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This paper investigates the critical parameters of power systems which affect the stability of the system.
The analysis is conducted on both a single machine infinite bus (SMIB) system and a large multimachine
system with dynamic loads. To further investigate the effects of dynamic loads on power system stability,
the effectiveness of conventional as well as modern linear controllers is tested and compared with the
variation of loads. The effectiveness is assessed based on the damping of the dominant mode and the
analysis in this paper highlights the fact that the dynamic load has substantial effect on the damping
of the system.
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1. Introduction

Electric loads play an important role in the analysis of angle and
voltage stability of power systems. Due to the large diverse load
components, the changing load composition with time, weather,
and uncertain load characteristics; it is difficult to accurately mod-
el the loads for stability studies. The stability of electromechanical
oscillations and voltage oscillations between interconnected syn-
chronous generators and loads is necessary for secure system oper-
ation because an unsecured system can undergo non-periodic
major cascading disturbances, or blackouts, which have serious
consequences. Power grids all over the world are experiencing
many blackouts in recent years [1] which can be attributed to spe-
cial causes such as equipment failure, overload, lightning strokes,
or unusual operating conditions.

The secure operation of power systems with the variation of
loads has been a challenge for power system engineers since the
1920s [2,3]. The fundamental phenomenon of the secure power
system operation is investigated in [4] which has explored a vari-
ety of machine loading, machine inertia, and system external
impedances with a determination of the oscillation and damping
characteristics of voltage or speed following a small disturbance
in mechanical torque. Based on this phenomenon, many tech-
niques to assess the stability of the power system have been pro-
posed. In [5], there is an extensive description of power system
stabilizers (PSSs) which are now widely used in power industries.
Some improved methodologies of the PSS design are proposed in
ll rights reserved.
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[6–9] which has large disturbance rejection capacity. A Fourier-
based sliding method is considered in [10] for the secure operation
of a power system with large disturbances. Recently, a coordinated
PSS design approach is proposed in [11]. In these papers [4–11], the
power system is mainly considered as a single machine infinite bus
(SMIB) system or a multimachine system and linear control tech-
niques are used to ensure the secure operation of the power sys-
tem. Some nonlinear control techniques are also proposed in
[12–14] for single machine infinite bus (SMIB) system or a multi-
machine system to obtain a better performance as compared to
the traditional linear controllers.

Most of the work as mentioned in the literature [4–14], pro-
vides an overview of power system stability where the loads are
considered as constant impedance loads. Recently, much attention
has been paid to the research on the influence of dynamic or static
characteristics of loads on power system stability analysis [15,16]
and the reasonable representation of loads for different study pur-
pose which is elaborately described in [17,18].

The induction motor loads which are considered as dynamic
loads, account for a large portion of electric loads, especially in
large industries and air-conditioning in the commercial and resi-
dential areas. The induction motors used in system studies are
aggregates of a large number of different motors for which detailed
data are not directly available; therefore it is important to identify
the critical parameters for stability studies. The effects of induction
machines on power system stability are focused in [19] where a
Hellenic power system is considered for the analysis and attention
is given to electromechanical oscillations and the critical
parameter investigation. In [19] induction motors and synchronous
generators are considered separately but practically most of the
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nonlinearities occur due to the interconnections between them.
Moreover, in [19] some parameters are investigated which affect
the stability of the system by neglecting the damping of the sys-
tem, which is not practical, and finally power system stabilizers
are implemented to make the system stable. The critical parame-
ters for a SMIB system as well as large system are also investigated
in our previous work [20] by considering all the limitations as pre-
sented in [19].

The dynamic stability analysis of power system networks with
induction generators has been described in [21] where the induc-
tion generators are integrated with wind turbines, i.e., they are
not considered as loads. The stability of induction motor networks
is nicely described in [22] where the induction motors are consid-
ered as loads and bifurcation method is used to analyze the stabil-
ity. In [22], only the slip of the induction motors is considered as
dynamic which does not represent all behaviors of the motors
clearly. To analyze the stability of power systems with induction
motor loads, a conventional PSS which is also called a power oscil-
lation damping controller (PODC) is used in [19] and a minimax
LQG controller is used in [15,23]. The minimax LQG controller pro-
vides better performance as compared to the PODC [15,23]. In these
papers [17–22], the performances of the controllers are tested by
applying different types of faults within a certain range of operating
points. But in all of these papers, there is no indication about the
effectiveness of the controllers with the variation of dynamic loads.

