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a b s t r a c t 

Distributed Denial of Service (DDoS) attack is a stubborn network security problem. Various machine 

learning-based methods have been proposed to detect such attacks. According to our survey, the features 

used to characterize the attack are usually selected manually according to some personal understanding, 

and the detection model is expected to perform good generalization performance in practical detection 

all the time. Therefore, how to select the optimal features that perform the best performance is a critical 

problem for constructing an effective detector. Meanwhile, as network traffic gets increasingly complex 

and changeable, some original features may become incapable of characterizing current traffic, and detec- 

tor failure could occur when traffic changes. In this paper, we chose the multilayer perceptrons (MLP) to 

demonstrate and solve the proposed problem. In our solution, we combined sequential feature selection 

with MLP to select the optimal features during the training phase and designed a feedback mechanism 

to reconstruct the detector when perceiving considerable detection errors dynamically. Finally, we vali- 

dated the effectiveness of our method and compared it with some related works. The results showed that 

our method could yield comparable detection performance and correct the detector when it performed 

poorly. 

© 2019 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

DDoS attacks have become one of the most stubborn net-

ork security problems for many years since the Computer Inci-

ent Advisory Capability reported the first attack incident in 1999

 Criscuolo, 20 0 0 ). Although various defense methods have been

roposed in academia and industry, the threat of DDoS attacks is

till very severe and grows year by year. According to the report

f Arbor Networks Inc. (2018) , DDoS attacks still represented the

ominant threat observed by the vast majority of service providers,

nd the largest attack in 2017 was 600 Gbps. DDoS attacks aim to

top legitimate users from normally accessing a specific network

ervice through simultaneously and continuously sending a large

mount of traffic to the target system ( Manavi, 2018 ). To achieve

his attempt, hackers usually use Botnets to launch a DDoS attack.

otnets are the network formed by “enslaving” host computers,

alled bots, that are controlled by one or more attackers, called

otmasters, with the intention of performing malicious activities

 Silva, 2013 ). Recently, the most powerful botnets tend to be based
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n Internet of Things (IoT) devices, as billions of vulnerable IoT de-

ices have been deployed and connected and most IoT devices are

asy to hack and compromise ( Khan and Salah, 2018 ). 

In the DDoS attack detection research community, detection

ethods are proposed based on different models and theories.

achine learning, information theory, and statistical models are

he three leading methods that form the basis of the majority

f present-day detection techniques ( Singh et al., 2017 ). Machine

earning techniques in cybersecurity are helpful by recommending

he proper decision for analysis and even doing the proper action

utomatically, such as artificial neural networks (ANN), Bayesian

etwork, decision trees (DT), support vector machine (SVM), clus-

ering, ensemble learning and so on Hosseini and Azizi (2019) . Var-

ous ANN models have been used in the area of the intrusion de-

ection system (IDS), and they have many advantages in detect-

ng the DDoS attack, including self-learning, self-organizing, better

ault tolerance, robustness, and parallelism. In this paper, we focus

n the ANN models and choose the MLP as a model to demon-

trate and solve the proposed problem. We start by implement-

ng an MLP-based detector and test it with open traffic data. The

esults show that the original features used in the detector have

ome redundancy, and removing a specific feature can improve the
 under the CC BY-NC-ND license. 
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detection accuracy. We then continue to survey more related works

that used six different ANN models and find that the features used

in the models are usually designed manually according to some

personal and intuitive understanding of DDoS attacks rather than

representation learning. Due to the different personal understand-

ing of DDoS attacks, the same features may be useful in some cases

but invalid in other cases. There is no universal criterion to fol-

low about how to design the feature. Moreover, giving some im-

portance to the irrelevant features will lead to a poor generaliza-

tion on the new data, even if we try to control the overfitting in

the training phase ( Romero and Sopena, 2008 ). Therefore, we think

feature selection is the most critical consideration for the machine

learning-based DDoS attack detection. We need to select the op-

timal features through experimental approaches. For this purpose,

we survey more related works about combining feature selection

with ANN and other machine learning models. We aim to find an

appropriate strategy that is feasible and can directly interact with

the detection model to cater to our requirements. 

On the other hand, according to our experience, a conventional

way to evaluate a detection method is usually through providing

an excellent detection accuracy on labeled test data. The poten-

tial hypothesis is that the tuned detector can always perform good

generalization and correctly detect the following attacks in real

detection. This way is reasonable when we use machine learn-

ing techniques to solve the pattern recognition problem, and we

usually treat the DDoS attack detection as a binary or multiclass

classification problem. However, network traffic becomes more and

more complex and changeable, and DDoS attacks are also evolv-

ing day by day. The hypothesis is actually challenging to satisfy. In

other words, some new normal patterns or some new unknown at-

tacks may deviate from the patterns learned from the original train

data, and the detector could make a lot of errors (including false-

positive and false-negative errors) during real detection. In order

to solve this problem, we need to design a method to perceive the

detection errors timely and reconstruct the detector dynamically. 

The rest of this paper is organized as follows: In Section 2 , we

review the related works. Section 3 describes the research prob-

lem. Section 4 describes the proposed solution. At last, we describe

the experiment in Section 5 and our conclusion in Section 6 . 

2. Related works 

2.1. ANN-based detection 

We surveyed some proposed DDoS attack detection methods

based on six different ANN models, including MLP, probabilis-

tic neural network (PNN), radial basis function neural network

(RBFNN), learning vector quantization (LVQ), recurrent neural net-

works (RNN), and self-organizing map (SOM). The former five

models are supervised, and the last one is unsupervised al. A sim-

ple summary is listed in Table 1 . 

From Table 1 , we could see that all works have excellent de-

tection accuracies (the best could achieve about 99.11%, and the

worst is not lower than 93.4%), but the features used in each ANN

model are very different in the aspects of dimension and defini-

tion. The major innovations of these ANN-based methods are re-

flected in combing newly defined features with different models

and deploying in different application scenarios. The authors of

these papers only evaluate the detection performance on a given

test data but ignore validating the necessity of the features through

some experimental approaches. Besides, the availability of a detec-

tor is also limited by the features as they are extracted in different

manners (see the feature description in Table 1 ). In summary, fea-

tures are the foundation of an effective detection model in the ma-

chine learning-based detection research community, and detection

performance totally depends on how well the features characterize
he attacks. Therefore, how to select the optimal features is a crit-

cal problem for constructing a suitable detector. Feature selection

ill not only enhance the generalization performance and reduce

he computing complexity, but also improve the availability of a

etection model when it is deployed in different network environ-

ents. 

