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Abstract
Microplastics have recently become a major environmental issue due to their ubiquitous distribution, uncontrolled environ-
mental occurrences, small sizes and long lifetimes. Actual remediation methods include filtration, incineration and advanced 
oxidation processes such as ozonation, but those methods require high energy or generate unwanted by-products. Here we 
tested the degradation of fragmented, low-density polyethylene (LDPE) microplastic residues, by visible light-induced het-
erogeneous photocatalysis activated by zinc oxide nanorods. The reaction was monitored using Fourier-transform infrared 
spectroscopy, dynamic mechanical analyser and optical imaging. Results show a 30% increase of the carbonyl index of resi-
dues, and an increase of brittleness accompanied by a large number of wrinkles, cracks and cavities on the surface. The degree 
of oxidation was directly proportional to the catalyst surface area. A mechanism for polyethylene degradation is proposed.
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Introduction

Recent studies have shown the ubiquitous distribution 
of fragmented plastics of sizes less than 5 mm, typically 
referred to as microplastics, in the biosphere, due to years of 
improper disposal of plastic materials, mismanagement and 
negligent littering (Eerkes-Medrano et al. 2015, Van Cau-
wenberghe et al. 2015, Auta et al. 2017). A small fraction 

of larger sized plastic materials are recovered, incinerated 
or recycled for further use. The rest of the plastics end up 
in landfills, waterways, drainage systems and wastewater 
plants. Wastewater treatment plants have been identified as 
one of the major potential sources of microplastics pollution 
in aquatic systems mainly contributed by consumer plastics, 
industrial abrasion, air blasting media, cosmetic products, 
textiles, medicines as well as the breakdown of larger par-
ticles (Bergmann et al. 2015; Talvitie et al. 2015). Several 
studies have suggested advanced treatment technologies 
for the removal of microplastics from wastewater treatment 
system (Talvitie et al. 2017). Research is also focusing on 
the development of sustainable, bio-based plastic polymers 
(Kuswandi 2017; Brandelli et al. 2017).

Existing approaches for handling waste plastic materials 
are thermal, catalytic, mechanical, chemical, ozonation and 
photo-oxidative degradation (Klein et al. 2018); yet stud-
ies showed that photocatalysis could be viable, inexpensive 
and energy efficient for polymer degradation. Photocatalysis 
is a light-mediated redox process, wherein nanostructured 
semiconductors excited with appropriate light energy lead 
to the creation of exciton pairs, which react with surround-
ing water/moisture to produce highly reactive species like 
superoxides and hydroxyl radicals that can effectively oxi-
dize organic species including polymers (Ali et al. 2016; Qi 
et al. 2017; Çolak et al. 2017; Baruah et al. 2016).
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Amongst popular metal oxide photocatalysts, ZnO 
stands out to be the most promising owing to its band gap 
(3.37 eV), excellent optical properties, high redox poten-
tial, better electron mobility and non-toxicity. In addi-
tion, ZnO is easy to synthesize and can be formed into 
different shapes and sizes using facile low-temperature 
hydrothermal growth processes (Qi et al. 2017; Baruah 
and Dutta 2009; Çolak et al. 2017). ‘Nano’ sized materials 
are of great importance due to high surface to volume ratio 
compared to bulk materials as photocatalysis is a surface-
driven phenomenon (Baruah et al. 2016).

In this study, ZnO nanorod photocatalysts were used 
to degrade LDPE film (residual), which is an abundant 
microplastic pollutant in wastewater systems (Talvitie 
et al. 2017). Suitability of photocatalysis as a process to 
degrade solid phase LDPE residues in water was evaluated 
and a possible chemical pathway has been proposed.

Materials and methods

Reagents

Zinc acetate dihydrate [Zn(CH3COO)2, molecular weight: 
219.5 g/mol], Zinc nitrate hexahydrate [Zn(NO3)2·6H2O, 
molecular weight: 297.47 g/mol]and Hexamethylenetet-
ramine  [C6H12N4, molecular weight: 140.19 g/mol] were 
purchased from Sigma-Aldrich. Commercially available, 
solid LDPE film of 50 µm thicknesses was used for the deg-
radation studies.