The aim of this paper is to investigate the effects of dynamic
loads on the stability of power systems. Here, the stability of the
system with dynamic loads is analyzed by using the concept of
the critical parameter investigation as described from our previous
work [20]. In this paper, a PODC is designed for power systems
with dynamic loads and the effectiveness of the PODC is evaluated
with the variation of dynamic loads. Also, the effectiveness of the
minimax LQG controller, which is referred to as robust PODC
(RPODC), is determined with the changes in induction motor loads
within the systems. The effectiveness is mainly considered based
on the damping of the dominant mode with the controller. This pa-
per also addresses the question whether dynamic loads influence
the effectiveness of the PODC and RPODC with an SMIB system
and to what extent as well as what is a suitable way of represent-
ing induction motor loads for this purpose.

The rest of the paper is organized as follows. In Section 2, the
mathematical modeling of a SMIB system with dynamic load is gi-
ven. Participation factors and eigenvalue analysis which are used
to identify the critical parameters are given in Section 3. Section 4
shows the role of critical parameters on the stability of a large sys-
tem. An overview of the PODC and RPODC design is presented in
Sections 5 and 6, respectively. The effects of large dynamic loads
with a PODC and RPODC are shown in Section 7. Finally, the paper
is concluded with future trends and further recommendation in
Section 8.
2. Power system model

Power systems can be modeled at several different levels of
complexity, depending on the intended application of the model.
Fig. 1 shows a SMIB system with induction motor loads [24] which
is the main focus of this paper as the foundation of this work is
built up from this model. Since a SMIB system qualitatively exhib-
its the important aspects of the behavior of a multimachine power
system and is relatively simple to study, it is extremely useful in
studying the general concepts of power system stability [13].

In this SMIB model, the power is supplied to the load
(PL = 1500 MW, QL = 150 Mvar) from the infinite bus and local
generator (approximately, (PG = 300 MW, QG = 225 Mvar). The load
at bus-2 is made of three parts: (i) a constant impedance load, (ii)
an equivalent large induction motor, and (iii) a shunt capacitor for
compensation purposes. The major portion of these loads is the
equivalent induction motor.

With some typical assumptions, the synchronous generator can
be modeled by the following set of differential equations [5]:

_d ¼ x ð1Þ

_x ¼ � D
2H

xþ 1
2H
ðPm � E0qIqgÞ ð2Þ

_E0q ¼
1

T 0do

½Ef � ðXd � X0dÞIdg � ð3Þ

_V0 ¼
1
Tr
ðVt � V0Þ ð4Þ

where d is the power angle of the generator, x is the rotor speed
with respect to the synchronous reference, H is the inertia constant
of the generator, Pm is the mechanical input power to the generator
which is assumed to be constant, D is the damping constant of the
generator, E0q is the quadrature-axis transient voltage, KA is the gain

of the exciter amplifier, T 0do is the direct-axis open-circuit transient
time constant of the generator, Xd is the direct-axis synchronous
reactance, X0d is the direct axis transient reactance,

Vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0q � X 0dIdgÞ2 þ ðX 0dIqgÞ2

q
is the terminal voltage of the genera-

tor, V0 is the output voltage of the transducer, Tr is the time constant
of the transducer, Idg and Iqg are direct and quadrature axis currents
of the generator. The main source of significant nonlinear effects in
this model is related to Idg and Iqg for which the expressions will be
provided at the end of this section.

A simplified transient model of a single cage induction machine
is described by the following algebraic-differential equations writ-
ten in a synchronously-rotating reference frame [23,25]:

ðvd þ jvqÞ ¼ ðRs þ jX0Þðidm þ jiqmÞ þ jðe0qm � je0dmÞ

_s ¼ 1
2Hm

ðTe � TmÞ

_e0qm ¼ �
1

T 0dom

e0qm þ
1

T 0dom

ðX � X 0Þidm � sxse0dm

_e0dm ¼ �
1

T 0dom

e0dm �
1

T 0dom

ðX � X 0Þiqm þ sxse0qm

where X0 ¼ Xs þ XmXr
XmþXr

is the transient reactance, Rs is the stator
resistor which is assumed to be zero, Xs is the stator reactance, Xr