.2. Feature selection 

Feature selection is one of the key problems for machine learn-

ng and data mining ( Li et al., 2017b ). The objective of feature se-

ection is to select a feature subset that performs the best under

 certain evaluation criterion ( Romero and Sopena, 2008 ). Accord-

ng to the review of paper Li et al. (2017b) , Li et al. (2017) , Bolón-

anedo et al. (2013) , feature selection can be categorized as wrap-

er, filter, and embedded methods from the strategy perspective. A

ypical wrapper method tries to find an optimal subset through it-

ratively evaluating the model with different combinations of fea-

ures as inputs. The wrapper method interacts with the models,

ut the filter method, which assesses the feature saliency accord-

ng to the intrinsic characteristics of data, is independent of the

odels. The embedded method is a tradeoff between the filter

ethod and the wrapper method. As we focus on MLP and need

o interact with it, a wrapper method is more suitable to combine

ith the detection model. 

First, we introduce some works about feature selection for ANN

odels. Paper Windeatt et al. (2011) proposed a feature selection

ethod using the evaluation criteria based on weight values. Pa-

er Vesa et al. (2001) , Monirul Kabir et al. (2010) proposed two

rapper-based feature selection methods. Paper Yusof et al. (2018) ,

sanaiye et al. (2016) used sequential backward selection (SBS),

hich means incapable features are excluded from the full fea-

ure set sequentially. Paper Wang et al. (2017) used sequen-

ial forward selection (SFS), which is contrary to the SBS. Pa-

er Baesens et al. (20 0 0) proposed a clamping technique to eval-

ate the relevance of a feature by fixing the input value of

his feature to its mean. Paper Tang et al. (2014) added a pre-

electing module before the input layer based on mutual infor-

ation, which is a filter method, and this paper also used a ran-

om strategy (i.e., genetic algorithm) to search the optimal fea-

ure subset. Paper Ji et al. (2016) used a variance analysis ap-

roach to find the most important features for the MLP model. Pa-

er De La Hoz et al. (2014) proposed a feature selection method

ased on multi-objective optimization for the SOM model, and pa-

er De la Hoz et al. (2015) assembled principal component analysis

PCA) and Fisher discriminant ratio (FDR) for a probabilistic SOM

odel to select the optimal features. Due to the lack of more re-

ent literature, although some referenced works are outdated, they

till provide some experience about combing feature selection with

NN models. According to our analysis, the weight-based selection

ethod is unreliable and obscure, and the random strategy is com-

utationally costly. As the complexity of searching the space with

 features is O (2 n ) huge, finding an optimal feature subset through

rute force search is infeasible when n is too large, but the sequen-

ial selection strategy reduces the complexity to O ( n 2 ). Hence, it is

asily feasible to interact with the detection model. 

Second, we extend our survey to some works about feature

election for machine learning-based IDS, which include detect-

ng the Botnets and DoS/DDoS attacks. The details of the related

apers are listed in Table 2 . From Table 2 , we know that filter,

rapper, and embedded feature selection methods are widely used

o combine with machine learning models for intrusion detec-

ion. The difference among these works mainly comes from fea-

ures and the combinations between feature selection methods

nd machine learning algorithms. Paper Beigi et al. (2014) evalu-

ted the effectiveness of 21 different features that were used in



M. Wang, Y. Lu and J. Qin / Computers & Security 88 (2020) 101645 3 

Table 1 

Summary of ANN-based detection. 

Model Work NoF BestAcc Feature Description 

MLP Saied et al. (2016) 5 98% source IP address, TCP sequence, source port, destination port, TCP flags 

Chang-Jung and 

Ting-Yuan (2016) 

7 94% number of packets, average packet size, time interval variance, number of bytes 

Zhao et al. (2015) 3 - CPU usage, average packet size, number of TCP connection 

Perakovic et al. (2017) 5 95.6% packet arrival time, protocol, packet length, source IP address, destination IP address 

Saad et al. (2016) 5 98.3% capture time, source IP address, destination IP address, packet length, protocol 

Singh et al. (2016) 3 98.31% the number of HTTP GET, entropy of HTTP GET, variance of HTTP GET 

Cui et al. (2016) 5 - number of packets matched by each flow entry, number of bytes matched by each flow entry, 

survival time of each flow entry, packet rate of each flow entry, bytes rate of each flow entry 

Chen and Yu (2016) 6 94.6% total packet number, the proportion of ICMP packets in total packets, the proportion of short 

packets in total packets, the proportion of long packets in total packets, the proportion of UDP 

packets in total packets,log 10 ( SYNpacketnumber / ACKpacketnumber ) 

Ji et al. (2016) 22 96.67% 22 features of the 41 NSL-KDD features 

Kim and 

Gofman (2018) 

41 98.5% 41 NSL-KDD features 

Kushwah and 

Ali (2018) 

41 96.3% 41 NSL-KDD features 

PNN Akilandeswari and 

Shalinie (2012) 

7 97% source IP address, prefix of source IP, flow duration, flow number per time interval, packet size, 

packet number per flow, unique IP address per time interval 

LVQ Li et al. (2010) 8 99.7% CPU usage, memory usage, system time, number of TCP connections, sent bytes, received bytes, 

number of passive TCP connections 

RBF Chen et al. (2012) 3 - average time of IP showing time, dispersion of source IP, dispersion of source MAC 

RNN Chuan- 

long et al. (2017) 

41 93.4% 41 NSL-KDD features 

SOM Braga et al. (2010) 6 99.11% average of packets per flow, average of bytes per flow, average of duration per flow, percentage of 

pair-flows, growth of single-flows in time interval, growth of different ports in time interval 

Stevanovic et al. (2013) 10 - click number, HTML-to-image ratio, percentage of PDF/PS file requests, percentage of 4xx error 

responses, percentage of HTTP requests in type HEAD, percentage of requests in unassigned 

referrers, number of bytes requested from the server, page popularity index, standard deviation of 

requested page’s depth, percentage of consecutive sequential HTTP requests 

De La Hoz et al. (2014) 41 99.12% 41 NSL-KDD features 

De la Hoz et al. (2015) 41 94% 41 KDD’99 features 
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any previous Botnet detection works according to the results

f a DT-based detection. Paper Osanaiye et al. (2016) assembled

our filter selection methods to vote the optimal features. Paper

arati et al. (2014) , Sindhu et al. (2012) combined a genetic algo-

ithm with two different classifiers to randomly search the optimal

eatures. Paper Wang et al. (2017) , Lin et al. (2012) , Li et al. (2012) ,

olón-Canedo et al. (2011) , Ji et al. (2016) , De la Hoz et al. (2015) ,

uang et al. (2014) combined several different filter or wrapper

ethods with SVM respectively. In summary, combing feature se-

ection with a detection model is popular in the IDS research com-

unity, and this is very useful to improve the detection perfor-

ance. Besides, one main research trend in the community is ex-

loring the various hybrid methods to get better detection perfor-

ance in a particular scenario. 