Growth of zinc oxide nanorods

Zinc oxide (ZnO) nanorods were hydrothermally grown 
on glass substrates (Baruah and Dutta 2009). Briefly, a 
seed ZnO layer was formed by spray pyrolysis of 10 mM 
Zn(CH3COO)2 at 1 mL/min on clean microscopic glass 
slides placed on a hot plate at 350 ºC. ZnO nanorods were 
grown by subsequently placing the seeded substrates in a 
chemical bath of equimolar solutions of hexamine and zinc 
nitrate hexahydrate in DI water for 5 h at 90 °C, followed by 
post-synthesis annealing in air at 350 °C for 1 h.

Experimental set‑up for photocatalytic degradation 
of low‑density polyethylene film

Photocatalytic degradation of low-density polyethylene 
(LDPE) film of size (1 cm × 1 cm) was carried out for 175 h 
in a petri dish containing the photocatalyst and deionized 
water. A 50 W dichroic halogen lamp in ambient air was 

used for visible light illumination (≈ 60–70 klux) from a 
distance of 10 cm (supporting info. Fig. S1).

Characterization techniques

Scanning electron microscope (SEM) (ZEISS Ultra 55) was 
used for the determination of surface morphology and size 
ranges of catalysts. A digital microscope (Leica: DFC295) 
fitted with a 3.0 megapixel camera was used for observing 
the morphological changes over the surface of the exposed 
LDPE film.

Dynamic mechanical analyser (DMA) was used to deter-
mine mechanical changes within the polymer at molecular 
levels. Both controlled, and pre-stressed LDPE films were 
exposed to a sinusoidal stress and strain at different tempera-
tures (− 20 ºC to + 100 ºC) at 1 Hz frequency. Storage modu-
lus (Es) that represents the elastic behaviour of polymer was 
calculated as in Eq. (1).

Storage modulus,

where σ = maximum stress, ϵ = maximum strain and 
β = phase angle in radian between the dynamic stress and 
the dynamic strain in a visco-elastic material subjected to a 
sinusoidal oscillation.

Fourier-transform infrared (FTIR) spectroscopy (Nico-
let is 10: Thermo scientific) was used for the qualitative 
observation of molecular changes of the functional groups. 
The effect of photocatalytic oxidation was monitored by 
determining both carbonyl and vinyl indices; carbonyl 
index being the ratio of areas under the absorbance peaks 
at 1712 cm−1 and 1372 cm−1; vinyl index being the ratio of 
the area under the absorbance of vinyl group at 909 cm−1 
to the area under the same reference peak (Ali et al. 2016).

Result and discussion

Morphological variations of photodegraded 
low‑density polyethylene films

Cracks and spots on the low-density polyethylene (LDPE) 
film where the photo-mediated oxidation process was preva-
lent after 175 h of exposure can be visually observed from 
optical images shown in Fig.  1. Chromophoric groups, 
manufacturing defects and weak links act as initiation sites 
for the oxidation process, in turn leading to degradation of 
the molecular bonds upon prolonged photocatalytic expo-
sure (Yousif and Haddad 2013). Few cracks observed on the 
control LDPE film might be introduced from manufacturing 
processes.

(1)E
s
= �∕ ∈∗ cos�
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It is generally agreed that excitation of the photocata-
lyst under optimum light energy leads to the formation of 
hydroxyl radicals, which have a high oxidation capacity for 
degrading organic pollutants. Hence longer rods, which by 
virtue of their increased surface area can generate higher 
number of radicals, lead to a higher degradation of the LDPE 
film surface. Further evidence of the LDPE oxidation is also 
provided by DMA analysis.

