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Analytical solutions describing free transverse vibrations with large amplitude of axially loaded Euler–Bernoulli beams for various
end restrains resting on a Winkler one-parameter foundation are obtained using the Adomian modified decomposition method
(AMDM).)e AMDM allows the governing equation to become a recursive algebraic equation, and, after some additional simple
mathematical operations, the equations can be cast as an eigenvector problem whose solution results in the calculation of natural
frequencies and corresponding closed-form series solution of the mode shapes. Important to the use of the Adomian modified
decomposition method is the treatment of the nonlinear Fredholm integral coefficient, which forms part of the governing
equation. In addition to the calculation of natural frequencies and mode shapes, investigations are made of the effects on the free
vibrations of the Winkler parameter and of increasing the axial loading.

1. Introduction

Uniform slender beams resting on an elastic foundation,
while subjected to axial loading, are common in structural
systems undergoing actual operating conditions. Analysis of
such systems, both linear and nonlinear, has been of interest
to civil and railway engineering. For example, when ambient
temperatures increase, rails and concrete slabs, often used in
urban transport systems, tend to expand, so causing com-
pressive in-plane forces, leading to changes in natural fre-
quencies and eventually to buckling. In-plane compressive
forces are also found in prestressed beams. If the amplitudes
of the vibrations remain small, the governing equation is
usually in the form of a linear differential equation which is
relatively simple to solve. However for large amplitude vi-
bration, nonlinear terms are introduced into the governing
equation which needs to be treated. Rails and concrete slabs
often rest on foundations generally classified as elastic,
viscoelastic, Winkler, and Pasternak.

Boundary value problems (BVPs) have been the subject
of several analytical methods, recently developed, to cal-
culate beams with relatively simple configurations. )e
variational iteration method (VIM) often attributed to He
[1] is a modification of a general Lagrange multiplier method
and has been used as a powerful tool for solving ordinary
differential equations [2, 3]. Another recent method de-
veloped is the homotopy perturbation method (HPM) [4, 5]
which has been used for problems involving nonlinear
differential equations. Less recent methods used to in-
vestigate the vibration problem for nonuniform Euler–
Bernoulli beams have been the Rayleigh–Ritz method [6],
closed-form solutions [7], and Green’s function method [8].
Several methods have used the Frobenius series [9] and also
by discretizing the beam into beam elements [10].)ere have
been some early studies of vibrating beams under axial
loading [11–13], where the effect of increasing the axial
loading on the mode shapes and natural frequencies of the
beam was investigated. )ere has been some work already

Hindawi
Shock and Vibration
Volume 2019, Article ID 3405075, 10 pages
https://doi.org/10.1155/2019/3405075

mailto:dadair@nu.edu.kz
http://orcid.org/0000-0003-4785-7944
http://orcid.org/0000-0002-5218-0176
http://orcid.org/0000-0001-5213-2388
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3405075


done for large amplitude vibration. Bhashyam and Prathap
[14] used the Galerkin finite element method to study
nonlinear vibration, and Özkaya [15] calculated the response
of a beam mass system with clamped ends by applying a
method known as the method of multiple scales.

For beams resting on foundations, an understanding of
the beam-foundation interaction is needed. )e foundation
increases resistance to movement and can significantly
change the modal characteristics of the beam. Many prac-
tical cases in engineering related to foundation-beam in-
teraction can be modelled by assuming the beam resting on
an elastic foundation with the Winkler elastic foundation
model [16] used extensively. )is model assumes the
foundation to be made up of an infinitely many closed-
spaced linear springs and is a one-parameter model. A
limitation of this model is the assumption that there is no
interaction between the springs. To overcome this defect,
several two-parameter models have been suggested, such as
Filonenko–Borodich, Pasternak, and Vlasov and Leontiev
foundation models [17]. Studies using a constant Winkler
foundation can be found in the literature [18–20].

