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a b s t r a c t

The statistical air density distribution was modeled on a high-spatial resolution scale (200m� 200m)
and the error by using constant standard air density was estimated using Germany as study area. Daily
mean air temperature and air pressure time series of 144 meteorological measuring stations operated in
the period 1979e2014 were used to calculate air density in the very common hub height for newly
installed wind turbines of 140m. The parameters of the statistical air density distributions were mapped
for the whole of Germany. By applying a 2.4MW power curve and the wind speed-wind shear model,
study area-wide annual energy yield was calculated assuming constant standard air density and using
the modeled air density distributions. The results from the comparison of the energy yields demonstrate
that the total area with energy yield >7.0 GWh/yr is slightly smaller (0.7%) when air density is considered
to be variable. Based on the results of this study, the influence of air density on the wind energy yield of
low elevation coastal sites and high elevation mountain sites can now be quantified in the study area.
This will contribute to a more efficient use of the wind resource.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy is an energy source that can make a substantial
contribution to reducing greenhouse gas emissions and has the
potential to cover a large amount of global electricity demand [1]. To
meet the current global electricity demand, a cumulative installed
wind capacity of about 10,800,000MW is necessary [2]. By the end
of 2017, the installed wind capacity was 539,581MW [3] which
means that many new wind turbines more will have to be installed
for covering the global electricity demand. However, in many
countries, suitable sites for new wind turbine installations are rare
[2]. On the one hand, this is due to the fact that geographical re-
strictions such as urban areas, permafrost areas, and conservation
areas limit the available area [2]. On the other hand, the productive
wind resource and the corresponding wind turbine power output
(Pw) are also limited. In general, Pw can be described by:

PW ¼ 1
2
rAU3CP (1)

with r the air density inwind turbine hub height (hhub), A being the
iburg.de (C. Jung).
rotor swept area, U is the wind speed in hhub and Cp is the Betz's
power coefficient [4]. Both A and Cp are features of wind turbines
whereas U and r are properties of the wind turbine environment.
Since Pw changes with the cube of U, the spatio-temporal variability
of U has a much greater influence on Pw than r [5]. Thus, many
recent studies aim to improve the spatio-temporal description of U
and other very closely related wind variables.

At a site near Lake Erie (Ohio, USA), wind energy potential was
assessed by U, turbulence intensity, distributional parameters of U,
wind direction, wind power density, and wind turbine capacity
factors [6]. Germany's directional PW was calculated by using the
mixed Burr-Generalized Extreme Value distribution and Gaussian
copulas for establishing a functional relationship between U and
wind direction [7]. The suitability for installing wind turbines at
two sites in Chile was evaluated by using U data from the numerical
Weather Research and Forecasting (WRF) model [8]. In another
study, wind power density in hub height was mapped in Iran based
on U data from 150 measurement stations [9]. The wind resource
characteristics in a complex mountain region were investigated in
Chenzhou (China) [10]. Considering the great three-dimensional
spatial variability of U, the wind speed-wind shear model
(WSWS) was parameterized at a 200m� 200m horizontal reso-
lution in the entire wind turbine hub height range in Germany [11].
The inter-annual variability of the wind resource was quantified by
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Abbreviations

Acronyms
asl above sea level
GEV Generalized Extreme Value distribution
MLR multiple linear regression model
WRF Weather Research and Forecasting model
WSWS wind speed-wind shear model

SymbolsfR2 median coefficient of determination
R2 coefficient of determination
Ta mean air temperature (�C)
Ta air temperature (�C)
CP Betz's power coefficientbF i estimated cumulative probability of the ith empirical

value
F mean of the empirical cumulative distribution

function values
Fi ith empirical cumulative distribution function value
p air pressure (hPa)
p mean air pressure (hPa)
r mean air density (kg/m3)
~r median air density (kg/m3)
rst standard air density (1.225 kg/m3)
r air density (kg/m3)
Dr air density difference (kg/m3)

