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Abstract— Accurate fault location reduces operating cost and 

outage time. This paper proposes a time-domain method to 

accurately locate faults in transmission lines, which only requires a 

very short data window (several milliseconds) during faults. First, 

the voltage distribution through the line during faults is accurately 

obtained by solving the matrix form partial differential equations 

using the proposed numerical scheme. The proposed numerical 

scheme is mathematically validated for the transmission line fault 

location problem, with the optimal selection of time and distance 

intervals to ensure stability and minimum solution error. Afterwards, 

the fault location is obtained via the extremum value of the voltage 

distribution. The method fully considers distributed parameters as 

well as asymmetry of the line. Extensive numerical experiments 

validated that (a) the proposed numerical scheme demonstrates 

advantages towards other numerical schemes; (b) the proposed 

method presents higher fault location accuracy compared to the 

existing method, independent of fault types, locations and 

impedances; and (c) the fault location accuracy is not sensitive 

towards fault inception angles, loading conditions, measurement 

errors and parameter errors. The proposed method works with 

relatively low sampling rates (80 samples per cycle) and is 

compatible with IEC 61850 standard in present digital substations. 

Index Terms— time-domain fault location, distributed 

transmission line model, line asymmetry, short data window,  

IEC 61850 

I. INTRODUCTION 

ccurate fault location minimizes the time spent searching 

for the fault and reduce the operating expense of the power 

system. Transmission line fault location techniques are 

extensively researched in existing literatures, mainly including 

frequency domain methods and time domain methods. 

Frequency domain methods usually use the fundamental 

frequency phasor measurements to calculate the fault location 

[1-4]. The main challenge of frequency domain methods is that 

the accuracy of the calculated phasors could be compromised 

especially during system transients. Consequently, a relatively 

long data window during the fault is usually required to ensure 

the accuracy of the fault location. For transmission lines with 

high-speed tripping techniques, the accessible data window is 

very short (sometimes several milli-seconds) [5]. To accurately 

locate faults with a short data window, researchers proposed 

time domain methods which can be further classified into time 

domain measurement based fault location methods and time 

domain model based fault location methods. 

For time domain measurement based methods, the most 

widely adopted methods are the traveling wave methods. 

Traveling wave methods find the distance between the line 

terminal and the fault location using the traveling wave velocity 

as well as the detected the arrival time of traveling waves [6-12]. 

The limitations of traveling wave methods are as follows. First, 

the wavefront detection reliability may not be guaranteed 

especially during faults with zero inception angles. In addition, 

the methods usually require a very high sampling rate to ensure 

the fault location accuracy. 

For time domain model based methods, they analyze the 

relationship between fault location and the available 

measurements using the accurate model of transmission lines. 

These methods can be further classified according to whether 

the relationship is analytically expressed, including the 

methods of solving equations and the voltage methods. 

Firstly, the methods of solving equations construct analytical 

equations describing the relationship between the fault location 

(the unknown variable) and the available measurements. With 

analytical expressions, the fault location problem becomes an 

equation-solving problem. To formulate the analytical equation 

in time domain, the lumped parameter transmission line model 

is usually utilized to approximate the fully distributed 

parameter model [13-15], which may result in compromised 

fault location accuracy. The utilization of the lumped parameter 

model is because the fully distributed parameter model in time 

domain is usually expressed in partial differential equations 

(PDEs), which are difficult to be rewritten into analytical 

equations with the fault location as an unknown variable. 

Secondly, to avoid such formulation of analytical equations, 

researchers proposed the voltage methods. The methods first 

calculate the voltage distribution with measurements at either 

terminal respectively, and then the point of intersection of the 

two voltage distribution curves shows the fault location [16]. In 

order to solve the voltage distribution over the entire 

transmission line, one widely used model is the Bergeron 

model, which fully considers distributed inductance and 

capacitance [5, 17, 18]. The limitation of the traditional 

Bergeron model is the assumptions of lumped series resistance 

and zero shunt conductance. To consider the transmission line 

model with fully distributed parameters, the description using 

PDEs is introduced. The numerical solution of the PDEs 

achieves voltage methods fault location. For example, 

researchers proposed a fault location algorithm using the 

method of characteristics to solve the one-dimensional PDE 

[16]. However, the stability and minimum error conditions of 

existing numerical solutions are usually not mathematically 

verified. In this case, the method may not work well with 

user-defined time and distance intervals in a general 

transmission line system. In addition, existing time domain 

voltage methods usually utilize constant transformation 

matrices such as Clarke transformation and Karrenbauer’s 
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transformation to decouple the three phase network. These 

transformations are based on the assumption of geometrically 

symmetrical structure of transmission lines. With asymmetrical 

transmission lines, the multi-phase models (the Bergeron 

model or models with PDEs) generally cannot be fully 

decoupled, which may affect the fault location accuracy. 

This paper proposes a novel time domain transmission line 

fault location method which fully considers distributed 

parameters and asymmetry of transmission lines. The matrix 

form PDEs that describe the physical laws of the multi-phase 

transmission line are numerically solved to find the voltage 

distribution through the entire line. Afterwards, the fault 

location is obtained by finding the point of intersection of the 

voltage distribution curves. The effectiveness of the proposed 

numerical scheme is mathematically proved through the 

stability analysis and the error analysis. In addition, an optimal 

selection of distance and time intervals in solving the matrix 

form PDEs is derived to minimize the fault location error. 

Numerical experiments in a 300 km three phase AC 

transmission line system verify that the proposed fault location 

method presents higher fault location accuracy compared to 

existing approaches, with a short time window of 5 ms and a 

relatively low sampling rate of 80 samples per cycle (or 4 kHz 

for a power system with 50 Hz nominal frequency) according to 

IEC61850-9-2LE standard in digital substations. 

The rest of the paper is organized as follows. Section II 

explains in detail the motivation of proposing a new numerical 

scheme. Section III mathematically derives the proposed 

numerical scheme and proves its effectiveness through stability 

analysis and error analysis. Section IV introduces the fault 

location methodology using the proposed numerical scheme. 

Section V and VI verifies the advantages of the proposed fault 

location method using numerical experiments. Section VII 

discusses the effects of different factors on the fault location 

accuracy. Section VIII draws a conclusion. 