. Problem description 

In this section, we describe the research problem by im-

lementing an MLP-based detection method proposed in paper

aied et al. (2016) . This paper used three MLP models with dif-

erent topological structures to process TCP, UDP, and ICMP pack-

ts. For brevity, we only implemented the TCP topological struc-

ure (see Fig. 1 ). The input layer of the model has five features, in-

luding source IP address, TCP sequence, TCP flag, and TCP source

nd destination port. We used an open traffic data named ISOT

 Saad et al., 2011 ) to train and test the model. The training and

esting process was operated on the Tensorflow platform. The ex-

eriment results on test data are shown in Tables 3 and 4 . In the

ables, the “topology” column denotes the topological structure of

he MLP model. For example, “5-4-4-2” means the model has one

nput layer with five neurons, two hidden layers with four and four

eurons respectively, and one output layer with two neurons. In

his paper, we evaluate the detection performance through four

etrics: accuracy (Acc), precision (Pre), detection rate (DR, also
alled recall), and false alarm rate (FAR) ( Li et al., 2017a ). These

etrics are computed based on a confusion matrix (see Table 5 ),

nd they are defined as 

cc = 

T P + T N 

T P + F N + T N + F P 
, (1) 

 re = 

T P 

T P + F P 
, (2) 

R = 

T P 

T P + F N 

, (3) 

 AR = 

F P 

F P + T N 

. (4) 

From Table 3 , we could see that changing the MLP structure

oes not bring significant improvement to the performance. These

esults indicate that the model structure slightly influences the

etection performance. In Table 4 , we sequentially removed ev-
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Table 3 

Results of different topologies. 

No. Topo Acc Pre DR FAR 

1 5-4-1 0.9869 0.9810 0.9933 0.0198 

2 5-6-1 0.9867 0.9810 0.9930 0.0197 

3 5-8-1 0.9817 0.9744 0.9898 0.0266 

4 5-12-1 0.9860 0.9808 0.9921 0.0203 

5 5-4-4-1 0.9886 0.9841 0.9936 0.0165 

6 5-4-8-1 0.9846 0.9805 0.9893 0.0203 

7 5-8-4-1 0.9841 0.9798 0.9890 0.0209 

8 5-8-8-1 0.9857 0.9887 0.9933 0.0021 

Table 4 

Results of different features. 

No. Topo Feature Selection Acc Pre DR FAR 

9 4-4-1 remove dstPort 0.9822 0.9738 0.9915 0.0273 

10 4-4-1 remove srcPort 0.9787 0.9690 0.9896 0.0324 

11 4-4-1 remove srcIP 0.6785 0.7056 0.6263 0.2680 

12 4-4-1 remove flag 0.6008 0.9969 0.2120 0.0007 

13 4-4-1 remove sequence 0.9862 0.9811 0.9818 0.0196 

14 2-4-1 only srcIP& flag 0.9785 0.9701 0.9879 0.0312 

Table 5 

Confusion matrix. 

Predicated 

Attack Normal 

Actual Attack True Positive (TP) False Negative(FN) 

Normal False Positive(FP) True Negative (TN) 
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ry feature from the original feature set to test the performance.

he results show that removing srcIP or TCP flag leads to a sharp

egradation on the performance, but on the contrary, removing the

ther three features does not cause significant changes. Therefore,

t is reasonable to infer that the detector can still perform excel-

ent performance with only using the srcIP and TCP flag as input

eatures, which is proved by the result of the No.14 experiment.

esides, removing the “sequence” feature could even slightly im-

rove the accuracy. So, we could point out that the original fea-

ures used in paper Saied et al. (2016) have some redundant or

rrelevant ones when they are used to detect the DDoS attack in

SOT data. Although our experiments are insufficient and ignore

ther factors that influence the performance of an MLP model, the

esults can still reveal that how well features characterize the traf-

c is a critical factor in determining the detection performance.

herefore, we think it is necessary to combine feature selection

ith the MLP model for constructing a well-performed detector,

hich is the first problem we need to solve. 

In order to see how the performance changes when the traf-

c changes, we experiment with three datasets, which are denoted

s D1, D2, and D3 (details are described in Section 5 ), to simu-

ate the situation. All of them are synthesized by a nearly equal

umber of labeled normal and attack samples. The attack samples

f every dataset are sampled from the same source, but the nor-

al samples are sampled from three different sources. Dataset D1

s divided into two datasets to train the MLP model and be de-

ected in phase 1. Dataset D2 and D3 are detected in phases 2 and

. The results are shown in Table 6 . We can see that the perfor-

ance in phase 1 is as good as in the training phase, and the per-

ormance in phase 3 has a little degradation on Pre and FAR, but

he performance in phase 2 has a prominent degradation on Acc,

re and FAR. These results indicate that the detector, which has

earned patterns characterized by five features from D1 train data,

s well generalized on D1 and D3 test data but makes many errors

n D2 test data, and according to the results of phase 2, these er-

ors are mainly false-positive errors. Therefore, the tuned detector
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Table 6 

Results of different traffics. 

Data D1(train) D1(test) D2(test) D3(test) 

Phase Train 1 2 3 

Acc(%) 93.27 93.29 54.04 93.24 

Pre(%) 89.38 89.47 52.06 88.26 

DR(%) 98.21 98.12 99.68 99.72 

FAR(%) 11.67 11.55 91.41 13.21 

Fig. 2. Framework of the proposed method. 
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Fig. 3. Design of detection model. 

Fig. 4. Topology of MLP classifier. 

 

t  

t  

s  

s  

r  

s  

m  

u  

a  

i  

a

 

d  

p  

p  

i  

n  

p

4

 

p  

i  

m  

S  

m  

i  

b  

f  

i

T  

t  

 

G  

1  
s possible to behave terrible detection performance and make a lot

f errors (including false positive and negative errors) when traffic

hanges (including normal and attack traffic). Our experiments can

eveal that performance degradation is because we use the labeled

amples to compute the real performance metrics, but in practical

etection, all samples that will be classified are unlabeled, and the

ollowing traffic is expected to be well generalized. However, this

xpectation is difficult to achieve because we do not know how

he behavior of legitimate users changes and how DDoS attacks

re launched and evolved. The hypothesis space in real detection

s much bigger than the space in train data due to the unlimited

hangeable traffic. This point makes recognizing the DDoS attack

 little different from a typical pattern recognition problem, such

s handwriting recognition. Because the former is more subjective

s DDoS attacks are usually a malicious abuse of normal packets,

hile the latter is more objective as the meaning of a character

ever changes. In order to ensure the availability of a tuned detec-

or, we try to design a feedback mechanism to perceive the occur-

ence of many detection errors and then reconstruct the detector

o avoid making more errors in the following detection. 