is the rotor reactance, Xm is the magnetizing reactance, X = Xs + Xm

is the rotor open-circuit reactance, T 0dom is the transient open circuit



M.A. Mahmud et al. / Electrical Power and Energy Systems 44 (2013) 357–363 359
time constant, Tm is the torque drawn by the machine, Hm is the
inertia constant of the motor, s = 1 �xr is the slip of induction mo-
tor where xr is the relative speed, Te ¼ e0dmidm þ e0qmiqm is the electri-
cal torque, e0dm and e0qm are the direct- and quadrature-axis transient
voltages, idm and iqm are the direct- and quadrature-axis currents.
Here, this model represents the induction machine in it own direct-
and quadrature-axes, which is different from the d- and q-axes of
the synchronous generator. So axes transformation is used to repre-
sent the dynamic elements of both the induction motor and syn-
chronous generator with respect to the same reference frame and
to do so we use the following relations:

E0m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe0dmÞ

2 þ ðe0qmÞ
2

q

dm ¼ tan�1 �e0dm

e0qm

 !

Idm þ jIqm ¼ �ðidm þ jiqmÞe�jdm

Vd þ jVq ¼ �ðvd þ jvqÞe�jdm

where the negative sign with idm and iqm are indicates that they are
opposite to Idm and Iqm when expressed in the same reference frame
with synchronous generator.

With these relations, a modified third-order induction motor
model can be written as follows:

ðVd þ jVqÞ ¼ �ðRs þ jX0ÞðIdm þ jIqmÞ þ jE0m

_xr ¼
1

2Hm
ðTm � E0mIqmÞ ð5Þ

_E0m ¼ �
1

T 0dom

½E0m þ ðX � X0ÞIdm� ð6Þ

_dm ¼ �xr �
X � X0

T 0domE0m
Iqm ð7Þ

To complete the model, the equation of Idg, Iqg, Idm, and Iqm can
be written as follows:

Idg ¼ �
E0q
X0d
þ Vinf

X 0d þ XT þ Xe
cos dþ E0m

X0d þ XT
cosðdm � dÞ

Iqg ¼
Vinf

X0d þ XT þ Xe
sin d� E0m

X0d þ XT
sinðdm � dÞ

Idm ¼ �
E0m
X 0
þ Vinf

Xe
cos dm þ

E0q
X0d þ XT

cosðd� dmÞ
Table 1
Eigenvalues without any variation of
parameters.

Eigenvalues

�1.1056 ± 19.0242i
0.4689 ± 13.1049i
�3.9657 ± 11.5717i
�3.9686

Table 2
Participation factors without any variation of parameters.

States of the system d x

Participation factor of unstable mode (mode 2) 0.4004 0.1339
Iqm ¼
Vinf

Xe
sin d�

E0q
X0d þ XT

sinðd� dmÞ

where Vinf is the infinite bus voltage, XT is the reactance of the trans-
former, and Xe is the reactance of the transmission lines.

By linearizing Eqs. (1)–(7) we can represent the overall linear-
ized system as:

D _x ¼ ADxþ BDu ð8Þ

y ¼ CDx ð9Þ

where the state vector Dx is given by

Dx ¼ ½Dd Dx DE0q DV0 Dxr DE0m Ddm�T ;

A is the system matrix, B is the input matrix, C is the output matrix,
and y is the output vector.
3. Critical parameter analysis

The linearized system is unstable with one mode in the right-
half-plane. The eigenvalues of the SMIB system with dynamic load
and participation factors for the unstable mode of the system are
shown in Tables 1 and 2.

From the eigenvalues in Table 1, it is seen that the system has
unstable mode 2 with some low frequency oscillations. The partic-
ipation factors in Table 2 show that the states d, E0q, and E0m have the
highest participation in this unstable mode which means that
there are both angle instability and voltage instability in the sys-
tem. Therefore, now if the elements in the A matrix related to d,
E0q, and E0m are varied then the system is likely to become stable.
The following elements of A: a11, a13, a16, a21, a23, a26, a31, a33,
a36, a41, a43, a46, a51, a53, a56, a61, a62, a63, a66, a71, a73, and a76, de-
pend on the system parameters which affect the stability.

By varying the parameters related to the states as mentioned
above, it is observed that only the direct-axis-open circuit time
constant of the induction motor T 0dom, affects the stability of the
system when the damping provided to the synchronous generator.
But when no damping is provided to the synchronous generators,
the inertia constant of the induction machine also affects the sys-
tem stability. For the nominal value of T 0dom equals to 18.7, the sys-
tem is unstable. After varying the value of direct axis open circuit
time constant of the induction motor, T 0dom, from 18.7 to 18 or less
than 18, the system becomes stable and the eigenvalues are shown
in Table 3.