Surface topography and composition of designed 
catalysts

Scanning electron microscopy (SEM) micrographs show 
that the ZnO nanorods were 250 to 1750 nm long varying in 
width from 34 to 65 nm for the precursor concentrations of 
3 mM, 5 mM, 10 mM and 20 mM, leading to increment of 
total effective surface area to 6.5, 22, 49 and 55 cm2, respec-
tively (supporting info. Fig. S2 and Table S1). This suggests 
that longer rods have higher effective surface area and could 
be more effective for microplastics degradation.

Changes in visco‑elastic properties 
of photocatalysed low‑density polyethylene films

Dynamic mechanical analyser (DMA) analyses the stor-
age modulus (Es) as a function of temperature, where Es 
represents the energy stored with increasing temperature 
per cycle of sinusoidal deformation, which in turn rep-
resents the changes in the visco-elastic properties of the 
LDPE films. As shown in Fig. 2, temperature-dependent 

variations of the storage modulus for the films irradiated in 
the presence of photocatalysts showed a marked increase 
in ES, indicating increased stiffness. The degree of stiff-
ness for same level of photo-irradiation was observed to 
be a function of the rod length, again indicating to the 
hypothesis that higher surface area leads to a more effec-
tive photocatalytic performance. In fact, Es values for the 

Fig. 1  Microscopic images 
of i as received low-density 
polyethylene (LDPE) and 
photo-irradiated LDPE 
for 175 h in contact with 
nanorods ii ZnO (3 mM_5 h) 
iii ZnO (10 mM_5 h), iv ZnO 
(20 mM_5 h) exhibiting the 
development of cracks, holes 
and spots

Fig. 2  Variation in the elastic properties of low-density polyethyl-
ene films upon photo-irradiation in the presence of zinc oxide (ZnO) 
(3 mM_5 h), ZnO (10 mM_5 h) catalysts. It can be noted that higher 
value of storage modulus (Es) reveals the alteration to more stiffer and 
tougher elastic properties due to photocatalysis in comparison with 
non-irradiated (control) film
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20 mM ZnO photocatalyst sample could not be extracted 
as the sample ruptured due to non-sustenance of the pre-
stress while performing the measurements. Hence, it gives 
a clear indication that the irradiated films lose their elas-
ticity due to chain scission within the polymeric matrix, 
as a result of photocatalytic oxidation (Sebaa et al. 1993; 
Briassoulis 2005).

Temporal changes of chemical properties 
during photocatalysis of low‑density polyethylene 
films

To better understand the LDPE degradation phenomenon, 
the samples were characterized using time-dependent FTIR 
spectroscopy as shown in Fig. 3. Baselines were extracted 

Fig. 3  a FTIR spectra of low-density polyethylene film over 175 h of visible light photocatalysis in the presence of ZnO (10 mM_5 h) nanorods. 
b Evolution of different functional groups i peroxides, ii hydroperoxides, iii carbonyl and iv unsaturated groups during photocatalysis process
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from the control (non-irradiated) LDPE with characteris-
tic vibrational peaks at 710 cm−1, and 719 cm−1 (rocking 
deformation of –CH2), 2847 cm−1, 2915 cm−1 (symmet-
ric and asymmetric –CH2 stretch), 1462 cm−1, 1472 cm−1 
(–C=C– stretch), and 1377 cm−1 (weak symmetric defor-
mation of –CH3 group) (Gulmine et al. 2002; Ali et al. 
2016; Socrates 2004). Chemical transformation during the 
photodegradation resulted in the formation of new func-
tional groups like carbonyl, hydroperoxide, peroxides and 
unsaturated groups within the bands from 1700–1760 cm−1, 
3600–3610 cm−1, 1100–1300 cm−1 and 880–920 cm−1, 
respectively, which is in agreement with previous studies 
(Gardette et al. 2013; Luongo 1960; Qin et al. 2003).