In the present work, the adomian modified de-
composition method [21, 22] is utilized to calculate free
transverse vibration characteristics of axially loaded
Euler–Bernoulli beams with various end restrains, resting on
a Winkler one-parameter foundation. )e method is chosen
as it has proved efficient and accurate [23, 24] for solving
linear and nonlinear differential equations, and it has the
advantage of computational simplicity. In addition, it does
not involve linearization, discretization, perturbation, or a
priori assumptions, which may alter the physics of the
problem considered [21]. For the AMDM, the solution is
considered to be the sum of an infinite series with rapid
convergence [25]. Using the AMDM, the governing dif-
ferential equation becomes a recursive algebraic equation
and the boundary conditions become simple algebraic fre-
quency equations, which are suitable for symbolic compu-
tation. After some simple algebraic operations on the
frequency equations for any ith natural frequency, the
closed-form series solution of any ith mode shape can be
obtained. Calculations are made for clamped-free and
clamped-clamped boundary conditions together with an
investigation of the effects of increasing the axial loading and
Winkler parameter on the natural vibrations.

2. Principle of Adomian Modified
Decomposition Method (AMDM)

)e basic theory of AMDM is briefly stated here. Consider
the equation

Fy(x) � g(x), (1)

where F represents a general nonlinear ordinary differential
operator involving both linear and nonlinear parts and g(x) is
a given function. )e linear terms in Fy are decomposed into
Ly + Ry, where L is an invertible operator, which for AMDM
is taken as the highest-order derivative, andR is the remainder
of the linear operator. Equation (1) can now be written as

Ly + Ry + Ny � g, (2)

where Ny represents the nonlinear terms of Fy and
equation (2) represents an initial value or boundary value
problem.

On solving for Ly, equation (2) can be transformed to

y � Φ + L
−1

(g)−L
−1

(Ry)− L
−1

(Ny), (3)

where Φ is the integration constant and LΦ � 0 is satisfied.
To use the AMDM, y is decomposed into the infinite sum of
a convergent series:

y � 􏽘
∞

m�0
Cmx

m
, (4)

and the nonlinear term is decomposed using Adomian
polynomials, Am:

Ny � 􏽘
∞

m�0
x

m
Am C0, C1, . . . , Cm( 􏼁. (5)

)e function g(x) can also be decomposed as

g(x) � 􏽘

∞

m�0
gmx

m
. (6)

Putting equations (4)–(6) into equation (3) gives

y � 􏽘
∞

m�0
Cmx

m
� Φ + L

−1
􏽘

∞

m�0
gmx

m⎛⎝ ⎞⎠

−L
−1

R 􏽘

∞

m�0
Cmx

m⎛⎝ ⎞⎠

−L
−1

􏽘

∞

m�0
x

m
Am C0, C1, . . . , Cm( 􏼁⎛⎝ ⎞⎠.

(7)

)e coefficient Cm can be calculated using a recurrence
relation and the power series solutions of linear homoge-
neous differential equations in initial value problems yield
simple recurrence relations for the coefficient Cm. In
practice, the coefficients cannot be determined exactly, and
the solutions can only be approximated by a truncated series
􏽐

n−1
m�0Cmxm.

3. Mathematical Formulation

In this work, a uniform beam under axial load while resting
on a Winkler foundation is considered. As shown in Fig-
ure 1, the beam has a length, l, a uniform rectangular cross
section, A, a cross-sectional moment of inertia, I, and the
beam is considered as made of isotropic material with a
modulus of elasticity, E, and density, ρ.

)e model for the foundation is the relatively simple
Winkler model whose stiffness changes along the beam
length and is a function of the spatial coordinate along the
beam in the x direction.

According to the theory of structural vibrations [26, 27],
on using the Euler–Bernoulli beam model, the strain energy
induced by a large displacement amplitude is given by
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U �
1
2

􏽚
l

0
EI

z2w(x, t)

zx2􏼠 􏼡

2

dx

+
1
2

􏽚
l

0
EA

zu(x, t)

zx
+
1
2

zw(x, t)

zx
􏼠 􏼡

2
⎛⎝ ⎞⎠

2

dx

+
1
2

􏽚
l

0
kw(x)w(x, t)

2
dx.

(8)

)e large amplitude of the vibrations necessitates the
inclusion of the nonlinear term shown in equation (8).

