is 
needed to investigate the utilization of these techniques in solving the 
conundrum of PVPF. 
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