. Design of proposed method 

In this section, we describe the dynamic MLP-based DDoS at-

ack detection method. Our method has three modules: knowledge

ase, detection model, and feedback mechanism. A brief frame-

ork of the method is shown in Fig. 2 . 

.1. Knowledge base 

The knowledge base maintains two labeled datasets, including

 training dataset and a feedback dataset, which are denoted as D t 

nd D f . Dataset D t is composed of the samples that are used to

rain the detection model, and D f contains the new samples classi-

ed and labeled by the detector during detection. Every sample in

hese two data is an n-dimensional vector according to the defini-

ion of features. All samples are preprocessed to make them can be

omputed by the detection model, including transforming symbol

eatures to numerical values, discretization, and normalization. To

nsure the detection performance, the sample labels in D t should

e credible. How to prepare D t belongs to another problem, and

ur work is based on some ready-made data. In practice, we can

se a script to collect successfully served samples, use a honey-

ot to collect up-to-date DDoS attack traffic coupled with genuine

pplication traffic, or resort to a credible third party. Dataset D t is

anually or automatically updated when the feedback mechanism

riggers a signal. 
When there are attack samples in current detection, D f begins

o record the new samples generated in a time window. As the

raffic rate in a busy network is high-speed, we take a sampling

trategy to record the new samples. The sampling rate of different

amples is configured according to the corresponding generation

ate. For example, when the traffic rate is slow, we can record all

amples generated in the time window, and when the rate of nor-

al samples is fast while the rate of attack samples is slow, we can

se a low sampling rate to record normal samples while recording

ll attack samples. Every sample is tagged with a timestamp when

t is added to D f , and the samples out of the time window will be

bandoned. 

When we use D t or D f to train the MLP classifier, they are firstly

ivided into train and validation datasets according to a proper

roportion. In order to avoid the sample imbalance problem, the

roportion between attack and normal samples in the training data

s also adjusted based on oversampling and undersampling tech-

iques. For example, we can use the synthetic minority oversam-

ling technique to generate synthetic minority samples. 

.2. Detection model 

As we treat the DDoS attack detection as a binary classification

roblem, detection model is responsible for classifying the upcom-

ng samples as normal or attack. In this paper, we use the MLP

odel as a classifier, and use a wrapper feature selection named

BS to select the optimal features. The design of the detection

odel is shown in Fig. 3 . The topological structure of MLP is shown

n Fig. 4 . The neuron number of input layer is initially determined

y the number of original features, and it will be changed during

eature selection iteration procedure. The activation function used

n the model is a logistic sigmoid function defined as 

f (a ) = 

1 

1 + exp(−a ) 
. (5) 

he output layer of the model has a single neuron to code

he classification result according to the conditional probability

p(attack | x ) = y, with the probability p ( normal | x ) given by 1 − y .

iven a training dataset comprising input vectors { x i } , where i =
 , . . . , N, together with the corresponding target vectors { t n }, we
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P  
use the cross-entropy function defined in (6) as cost function (also

called error function) ( Nielsen, 2015 ). 

E = − 1 

N 

N ∑ 

i =1 

[ t i ln y i + (1 − t i ) ln (1 − y i ) ] (6)

In order to reduce the computing time of the SBS procedure, the

MLP model has only one hidden layer, and the neuron number of

hidden layer is preset and keeps invariable during feature selec-

tion. The learning algorithm of gradient descent optimization, error

backpropagation, and more details about MLP model can be seen

in Bishop (2006) . Supposing the original feature set is denoted as

F 0 = { f 1 , f 2 , . . . , f n } and MLP model is denoted as M , our goal is

to find a subset F ∗⊆F 0 that makes model M perform the best de-

tection accuracy on data D 

test 
t . The proposed algorithm SBS-MLP is

described as Algorithm 1 . 

Algorithm 1 SBS-MLP. 

Require: F 0 , M, D 

train 
t , D 

v alidation 
t , D 

test 
t 

Ensure: F ∗, M, P cm 

F 0 = { f 1 , f 2 , . . . , f n } , F ′ = ∅ , F 1 = F 0 
Train M on D 

train 
t and D 

v alidation 
t with the features in F 1 as inputs 

Test the trained M on D 

test 
t to get the feature saliency S (1 , ∅ ) =

1 − accuracy 

C F 1 = S (1 , ∅ ) 
for i = 1 → n − 1 do 

for each f ∈ F i : do 

H = F i − f

Train M on D 

train 
t and D 

v alidation 
t with the features in H as

inputs 

Test the trained M on D 

test 
t to get the feature saliency

S (i, f ) = 1 − accuracy 

end for 

f ∗ = arg min f S (i, f ) 

F i +1 = F i − f ∗

C F i +1 
= min S (i, f ) 

end for 

F ∗ = arg min F i 
| F i | subject to max (C F i ) − C F i � ε

Train M on D 

train 
t and D 

v alidation 
t with the features in F ∗ as inputs 

Test the trained M on D 

test 
t to get the confusion matrix P cm 

Return F ∗, M, and P cm 

From the SBS-MLP algorithm, we could see that it is a top-

down procedure. This procedure starts with the full set F 0 to train

and test the MLP model. The detection accuracy on test data and

the corresponding features are recorded as the first candidate (i.e.,

 F 1 
). Then, every feature in the current feature set is temporally

removed to compute feature saliency in the internal iteration. Fea-

ture saliency determines the criterion of evaluating the importance

of a feature. In order to emphasize the generalization performance,

we use 1 − accuracy on test data as the function to evaluate the

saliency. This function can also be replaced by other functions,

such as the combination function of multi metrics and sum-of-

squares error (SSE) loss function. After the internal iteration pro-

cedure is finished, the feature with the minimal feature saliency

is permanently removed from the feature set, and the feature set

that has the maximal accuracy is recorded as the next candidate.

After the external iteration procedure is finished, we find the op-

timal feature subset according to a constrained optimization prob-

lem, which is defined as 

F ∗ = arg min 

F i 
| F i | s.t. max (C F i ) − C F i � ε, (i = 1 , 2 , . . . , n ) . (7)

According to (7) , we choose the subset which has the minimal

cardinality from all candidates that are close enough to the best
etection accuracy as the optimal feature subset. Parameter ε con-

rols the tradeoff between better detection accuracy and less num-

er of features, and it should be set to a small non-negative value

o ensure the priority of detection accuracy. For example, we prob-

bly prefer to choose a feature subset with fewer features when its

ccuracy is only a few tenths of a percentage point less than the

aximal accuracy. After the optimal feature subset is selected, the

LP model is retrained with the features in the subset as inputs.

hen, the tuned model is tested on test data to get the confusion

atrix, which will be used in the feedback mechanism. In practice,

here is no need to train and test the model again, because we can

ave model parameters and corresponding results during the iter-

tion procedure, but for the brevity of the algorithm, here we use

 redundant description. Finally, the detection model M can be de-

loyed to detect genuine traffic. 