Here, u and w are the axial and transverse displacements,
respectively, and kw(x) is the foundation stiffness co-
efficient. )e kinetic energy is given by

T �
1
2

􏽚
l

0
ρA

zw(x, t)

zt
􏼠 􏼡

2

dx. (9)

)e external work done by the axial load is

W �
P

2
􏽚

l

0

zw(x, t)

zx
􏼠 􏼡

2

dx. (10)

By invoking Hamilton’s principle and using the La-
grangian of the system,

δ􏽚
t2

t1

(T−U + W) dt � 0. (11)

On substituting equations (8)–(10) into equation (11),
the following governing equation can be obtained after
eliminating axial displacement:

EI
z4w(x, t)

zx4 + ρA
z2w(x, t)

zt2
+ P

z2w(x, t)

zx2

+ kw(x)w(x, t)−
EA

2l

z2w(x, t)

zx2 􏽚
l

0

zw(x, t)

zx
􏼠 􏼡

2

dx � 0,

(12)

where k0 is a constant and g(x) is a function of the spatial
coordinate along the beam length.

According to modal analysis for harmonic-free vibra-
tion, w(x, t) can be separable in space and time as

w(x, t) � ϕ(x)h(t), (13)

where ϕ(x) is the modal deflection and h(t) is a harmonic
function of time t. If ω denoted the circular frequency of

h(t), then z2w(x, t)/zt2 � −ω2ϕ(x)h(t) and the eigenvalue
problem of equation (12) reduces to

EI
d4ϕ(x)

dx4 + P
d2ϕ(x)

dx2 −
EA

2l

d2ϕ(x)

dx2

􏽚
l

0

dϕ(x)

dx
􏼠 􏼡

2

dx + kwϕ(x)− ρAω2ϕ(x) � 0.

(14)

Equation (14) is now made nondimensional using

X �
x

l
,

ϕ(X) �
ϕ(x)

l
,

P �
Pl2

EI
,

K0 �
kwl4

EI
,

λ �
ρAω2l4

EI
,

(15)

and becomes
d4ϕ(X)

dX4 + P
d2ϕ(X)

dX2 −
1
2

d2ϕ(X)

dX2

􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX + K0 − λ( 􏼁ϕ(X) � 0.

(16)

4. Boundary Conditions

Two cases are considered in this work, namely, beams which
are clamped-clamped and clamped-free, respectively:

For the clamped-clamped case, the boundary conditions
at X � 0 and X � 1 are

ϕ(X) �
dϕ(X)

dX
� 0. (17)

For the clamped-free case, the boundary conditions at
X � 0 and X � 1 are

ϕ(0) �
dϕ(0)

dX
� 0,

d2ϕ(1)

dX2 � 0,

d3ϕ(1)

dX3 + P
dϕ(1)

dX
� 0.

(18)

It is convenient for the AMDM to describe boundary
conditions in terms of rotational and translational flexible
ends as shown in Figure 2.

)e boundary conditions can be written in the di-
mensionless form as

z

x
P P

Figure 1: Beam under axial loading while resting on an elastic
foundation.
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d2ϕ(0)

dX2 − κL0
dϕ(0)

dX
� 0,

d3ϕ(0)

dX3 + κL1ϕ(0) � 0,

d2ϕ(1)

dX2 + κR0
dϕ(1)

dX
� 0,

d3ϕ(1)

dX3 + P
dϕ(1)

dX
− κR1ϕ(1) � 0,

(19)

where the coefficients are nondimensionalized as

κL1 �
kL1l

3

EI
,

κR1 �
kR1l

3

EI
,

κL0 �
kL0l

EI
,

κR0 �
kR0l

EI
.

(20)

5. Application of the Adomian Modified
Decomposition Method (AMDM)

According to the AMDM, ϕ(X) in equation (16) can be
expressed as an infinite series, i.e.,

ϕ(X) � 􏽘
∞

m�0
CmX

m
, (21)

where the unknown coefficients, Cm, are determined re-
currently. If a linear operator G ≡ d4/dX4 is used, then the
inverse operator of G is a four fold operator defined as

G
−1

� 􏽚
x

0
􏽚

x

0
􏽚

x

0
􏽚

x

0
(· · ·)dX dX dX dX. (22)

Equation (16) now can be written as

ϕ(X) � Φ(X)−G
−1

􏼨P
d2ϕ(X)

dX2 −
1
2

d2ϕ(X)

dX2

· 􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX + K0 − λ( 􏼁ϕ(X)􏼩,

(23)

where Φ(X) is a polynomial depending on the boundary
conditions.