II. BACKGROUND AND MOTIVATION OF PROPOSING A NEW 

NUMERICAL SCHEME 

This section introduces the background of the numerical 

solution of PDEs and the necessity of a new numerical scheme 

for fault location. Here a multi-conductor transmission line 

with the number of conductors M is selected as an example. The 

transmission line model in the matrix form PDEs fully 

considers distributed parameters and asymmetry of the 

transmission line, as follows, 

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

u L i R i 0

i C u G u 0

x t x x t t x t

x t x x t t x t

  +   +  =

  +   +  =
              (1) 

where ( ) ( ) ( )
T

1, , ,u Mx t u x t u x t =   , ( ) ( ) ( )
T

1, , ,i Mx t i x t i x t =   , 

( ),ju x t  and ( ) ( ), 1, 2, ...,ji x t j M=  are voltages and currents of 

phase j  at distance x and time t (positive direction of the 

current is the same as the positive direction of x),  0,x l  is 

the distance from the local terminal of the line, l  is the length 

of the line, 0 is the M-dimensional zero vector, and R , L , G  

and C  are the resistance, inductance, conductance and 

capacitance matrices per unit length. Note that the asymmetry 

of the transmission line can be fully considered since the 

structures of parameter matrices are without any assumptions. 

To locate faults, the calculation of the voltage distributions is 

achieved by the numerical solution of the matrix form PDEs (1) 

using the finite difference method with various numerical 

schemes. In fact, the numerical solutions of PDEs with finite 

difference methods are well-known principles in mathematics. 

Specifically, the solutions of the transmission line PDEs have 

been studied in the field of transmission line modeling. 

Djordjevic [19] considered the transmission line as a finite 

section lumped parameter system and numerically solves the 

voltage and current in each section. The stability and error of 

the scheme were not mathematically proved but only 

summarized through numerical experiments. For the same 

scheme, Paul [20] considered the CFL condition (which claims 

that the domain of dependence of the PDE should be included 

in the domain of dependence of the numerical scheme [21]) as 

the necessary condition of stability. The error of the scheme is 

verified through the circuit theory with strong assumptions of 

lossless and geometrically symmetry transmission lines. 

Besides the aforementioned limitations, there is an even 

more important reason why the existing numerical schemes (in 

the field of transmission line modeling or even mathematics) 

should be mathematically re-evaluated and reconsidered for the 

fault location problem, as follows. The transmission line 

modeling problem (Problem 1) is in purpose of solving the 

voltages and currents through the transmission line with 

complete information of the rest of the system as well as the 

initial states of the system. It usually takes the voltage and 

current distributions at the starting time as the initial condition 

and takes the certain functional relationship between voltages 

and currents at each terminal as the boundary condition 

(obtained from the rest of the system connected to the 

transmission line). The calculation is through the time direction. 

The problem is, 

1 2

: ( , 0), ( , 0) [0, ];

[ (0, ), (0, )] 0, [ ( , ), ( , )] 0, [0, ]

( , ), ( , ) [0, ], [0, ]

u i

u i u i

u i

F

F

Problem 1 Given x x x l

f t t f l t l t t t

Find x t x t x l t t

 

= =  

   

 

On the other hand, the transmission line fault location 

problem (Problem 2) is in purpose of solving the voltages and 

currents through the transmission line with given voltages and 

currents measured at only one terminal of the line (typically 

without information of the rest of the system). It takes the local 

terminal instantaneous voltage and current measurements as the 

initial condition, and the voltage and current distributions at the 

starting time as the boundary condition. The calculation is 

through the distance direction. The problem is, 

: (0, ), (0, ) [0, ]; ( , 0), ( , 0) [0, ]

( , ), ( , ) [0, ], [0, ]

u i u i

u i

F

F

Problem 2 Given t t t t x x x l

Find x t x t t t x l

   

   
 

Therefore, the aim of this paper is to propose an 

appropriate numerical scheme in order to solve Problem 2 

(existing numerical schemes usually solve Problem 1). Next, 

the proposed numerical scheme is derived in detail. The 

validity of the proposed numerical scheme is mathematically 

examined through stability analysis and error analysis. 

III. MATHEMATICAL DERIVATION OF THE PROPOSED 

NUMERICAL SCHEME FOR SOLVING VOLTAGE DISTRIBUTION 

In this section, the numerical solutions of (1) with 

appropriate numerical scheme are proposed. To numerically 

solve (1), the partial derivative terms of the PDE are rewritten 

Authorized licensed use limited to: University of Canberra. Downloaded on May 02,2020 at 18:40:57 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.2974294, IEEE
Transactions on Power Delivery

 

 

into terms in the difference form. With various difference forms, 

PDE can be numerically solved with various schemes [21]. 

Next, one needs to select a mesh for the interested area. For the 

transmission line system, the mesh consists of the distance grid 

(with the distance interval x ) and the time grid (with the time 

interval t ). Besides, one also needs to transform (1) into 

PDEs with a single vector variable, including the following two 

equivalent ways. The first way is to combine the two vector 

variables (the voltage and current vector variables) into one 

vector variable and convert (1) into a first order matrix form 

PDE, 

( ) ( ) ( )1 2, , ,x t x x t t x t  +   +  =y A y A y 0              (2) 

where  
T

=y u i ,  1 ;=A O L C O ,  2 ;=A O R G O  and 

O is the M-dimensional zero square matrix. 

The second way is to eliminate one of the two vector 

variables and convert (1) into second order PDEs, 

( ) ( ) ( ) ( )2 2 2 2

1 2 3, , , ,x t x x t t x t t x t  =   +   + u B u B u B u (3a) 

( ) ( ) ( ) ( )2 2 2 2

1 2 3, , , ,x t x x t t x t t x t  =   +   + i C i C i C i  (3b) 

where 1 =B LC , 2 = +B RC LG , 3 =B RG , 1 =C CL , 

2 = +C CR GL  and 3 =C GR . 

Afterwards, three widely used explicit schemes are carefully 

studied to solve (2) or (3): the ordinary one-step explicit 

scheme to solve (2), the Lax-Wendroff scheme to solve (2), and 

the leap-frog scheme to solve (3). For each scheme, the explicit 

formulation of the solution is derived for calculating voltage 

distribution, followed by the stability analysis and the error 

analysis of each scheme. Note that, the stability analysis and 

the error analysis are rigorous mathematical steps to 

theoretically ensure the effectiveness of the numerical 

scheme and to provide guidance on the optimal way of 

selecting the distance and time intervals for each scheme. 

A. Ordinary One-Step Explicit Scheme 

The most straightforward and naive way to solve (2) is to use 

the explicit scheme with the first order difference form. 