A rotor swept area (m2)
AEY air density corrected mean annual energy yield

(GWh/yr)
AEYst mean annual energy yield assuming standard air

density (GWh/yr)
APE absolute percentage error (%)
b regression parameter
c constant
el elevation (m asl)
f probability density function
F-1 quantile function
G atmospheric gas constant for dry air (287.058 J/kgK)
h0 ground level height (m)
hhub wind turbine hub height (m)
lat latitude (�)
lon longitude (�)
PE percentage error (%)
Pw wind turbine power output (kW)
RE relative error (GWh/yr)
U wind speed (m/s)
Ust wind speed of standard power curve (m/s)
z air density correction
d second Wakeby shape parameter
a first Wakeby scale parameter
b first Wakeby shape parameter
g second Wakeby scale parameter
ε Wakeby location parameter
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performing an annual parameterization of WSWS [12].
Substantially fewer research was carried out focusing on r and

its influence on PW. A multivariate wind distribution model
including U, wind direction, and r was developed for one onshore
and one offshore location in the USA [13]. A bivariate probability
model was presented for the Canary Islands (Spain) taking the
variability of r and U into account [14]. In the same study area, Díaz
et al. [15] compared eight measure-correlate-predict-models to
simulate the wind power density. They included r in the model
parameterization and concluded that it is important to consider the
annual variation of r even in regions at the sea level. The uniform
distribution was used for a case study in the southern Caspian Sea
to describe the air density distribution [16]. The sensitivity of PW to
rwas evaluated for a wind farm in Spain. It was found that, when r

is varied from �5% to þ5%, PW error lies between �2.40%
andþ2.22% [17]. To minimize the errors resulting from ignoring the
spatio-temporal variability of r, some investigations consider the
variability of r. For PW assessment in Kiribati, mean r (r) was
calculated using air temperature (Ta) and air pressure (p) [18]. For
wind resource assessment in northern Spain, r was considered by
using the ideal gas law and meteorological data [19].

In many other previous wind energy yield assessments, r was
assumed to be constant over time and space being 1.225 kg/m3. Yet,
a r value of 1.225 kg/m3 is only valid under standard conditions
with Ta¼ 15 �C and p¼ 1013 hPa [14]. Although these standard
conditions are rarelymet in reality, there is often no adjustment of r
in the estimation of PW. In fact, r shows a great spatio-temporal
variability which is mostly determined by p. While the spatial
variability of p is mainly determined by elevation (el), meteoro-
logical conditions control the temporal variability of p. As a result, r
shows diurnal, annual, and inter-annual variability as well as long-
term trends similar to U [12].
A systematic description of the statistical r distribution in space
makes it possible to determine its influence on Pw. Yet, the few
studies currently available on this topic often relate to specific sites
and therefore allow only limited insight into the role of r in wind
energy assessment. To the best of our knowledge, a systematic
quantification of the areal, r-dependent variability of PW has not yet
been carried out although such information is important, especially
when mountainous regions are considered for the installation of
new wind turbines, where the influence of air density cannot be
neglected. Thus, the goal of this study was a systematic evaluation
of the influence of a Ta- and p-dependent spatio-temporal vari-
ability of r on the wind energy yield in Germany.
2. Material and methods

2.1. Overview

The analysis of the influence of air density on wind energy yield
comprises the following main steps (Fig. 1): (1) Obtaining daily
mean of ground level air temperature and air pressure from 144
meteorological measurement stations distributed all over Ger-
many, (2) extrapolation of air temperature and air pressure to wind
turbine hub height of 140m, (3) calculation of air density using the
ideal gas law, (4) mapping of air density percentiles by multiple
linear regression (MLR) models using the independent variables
elevation, longitude (lon) and latitude (lat), (5) fitting of theoretical
distributions to air density percentiles, (6) air density correction of
a wind turbine-specific power curve, (7) application of the wind
speed-wind shear model for calculating air density corrected mean
annual energy yield (AEY). All steps involved in the data prepara-
tion and data analysis were implemented with the Matlab 2018a
software.



Fig. 1. Overview of the methodology applied to assess the influence of air density on
wind energy yield.
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2.2. Study area and data

The study area is Germany. In Germany, onshore wind energy
covered in the year 2017 more than 15% of net electricity con-
sumption. This amount of electrical energy is produced by more
than 28,500 wind turbines with a total installed capacity of
50,000MW [20]. Due to the great wind resource, the majority of
the wind turbines are installed in the north of the country (Fig. 2a).
Substantially fewer wind turbines are installed in the south, where
the terrain is complex and the wind resource is often low.