5.1. Nonlinear Fredholm Integral Coefficient. )e terms in
equation (23) are linear except for the nonlinear Fredholm
integral coefficient shown in equation (24). Before con-
tinuing with the main solution method, the nonlinear term
will be treated first through the use of appropriate Cauchy
products. Consider

1
2

􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX⎛⎝ ⎞⎠
d2ϕ(X)

dX2 . (24)

Use is now made of the term

ϕ(X) � 􏽘
∞

m�0
Cm X−X0( 􏼁

m
. (25)

Differentiating

dϕ(X)

dX
� 􏽘
∞

m�0
(m + 1)Cm+1 X−X0( 􏼁

m
� 􏽘
∞

m�0
bm X−X0( 􏼁

m
,

d2ϕ(X)

dX2 � 􏽘

∞

m�0
(m + 1)(m + 2)Cm+2 X−X0( 􏼁

m
.

(26)

On setting X0 � 0,

d2ϕ(X)

dX2 � 􏽘
∞

m�0
(m + 1)(m + 2)Cm+2(X)

m
� 􏽘
∞

m�0
bmX

m
.

(27)

So

dϕ(X)

dX
􏼠 􏼡

2

� 􏽘

∞

m�0
bm X−X0( 􏼁

m⎛⎝ ⎞⎠ 􏽘

∞

l�0
bl X−X0( 􏼁

l⎛⎝ ⎞⎠

� 􏽘

∞

m�0
Bm X−X0( 􏼁

m
,

(28)
where Bm � 􏽐

m
l�0blbm−l.

So

1
2

􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX �
1
2

􏽚
1

0
􏽘

∞

m�0
Bm X−X0( 􏼁

m
dX

�
1
2

􏽘

∞

m�0
􏽚
1

0
Bm X−X0( 􏼁

m
dX

�
1
2

􏽘

∞

m�0
Bm

X−X0( 􏼁
m+1

m + 1
⎡⎣ ⎤⎦

X�1

X�0

.

(29)

As X0 � 0 in the current analysis, then

1
2

􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX � 􏽘
∞

m�0

Bm

2(m + 1)
� 􏽘
∞

m�0
αm. (30)

Combining the two strands of analysis gives

kL0

kL1

l
kR1

kR0E, I, ρ, A
z

x

Figure 2: Boundary condition described by rotational and
translational flexible ends.

4 Shock and Vibration



1
2

􏽚
1

0

dϕ(X)

dX
􏼠 􏼡

2

dX⎛⎝ ⎞⎠
d2ϕ(X)

dX2 � 􏽘

∞

m�0
αm 􏽘

∞

l�0
βlX

m

� 􏽘
∞

m�0
X

m
􏽘

m

l�0
αlβm−l

� 􏽘
∞

m�0
ζmX

m
,

(31)

where

ζm � 􏽘
m

l�0
αlβm−l. (32)

5.2. Linear and Nonlinear Terms Combined. Using the
analysis of the last subsection and ϕ(X) � 􏽐

∞
m�0CmXm,

equation (23) now becomes

ϕ(X) � Φ(X) + G
−1

􏼨−P 􏽘
∞

m�0
(m + 1)(m + 2)Cm+2X

m

+ 􏽘

∞

m�0
ζmX

m − K0 − λ( 􏼁 􏽘

∞

m�0
CmX

m
􏼩,

(33)

where Φ(X) � 􏽐
3
m�0CmXm � ϕ(0) + ϕ′(0)X + ϕ″(0)X2/2+

ϕ‴(0)X3/6 is the initial term.)e recurrence relation for the
coefficients Cm can now be stated as

C0 � ϕ(0),

C1 � ϕ′(0),

C2 �
ϕ″(0)

2
,

C3 �
ϕ‴(0)

6
,

(34)

and for m≥ 4 as

Cm �
1

m(m− 1)(m− 2)(m− 3)

􏽘

m−4

j�0
−P(j + 1)(j + 2)Cj+2 + ζj − K0 − λ( 􏼁Cj􏽨 􏽩.