According to the iteration procedure, the ith iteration will

rain and test the model n-i+1 times, so the total times are 1 +
 n −1 
i =1 (n − i + 1) = n (n + 1) / 2 . Compared with the complexity of

sing brute force search, SBS strategy reduces the search space

rom O (2 n ) to O ( n 2 ). In addition, as the internal iteration proce-

ure can be executed concurrently, the complexity can be further

educed to O ( n ). This reduction of computing complexity makes it

easible to retrain the model before evaluating the feature saliency

f a temporarily removed feature when the number of original fea-

ures is too large, which is recommended by paper Romero and

opena (2008) . However, a disadvantage of the SBS search strat-

gy is that it is not a greedy selection. Because the optimal so-

ution of the problem does not always contain the optimal solu-

ion of the sub-problem, as features can interact with each other

n a non-linear and complex way. More specifically, only the first

teration can search in all C(n,n-1) different f eature combinations

o find the optimal solution for the n-1 dimension sub-problem,

ut the ith ( i � = 1) iteration can only search in the C(n-i,n-i-1) dif-

erent combinations without considering the other [C(n,n-i-1)-C(n-

,n-i-1)] combinations to find the optimal solution for next sub-

roblem. 

.3. Feedback mechanism 

The feedback mechanism is responsible for perceiving the oc-

urrence of considerable detection errors based on the new labeled

amples recorded in D f . It is executed only when the number (or

roportion) of the new labeled attack samples in D f (denoted as

 a ) exceeds a certain value (denoted as N 0 ) because enough num-

er of attack samples is necessary. The basic hypothesis of the

echanism is that: when the number of false-positive/negative er-

ors in current detection is accumulated to a certain degree, and

f we use the new labeled samples in this duration to retrain the

etection model, the detection accuracy of the retrained model on

est data will appear distinguishable reduction compared with the

riginal model. On the contrary, if the detector is well-performed,

he accuracy reduction should only fluctuate in a limited range.

herefore, we can determine whether the detector is making con-

iderable errors by comparing the accuracy reduction with a preset

hreshold, which represents the normal accuracy reduction profile

nder the stable condition when the detector performs well. If cur-

ent accuracy reduction is bigger than the threshold, the feedback

echanism will trigger a signal to update D t and reconstruct the

etection model. The proposed error perceiving algorithm (EPA) is

escribed as follows: 

In Algorithm 2 , parameter θ is the important threshold used

o make decisions, and it is computed based on the Bienaymé-

hebyshev’s inequality, which is defined as: 

 (| δs − μ| � kσ ) � 

1 

2 
. (8)
k 
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Algorithm 2 Error perceiving algorithm. 

while N a ≥ N 0 do 

Read data from D f 

Train M on D 

train 
f 

and D 

v alidation 
f 

with the features in F ∗ as in- 

puts 

Test the trained M on D 

test 
t to get confusion matrix Q cm 

Compute detection accuracy a P and a Q according to P cm 

and 

Q cm 

δ = a P − a Q 
if δ > θ then 

Update D t 

Execute SBS-MLP procedure with new D t 

Update θ
end if 

end while 
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Table 7 

Composition of experiment data. 

Data Combination Train (No. of packets) Test (No. of packets) 

D1 ISOT Attack 120,000 129,455 

ISOT Normal 120,000 129,457 

D2 ISOT Attack 120,000 129,455 

ISCX Normal 120,000 130,000 

D3 ISOT Attack 120,000 129,455 

Custom Normal 120,000 129,973 

Fig. 5. Results of brute force search on D1 (5 features). F ∗ is the optimal feature 

subset encoded as 11110 = 15. 
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t  
he inequality can be used for outliers detection when data dis-

ribution is unknown De Assis et al. (2018) . δs is a random vari-

ble and denotes the normal accuracy reduction under stable traf-

c condition, μ is the mean value, σ is the standard deviation, and

 > 0 is the deviation parameter. Assuming we want the usual cut-

ff point for statistical significance to be 0.05, we can get k = 4 . 47

nd compute the threshold θ accordingly. In case that a value of

eduction is higher than θ , then we have 95% confidence level to

onsider this point as anomalous. The unbiased estimators of μ
nd σ are used to compute the threshold as follows: 

̂ = E(δs ) = 

1 

N 

N ∑ 

i =1 

δs (i ) , (9) 

̂ = σ (δs ) = 

√ 

1 

N − 1 

N ∑ 

i =1 

[ δs (i ) − μ] 2 , (10) 

= 

̂ μ + k ̂  σ . (11) 

s we only concern the abnormal increase of the accuracy reduc-

ion, we only use the upper bound of the inequality. Every time

he reconstruction is executed, the threshold θ will be updated ac-

ording to the equations. When the threshold is triggered, the pro-

ess of feedback mechanism is suspended until the reconstruction

s finished. 

. Experiment and discussion 

In this section, we firstly describe the experiments about val-

dating the effectiveness of the detection model and feedback

echanism and then give a discussion about our work. All exper-

ments were operated on the Matlab R2014a platform. The server

sed to run the program had 8 CPUs of i7-4790 with 3.60 GHz and

2 GB RAM. 

.1. Experiment of detection model 

Firstly, we implemented a detection model with the topological

tructure implemented in Section 3 to validate the SBS-MLP algo-

ithm. We carefully collected the attack and normal packets from

ataset ISOT, the normal packets from dataset ISCX ( Shiravi et al.,

012 ), and the custom normal packets captured from our cam-

us network. Then we relabeled all packets and synthesized them

s shown in Table 7 . When we run the program, the train data

as automatically divided into train, validation, and test dataset

ith the proportion of 70%:15%:15%. The training phase stopped

t where a minimum cross-entropy on the validation dataset was

chieved. To better test the generalization performance, we only

sed the detection accuracy on the test data in Table 7 as the final

esults. 
According to Fig. 1 , the original feature set F 0 has five features,

nd they are directly extracted from the packet header field, in-

luding source IP, TCP sequence, TCP flag, and TCP source and des-

ination port. For brevity, all subsets of F 0 ({srcIP, srcPort, dstPort,

cpSeq, tcpFlag}) are encoded through a five bits binary number

nd transformed to a decimal value. The bit assigned with 1 in-

icates the corresponding feature is selected, and 0 means not.