To make the system stable, the value of T 0dom is reduced from its
nominal value. Though the system is stable, still there are three
oscillating modes. These modes are dominated by the voltage as
well as angle dynamics. Small variation of the exciter gain KA does
E0q V0 xr E0m dm

0.6519 0.06 0.31 0.6110 0.1672

Table 3
Eigenvalues with the variation of parameter.

Eigenvalues

�0.8889 ± 19.2638i
�10.6874
�0.0497 ± 12.988i
�4.2795 ± 11.789i
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not affect the power system stability. But if KA is set to a very high
value, the system is stable with high frequency oscillation. On the
other hand, very low values of KA make the system unstable.

Fig. 2 shows the variation in the damping of mode 2 with
changes in T 0dom. From Fig. 2, it can be seen that with the small var-
iation of the induction motor direct-axis rotor open-circuit time
constant, the damping changes dramatically. If the T 0dom of the
induction motor is varied from 17.9 to 18.1, the damping of mode
2 changes from �0.004 to +0.004. Fig. 3 describes the damping of
mode 2 with variation in the exciter gain, KA. From Fig. 3, it is seen
that if the exciter gain varies from 25 to 50, the damping of mode 2
varies from �0.001 to 0.008. In conclusion, the variation of T 0dom is
more sensitive to the system stability as compared to the variation
of the exciter gain as shown in Figs. 2 and 3. From Fig. 2, it is seen
that the system is stable for all values of T 0dom 6 18. The role of the
critical parameters on a large system is considered in the next
section.
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4. Role of critical parameters on large system

The sensitivity of a large power system to the critical parame-
ters is analyzed in this section. For this analysis, a 10-generator,
39-bus New England system shown in Fig. 4 is considered.

The system is unstable and the eigenvalues of dominant unsta-
ble mode are 0.35031 ± 2.8725i. In this mode, the voltage states as
well as the angle states of generators at bus-34 and bus-38 have
the highest participation in the system instability.

Next, the induction motor loads are connected at bus-4, bus-8
and bus-20. After connecting these dynamic loads, the system is
unstable with dominant eigenvalues 0.31730 ± 3.3886i. For this
mode, the voltage state of generator at bus-38 and the voltage
states of induction motor connected at bus-20 have higher partic-
ipating factor than that of generator at bus-34 and induction mo-
tors at other buses.

When the same critical parameter as in the previous section,
i.e., the direct-axis open-circuit time constant of the induction mo-
tor T 0dom, is changed, still the system is unstable with eigenvalues
0.29444 ± 3.4030i. Finally, a stable system is obtained by varying
T 0dom only. At some lower values of T 0dom, 100 times less than the
nominal values, all the eigenvalues of the system are in the left-
half complex plane. In this case, the variation of T 0dom is more as
compared to that of in the previous section. This is due to the large
inertia of the system. However, the main concept for critical
parameter investigation is true for a large system.

5. Overview of PODC design

A PODC is designed to damp electromechanical oscillations
caused by the large generator inertia and very low damping. The
control objective in the PODC design is to increase the damping
of the electromechanical mode by controlling the synchronous
generator excitation systems using an auxiliary signal to the auto-
matic voltage regulator (AVR). Fig. 5 shows the block diagram of
excitation system, including the AVR and PODC [5] which is con-
sidered in this section.

The dynamics of the PODC can be described by the following
two equations [5]:

_v2 ¼ �
1

Tw
v2 þ KSTAB �

D
2H

xþ 1
2H
ðPm � E0qIqgÞ

� �
ð10Þ

_vs ¼ �
1
T2

v s þ
1
T2

v2

þ T1

T2
� 1

Tw
v2 þ KSTAB �

D
2H

xþ 1
2H
ðPm � E0qIqgÞ

� �� �
ð11Þ

where KSTAB is the gain of power oscillation damping controller, Tw

is the time constant of the washout block, T1 and T2 are the time
constants of the phase compensation block, v2 is the output of the
washout block and vs is the stabilizing signal which is the output
of the phase compensation block.