(35)

)e coefficients Cm can be found from the recurrence
equations (34) and (35), and the solution for ϕ(X) is cal-
culated using equation (33). )e series solution is
ϕ(X) � 􏽐

∞
m�0CmXm, although all of the coefficients Cm

cannot be determined, and thus, the solutions must be
approximated by the truncated series 􏽐

n−1
m�0CmXm and

successive approximations are ϕ[n](X) � 􏽐
n−1
m�0CmXm, as n

increases and the boundary conditions are met.
)us, ϕ[1](X) � C0, ϕ[2](X) � ϕ[1](X) + C1X,

ϕ[3](X) � ϕ[2](X) + C2X
2, and ϕ[4](X) � ϕ3(X) + C3X

3

serve as approximate solutions with increasing accuracy as

n⟶∞. )e four coefficients Cj(j � 0, 1, 2, 3) depend on
the boundary conditions used (either equation (17) or
(18)). For example, for the clamped-free boundary con-
ditions at X � 0, the two coefficients C0 and C1 can be
chosen as arbitrary constants, and the other two co-
efficients C2 and C3 can be expressed as functions of C0 and
C1. )us, from equations (19) and (34), the following is
obtained:

C2 �
κL0

2
C1,

C3 � −
κR0

6
C0.

(36)

)us the initial term Φ(X) is only a function of C0 and
C1, and from the recurrence relation of equation (36), the
coefficients Cm(m≥ 4) are functions of C0, C1, and λ. By
substituting ϕ[n](X) into the boundary conditions of
equation (19) when X � 1, we have

f
[n]
r0 (λ)C0 + f

[n]
r1 (λ)C1 � 0, r � 1, 2. (37)

For nontrivial solutions of C0 and C1, the frequency
equation is given as

f[n]
10 (λ) f[n]

11 (λ)

f[n]
20 (λ) f[n]

21 (λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (38)

)e ith estimated eigenvalue λ[n]
(i) corresponding to m

is obtained from equation (38), i.e., the ith estimated di-
mensionless natural frequencyΩ[n]

n(i) �
���
λ[n]

(i)

􏽱
is also obtained

and n is determined by

Ω[n]
n(i) −Ω

[n−1]
n(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (39)

where Ω[n−1]
n(i) is the ith estimated dimensionless natural

frequency corresponding to n− 1 and ε is a preset sufficiently
small value. If equation (39) is satisfied, then Ω[n]

n(i) is the
ith dimensionless natural frequency Ωn(i). By substituting
Ω[n]

n(i) into equation (37),

C1 � −
f[n]

r0 Ω
[n]
n(i)􏼐 􏼑

f[n]
r1 Ω

[n]
n(i)􏼐 􏼑

C0, r � 1, 2, (40)

and all of the other coefficients Cm can be obtained
from equations (34) and (35). Furthermore, the ith mode
shape ϕ[n]

i corresponding to the ith eigenvalue Ω[n]
n(i) is

obtained by

ϕ[n]
i (X) � 􏽘

n−1

m�0
C

[i]
m X

m
, (41)

where C[i]
m (X) is Cm(X) in which λ is substituted by λi and

ϕ[n]
i is the ith eigenfunction corresponding to the ith ei-

genvalue λi. By normalizing equation (41), the ith normalised
eigenfunction is defined as

ϕ[n]

i (X) �
ϕ[n]

i (X)
��������������

􏽒
1
0 ϕ[n]

i (X)􏽨 􏽩
2

dX

􏽱 , (42)

Shock and Vibration 5



where ϕ[n]

i (X) is the ith mode shape function of the
beam corresponding to the ith natural frequency
ω[n]

i �

�����������

λ[n]
i

�������
EI/ρAl4

􏽰􏽱

� Ω[n]
n(i)

�������
EI/ρAl4

􏽰
.

)is general theory is now applied to a uniform
Euler–Bernoulli beam under different boundary conditions.