The data used in this investigation include Ta and p time series
measured at 144 meteorological measuring stations operated by
the German Meteorological Service [21]. The measurement period
was 1979e2014. Since Ta and p were measured at a height of
h0¼ 2m, theywere extrapolated to hhub of thewind turbine Nordex
N117/2400 (140m). The N-117 wind turbine was one of the most
frequently installed wind turbine types in 2017 in Germany [18].
For the extrapolation of p to hub height, the barometric law was
applied [22]:

pðhhubÞ ¼ pðh0Þ
�
1� 0:0065$Δh

Taðh0Þ
�5:225

(2)

Ta(hhub) was estimated by assuming that Ta decreases at a rate of
0.65 K/100m [22].
Fig. 2. (a) Study area with elevation (el) and existing wind turbines (black dots), and
(b) share of study area and wind turbines in the study area as a function of el.
An overview of the measurement stations with corresponding
mean Ta (Ta) and mean p (p) over the study period is provided in
Fig. 3. In hhub, low Ta-values occur in southeast Germany, where the
distance to the sea is greatest and el is often high (Fig. 3a). The
lowest Ta values were measured on top of the Zugspitze
(Ta¼�5.1 �C), which is Germany's highest mountain (el¼ 2964m
asl). Accordingly, p ¼ 695 hPa is also very low (Fig. 3b). The
warmest region in Germany is the southwest, where Ta reaches
annual values up to 10.5 �C. Highest pwas measured in the north of
the study area because el is very low.

After extrapolating p and Ta to hhub, rwas calculated by the ideal
gas law [2]:

r ¼ p
G$Ta

(3)

with G being the atmospheric gas constant (287.058 J/kgK) for dry
air. In contrast to p and Ta, no simple extrapolation method for
humidity to hhub is available. Therefore, humidity was not consid-
ered for r calculation. Anyway, the resulting maximum r difference
between dry air and saturated air is less than 1%. The resulting r

time series were converted to empirical cumulative distribution
functions.
2.3. Modeling of air density

Since el and the geographical location modify the meteorolog-
ical conditions, both have an influence on r [22]. Therefore, the
variables el, lon and lat were selected for the simulation of all
percentiles of the r distribution with the following MLR:

r ¼ cþ b1$elþ b2$lat þ b3$lon (4)

where c is the constant and b1,…, b3 are the regression coefficients,
el was available from a digital elevation model (resolution:
200m� 200m) [23].
2.4. Fitting of Wakeby distribution

To obtain continuous distributions from the modeled r per-
centiles, theoretical distributions were used. The two-parameter
Gamma, two-parameter Weibull, three-parameter Burr, three-
parameter Dagum, three-parameter Generalized Extreme Value
(GEV), and five-parameterWakeby distributions were fitted to the r
empirical cumulative distribution functions by the least-squares
Fig. 3. Study area with (a) mean air temperature (Ta) and (b) mean air pressure (p) at
hhub¼ 140m at the 144 evaluated measurement sites.



C. Jung, D. Schindler / Energy 171 (2019) 385e392388
estimationmethod [24]. The fitting accuracy of all distributionswas
assessed by the coefficient of determination (R2) which is defined as
[25]:

R2 ¼ 1�
Pn

i¼1

�
Fi � bF i

�2

Pn
i¼1

�
Fi � F

�2 (5)

with Fi being the ith empirical cumulative distribution function
value, bF i the estimated cumulative probability of the ith empirical
cumulative distribution function value and F the mean of the
empirical cumulative distribution function values. As will be
demonstrated in section 3.2, the five parameter Wakeby distribu-
tion provides the highest fitting accuracy. The Wakeby distribution
is typically defined by its quantile function [26]:

F�1ðrÞ ¼ εþ a

b

h
1� ð1� FÞb

i
� g

d

h
1� ð1� FÞ�d

i
(6)

with a the first scale parameter, b the first shape parameter, g the
second scale parameter, d the second shape parameter, and ε the
location parameter. Its probability density function can be formu-
lated as follows:

f ðrÞ ¼
n
a½1� FðrÞ�b�1 þ g½1� FðrÞ��d�1

o�1
(7)
2.5. Annual energy yield estimation

Wind turbine specific AEY for standard r conditions (rst)
assuming rst ¼ 1.225 kg/m3 (AEYst) is typically calculated by
Ref. [2]:

AEYst ¼ 8;760 hrs
ð∞
0

PwðU; rstÞ f ðUÞdU (8)

where f(U) is the wind speed probability density and PW(Ust) the
wind turbine specific power curve.

The wind speed distributions for this study were modeled with
WSWS [11,27]. WSWS enables the reconstruction of highly-
resolved U [11,27] considering surface roughness and orography.