1) Derivation of Solution in Discretization Format 

For (2), rewrite ( ),x t x y  as the forward difference form to 

achieve the one step scheme. Rewrite ( ),x t t y  as the central 

difference form. Equation (2) is rewritten as follows, 

( ) ( )1 1

1 1 22n n n n n

j j j j jx t+ −

+ −  +  −  +  =Y Y A Y Y A Y 0       (4) 

where the approximate numerical solution is expressed as the 

capital letter variable with the subscript j as the distance step 

number and the superscript n as the time step number (same 

definition through the paper). For example, the approximate 

numerical solution of variable ( , )j jx ty  is expressed as n

jY , 

where jx j x=  , jt n t=  , 1,2,..., xj N=  and 1,2,..., tn N= . 

The solution of 1

n

j+Y  is 

( ) ( )1 1

1 2 12n n n n

j j j jx x t + −

+ = −   −     −Y Ε A Y A Y Y         (5) 

where E is the identity matrix with the dimension of 2M. 

Here the solution at ( )1,j nx t+  is expressed by three solutions 

at ( )1,j nx t − , ( ),j nx t  and ( )1,j nx t + . The entire voltage distribution 

can be solved step by step. The calculation direction is exactly 

corresponding to the requirement of problem 2. 

2) Stability Analysis 

The stable condition of a numerical scheme is derived with 

Fourier analysis [21]. Take the term of ( ) ( )j ik n t
e


 as the Fourier 

series of the exact analytical solution at point ( ),j nx t , where k is 

the wave number of the Fourier series and i is the imaginary 

unit. Substitute the Fourier series into the numerical scheme, 

the amplification   is expressed with x , t  and k. For k 

varying from negative infinity to positive infinity, the range of 

variables x  and t  that makes   always smaller than or 

equal to one is the stable condition. 

For the ordinary one-step explicit scheme, consider the 

Fourier mode ( ) ( ) ( ) ( ) ( ) ( )
T

1 2, ,
j j jik n t ik n t ik n tn

j Me e 
   = =

 
y λ e , where 

☉  expresses element-wise product, ( ) ( ) ( )
T

1 2=
j j j

M  
 

λ , 

( ) ( )
=

ik n t ik n t
e

 
e 1  and 1  is 2M-dimensional unit vector. 

Substitute them into (4), 

( ) ( ) ( )
1 22 0

ik t ik t
x t

 −  −  +  −  +  =
 

λ 1 A e e A 1          (6) 

Note that ( ) ( ) ( )2sin
ik t ik t

e e i k t
 − 
− =   , the solution of λ  is, 

( ) 1 2sinx t i k t x= −        −   λ 1 A 1 A 1             (7) 

The maximum amplification p  ( )1 ~ 2p M=  for all k is 

2 2
2 2

1 2

1 1

1
M M

p pq pq

q q

x
A x A

t


= =

   
= + −    

   
  , where 1 pqA  and 2 pqA  

represent matrix elements at row p and column q of 1A  and 2A . 

Therefore, the stable condition is, 
2 2

2 2 2
2

2 1 2

1 1 1

min 2 , 1 ~ 2
M M M

pq pq pq

q q q

x t A A t A p M
= = =

      
    +  =    
       

   (8) 

With typical line parameters of 1A  and 2A , since the typical 

sampling interval t  of instantaneous measurements is in the 

order of 
410−
 seconds or less, the stable condition requires that 

x  is approximately in the order of 
0 110 ~ 10  meters or less. In 

fact, since the length of a typical transmission line is in the 

order of 
4 510 ~ 10  meters, the aforementioned x  will result in 

overwhelmed number of meshes. In addition, to calculate 

voltage distribution through the entire line, 
tN  should be larger 

than 
xN  (details of this phenomenon will be introduced in 

section IV). In this case, this mesh requires an extremely long 

data window (in the order of seconds) and is not applicable in 

practice. Therefore, this scheme is considered as an unstable 

scheme for transmission line fault location problem. The most 

straightforward ordinary one-step explicit scheme is not quite 

applicable for fault location. 

3) Error Analysis 

Since this scheme is considered unstable, the error analysis 

of this scheme will not be provided. 

B. Improved One-Step Scheme: Lax-Wendroff Scheme 

Another one-step scheme with improved stability is the 

Lax-Wendreoff scheme. The main idea of the Lax-Wendroff 

scheme is to keep the second order terms of Taylor expansion in 

the process of approximating the partial derivatives. 
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1) Derivation of Solution in Discretization Format 

Take the second order Taylor expansion of ( )1,j nx t+y  with 

respect to the distance x, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1 1

2

2 1 1 1 2 2 1 2 2

, , , 2 , , ,

, 2 , , ,

j n x xx t

tt t

x t x t x x t x x t x t x x t

x t x x t x t x t

+
= +  +  = +  −

  − +   + + +  

y y y y y A y

A y A A y A A A A y A A y

(9) 

where the subscripts of y indicate partial derivatives of y with 

respect to the subscript variables. 

Use central difference form to approximate time partial 

derivatives and rewrite (9), 

( ) (

) ( )( )

1 1 2 1

1 1 2 1 1

1 2 1 1

1 2 2 1 2 2

2 2

2 2

n n n n n n

j j j j j j

n n n n n

j j j j j

x t x

t t

+ − +

+

− + −

  = +  − −  − +  
  

− +  + + −  +


Y Y A Y Y A Y A A Y

Y Y A A A A Y Y A A Y

(10) 

Therefore, the numerical solution of 
1

n

j+Y  is, 

( )

( )

( )

2 2 2

1 2 1 1 2 2

2 2 2 1

1 1 1 1 2 2 1

2 2 2 1

1 1 1 1 2 2 1

2

2 2 4

2 2 4

n n

j j

n

j

n

j

x x t x

x t x t x t

x t x t x t

+

+

−

= −  −    +  

 + −   +    +    + 

 +    +    −    + 

Y E A A A A A Y

A A A A A A A Y

A A A A A A A Y

(11) 

2) Stability Analysis 

Similarly, consider the Fourier mode ( ) ( )j ik n tn

j


=y λ e , 

substitute it into (11), 

( ) ( )

 ( ) ( )

2 2 2 2 2

2 1 1 2 2

2

1 1 1 1 2 2 1

2 cos

sin 2

x x t x k t x t

i k t x t x t

= − −   +  +   

  +  −   +   + 

λ E A A A A A 1

A A 1 A A A A A 1
(12) 

Consider the maximum amplification ( )1 ~ 2p p M = . With 

fixed x  and t , p  is an ellipse in the complex plane with 

variable k. The maximum p  is obtained when ( )cos = 1k t  , 

( )sin =0k t , the value is ( ) ( )
22 2

2 2 2

1 1

max 1 ,
2

M M

pq pq
q q

x
x

= =

 
−  + 


 A A A

( ) ( ) ( )
2 22 2 2

2 2 2 1 12
1 1 1

1 2
2

M M M

pq pq pq
q q q

x x
x

t= = =

  
−  +  −  

 
  A A A A A . 