The PODC is designed in a very similar way to the power system
stabilizer (PSS) [5]. The parameters of the designed PODC are as
follows:

T1 ¼ 0:0823 s;T2 ¼ 0:0141 s;Tw ¼ 1 s; and KSTAB ¼ 5:7

The eigenvalues of the SMIB system as shown in Fig. 1 are shown in
Table 4 when a PODC is applied to the synchronous generator. In
this case, the amount of induction motor load is 1000 MW. From Ta-
ble 4, it is seen that the system is now stable which was unstable
without a PODC as shown in Table 1. This happens due to the supply
of additional damping through the PODC.

At this stage, the state participation factor is shown in Table 5
from where it can be seen that the application of a PODC reduces
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Table 4
Eigenvalues with PODC.

Eigenvalues

�70.9220
�0.0076 ± 46.5101i
�1.4797 ± 30.1252i
�19.1221
�1.0305
�4.3125 ± 5.4705i
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the participation of the rotor angle of the synchronous generator.
But the voltage modes of the synchronous generator and induction
motor are dominating the stability as their participations are more.
Thus the electrometrical mode is no longer dominating mode for
the stability with the variation of dynamic loads. To reduce the ef-
fect of voltage modes, a voltage controller is essential and the over-
view of a voltage controller is given in the following section.
6. Overview of RPODC design

To design RPODC, a linearization scheme is proposed in [15]
which includes the bound of the Cauchy remainder in Taylor series
expansion as uncertain terms in the controller design. Let (x0, u0)
be an arbitrary point in the control space, using mean-value theo-
rem [26], the system (1)–(7) can be rewritten as follows:

_x ¼ f ðx0;u0Þ þ Lðx� x0Þ þMðu� u0Þ ð12Þ

where

L ¼ @f1

@x

����x ¼ x�1

u ¼ u�1

� � � @f7

@x

����x ¼ x�7

u ¼ u�7

264
375

T

M ¼ @f1

@u

����x ¼ x�1

u ¼ u�1

� � � @f7

@u

����x ¼ x�7

u ¼ u�7

264
375

T

Here (x�p, u�p), p = 1, . . . ,7 denote points lying on the line segment
connecting (x, u) and (x0, u0), f = [f1� � �f7]T denotes the vector func-
tion on the right-hand side of the vector differential Eqs. (1)–(7).
The nonlinearity of the system (1)–(7) is captured through the non-
linear dependencies x�p = U1p(x, u, x0, u0) and u�p = U2p(x, u, x0, u0),
p = 1, . . . ,7.

Letting (x0, u0) be the equilibrium point about which the trajec-
tory is to be stabilized and defining Dx = x � x0 and Du = u � u0, it
is possible to rewrite (12) as follows



Table 5
Participation factors with PODC when the dynamic load is 1000 MW.

States of the system d x E0q V0 xr E0m dm

Participation factor of unstable mode (mode 2) 0.013 0.0921 0.6625 0.059 0.30 0.6210 0.1672
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D _x ¼ _x� _x0 ¼ Lðx� x0Þ þMðu� u0Þ
¼ ADxþ B1Duþ ðL� AÞDx ð13Þ

where A ¼ @f
@x

���x ¼ x0

u ¼ u0

and B1 ¼ @f
@u

���x ¼ x0

u ¼ u0

. The Eq. (13) does not in-
clude higher order terms of Taylor series which depend on Du be-
cause the system is linear with respect to the control vector.
Although it is difficult to obtain the exact value of [f(x�p, u�p) � f(xp, -
up)], i.e., (L � A), it is possible to obtain a bound on ||(L � A)|| over a
range of (x�p, u�p). This bound is used in the control design. We re-
write system (13) in terms of the block shown in Fig. 6.

Let

ðL� AÞDx ¼ B2n; and n ¼ ~/ðtÞeC 1Dx ð14Þ

where n(t) is the uncertainty input. Eq. (15) can be written as

ðL� AÞDx ¼ B2
~/ðtÞeC1Dx ð15Þ

The nominal system is

D _x ¼ ADxþ B1Duþ B2n ð16Þ

Matrices B2 and eC1 are chosen as

B2 ¼ diag 0;
Xd � X0d

T 0do

;
1

2H
;

1
Tr
;
Xs � X 0s

T 0dom

;
1

2Hm
;
Xs � X 0s

T 0dom

� �
ð17Þ

eC1 ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

26664
37775 ð18Þ

such that they satisfy Eq. (16) and the expressions for obtaining ~/ðtÞ
can be found in [13].

We define

C1 ¼
ffiffiffi
a
p eC1 ð19Þ

where a is a scaling factor which affects the magnitude of the
uncertain output f. We assume /ðtÞ ¼ 1ffiffi

a
p ~/ðtÞ.