Power curves are usually available from wind turbine manu-
facturers. However, they are only valid for rst. Other r conditions
require an adjustment of the power curve. One method for wind
turbine power curve adjustment was introduced by Svenningsen
[28]. With this method, U of the standard power curve (Ust) is
converted to U under real r conditions by:

U ¼ Ust

�
rst
r

�zðUÞ
(9)

The air density correction variable z(U) is defined as:

zðUÞ ¼

8>>>>>>><
>>>>>>>:

1
3

for U � 8:0m=s

1
3
þ 1
3
U � 8
5

for 8:0m=s<U <13:0 m=s

2
3

for U � 13:0 m=s

(10)
To evaluate the effect of r on mean annual energy yield, AEYst
and AEY were calculated. This was done by drawing a sample of
random numbers (10,000 values) from f(U) and f ðrÞ. Then, PW(U,r)
was calculated. Finally, depending on the differences between AEYst
and AEY, the relative error (RE) and the absolute percentage error
(APE) were calculated. A possible relationship between f(U) and f(r)
was checked using the Pearson correlation coefficient. Since the
correlation coefficient values were very low and varied in the
range �0.10 to 0.10 at most measurement sites as can be seen in
Fig. A1, the application of copulas did not lead to any improvement
in the model, and thus, copulas were not used in AEY modeling.

In Fig. 4, the power curve for the applied wind turbine type [29]
is presented for different r values (1.100 kg/m3, 1.225 kg/m3, and
1.300 kg/m3). AtU< 4.0m/s, the influence of r on PW(U,r) is small. It
is obvious that PW(U,r) depends most on r in the U range 7.0e9.5m/
s. At U> 12.0m/s, when all displayed power curves operate at rated
wind speed, there is no r-dependent difference in wind turbine
power output any more. Accordingly, differences in r have a sub-
stantial effect (up to 15% at 7.0m/s) on the total electricity gener-
ation in the study area if the wind speed is just below the rated
wind speed at a great number of wind turbines.
3. Results and discussion

3.1. Mean air density

The parameterization of the MLR model for r resulted in the
following equation:

r ¼ 1:1301� 0:000113$elþ 0:0019$lat þ 0:0005$lon (11)

The coefficient of determination (R2¼ 0.9973) calculated from
the comparison of empirical and modeled r indicates a very high
model accuracy. The spatial distribution of r is shown in Fig. 5a. It
can be seen that it is mainly the influence of el that determines the
spatial pattern of r. In the northern parts of the study area, which
are characterized by low el values (<100m asl), r is close to rst . In
contrast, the influence of high el (800e1500m asl) in the low
mountain ranges in southern Germany results in very low r values
(<1.140 kg/m3). Values of less than r ¼ 1.150 kg/m3 are not un-
common there (7% of the study area). In the German Alps, where
the Zugspitze is the highest mountain, even values down to
0.900 kg/m3 occur. In total, at 50% of the study area r < 1.205 kg/m3.

Fig. 5b illustrates the differences between r and rst (Dr). It can
be seen that in almost the whole of northern Germany r deviates
only slightly from rst (� 0:01 kg=m3 � Dr � 0:01 kg=m3). Near the
Fig. 4. Power curves for different air density (r) values (1.100 kg/m3, 1.225 kg/m3, and
1.300 kg/m3).



Fig. 5. (a) Mean air density (r) and (b) air density difference (Dr) in the study area.
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coast, there are a number of regions where r is higher than rst . This
is due to low el and low Ta. In contrast, in the middle and south of
the study area there are almost exclusively regions in which Dr< �
0:01 kg=m3.

The results of this study demonstrate that in northern Germany,
where U already is clearly higher than in the south [11], higher r is
another reason why wind turbines should be installed there. In
contrast, the locations suitable for using wind energy in the south
are often located on exposed mountain tops where U is high [11],
but r is low.

In Fig. 6, the share of r classes at current wind turbine locations
(blue bars) is compared to the share of r classes found in the whole
study area (red bars). Most wind turbines (26%) are located in the
1.235 kg/m3 r class. These are the wind turbines close to the coast.
This share of wind turbines is much higher than the share of the
study area in this class (10%). In total, 49% of all wind turbines are
located in regions where r > 1.225 kg/m3. In these areas, high U and
high r both have a positive effect on AEY.