Therefore, the stable condition is  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2 2 2

2 2 1 1 2 22
1 1 1 1

2 2 2 2

1 1 2 2 2 2 22
1 1 1 1

2 1
min 8

2

2 1
2 ,2 , 1 ~ 2

2

M M M M

pq pq pq pq
q q q q

M M M M

pq pq pq pq
q q q q

x
t

p M
t

= = = =

= = = =

 
      − + + −             

  
− =      

   

   

A A A A A A

A A A A A A A

(13) 

With typical parameters, equation (13) requires that the ratio 

of the distance interval and time interval in the order of 810  

meters per second. The corresponding minimum requirement 

of the available data window is acceptable (in the order of 

milli-second). Therefore, proper selection of x  and t  could 

ensure stability of this scheme. 

3) Error Analysis 

The error of a numerical scheme is estimated by substituting 

the exactly analytical solution into the difference equation [21]. 

The truncation error can be calculated as the difference between 

the left side and the right side of (10) divided by x , after 

substituting the Taylor expansions of the exactly analytical 

solution into the equation for each term. The truncation error is, 

( ) ( ) (

) ( )( ) 

( )  ( ) ( )

1 1 1

1 1 2 1 1

1 2 1 1 2

1 2 2 1 2 2

2 2 2 4

1 1 1 1 2 2 1

2 2 2

2 24

+ 6 12 +

n n n n n n n n

j j j j j j j j

n n n n

j j j j

n

tttt ttt
j

x t x

t t x t

t x t O x O t

+ − +

+

− + −

= −  + −  + −  −


+  + + −  + = − 


     −   +  +  

T y y A y y A y A A y y

y A A A A y y A A y

A A y A A A A A y

(14) 

To minimize the truncation error, it requires that the 

coefficients before tttty  and ttty  are close to zero. Obviously, 

there is no such selection of non-zero x  and t  that could 

make either coefficient zero. In this case, the high accuracy 

usually comes with extremely short distance and time interval, 

which may increase the computational burden of the algorithm. 

C. Two-Step Scheme: Leap-frog Scheme 

To further consider the minimized truncation error, the 

two-step leap-frog scheme is introduced to solve (3). Leap-frog 

scheme rewrites both time and distance derivatives with the 

second order central difference form. Here the solution of (3a) 

is taken as an example and the solution of (3b) is similar. 

1) Derivation of Solution in Discretization Format 

Rewrite (3a) with the central difference form, 

( ) ( )

( )

2 1 1 2

1 1 1

1 1

2 3

2 2

2

n n n n n n

j j j j j j

n n n

j j j

x t

t

+ −

+ −

+ −

− +  = − + 

+ −  +

U U U B U U U

B U U B U
   (15) 

The numerical solution of 
1

n

j+U  is 

( ) (

) ( )

2 2 2 2 2

1 1 1 3 1

2 1 2 2 2 1

2 1 2

= 2 2

2 2

n n n

j j j

n n

j j

x t x x t

x t x t x t

+ −

− +

− + −    +  +   

−   +    +   

U U E B B U B

B U B B U
(16) 

2) Stability Analysis 

Consider ( ) ( ) ( ) ( ) ( ) ( )
T

1

j j jik n t ik n t ik n tn

j Me e 
   = =

 
u λ e . 

Substitute it into (15), 

( )( )

( )

1 2 2

1

2 2

3 2

2 2 cos 1

sin

k t x t

x i k t x t

−−  + =  −    

+   +      

λ 1 λ B 1

B 1 B 1
         (17) 

The solution of amplification 
p  is, 

2 4 2p p pb b =  −                          (18) 

where ( )( ) ( )( )
2

1 22
1 1

2 2 cos 1 sin
M M

p pq pq

q q

x
b B k t t B i k t

t = =

 
= +   − +    

  
 

2

3

1

M

pq

q

x B
=

+  . 

Typical selection of t  could be in the order of 
410−
 seconds 

or less. In this case, pb  can be approximated as a real number

( )( )2 2

1

1

2 2 cos 1
M

pq

q

x t B k t
=

+      − . One can observe from (18) 

that 1p =  if 2pb   and 1p   if 2pb  . Therefore, the 

stable condition is 2 2

1

1

2 2
M

pq

q

x t B
=

    , or 

2 2

1

1

min 1 , 1 ~
M

pq

q

x t B p M
=

  
   = 

  
                 (19) 

Strictly speaking, even equation (19) is satisfied, pb  could 

still be slightly larger than 1 in extreme cases. One example is 

2

3

1

2
M

p pq

q

b x B
=

= +    when 0, 2 ,k t  =  . However, the maximum 

amplification p  in the extreme cases is only a little larger 

than one (less than 1.002 with intervals satisfying (19) and 

typical line parameters). In practice, such amplification will not 

cause stability issues and the solution will maintain correctness 

within finite calculation steps [21]. Therefore, for transmission 

line fault location, it is also considered as a stable scheme. 
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3) Error Analysis 

Similarly, consider the truncation error with (15), 

( ) ( ) (

)

( ) ( ) ( ) ( )

( )

2 1 1 2 1

1 1 1 2

1 2 2

3 1 3 1 2

2 4 4 2 2

1 1 1
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1 2 2 1 2

2 2

2 12 12
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= − +  − − +  −

−  − = − − +   −   −
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T U U U B U U U B U

U B u u B u B u u B u B

u u B B B u

B B B B B u ( )

( )  ( ) ( )

2

1 3 2 2 3 1

2 2 4 4

2 3 3 2 3 3

12

12 12
n

tt t j

x

x x O x O t

  + +

 +   +  +    +  + 

B B B B B B

u B B B B u B B u

(20) 

To minimize the truncation error, it requires that the 

coefficients before ttttu , tttu , ttu , tu  and u  are close to zero. 

