
A Novel Distributed Denial-of-Service Attack
Detection Scheme for Software Defined Networking

Environments
Di Wu∗, Jie Li∗, Sajal K. Das†, Jinsong Wu‡, Yusheng Ji§, and Zhetao Li¶

∗Department of Computer Science, University of Tsukuba, Japan
Email:wudi@osdp.cs.tsukuba.ac.jp and lijie@cs.tsukuba.ac.jp

†Department of Computer Science, Missouri University of Science and Technology, USA
Email: sdas@mst.edu

‡Department of Electrical Engineering, University of Chile, Chile
Email: wujs@ieee.org

§Information Systems Architecture Research Division, National Institute of Informatics, Japan
Email: kei@nii.ac.jp

¶College of Information Engineering, Xiangtan University, China
Email: liztchina@gmail.com

Abstract—Software-Defined networking (SDN), as a new
paradigm, fixes the shortage that traditional network does not
support the dynamic, scalable computing and storage needs of
more computing environments. SDN, however, also faces security
problems such as vulnerable to DDoS attacks. DDoS attacks are
well-known and powerful attacks. DDoS detection and DDoS
traffic separation for SDN environments are still an open research
issue. DDoS attacks in SDN environments will not only bring
damage to target server, but also takes exact impact on SDN
system. In this paper, we identify a new type DDoS attack,
specifically aiming SDN environment, which is harder to be
detected. We propose a novel real-time DDoS detection scheme
for SDN environment, by using Principal Component Analysis
(PCA) scheme to analyze the network status on traffic packets
data. We separate the network into different parts, to reduce the
total calculation burden. We compare our scheme with sample
entropy, showed our scheme achieves better detecting ability for
DDoS attacks.

I. INTRODUCTION

Software-Defined Networking (SDN) separates network’s
control logic plane from the data plane, simplifies network
management. SDN solves the problem that the static ar-
chitecture of traditional network does not support dynamic,
scalable computing and storage needs of more computing
environments such as data centers. SDN separates the control
plane making decisions about how to send traffics from the
bottom component forwarding traffics. SDN is an emerging
architecture that is dynamic, manageable, cost-effective, and
adaptable, makes it ideal for the high-bandwidth, dynamic
nature of today’s applications. These specific capabilities make
SDN deployable in many network environments, from home
and enterprise networks to data centers in cloud networks.

Distributed Denial-of-Service (DDoS) attacks are widely
used to run out of the target’s network bandwidth or process
resources. DDoS attacks are not only effective in traditional
networks but also active in SDN environments. And due to

the mechanism of SDN environments, the switches need to
hold all uninstructed packets before it gets respond from the
controller, DDoS attacks could easily flood this space and
lead to packets drop. And the controller runs out of resources
handling all uninstructed packets.

Many related works have been conducted to solve DDoS
attacks on SDN environments. Kazemian, et al. [1] and
Khurshid, et al. [2] investigated the SDN environment in real
time, Shin and Porras, et al. [3] [4] focused on the flow
table problem, Wang, et al. [5], Garg, et al. [6] studied the
payload of SDN, Hong, et al. [7] solved the topology poisoned
problem, and Dong, et al. [8] studied low-traffic flows DDoS
on SDN. There are other studies about on-line Internet traffic
monitoring [9] [10] using big data for the process, which use
Spark Streaming monitoring the TCP performance.

Previous studies of quick DDoS detection [11], [12] and [8],
have shown some treatment against DDoS attacks on SDN, but
there are shortages in these works. For example, Mousavi, et
al. [12] used the entropy to describe the traffics, which may
cause a false alarm when traffic feature getting larger. Dong
[8] only studied the flows with low traffic, which is powerful
to solve the traffic pattern, which cannot handle other kinds
of DDoS attacks.

Principal Component Analysis (PCA) is a traditional
scheme which reduces data size, usually used for picture
analysis. We use it on packet traffic data collected in SDN
environments, to analyze whether a DDoS attack is inside
this network. Along with traditional type of DDoS attack.
Our detection scheme utilizes Principal Component Analysis,
separate traffic into normal and abnormal traffic through each
switch. We collect simulation data from the whole network
traffic packets in our environment and test the entire network
scheme, partition scheme, and sample entropy in different
situations. Our results show that all three schemes could

978-1-5386-3180-5/18/$31.00 ©2018 IEEE

handle traditional DDoS attacks, but the new type DDoS attack
targeting at weak points of SDN cannot be detected by sample
entropy.

In this paper, we identify a new type DDoS attack target-
ing at the SDN environment specifically. This DDoS attack
is basically the same as conventional DDoS, using zombie
computers to send packets. However, instead of sending to a
common fixed target server, the DDoS attack send packets to
random targets. This behavior change makes this new type
DDoS attack harder to be detected, and bring more impact
on SDN environments. The contributions of this paper are as
follows.
• We adapt a scheme using principal component analysis

to diagnose anomalies in SDN network.
• We partition the network to get a lighter burden.
• We identify a new type DDoS attack specifically aiming

at SDN environment.
• We compare the result between using PCA and sample

entropy under different settings including the new type
DDoS attacks.