3.2. Probability density function of air density

In Fig. 7a, the distribution of r is exemplarily shown for a grid
cell related to the city of Angermünde (el¼ 54m asl) which is
located close to the coast. For comparison, f(r) from the mountain
site Hohenpeibenberg (el¼ 977m asl), which is located in the
southern part of the study area, is displayed in Fig. 7b. While the
mean wind speed at 10m is similar at both sites (4.03m/s in
Fig. 6. Share of wind turbine locations and study area as a function of mean air density
(r) classes.
Angermünde and 4.24m/s in Hohenpeibenberg), there are large
differences in f(r) due to different elevation. The r median (~r) of
Angermünde equals rst . In contrast, ~r for Hohenpeibenberg is only
1.104 kg/m3. The other percentiles also show great differences. For
example, in Angermünde the fifth r percentile (lower end of the
distribution) is 1.179 kg/m3. This corresponds to approximately the
98 percentile of r (upper end of the distribution) of Hohenpei-
benberg. This means that r ¼ 1.179 kg/m3 in Angermünde is
exceeded on 95% of all days, but in Hohenpeisenberg only on 2% of
all days.

In addition to the empirical distributions, Fig. 7 also shows the
fitted distributions which mostly provide a very good fit to the
empirical distributions. However, the two-parameter distributions
(Gamma and Weibull) cannot reproduce the shape of the distri-
butions as good as the distributions defined by three (Burr, Dagum,
and GEV) or five parameters (Wakeby).

The comparison of R2, which is shown for all theoretical distri-
butions in Fig. 8, allows a systematic evaluation of the goodness-of-
fit. The best goodness-of-fit was achieved by the Wakeby distri-
bution with median R2 (fR2) being 0.9994. GEV (fR2 ¼ 0.9993),
Dagum (fR2 ¼ 0.9988), and Burr (fR2 ¼ 0.9978) also provide a very
high goodness-of-fit. The fitting accuracy of the two-parameter
distributions Gamma (fR2 ¼ 0.9940) and Weibull (fR2 ¼ 0.9781) is
clearly worse. Based on the results of the goodness-of-fit evalua-
tion, theWakeby distributionwas selected for distribution fitting in
the entire study area.

Before the parameters of the Wakeby distribution were esti-
mated, the r percentiles at each grid cell had to be modeled. Table 1
summarizes the regression coefficients and R2 for a selection of
percentiles. For all MLR models, high R2 values (0.9919e0.9978)
were obtainedwhich indicate a goodmodel accuracy. This is mainly
due to the strong effect of el on the spatial distribution of r.

Based on the modeled r percentiles, the Wakeby parameters
were estimated (Fig. 9). The two parameters a and b are responsible
for the low r values on the left-hand side of the Wakeby distribu-
tionwhereas g and d determine the high r values on the right-hand
side [30]. The parameters a, b, and d change very strongly in the
west-east direction (Fig. 9a,b,d). This indicates that the integration
of lat and lon in MLR is important. The large-scale variability of g
and ε is clearly superimposed by el (Fig. 9c,e).
3.3. Influence of air density on annual energy yield estimation

From the perspective of the wind energy user, it is of particular
interest whether and if so, to what extent the spatial variability of
f(r) leads to changes in AEY. For this reason, AEYst was mapped in
Fig. 10a. The corresponding areal mean AEYst over the entire study
area is 5.79 GWh/yr. In total, at 24.4% of the study area AEYst >
7.00 GWh/yr. At 1.6% of the study area AEYst > 10.00 GWh/yr.

If r is considered as being dependent on el, lat, and lon, then the
Fig. 7. Empirical probability density functions of air density (r) and fitted theoretical
distributions (f(r)) for (a) Angermünde and (b) Hohenpeibenberg.



Fig. 8. Goodness-of-fit of theoretical distributions (f(r)) to empirical air density (r)
distributions according to the coefficient of determination (R2).

Table 1
Regression coefficients (b1, b2, b3), the regression constant (c), and coefficient of
determination (R2) for MLR models associated with different air density percentiles.

Percentile c b1 b2 b3 R2

1 1.0107 �0.000100 0.0031 �0.0004 0.9942
10 1.0381 �0.000103 0.0030 �0.0004 0.9969
20 1.0614 �0.000105 0.0027 �0.0003 0.9974
30 1.0813 �0.000107 0.0025 �0.0001 0.9978
40 1.1039 �0.000109 0.0022 0.0001 0.9978
50 1.1239 �0.000111 0.0019 0.0004 0.9976
60 1.1496 �0.000114 0.0015 0.0007 0.9974
70 1.1770 �0.000117 0.0012 0.0009 0.9973
80 1.2037 �0.000120 0.0009 0.0011 0.9971
90 1.2242 �0.000125 0.0008 0.0013 0.9965
99 1.2678 �0.000134 0.0005 0.0027 0.9919

Fig. 9. Spatial distribution of the Wakeby parameters (a) a, (b) b, (c) g, (d) d, and (e) ε
in the study area.