The minimum of the coefficient before ttttu  could be achieved 

if one selects x  and t  that satisfy the equality constraints in 

(19). Such selection of intervals also minimizes the coefficient 

before tttu . Therefore, this scheme achieves a minimum 

truncation with reasonable selection of intervals. 

In conclusion, the leap-frog scheme is a stable scheme which 

provides strict guidance for selection of the intervals. Consider 

both the stable condition and the minimum error condition, the 

best selection of x  and t  should satisfy, 

=x t Const           (21) 

where 
1

1

min 1 , 1 ~
M

pq

q

Const B p M
=

  
= = 

  
 . 

Here the error of the solution is also verified by substitute the 

exactly analytical solution as ( ), n n

j jj n = −u U e  into (15), 

( ) (
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2 2 2
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2 2
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j j j
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x t x x t
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e e E B B e B
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(22) 

where 
n

je  is the error of 
n

jU ,  max , 1,2,3,n

j j n= =E e . 

Consider that 
1 2 0= =E E  and 1j j+ E E  [21], the max error 

of the solution in distance step j+1 is, 

( )
1

2

1 32j j x
−

+
    −
 

E E B T                    (23) 

where  max , 1,2,3, ; 1,2,3,n

j j n= = =T T . 

For the last step, j x  is the length of the transmission line, 

then the error of the solution is in direct proportion to the 

truncation error. Therefore, the error of the scheme converges 

to zero when the interval approaches zero. 

Note that, the leap-frog scheme is a two-step scheme and 

requires an additional starting condition (at distance x ) which 

can be obtained by any one-step scheme. Here, the 

Lax-Wendroff scheme (which is also a stable scheme) is 

selected to calculate the additional starting condition. 

In conclusion, for three schemes derived in this section, the 

ordinary one step explicit scheme (the simplest scheme for a 

PDE) is not stable for transmission line fault location problem. 

The Lax-Wendroff scheme is a stable scheme, but cannot 

mathematically achieve the minimum truncation error. The 

best solution, the leap-frog scheme, is a stable scheme also 

achieves minimum truncation error with an optimal 

selection of intervals. 

IV. METHODOLOGY OF THE FAULT LOCATION BY APPLYING 

THE PROPOSED NUMERICAL SCHEME 

Here the voltage method is applied to find the location of the 

fault. The validity of the voltage methods comes from the fact 

that the voltage at fault location is the extremum value of the 

voltage distribution through the entire transmission line. The 

voltage distribution through the transmission line can be solved 

using the proposed numerical scheme with the initial condition 

and boundary condition. Here the initial condition (0, )tu  and 

(0, )ti  can be directly obtained. The boundary condition ( , 0)xu  

and ( , 0)xi  is approximated by, 

( )

( )

( , 0) (0, 0) ( , 0)

( , 0) (0, 0) ( , 0)

x l x l x l l

x l x l x l l

= −  + 

= −  + 

u u u

i i i
                (24) 

After calculating the voltage distribution through the line 

from either terminal independently, the next step is to find the 

fault location from the intersection of the two calculated 

voltage distributions. To ensure the robustness of the algorithm, 

instead of using the voltage distribution curves at one instant of 

time, the summation of the voltage distribution curves at 

different time steps is considered and the point of intersection 

of the two summed voltage distribution curves is the fault 

location [5]. The fault location x  can be obtained by solving 

the following minimization problem, 

( )
0

min ,
dt

x
t

f x t
=

                              (25) 

where ( ) ( ) ( ) ( ) ( ), = , ,
k m

f x t u x t u x t− , 
( ) ( ),
k

u x t  and 
( ) ( ),
m

u x t are 

voltage distributions calculated with measurements at terminals 

k and m respectively, dt  is the summation window. For M 

phase transmission line system, voltage distribution for fault 

location can be selected as ( ) ( ) ( ) ( )1

2

, , , 1
M

p

p

u x t u x t u x t M
=

= − −  

to consider all types of faults [22]. 

Next, the computational complexity of the proposed scheme 

is discussed. In fact, the numerical scheme in (16) consists of 

only a limited number of matrix-vector multiplications and 

summations, and no matrix inverse is required. The 

computation complexity of the proposed method mainly comes 

from the high distance resolution of the voltage distribution (a 

small distance interval leads to a large number of calculation 

steps). To reduce the computation complexity, a two-iteration 

fault location algorithm is designed as shown in Figure 1 (a) 

[16]. For the first iteration, the approximate fault location 

, 1f iterationl  is calculated inside the overall transmission line [0, ]l  

using a relatively large distance interval 
1iterationx . For the 

second iteration, the accurate fault location , 2f iteraionl  is further 

refined inside the small transmission line segment 

, 1 1 , 1 1[ , ]f iteration iteration f iteration iterationl x l x−  +   using a relatively small 

distance interval 
2iterationx . For the first iteration, the 

distribution of currents through the line also needs to be solved, 

to provide the initial condition for the second fault location 

iteration. With the same fault location resolution (
2iterationx ), 

compared to the original one-iteration algorithm, the 

two-iteration algorithm reduces the number of calculation steps 
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from 
2iterationl x  to ( )1 1 22iteration iteration iterationl x x x +   . The flow chart 

of the fault location algorithm is shown in Figure 2. 
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length 2Δxiteration1

lf,iteration1
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0 l
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NtΔt

nΔt

Δx

 
(a) Two iterations of the algorithm   (b) The mesh for leap-frog scheme 

Figure. 1. Details of the fault location algorithm 

First iteration: 
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Figure 2. Flow chart of the proposed fault location algorithm 

In addition, the data window for determining the fault 

location should be longer than a certain value which is 

proportional to the total length of the line. For example, the 

mesh to solve the voltage distribution of an M phase 

transmission line in iteration 1 is shown in Figure 1 (b). The 

horizontal axis x represents distance, the vertical axis t 

represents time and the third axis shows meshes for M phases. 

Take the node marked with circle in phase 1 as an example. The 

voltage of this node is calculated with 4M nodes marked with 

crosses in all M phases. Therefore, the voltages that could be 

solved are marked as the shaded red area. If t xN N , the 

voltage distribution in the distance interval of ( )1 ,t xN x N x +    

cannot be solved. Therefore, the requiring data window should 

satisfy t xN N . In this case, the summation window 
dt  is 

( )t xN N t−  . Note that, the selection of x  and t  should satisfy 

(21) to ensure stable condition and minimum truncation error. 