or example, value 19 equals to 11001 and indicates only srcIP,

rcPort, and tcpFlag are selected as the input features. We also

ompared SBS-MLP with the other two algorithms that combined

he sequential selection techniques with MLP, including SFS and

lamping technique based SBS (CTSBS), which were first proposed

n Vesa et al. (2001) and Baesens et al. (20 0 0) respectively. The

esults of D1 in every external iteration procedure are shown in

able 8 , and the results of D2 and D3 are shown in Table 9 and

able 10 . As five features only have 2 5 − 1 = 31 different combina-

ions, it is feasible to test all possible feature subsets through brute

orce search. The results are shown in Fig. 5 , where the horizontal

xis represents the decimal encoding of all subsets from 1 to 31.

n order to further evaluate the SBS-MLP algorithm, we enlarged

he feature set to 12 features and tested the three algorithms on

1, D2, and D3. The results are shown in Table 11 . The 12 features

re directly extracted from the packet header filed, including total

ength, identification, flags, time to live, source and destination IP

ddress, TCP source and destination port, TCP sequence, TCP ACK,

CP flags, and TCP window (they are numbered serially from 1 to

2 in Table 11 ). Parameter ε in all experiments is set to zero, which

eans we give top priority to the detection accuracy. 

According to the results in Tables 8–11 , we find that: (1) SBS-

LP can find the optimal feature subset that has fewer features

nd performs better accuracy than the original full feature set;

2) the optimal subset given by SBS-MLP produces better detec-

ion performance than CTSBS-MLP and SFS-MLP with considering

he four metrics; (3) the optimal feature subsets of different data



8
 

M
.
 W

a
n

g
,
 Y

.
 Lu

 a
n

d
 J.
 Q

in
 /
 C

o
m

p
u

ters
 &

 Secu
rity

 8
8
 (2

0
2

0
)
 10

16
4

5
 

Table 8 

Experiment results of D1 (5 features). 

Iteration 1 2 3 4 5 

SBS-MLP Acc(%) Pre(%) DR(%) FAR(%) 93.29 89.47 98.12 11.55 94.37 90.74 98.84 10.09 93.05 89.01 98.22 12.12 92.11 88.5 96.79 12.58 90.1 84.88 97.59 17.38 

features 11111(31)( F 0 ) 11110(15)( F ∗) 11010(11) 10010(9) 10000(1) 

SFS-MLP Acc(%) Pre(%) DR(%) FAR(%) 90.1 84.88 97.59 17.38 92.11 88.5 96.79 12.58 93.05 89.01 98.22 12.12 94.37 90.74 98.84 10.09 93.29 89.47 98.12 11.55 

features 10000(1) 10010(9) 11010(11) 11110(15)( F ∗) 11111(31)( F 0 ) 

CTSBS-MLP Acc(%) Pre(%) DR(%) FAR(%) 93.29 89.47 98.12 11.55 94.37 90.74 98.84 10.09 92.64 88.69 97.75 12.47 74.08 65.87 99.93 51.77 79.21 70.64 99.98 41.55 

features 11111(31)( F 0 ) 11110(15)( F ∗) 10110(13) 00110(12) 00010(8) 

Table 9 

Experiment results of D2 (5 features). 

Iteration 1 2 3 4 5 

SBS-MLP Acc(%) Pre(%) DR(%) FAR(%) 82.44 89.55 73.37 8.53 89.35 90.92 87.38 8.69 88.26 90.54 85.4 8.89 87.73 89.3 85.67 10.22 84.97 85.04 84.79 14.85 

features 11111( F 0 ) 11101( F ∗) 10101 10001 10000 

SFS-MLP Acc(%) Pre(%) DR(%) FAR(%) 84.97 85.04 84.79 14.85 87.73 89.3 85.67 10.22 88.89 89.25 88.38 10.6 89.1 89.55 88.47 10.28 82.44 89.55 73.37 8.53 

features 10000 10001 10011 11011( F ∗) 11111( F 0 ) 

CTSBS-MLP Acc(%) Pre(%) DR(%) FAR(%) 82.44 89.44 73.37 8.53 89.0 90.74 86.82 8.83 88.89 89.25 88.38 10.6 80.76 87.68 71.47 10.0 84.97 85.04 84.79 14.85 

features 11111( F 0 ) 10111( F ∗) 10011 10010 10000 
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re different with each other even when the original features are

ame. The first point indicates that the proposed SBS-MLP algo-

ithm is effective to improve the detection accuracy through fea-

ure selection. The second point indicates that SBS-MLP performs

etter than the other two algorithms. The third point indicates that

he optimal feature subset changes when the traffic changes. Be-

ides, combining the results in Fig. 5 with Table 8 , we find that

BS-MLP and SFS-MLP both can get the global optimal feature sub-

et ( F ∗ is 11110 = 15). We also have tested the brute force search on

2 and D3, and the results indicate that the optimal feature sub-

ets of D2 and D3 given by SBS-MLP and SFS-MLP are global as

ell. However, when the number of features is large, whether the

ptimal subset is a global solution is uncertain, but a suboptimal

olution is still acceptable. From Table 11 , we could see that all

ccuracies corresponding to the full feature set and optimal fea-

ure subset are improved to a very high level after we enlarged

he number of features from 5 to 12. As we can adjust parameter

to control the tradeoff consideration between detection accuracy

nd feature number, SFS-MLP may behave better than SBS-MLP. In

his situation, we can run the SBS-MLP and SFS-MLP procedure to-

ether if it is feasible and then assemble their results to select the

ptimal feature subset according to (7) . 

At last, in order to compare our method with some related

orks using the same data, we also did experiments on the NSL-

DD dataset ( Mahbod, 2009 ), which is a widely used benchmark

ata in the area of intrusion detection. This dataset has five main

ategories: normal, probing, denial of service (DoS), user to root

U2R), and remote to local (R2L), and it has 41 features. As we only

oncern about DDoS attacks, we extracted all normal and DoS at-

ack samples to organize a new train and test dataset (as shown in

able 12 ). Then we did experiments on the reorganized datasets. In

he experiments, the number of hidden layer neurons was added

o twenty-two. All results are shown in Table 13 . As many refer-

nced works only have Acc, DR, and FAR metrics, here we only

ist these three metrics in the table. We pick out the results of

etecting the DoS attack and compare it with them if there are

he details, but if the referenced works only have the holistic re-

ults, we label the corresponding comparisons with a “∗” symbol.

ccording to Table 13 , although the detection performance of our

roposed SBS-MLP is not the best, it still performs a comparable

erformance with 97.66% Acc, 94.88% DR, and 0.62% FAR. Taking

he three metrics into consideration, the SBS-MLP can be regarded

s performing the best performance among all MLP-based detec-

ion methods. In addition, although the number of features (NoF)

f the optimal subset given by SBS-MLP is 31, our method can also

nd an optimal subset that has 16 features and produces 97.29%

cc, 94.86% DR and 1.2% FAR after we increased the tradeoff pa-

ameter ε. 