Fig. 10. (a) Mean annual wind energy yield (AEYst) considering standard air density
(rst¼ 1.225 kg/m3), (b) mean annual wind energy yield (AEY) considering r as being
variable.

Fig. 11. Spatial distribution of (a) the relative error (RE), and (b) the absolute per-
centage error (APE) in the study area.
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areal mean AEY will only be 5.72 GWh/yr. The area where AEY >
7.00 GWh/yr is then 23.7% (Fig. 10b). The size of the area where AEY
> 10.00 GWh/yr is slightly increasing to 1.7% because of low el and
low Ta close to the coast.
The difference between AEY and AEYst is shown as RE in Fig. 11a.

Only near the coast, AEYst is lower (�0.05 GWh/yr) than AEY (0.57%
of the study area). Since the coastal regions are also regions with
the high U, the area in which high wind energy yields can be ex-
pected is increasing. However, the areas inwhich the assumption of
constant air density leads to higher yields than actual yields
dominate. In more than 50.9% of the study area RE> 0.05 GWh/yr,
i.e. the wind resource is overestimated. Such areas are mainly
located in southern Germany where el is often high.

A very similar distribution of the air density-related error is
reflected in APE (Fig. 11b). Near the coast, the wind resource is
underestimated by about 0.6% due to the use of rst. By contrast, in
large parts of southern Germany, the wind resource is over-
estimated by up to more than 15%.

Table 2 summarizes the percentage change in AEY compared to
AEYst per 100m increase in el. A total of 4.2% of Germany's surface
area has el> 700m. At these elevations, the influence of f(r) causes
a noticeable decrease of AEY by at least �5.3%. A reduction of AEY of
more than 10% was modeled for el> 1300m.



Table 2
Percentage error (PE) in mean annual energy yield (AEY) with increasing elevation (el).

el (m) 0 100 200 300 400 500 600 700 800 900

PE (%) 0.5 �0.3 �1.1 �2.0 �2.8 �3.6 �4.4 �5.3 �6.1 �6.9

el (m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

PE (%) �7.8 �8.6 �9.4 �10.2 �11.1 �11.9 �12.7 �13.5 �14.4 �15.2

el (m) 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900

PE (%) �16.0 �16.8 �17.7 �18.5 �19.3 �20.1 �21.8 �22.6 �23.4 �24.3
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4. Conclusions

This study emphasizes the importance of considering air den-
sity in wind energy assessment, especially at high elevation. The
approach and the obtained results make it possible to better
compare the expected mean annual wind energy yield between
candidate coastal sites at low elevation with mountain wind tur-
bine sites at high elevation. The influence of air density on the
wind energy yield of coastal and mountain sites can now be
quantified on a high-spatial resolution scale. This will lead to a
more efficient use of the wind resource which is due to the fact
that wind turbine distribution can be optimized in the study area.
The presented approach also allows an assessment of how the
spatio-temporal variability of air density influences the available
area of specific wind energy yield classes. As wind turbine density
in Germany is already relatively high [20], possibilities are
currently being sought to keep the number of new wind turbines
to be installed as low as possible in order to achieve the 2030
German climate targets [20]. As most wind turbines are currently
installed in the north of Germany, and the number of candidate
wind turbine sites is decreasing, the pressure to install more wind
turbines in the south of Germany is growing. There, most wind
turbine sites are limited to elevations between 400 and 1000m
[31], where the influence of air density on the wind energy yield is
already notable.

The presented modeling approach is easily portable to other
regions around the world and easily allows integrating air density
in wind energy assessment. In regions where air density and wind
speed are strongly correlated, a further improvement of the pre-
sented modeling approach can be achieved by integrating copulas
in the model development. Because information regarding vari-
ation in atmospheric stratification, which influences the rate of air
temperature decrease throughout the day, were not available,
daily mean air temperature and air pressure were applied instead
of hourly means. If air pressure, air temperature and relative
moisture is available in hub height on an hourly basis, it is rec-
ommended to extend the proposed approach to better capture
the spatio-temporal variability of air density. Although the
method was presented for one specific wind turbine, the calcu-
lated air density distribution can be used for any wind turbine
power curve.
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Appendix

Fig. 1A. Boxplot of correlation coefficients between wind speed (U) and air density (r)
at all measurement locations.
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