Therefore, the minimum time window is line length Const . In 

practice, since the value of Const is close to the speed of light, 

this minimum time window can usually be satisfied. 

V. NUMERICAL VALIDATION OF THE PROPOSED METHOD: 

COMPARISON OF THREE NUMERICAL SCHEMES 

In this section, the aforementioned three numerical schemes 

are validated using numerical experiments, to prove the 

effectiveness of the proposed leap-frog scheme. The example 

test system shown in Figure 3 (a) is built in PSCAD/EMTDC. 

The line of interest is a 300 km, 500 kV three phase 

transmission line, with the system nominal frequency of 50 Hz. 

Here the frequency dependent transmission line model in 

PSCAD/EMTDC is utilized to ensure the validity of the 

simulated voltage and current waveforms during different fault 

events. The tower structure of the entire transmission line and 

the arrangement of phase conductors are shown in Figure 3 (b). 

One can observe that the transmission line is geometrically 

asymmetrical (for example, the mutual parameters among 

phases are not exactly the same). The phase angle difference 

between the two equivalent sources is 20°. Three phase voltage 

and current instantaneous measurements are installed at both 

terminals of the transmission line, with 80 samples per cycle (4 

kilo-samples per second) sampling rate according to 

IEC61850-9-2LE standard. Note that since the time interval of 

the numerical scheme is typically smaller than the sampling 

interval, cubic spline interpolation is utilized to complete the 

measurement set. Various fault events have been simulated. 

The available data window is 5 ms after the occurrence of the 

fault. The absolute fault location error in percentage is defined 

as the absolute error of fault location divided by the length of 

the transmission line. Although the actual transmission line 

parameters in PSCAD/EMTDC are frequency dependent, the 

parameter matrices utilized by the fault location algorithm are 

assumed to be frequency independent. Here the parameters at 

the nominal frequency of 50 Hz are selected as the input 

parameters for fault location. From the parameters of the 

transmission line, the value of Const  is slightly larger than
82 10 m s . To simplify the selection of x  and t , Const  is 

set to be 82 10 m s . 

Fault

Line of interest

A

B

C

A B C

20m

30
m

Terminal k Terminal m

 
                    (a) Test system                           (b) Tower structure 

Figure. 3. The example test system 

A. Validation of Different Schemes by Voltage Distribution 

The accuracy of the voltage distributions calculated by three 

numerical schemes is firstly studied. An internal 0.1 Ω phase A 

to ground fault occurs close to terminal m. The voltage 

distributions through the entire line are calculated using the 

three numerical schemes, with three phase voltage and current 

instantaneous measurements at terminal k only. For all three 

numerical schemes, the distance interval and the time interval 

are selected as 2 km and 10 µs, satisfying the stable condition of 

both (13) and (21) but not (8). Note the stable condition of (8) 

cannot be satisfied with typical selection of intervals. 

Figure 4 shows the actual and calculated voltage 

distributions of phase A at 0.5 ms after fault occurs. From 
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figure, the voltage distribution calculated with the ordinary 

one-step explicit scheme quickly diverges as the distance 

increases, while the voltage distributions calculated with 

Lax-Wendroff and leap-frog schemes are both stable. The 

results of the leap-frog scheme are closer to the actual voltage 

distribution. 

 
Figure. 4. Voltage distributions calculated with different schemes 

B. Validation of Different Schemes by Fault Location 

Consider a 0.1 Ω phase A-G fault occurring at 100 km from 

terminal k and at time t = 0.2 s. The voltage and current 

measurements at both terminals are shown in Figure 5. Apply 

the proposed leap-frog scheme to the two-iteration fault 

location algorithm. In iteration 1, the distance interval and the 

time interval are selected as 2 km and 10 µs. Calculate the 

voltage distributions during the fault with measurements at 

each terminal respectively. The value of ( ),f x t , or the absolute 

difference between two calculated voltage distributions, is 

shown in Figure 6 (a). From the figure, the fault location x that 

minimizes ( ),f x t  at different time steps is around 100 km 

except the first few time steps. The approximate fault location 

, 1f iterationl  from (25) is 100 km and the small transmission line 

segment for iteration 2 is obtained as [98, 102] km. In iteration 

2, the distance interval and the time interval are selected as 100 

m and 0.5 µs, which also satisfy (21). The value of ( ),f x t  is 

shown in Figure 6 (b). From the figure, the fault location x that 

minimizes ( ),f x t  at each time step is varying due to the 

transient of the system. From (25), the fault location is 

estimated to be 100.1 km. 

 
Figure 5. Three phase voltage and current instantaneous measurements 

during an example 0.1 Ω phase A-G fault (100 km and 0.2 s) 
Besides the leap-frog scheme, the fault location results using 

the Lax-Wendroff schemes are also provided for comparison. 

The selection of time and distance intervals is: 2 km and 10 µs 

for iteration 1, and 10 m and 0.5 µs for iteration 2. Here for 

iteration 2, the distance interval is selected to be even smaller 

than that of the leap-frog scheme. A group of 0.1 Ω phase A to 

ground faults occurs at different locations through the entire 

line. The fault location results are shown in Figure 7 (a). From 

the figure, although the distance interval of the leap-frog 

scheme is larger than that of the Lax-Wendroff scheme in 

iteration 2, the absolute fault location error with the leap-frog 

scheme is generally smaller. This is exactly because the 

leap-frog scheme can achieve minimum error with proper 

selection of distance and time intervals according to (21). 

 
 (a) Iteration 1                                          (b) Iteration 2 

Figure. 6. Absolute difference between two calculated voltage distributions 

for 0.1 Ω A-G fault occurs at 100 km 

 
      (a) Different numerical schemes         (b) Different distance intervals 

Figure. 7. Absolute fault location errors, 0.1 Ω A-G faults through the 

entire line 

C. Step Number and Calculation Time of the Leap-Frog Scheme 

From the error analysis of the leap-frog scheme, once the 

interval ratio is fixed according to (21), the error of the solution 

is in direct proportion to the size of the interval. To evaluate the 

effects of the interval size in the leap-frog scheme, different 

distance intervals, including 60 km, 2 km and 0.2 km in the first 

iteration are selected. The distance interval in the second 

iteration keeps the same (100 m) and the corresponding time 

intervals in both iterations are selected according to (21). The 

fault location results of a group of 0.1 Ω phase A to ground 

faults through the entire line are shown in Figure 7 (b). From 

the figure, a larger distance interval will usually result in larger 

absolute fault location error. However, once the interval is 

small enough (eg. 2 km), the absolute fault location error will 

not be smaller with smaller interval (eg. 200 m). This is because 

the absolute fault location errors generated by the numerical 

solution is too small compare to those due to the inaccuracy of 

the transmission line PDE model (the PDE model does not 

consider the frequency dependent parameters of the line). 