.2. Experiment of feedback mechanism 

We used the detection model with 12 features implemented

n the last section to validate the feedback mechanism. After the

etection model was tuned by the D1 dataset (i.e. D t ), we could

et the best test accuracy a P = 99 . 62% (see Table 11 ). To see how

he accuracy reduction was influenced, we used three groups of

ata as the feedback dataset D f , which are denoted as G1, G2, and

3 (see Table 14 ), to simulate three different situations through

radually increasing the proportion of new normal packets in traf-

c. More concretely, G1 simulates the stable situation that current

raffic is stable and all packets come from the ISOT dataset. G2 and

3 simulate two different situations that current traffic has more

nd more new packets came from the ISCX traffic and the custom

raffic. In the experiments, we set the total sample number of D f 

n a time window as 40,0 0 0 samples while keeping the proportion

etween attack and normal samples around fifty-fifty. The attack
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Fig. 6. Accuracy reduction of G1, G2, and G3. 

Fig. 7. Real accuracy of G1, G2, and G3. 
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samples of each dataset are randomly sampled from the ISOT test

dataset. The normal samples of each dataset are randomly sampled

from the corresponding test dataset and synthesized according to

proportion α. Parameter α controls the proportion between ISOT

normal packets and other new normal packets in each dataset, and

it is increased from 0 to 1 with 0.02 increment every step. So, we

could get 51 different D f datasets in each group of data, and then

we serially run the EPA procedure on every D f to get the values of

δ. The results are shown in Fig. 6 . As the samples in all datasets

are labeled, we can also compute the real accuracy at each step

to see the how the detector degrades with the proportion of new

normal packets increasing(see Fig. 7 ). 

From Fig. 6 , we can see that the accuracy reduction δ of G1

(black point) only fluctuates in a small range with the parame-

ter α increasing, which is consistent with our hypothesis. As we
se G1 to simulate the stable situation, the δ values of G1 depict

he normal profile of the accuracy reduction, and we can compute

he threshold accordingly. Parameter μ and σ are firstly estimated

ccording to (9) and (10) , and by setting the confidence level k

n (11) as 0.1, we can get the threshold θ = 0 . 04375 (black line

n Fig. 6 ). Then we can see that the δ of G2 (blue star) firstly

xceeds the threshold at α = 0 . 44 and continuously exceeds the

hreshold after α is bigger than 0.68, and the δ of G3 (red circle)

xceeds the threshold only when α is bigger than 0.96. According

o the EPA procedure, a reconstruction of the detection model will

e triggered when the accuracy reduction exceeds the threshold.

he changes of real accuracy shown in Fig. 7 demonstrates that

he reconstruction is advisable, and the feedback mechanism is ef-

ective. From Fig. 7 , we can see the real accuracies of G2 and G3

oth decrease with the proportion of new normal packets increas-

ng, which indicates that the detector is making more and more er-

ors. Meanwhile, the real accuracy of G2 decreasing much steeper

han G3 indicates that the new normal packets from ISCX traffic

mpact much more on the detection performance than the custom

raffic dose, in other words, the detector is better generalized on

he traffic captured from our campus network than the ISCX traf-

c, which conforms to the results in Section 3 . Besides, the dif-

erence in real accuracy between G2 and G3 in Fig. 7 is also con-

istent with the difference in accuracy reduction shown in Fig. 6 .

he feedback mechanism responding much sooner on G2 than it

ose on G3 is because the degradation of real accuracy on G2 is

uch worse than G3. In summary, these results support the basic

ypothesis we proposed in the feedback mechanism, and the EPA

rocedure is effective to perceive the errors made by the detector

ue to the not well-generalized traffic. 

As the results of G2 have more significance in showing the im-

act on detection accuracy when traffic changes, we further test

he accuracy reduction and real accuracy of G2 after the detector

s reconstructed to see how it is improved. Supposing the recon-

truction procedure is triggered at α= 0 . 44 , the detection model

s retrained through an up-to-date dataset D t (here we directly

pdated the dataset through synthesizing the samples in D1 and

2 training datasets). After the procedure is finished, new accu-

acy reduction and real accuracy of G2 are computed, and the new

table situation is also simulated in the same way as G1. The re-

ults are shown in Figs. 8 and 9 . In Fig. 8 , the black points repre-

ent the accuracy reduction of new stable traffic, and we can see it

till only fluctuates in a small range. The new threshold θ (brown

ine) is computed accordingly. The brown forked points started

rom the vertical dashed line, where α= 0 . 44 , shows the changes

n accuracy reduction of G2 after reconstruction. We can see that

he accuracy reduction is under the threshold again, and it fluc-

uates under the threshold within a certain interval of α. Mean-

hile, the optimal feature subset changes from (1,2,4,5,6,7,9,12)

o (1,3,4,5,6,7,9,10,11,12), and the real accuracy of G2 returns from

bout 92% to more than 99% (as shown in Fig. 9 ). These results

emonstrate that the feedback mechanism is effective to correct

he detector when it is making considerable errors. 

At last, we should pay attention to two problems. First, as

hown in Fig. 6 , there are some inconsistent points of G2 that

ead to some failures around α= 0 . 58 when the detector performs

oorly. Although the failure sometimes occurs, the detection model

nd feedback mechanism can still work well, because this kind of

alse-negative response only occurs when the performance degra-

ation is tolerable and will be remedied in the following execution

ycles through the next D f . Second, as shown in Fig. 8 , the δ of G2

fter reconstruction exceeds the new threshold again seven times

fter the proportion α is bigger than 0.7 while the new detector

till performs a very high detection accuracy, which will lead to

ome false-positive responses. According to our observation, this

s because the normal samples in D f gradually changes from the
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Table 11 

Experiment results of D1, D2, and D3 (12 features). 

Data D1 D2 D3 

Feature Set F 0 F ∗ F 0 F ∗ F 0 F ∗

SBS-MLP Acc(%) 99.4 99.62 98.68 99.99 90.71 99.99 

Pre(%) 99.2 99.59 99.56 99.99 84.34 99.98 

DR(%) 99.61 99.65 97.78 99.99 99.94 99.99 

FAR(%) 0.8 0.41 0.43 0.01 18.49 0.02 

features all 1,3,4,5,6,7,9,10,11,12 all 4,5,6,8,11,12 all 5,6,7,8,9,10,12 

SFS-MLP Acc(%) 99.4 99.4 98.68 99.98 90.71 99.99 

Pre(%) 99.2 99.2 99.56 1.00 84.34 99.92 

DR(%) 99.61 99.61 97.78 99.97 99.94 99.92 

FAR(%) 0.8 0.8 0.43 0.00 18.49 0.01 

features all all all 4,5,6,7,8,9,10,11,12 all 3,5,6,7,8 

CTSBS-MLP Acc(%) 99.4 99.48 98.68 99.99 90.71 95.35 

Pre(%) 99.2 99.35 99.56 99.99 84.34 91.9 

DR(%) 99.61 99.6 97.78 99.99 99.94 99.44 

FAR(%) 0.8 0.65 0.43 0.01 18.49 8.73 

features all 1,3,4,5,6,9,10,12 all 4,5,6,8,10,11,12 all 1,2,3,4,5,7,11,12 

Table 12 

Composition of reorganized NSL-KDD 

dataset. 