A closer observation of the vibrational bands (Fig. 3b) 
leads to a better understanding of the degradation mecha-
nism. The formation of bonded and non-hydrogen-bonded 
alcohol species was confirmed by the stretching peaks at 
3553 cm−1 and 3606 cm−1. Primary (1170 cm−1), second-
ary (1280–1325 cm−1) and double-bonded (1048 cm−1) 
peroxide groups were also observed. Fairly broad and clear 
peaks observed at 1708 cm−1, 1719 cm−1, 1738 cm−1 and 
1747 cm−1 that can be assigned to carboxylic acid, ketones, 
aldehyde and esters belonging to carbonyl groups (Kuma-
nayaka 2010; Socrates 2004). It has been previously sug-
gested that photo-oxidation of ketones results in the forma-
tion of unsaturated vinylidene and vinyl groups at 888 cm−1 
and 909 cm−1, respectively (Gardette et al. 2013). Interest-
ingly, vinylidene groups seem to form rapidly before decay-
ing and vinyl groups increase simultaneously with the gen-
eration of ketones, due to Norrish type II reactions, which is 
a part of the photocatalytic degradation process.

Photocatalytic degradation indices

The evolution of carbonyl and vinyl groups are the main 
indicators for monitoring the degree of degradation of a 
polymer. Table 1 shows the carbonyl and vinyl indices of 
the LDPE films after photocatalysis with different catalysts, 
wherein a 30% increase in the CI and VI indexes for longer 

ZnO rods clearly demonstrates the photocatalytic improve-
ment with catalyst surface area. Initial carbonyl and vinyl 
values of 0.71 and 0.51 indicate the presence of inherent 
chromophoric groups which are the primary initiators for 
the degradation (Ali et al. 2016; Yousif and Haddad 2013).

Proposed degradation mechanism

Based on the results obtained in this study, the following 
degradation pathway for the LDPE film is proposed. The 
generated hydroxyl and superoxide radicals from cata-
lyst initiate degradation at weak spots (like chromophoric 
groups, defects) of the long polymeric chains to generate 
low molecular weight polyethylene alkyl radicals (Eq. 2), 
followed by chain breaking, branching, crosslinking and 
oxidation of LDPE. Subsequently (Eqs. 3–5), peroxy radi-
cals are formed with oxygen incorporation, followed by the 
abstraction of hydrogen atoms from the polymeric chains to 
form hydroperoxide groups. The hydroperoxide groups are 
the foremost oxygenated products that regulate the rate of 
photocatalytic degradation, wherein their dissociation into 
alkoxy radicals undergoes successive reactions to generate 
carbonyl and vinyl group containing species (Eqs. 7–8), 
which in turn lead to chain cleavage. Hence the presence 
of carbonyl and vinyl groups confirms the photo-oxidative 
degradation of LDPE films in the presence of catalysts that 
terminates by generating volatile organic compounds like 
ethane and formaldehyde. However, further oxidation can 
lead to complete mineralization to produce carbon dioxide 
and water as explained below (Hartley and Guillet 1968; 
Shang et al. 2003; Liang et al. 2013).

Norrish type I

Norrish type II
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Table 1  Carbonyl index (CI) and vinyl index (VI) of low-density pol-
yethylene (LDPE) films after 175  h exposure to visible light in the 
presence of different photocatalysts for monitoring the degree of deg-
radation where higher values suggest better oxidation

Zinc oxide (ZnO)

Param-
eters

Control 
(non-irra-
diated) 
LDPE

LDPE + ZnO 
(3 mM_5 h)

LDPE + ZnO 
(10 mM_5 h)

LDPE + ZnO 
(20 mM_5 h)

CI 0.71 1.17 1.38 1.51
VI 0.51 0.9 1.12 1.3
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Conclusion

This study successfully demonstrates the degradation of 
microplastic fragments, low-density polyethylene film 
(LDPE) in water using visible light excited heterogeneous 
ZnO photocatalysts. Photocatalytic LDPE oxidation led to 
formation of low molecular weight compounds like hydrop-
eroxides, peroxides, carbonyl and unsaturated groups, result-
ing in increased brittleness along with wrinkles, cracks and 
cavities on the LDPE surface. Furthermore, catalyst surface 
area was found to be important towards enhancing the LDPE 
degradation. The results provide new insights into the use 
of a clean technology for addressing the global microplastic 
pollution with reduced by-products.
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