Therefore, such selection of distance interval as 2 km in the first 

iteration ensures both fault location accuracy and reasonable 

calculation burden. For the rest of the paper, the distance and 

time interval are selected as 2 km and 10 µs for the first 

iteration, and as 100 m and 0.5 µs for the second iteration. Here, 

the algorithm is implemented in Matlab R2016a on a computer 

with Intel® i7-7700 CPU. For each fault event, the two-iteration 

algorithm always finds the fault location within 8 seconds. 

Since the fault location algorithm is not required to operate in 

real time, the calculation speed of the proposed fault location 

algorithm is acceptable in practice. 
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VI. NUMERICAL VALIDATION OF THE PROPOSED METHOD: 

COMPARISON TO THE EXISTING FAULT LOCATION METHOD 

In this section, the fault location results with the proposed 

method are further validated. The example test system and 

available measurements are the same as those in section V. 

Several groups of faults occurring at 0.2 seconds, with different 

fault types, fault locations and fault impedances are considered. 

Due to space limitations, here the results of only 5 test cases 

(240 fault events in total) are shown. For test case 1 to 4, the 

low impedance phase A to ground faults, phase A to B faults, 

phase AB to ground faults and three phase faults with 0.1, 1 and 

10 Ω fault impedances are considered respectively. For test 

case 5, high impedance phase A to ground faults with 50, 200 

and 500 Ω fault impedances are considered respectively. The 

fault locations are through the entire length of the transmission 

line (16 fault locations, 2 km, 298 km, and every 20 km from 

[20, 280] km from terminal k). 

The proposed method is compared to the existing time 

domain voltage method, which utilizes the Bergeron model and 

the Clarke transformation to calculate the voltage distribution 

and finds the fault location [5]. Note that here the conventional 

phasor domain impedance based fault location methods are not 

considered for comparison, since the accuracy of the calculated 

phasors could be greatly compromised with the data window of 

only 5 ms. In addition, the conventional traveling wave 

methods are not considered for comparison, since the sampling 

rate of 4 kilo-samples per second is too low for estimating the 

fault location with reasonable accuracy. 

Test Case 1: Low Impedance Phase A to Ground Faults 

The fault location results of low impedance phase A to 

ground faults are shown in Figure 8 (a). The average absolute 

errors and maximum absolute errors of the proposed method 

with 0.1, 1 and 10 Ω fault impedances are 0.07%, 0.07%, 0.07%, 

and 0.17%, 0.17%, 0.17%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0.1, 1 and 10 Ω fault impedances are 0.87%, 0.89%, 1.12%, 

and 1.30%, 1.30%, 1.60%, respectively. 

Test Case 2: Low Impedance Phase A to B Faults 

The fault location results of low impedance phase A to B 

faults are shown in Figure 8 (b). The average absolute errors 

and maximum absolute errors of the proposed method with 0.1, 

1 and 10 Ω fault impedances are 0.31%, 0.25%, 0.26% and 

1.03%, 1.33%, 1.20%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0.1, 1 and 10 Ω fault impedances are 0.60%, 0.75%, 0.83%, 

and 1.57%, 1.43%, 1.50%, respectively. 

Test Case 3: Low Impedance Phase AB to Ground Faults 

The fault location results of low impedance phase AB to 

ground faults are shown in Figure 8 (c). The average absolute 

errors and maximum absolute errors of the proposed method 

with 0.1, 1 and 10 Ω fault impedances are 0.28%, 0.27%, 0.27% 

and 1.37%, 1.37%, 1.13%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0.1, 1 and 10 Ω fault impedances are 0.77%, 0.79%, 0.88%, 

and 1.50%, 1.57%, 1.57%, respectively. 

Test Case 4: Low Impedance Three Phase Faults 

The fault location results of low impedance three phase faults 

are shown in Figure 8 (d). The average absolute errors and 

maximum absolute errors of the proposed method with 0.1, 1 

and 10 Ω fault impedances are 0.20%, 0.19%, 0.16%, and 

0.83%, 0.80%, 0.73%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0.1, 1 and 10 Ω fault impedances are 0.79%, 0.78%, 0.83%, 

and 1.97%, 1.93%, 1.77%, respectively. 

Test Case 5: High Impedance Phase A to Ground Faults 

The fault location results of high impedance phase A to 

ground faults are shown in Figure 8 (e). The average absolute 

errors and maximum absolute errors of the proposed method 

with 50, 200 and 500 Ω fault impedances are 0.06%, 0.05%, 

0.07%, and 0.20%, 0.17%, 0.20%, respectively. The average 

absolute errors and maximum absolute errors of the existing 

(a) Low impedance phase A to G faults (b) Low impedance phase A to B faults

(d) Low impedance three phase faults (e) High impedance phase A to ground faults(c) Low impedance phase A, B to G faults

Proposed method
Existing method 
using Bergeron model

 
Figure. 8. Absolute fault location errors with different fault types, fault locations and fault impedances 
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method with 50, 200 and 500 Ω fault impedances are 2.08%, 

5.29%, 10.18%, and 2.63%, 6.63%, 13.97%, respectively. 

To sum up, it can be concluded that the proposed method 

presents higher fault location accuracy compared to the existing 

Bergeron model based voltage method in above test cases. 

VII. DISCUSSION 

In this section, the effects of different factors on the fault 

location accuracy are further discussed, including the fault 

inception angle, the loading condition, the measurement error, 

the parameter error and the sampling rate. The example test 

system and available measurements are the same as those in 

section V. Other discussions as well as the future work are also 

presented. 

A. Effect of Fault Inception Angle 

A group of 0.1 Ω phase A to ground faults with 0°, 45° and 

90° fault inception angles is studied. The absolute fault location 

errors are shown in Figure 9 (a). The average absolute errors 

and maximum absolute errors of the proposed method with 0°, 

45° and 90° fault inception angles are 0.07%, 0.15%, 0.28% 

and 0.17%, 0.47%, 0.67%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0°, 45° and 90° fault inception angles are 0.87%, 0.74%, 

0.64% and 1.30%, 1.30%, 1.40%, respectively. Here the 0° 

fault inception angle corresponds to zero phase A voltage when 

the fault occurs, while a 90° fault inception angle corresponds 

to maximum phase A voltage when the fault occurs. Compare 

to the waveform in Figure 8 (a), one can observe that the fault 

location error increases with larger inception angles. This is 

because the voltage/current waveforms contain rich frequency 

information especially during severe transients (caused by large 

inception angles), and the proposed fault location method does 

not consider frequency dependent parameters. 