Train Test 

number of normal 67,343 9711 

number of DoS 45,927 6034 

f  

r  

m  

w  

s  

a

5

 

s  

t  
ull ISOT normal packets to full ISCX normal packets, and when we

etrain the detector through the new D f , the dominant ISCX nor-

al patterns make the retrained detector specific and can not be

ell generalized on the ISOT normal patterns. The false-positive re-

ponse under this situation only wastes some computing resources

nd will not impact the detection performance. 

.3. Discussion 

In the research community of detecting DDoS attacks, most re-

earchers treat the detection as a classification problem and want

o solve the problem once for all based on machine learning algo-
Fig. 8. Accuracy reduction of G2 after reconstruction. 

Fig. 9. Real accuracy of G2 after reconstruction. 

r  
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W  

n  
ithms. However, many solutions are prone to becoming fallible or

ven invalid when they are deployed in the practical network due

o the disabled features and the changeable traffic, although they

ave a very high detection accuracy on a given test data. In order

o solve the problem, we try to build a closed-loop system by in-

roducing a feedback mechanism to perceive detection errors. As a

entative intention, we proposed an MLP-based method to validate

ur idea, and the experiment results indicated that the idea is ef-

ective. Although our work is restricted to the MLP model, we think

he proposed problem and the basic feedback framework can be

xtended to many other machine learning-based detection meth-

ds. 

Considering the parallelism of ANN and the mature open-source

mplementation platform like Tensorflow, as well as the linear

omplexity of sequential feature selection, we think the proposed

olution has good scalability. Besides, as the sampling rate of the

eedback dataset can be adjusted and the feature statistic can be

ollected through the sampling flow (sFlow) technique ( Lu and

ang, 2016 ), the feedback process is competent to work in a busy

etwork in theory, but this needs further assessment in a more
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Table 13 

Comparison results on NSL-KDD. 

Work Detection Model FS NoF Acc(%) DR(%) FAR(%) 

SBS-MLP MLP Yes 31 97.66 94.88 0.62 

SFS-MLP MLP Yes 35 97.61 94.71 0.6 

CTSBS-MLP MLP Yes 41 97.61 94.78 0.63 

Yusof et al. (2018) ∗ MLP Yes 17 91.7 − −
Hosseini and Azizi (2019) ∗ MLP Yes 20 96.1 − −
Osanaiye et al. (2016) ∗ DT:J48 Yes 13 99.67 99.76 0.42 

Zhang and Wang (2013) ∗ BN Yes 11 98.98 − −
Ji et al. (2016) ∗ MLP Yes 22 96.67 − −
Kim and Gofman (2018) ∗ MLP No 41 98.5 − 1.4 

Kushwah and Ali (2018) ∗ MLP No 41 96.3 94.37 5.0 

Chuan-long et al. (2017) RNN No 41 93.42 86.3 0.93 

De La Hoz et al. (2014) ∗ GH-SOM Yes 25 99.12 − 2.24 

Hosseini Bamakan et al. (2016) SVM Yes 17 99.18 98.98 0.69 

MCLP Yes 17 98.26 98.68 2.03 

Sabar et al. (2018) ∗ HH-SVM No 41 85.69 − −

Table 14 

Composition of synthetic dataset. 

ISOT Attack ISOT Normal ISCX Normal Custom Normal 

G1 20,000 20,000 0 0 

G2 (1- α) ∗20,000 α∗20,000 0 

G3 (1- α) ∗20,000 0 α∗20000 
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comprehensive way. In our experiments, as the MLP structure used

in the experiments was simple and the sample number of D f was

fixed to 40,0 0 0, the feedback process only took about 7 s to run

the EPA procedure once, and reconstructing the detector through

SBS-MLP algorithm took about 160 s (about 240,0 0 0 train sam-

ples) while the model training procedure only used about 12%–

15% CPU resources due to the limitation of Matlab. We plan to

implement our solution as a northbound application under the

software-defined networking (SDN) paradigm, which supports im-

plementing our solution based on the abstracted APIs without

considering the low-level details (a similar work can be seen in

Bawany et al. (2017) . In this way, our method can work as an appli-

cation software running on a cloud server, and the computing re-

sources required can be allocated elastically according to the real-

time overhead. How to realize the optimal resource allocation and

scalability can refer to the works in Al-Haidari et al. (2013) and

Calyam et al. (2014) . 

6. Conclusion 

In this paper, one of our main purposes is to improve the avail-

ability of many modern machine learning-based detection meth-

ods, at least from the perspective of MLP model, as they seldom

consider the unavailability in practical deployment caused by dis-

abled features and changeable traffic. We demonstrated this prob-

lem, which is not widely addressed by the community, through im-

plementing and testing an MLP-based case. In order to solve the

problem, we proposed a dynamical MLP-based detection method

against the DDoS attack through combing with sequential feature

selection and feedback mechanism. According to the results, on the

one hand, our method had comparable detection performance on

the popular benchmark data NSL-KDD compared with some re-

lated works. On the other hand, our method was effective in per-

ceiving the detection errors when their saliency accumulated to a

certain degree and then reconstruct the detector according to up-

dated data. The main contributions of our work include: (1) pro-

posed an easily feasible and interactive method to combine fea-

ture selection with MLP model; (2) designed a feedback mecha-

nism to perceive detection errors based on the recent detection

results. The disadvantages of our method mainly include: (1) the
BS-MLP algorithm can not ensure finding the global optimal fea-

ures, but a suboptimal solution is also acceptable; (2) the feedback

echanism is possible to generate false-negative or false-positive

esponses, but the former can be remedied by itself, and the latter

oes not impact the detection performance. 

In future work, we aim to investigate a more effective and

ightweight solution to perceive the detection errors, implement

ur solution based on the northbound API provided by open-

ource controller Opendaylight, and validate the solution in the

DN environment on our private cloud platform. We hope the

lanned works can extend our solution to meet the diverse

nd changeable application-specific DDoS attack detection require-

ents in the cloud environment. 
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