6. Numerical Results

6.1. Clamped-Free Uniform Beam. )e first case considered
is the clamped-free uniform beam resting on an elastic
foundation and experiencing axial compressive force )e
case was chosen to test (validate) the accuracy of the AMDM.

)e boundary conditions are as given in equations (18)
and (19) with the spring constants becoming κL0⟶
∞, κR0⟶ 0, κL1 �∞, κR1 � 0.

When X � 0, the first two boundary conditions of
equation (19) yield the relationships shown in equation (36),
and when X � 1 by substituting ϕ[n](X) � 􏽐

n−1
m�0CmXm into

the last two boundary conditions of equation (19), the
following two algebraic equations (written in full) involving
C0 and C1 are obtained:

􏽘

n−3

m�0
(m + 1)(m + 2)Cm+2 + κR0 􏽘

n−2

m�0
(m + 1)Cm+1

� f
[n]
11 (λ)C0 + f

[n]
12 (λ)C1 � 0,

􏽘

n−4

m�0
(m + 1)(m + 2)(m + 3)Cm+3 + P 􏽘

n−2

m�0
(m + 1)Cm+1

− κR1 􏽘

n−1

m�0
Cm � f

[n]
21 (λ)C2 + f

[n]
22 (λ)C3 � 0.

(43)

)e case of the clamped-free uniform beam without an
elastic foundation support or without any axial force and
with small vibration amplitude was first chosen to test
(validate) the accuracy of the AMDM as comparisons can
be made with what is already given in the literature. For
this, the values of P, K0, and nonlinear term in equation
(16) were set to zero. )e first five natural frequencies,
(Ωn(i), i � 1, . . . , 5) are shown in Table 1 and compared
with those obtained by Reference [9]. Excellent agreement
was found.

)e results are shown in Table 2, with, and without, the
nonlinear term given in equation (16). Here, Ωnon(i) are the
results with the nonlinear term used andΩn(i) are the results
when the nonlinear term was not used.

It can be seen from Table 2 that the results agree with
those of Reference [27] fairly well where the nonlinear term
is absent although generally the present results are slightly
higher than those calculated by Chen [27]. Also shown in
Table 2 are the results calculated for large amplitudes. )is
was effected through the inclusion of the nonlinear term of
equation (16). )e ratio of results calculated with and
without the inclusion of the nonlinear term is also given in
Table 2. )e presence of the nonlinear terms increases quite
substantially the natural frequencies, and it can be seen that
this increase grows in line with increasing the mode number.

Figure 3 presents the variation of natural frequency
modes with increase in axial force and the foundation
stiffness. During the variation of the axial force the elastic
stiffness, K0, was held constant and for the variation of the
elastic stiffness, the axial force, P, was held constant. It is
noticeable that the first mode is significantly affected by both
variations in comparison with the higher modes, and in
particular, the first mode natural frequency is greatly affected
by increasing in axial force.

By substituting the converged Ω[n]
n(1) into equations (21)

and (35) and normalizing the result using equation (42), a
polynomial can be obtained to describe the first mode
shape function. )e same procedure can be employed for
other natural frequencies to find the mode shapes for
higher mode numbers. )e variation of the first and third
mode shapes for various Winkler parameters is illustrated
on Figure 4. Here, the axial force was set to zero. )e
changes in the mode shape were not too significant until the
value of K0 became reasonably large. It can be seen from
the results for the third mode that the increase in elastic
stiffness affects both the amplitude and the phase of the
shape function.

A similar exercise was carried out to ascertain the trends
for the mode shapes when the axial force was increased or
when the beam was tensioned as opposed to being com-
pressed.)e effects on the first and third modes are shown in
Figure 5. Here, the elastic stiffness was held constant at one.
It can be seen that the greatest effect was on the first mode
and, except at the extrema, increasing the axial load had very
little effect on higher modes.

Important to this study was the speed of obtaining ac-
curate converged solutions. An example of the rate of
convergence is given in Figure 6 for the case of clamped-free
boundary conditions with P � 0 and K0 � 1. As can be seen,
the AMDM method was fast converging with results for the
first mode obtained after a very few iterations. Convergence
for higher modes took longer, although not prohibitively.