B. Effect of Loading Condition 

A group of 0.1 Ω phase A to ground faults with different 

loading conditions is studied. The different loading condition is 

simulated with different phase angle differences between two 

equivalent sources at terminals of the line, including 10°, 20°, 

30°, 40° and 50°, respectively. The absolute fault location 

errors are shown in Figure 9 (b). The average absolute errors 

and maximum absolute errors of the proposed method with 10°, 

20°, 30°, 40° and 50° phase difference are 0.07%, 0.07%, 

0.07%, 0.07%, 0.08% and 0.13%, 0.17%, 0.17%, 0.20%, 

0.20%, respectively. The average absolute errors and maximum 

absolute errors of the existing method with 10°, 20°, 30°, 40° 

and 50° phase difference are 0.49%, 0.92%, 1.36%, 1.82%, 

2.28% and 0.67%, 1.23%, 1.83%, 2.53%, 3.20%, respectively. 

C. Effect of Measurement Error 

A group of 0.1 Ω phase A to ground faults with different 

measurement errors is studied. The measurement error is added 

in the fault location algorithm by changing the original 

measurements. The measurement errors are assumed to obey 

the Gaussian distribution with the standard deviation of 0.5%,  

1% and 2%, respectively. The absolute fault location errors are 

shown in Figure 9 (c). The average absolute errors and 

maximum absolute errors of the proposed method with 0.5%,   

1% and 2% measurement errors are 0.11%, 0.15%, 0.25% and 

0.23%, 0.30%, 0.50%, respectively. The average absolute 

errors and maximum absolute errors of the existing method 

with 0.5%, 1% and 2% measurement errors are 1.00%, 1.08%, 

1.20% and 1.47%, 1.73%, 1.97%, respectively. 

D. Effect of Parameter Error 

A group of 0.1 Ω phase A to ground faults with different 

parameter errors is studied. The 0.5%, 1% and 2% parameter 

errors are added to all parameter matrices of the transmission 

line respectively in the fault location algorithm (the example 

(a) With different inception angles

(c) With different measurement errors (d) With different parameter errors (e) With different sampling rates

(b) With different loading conditions

Proposed method
Existing method 
using Bergeron model

Figure. 9. Absolute fault location errors of phase A to G faults with different factors 
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test system in PSCAD/EMTDC remains unchanged). The 

absolute fault location errors are shown in Figure 9 (d). The 

average absolute errors and maximum absolute errors of the 

proposed method with 0.5%, 1% and 2% parameter errors are 

0.11%, 0.15%, 0.22% and 0.20%, 0.27%, 0.37%, respectively. 

The average absolute errors and maximum absolute errors of 

the existing method with 0.5%, 1% and 2% parameter errors are 

0.92%, 0.91%, 0.94% and 1.30%, 1.30%, 1.56%, respectively.  

E. Effect of Sampling Rate 

A group of 0.1 Ω phase A to ground faults with the sampling 

rates of 1k, 4k and 20k samples per second is studied. The 

absolute fault location errors are shown in Figure 9 (e). The 

average absolute errors and maximum absolute errors of the 

proposed method with 1k, 4k and 20k sampling rates are 0.25%, 

0.07%, 0.06% and 0.80%, 0.17%, 0.13%, respectively. The 

average absolute errors and maximum absolute errors of the 

existing method with 1k, 4k and 20k sampling rates are 0.98%, 

0.87%, 0.86% and 2.43%, 1.30%, 1.30%, respectively. One can 

observe that higher sampling rates will not largely improve the 

fault location accuracy of the proposed method. The sampling 

rate of 4k samples per second is recommended as it is consistent 

with the IEC 61850-9-2LE standard and in this case the error of 

the proposed method is sufficiently small. 

F. Other Discussions and Future Work 

The numerical experiments in this paper only demonstrate 

the results in three phase overhead transmission lines. Actually, 

the proposed fault location methodology could be similarly 

applied to multi-phase/multi-circuit AC/DC overhead 

transmission lines or underground cables. The detailed 

verification of the proposed methodology in complex systems 

with asymmetrical and nonhomogeneous AC/DC overhead 

lines and underground cables is still required and will be 

covered in future publications. In addition, the proposed fault 

location method holds the following two important 

assumptions. First, the transmission line parameter matrices are 

frequency independent constants and accurately known. 

Second, the terminal voltage and current instantaneous 

measurements are available and accurate. For the first 

assumption, the fault location errors could be generated 

especially during severe transients or with large transmission 

line parameter errors. In this case, frequency dependent 

parameter models of transmission lines as well as online 

parameter identification approaches could be considered to 

improve the performance of the proposed method. For the 

second assumption, measurement errors, especially systematic 

measurement errors due to PTs and CTs, may also generate 

fault location error. Therefore, detailed modeling of PTs and 

CTs may be required to accurately recover the primary side 

voltage and current signals. Finally, validation through real 

world data will be valuable to ensure the practicability of the 

proposed method. These issues will also be carefully studied in 

future publications. 

VIII. CONCLUSION 

This paper proposes a time-domain fault location method 

that can be applied for transmission lines with high-speed 

tripping techniques. The sampling rate of the method is 

recommended as 80 samples per cycle to be compatible with 

IEC 61850-9-2LE standard in present digital substations. A 

numerical scheme is first proposed to accurately solve the 

voltage distribution through the transmission line. The optimal 

selection of time and distance interval is mathematically proved 

to ensure stability and minimum solution error of the numerical 

scheme. The fault location can be afterwards obtained by 

finding the extremum value of the voltage distribution. The 

distributed parameters and the asymmetry of the transmission 

line are fully considered. Numerical experiments validate the 

effectiveness of the proposed numerical scheme with 

comparison to other considered numerical schemes. In addition, 

the proposed fault location method has higher fault location 

accuracy compared to the existing Bergeron model based 

voltage method, with different fault types, locations and 

impedances. The method also demonstrates its effectiveness 

with different fault inception angles, loading conditions, 

measurement errors and parameter errors. 
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