The value of a is chosen such that

k/ðtÞk2
6 1 ð20Þ

For any value of d�; E0�q ; d
�
m; E

0�
m; we can conclude that

knk2
6 a 6 keC1Dxk2 ð21Þ
Nominal System

)(tξ

Controller

)(tφ

+)(tw

tVty =)(

)(tζ

Fig. 6. Robust control scheme.
We also define f = C1Dx. Hence we recover the IQC (integral
quadratic constraint) given in

knk2
6 kfk2 ð22Þ

To facilitate control design, the power system model is written
as

D _xðtÞ ¼ ADxðtÞ þ B1DuðtÞ þ B2nðtÞ þ B2wðtÞ ð23Þ

yðtÞ ¼ C2DxðtÞ þ D2nðtÞ þ D2wðtÞ ð24Þ

fðtÞ ¼ C1DxðtÞ ð25Þ

where f ¼ ½d� E0�q d�m E0�m�
T is the uncertainty output, n(t) is the uncer-

tainty input, y(t) is the measured output, and w(t) represents a dis-
turbance input.

Since the transducer time constant Tr is very small, we are able
to make the approximation V0 � Vt and therefore, output matrix C2

is defined as

C2 ¼ ½0 0 0 1 0 0 0� ð26Þ

This new formulation presented in this section is used to design
the robust excitation controllers for the underlying nonlinear
power systems to improve voltage stability. The performance of
the PODC and RPODC with the variation of dynamic loads are dis-
cussed in the following section.

7. Effects of large dynamic loads with PODC and RPODC

The effects of load variation on power system stability without
any controller are shown in Fig. 7. The dashed line in Fig. 7 shows
the effects of constant impedance load variation and the solid line
shows the effects of induction motor load variation on power sys-
tem stability. It can be seen from Fig. 7 that the system retains sta-
ble operation even with a 1200 MW constant impedance load but
becomes unstable for 950 MW dynamic loads.

The designed PODC is simulated on a SMIB system with con-
stant impedance loads and dynamic loads and the robust PODC
is simulated with dynamic load. The dynamic load on the system
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Fig. 7. Effects of load variation without PODC (solid line – dynamic load variation,
dashed line – constant impedance load variation).
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Fig. 8. Effectiveness of PODC (solid line with star – RPODC with dynamic loads, the
dashed line – conventional PODC with constant impedance loads, solid line –
conventional PODC with dynamic loads).
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is varied from 0 MW to 1250 MW and the per unit (pu) damping
torque provided by the PODC, through the excitation system of
the generator is calculated in each variation of loads with pu
changes of speed.

The dashed line and solid line in Fig. 8 show the effectiveness of
RPODC with the variation of constant impedance loads and dy-
namic loads, respectively. Here, the effectiveness of the PODC does
not vary for a wide range for the power system with constant
impedance loads but the effectiveness of the PODC reduces a lot
with the variation of dynamic loads as shown by the solid line in
Fig. 8. The RPODC provides more damping as compared to the con-
ventional PODC which is shown by the solid line with star. The
effectiveness of the RPODC also reduces with increasing dynamic
loads but the rate of reduction is much less as compared to the
conventional PODC.

8. Conclusion

To investigate the effects of dynamic loads on power system
stability, the linearized model of the synchronous machine and
induction motor system is presented in this paper. Since most of
the nonlinearities in the system occur due to the interconnections,
therefore the effects of interconnections are also considered in the
linearization process. Then by using the concept of eigenvalues and
participation factors and by varying some elements of the state
matrix, the direct-axis open-circuit time constant of the induction
motor, T 0dom is found as the parameter that affects the stability of
the system. The system is also sensitive to other parameters such
as the exciter gain. It is shown in this paper that the critical param-
eter also affects the stability of large power systems.

The effectiveness of a PODC on an interconnected power system
with the variation of dynamic load is also demonstrated in this
paper. Though the conventional PODC provides better operation
for power systems with constant impedance loads, but it gets
worse for power systems with dynamic loads. The RPODC has bet-
ter performance as compared to the conventional PODC but the
effectiveness of this controller also decreases with the variation
of dynamic loads. So, it can be concluded that dynamic loads have
significant effects on the stability of power systems. The aim of the
future research is to design a controller that can provide better per-
formance with the variation of dynamic loads.
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