6.2. Clamped-Clamped Uniform Beam. For this case, the
boundary conditions are as given in equations (17) and (19)
with the spring constants becoming κL0⟶∞,

κR0⟶∞, κL1⟶∞, and κR1⟶∞:

C2 �
κL0

2
C1,

C3 � −
κL1

6
C0,

􏽘

n−1

m�0
Cm � f

[n]
11 (λ)C0 + f

[n]
12 (λ)C1 � 0,

􏽘

n−2

m�0
(m + 1)Cm+1 � f

[n]
21 (λ)C0 + f

[n]
22 (λ)C1 � 0.

(44)

Calculations were made for the clamped-clamped beam
of the natural frequencies with no axial force and for two
values of foundation stiffness as shown in Table 3.)e results
for the present method compare well with those reported in
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Table 1: First five natural frequencies (Ωn(i), i � 1, . . . , 5) for the small vibration amplitude.

Method Ωn(1) Ωn(2) Ωn(3) Ωn(4) Ωn(5)

Present 3.516010 22.034484 61.697213 120.901920 199.859536
Reference [9] 3.5160 22.0345 61.6972 120.902 199.860

Table 2: Natural frequencies of the cantilever beam on an elastic foundation with P � 0 and K0 � 1.

Mode (i) Reference [27] Ωn(i) Present Ωn(i) Present Ωnon(i) Present Ωnon(i)/Ωn(i)

1 3.66 3.6712 3.9869 1.089
2 22.22 22.2343 24.4049 1.098
3 62.69 62.7421 69.1014 1.101
4 124.29 124.3811 138.0632 1.111
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Figure 3: Variation of frequency modes with axial force and foundation stiffness.
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Figure 4: (a) First and (b) third mode shapes for various stiffness parameters with P � 0.
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the literature.)ese results were obtained with the nonlinear
term of equation (16) not used.

Table 4 shows results for the first four modes with and
without the nonlinear term present. Again Ωnon(i) is the
result when the nonlinear term is used, andΩn(i) is the result
when the nonlinear term is not used. It can be seen that the
present calculated values of Ωn(i) are in good agreement
although again most of the results are slightly higher than
those calculated by Chen [27]. When the nonlinear term is
included, the results for the natural frequencies increase with

the ratio of increase found to be similar in magnitude to
those reported by Mei [30].

Again polynomials were obtained to describe the first
three mode shape functions for the clamped-clamped beam.
)e first three mode shapes for the clamped-clamped beam
are shown in Figure 7 after normalization and compared well
with those reported in the literature.

Finally, the present method of calculation was validated
using a backbone curve for the clamped-clamped beam as
shown in Figure 8. )e first mode results reported by Gupta
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Figure 5: Effect of axial load on mode shapes with K0 � 1. (a) 1st mode. (b) 3rd mode.
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Table 3: Natural frequencies of the clamped-clamped beam on an elastic foundation with P � 0 and without the nonlinear term.

K0 � 0 K0 � 100
Present Reference [28] Reference [29] Present Reference [28] Reference [29]

Ωn(1) 4.73004 4.7314 4.73 4.95246 4.9515 4.95
Ωn(2) 7.85320 7.8533 7.854 7.91103 7.9044 7.904
Ωn(3) 10.9955 10.9908 10.996 11.0121 11.0096 11.014
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et al. [31] were chosen with reasonable agreement found with
a similar trend found between the two result sets, as illustrated
in Figure 8. Here, the value of the foundation stiffness was set
at zero.

7. Conclusions

A fast, efficient, and accurate method of solution, namely,
the Adomian modified decomposition method (AMDM)
was developed to calculate natural vibrations of an
Euler–Bernoulli beam with large amplitude resting on a
Winkler foundation. )e method is free of linearization,
discretization, perturbation, or a priori assumptions and
nonlinear terms are relatively easily treated. A practical
advantage of the AMDM is the ease of applying the
boundary conditions where the vibrational analysis for
different boundary conditions simply involves changing
the values of the corresponding parameters with no need to
change the solution procedures or the algorithms
employed.

)e numerical comparisons for both boundary condi-
tions used here indicate that the current numerical results
are in satisfactory agreement with those found by other
methods, with perhaps some of the results found here better
than some reported.
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