The organization of the rest of this paper is as follows. Section
2 describes the problem that DDoS attack occurs on SDN
environment will make extra damages on SDN environment,
and a novel DDoS attack aiming at SDN only, who amplifies
those damages on SDN environment. Section 3 describes how
to use Principal Component Analysis to analysis network.
Section 4 describes the experiment and result. Section 5
concludes the paper.

II. PRELIMINARIES

A. PCA on traditional networks

We followed Lakhina’s research result [13]–[15], which
introduced a method on detecting anomalies for traditional
networks, using principal component analysis (PCA) to ana-
lyze data traffic of the network. PCA is a transform the data
into a new data sets. The new data sets are called the principal
components, which contains the property that it points in the
direction of maximum variation or energy left in the data. So
i-th principal component captures the total energy of the data
to maximal residual energy beside former i− 1.

First of all, we assume that the network administrator are
able to collect traffic data through the network, which could
be easily done via using flow table to collect packet data in
SDN environment.We use the following to describe the traffic:
• OD Pair. OD-pair presents a pair of node describe the

origin node and the destination node of one packet.
• OD Flow p. An OD flow consists of all traffic for this

OD-pair. If the network has k entrance, there will be k2

PoP-pairs maximum, and hence k2 OD pairs. For short,
we set the number of OD flows as p.

• Time intervals t. We collect successive network’s traffic
for total w× t seconds, and separate the time period into
t pieces. Therefore each time period last for w seconds.
And we could adjust the number of time period t to t1,
meanwhile adjust the length of time of each time period

to w1, so that t× w = t1 × w1. Therefore we could get
a fit t, that t > p.

• Matrix X . X is the combination of t and p, forms t× p
matrix. Column i is the time-series of i − th OD flow,
while row j presents time period j’s OD flows.

For matrix XTX , it could calculates

XTXvi = λivi, (1)

where {vi, i = 1, .., p} are the eigenvector, {λi, i = 1, .., p}
are the eigenvalues corresponding to each vi. Finding the first
r non-negligible principal component, could approximate the
original matrix. Detecting anomalies relies on the separation
of x (Matrix X’s i-th row, a vector of all flows at i-th interval)
into normal and anomalous components. And could separate
x into:

x = x̂+ x̃, (2)

in which x̂ is modeled part and x̃ is the residual traffic part.
To accomplish this, it needs to get the principal components
of normal subspace (v1, v2, ..., vr) P . We can write x̂ and x̃
as:

x̂ = PPTx = Cx, and x̃ = (I − PPT)x = C̃x, (3)

where the matrix C represents the linear operator that performs
projection onto normal subspace, and C̃ projects onto the
anomaly subspace. The occurrence of a volume abnormal will
tend to result in a large change to x̃. A useful statistic for
detecting abnormal changes in x̃ is the squared prediction error
(SPE):

SPE ≡ ‖x̃‖2 ≡ ‖C̃x‖2, (4)

and consider network traffic to be normal if SPE ≤ δ2α where
δ2α denotes the threshold for the SPE at the 1− α confidence
level. A statistical test for the residual vector known as the
Q-statistic was developed by Jackson and Mudholkar and is
given in [16] as:

δ2α = φ1[
cα

√
2φ2h20
φ1

+ 1 +
φ2h0(h0 − 1)

φ21
]

1
h0 , (5)

where

h0 = 1− 2φ1φ3
3φ22

, and φi =
m∑

j=r+1

λij ,i = 1, 2, 3, (6)

and where λj is the variance captured by projecting the data
on the j-th principal component (‖Xvj‖2), and cα is the 1−α
percentile in a standard normal distribution.

For matrix X of size t × p, calculating the principal
components is equivalent to solving the symmetric eigenvalue
problem for the matrix XTX , which is a measure of the
covariance between flows. Take the rows of X as points in
Euclidean space, so that we have a dataset of t points in IRp.
Each principal component vi is the i-th eigenvector computed
from the spectral decomposition of XTX:

XTXvi = λivi, (7)

where λi is the eigenvalue corresponding to vi. Since XTX is
symmetric positive definite, its eigenvectors are orthogonal and
the corresponding eigenvalues are nonnegative real. By con-
vention, the eigenvectors have unit norm and the eigenvalues
are arranged decendingly, so that λ1 ≥ λ2 ≥ ... ≥ λp. It can
be shown that the eigenvector corresponding to the maximum
energy of the residual by using the Rayleigh Quotient of
XTX . We can write the k-th principal component vk as:

vk = arg max
‖v‖=1

‖X −
k−1∑
i=1

(Xviv
T
i)v‖. (8)

Thus, computing the set of all principal components, {vi}pi=1

is equivalent to computing the eigenvectors of XTX . The prin-
cipal component space can be used to examine the transformed
data. The contribution of principal axis i as a function of time
is given by Xvi, and can be normalized to unit length via
dividing σi =

√
λi. Thus, we have each principal axis i,

ui =
Xvi
σi

, i = 1, ..., p. (9)

The ui are orthogonal by construction. The equation above
shows that all the OD pairs, when weighed by vi, produce
one dimension of the transformed data. ui captures the i-th
strongest temporal trend common the all OD pairs, and the
set of {ui}pi=1 captures the time-varying trends common to
the OD pairs, refer to them as the eigenflow of X . The set
of principal components {vi}pi=1 can be arranged in order
as columns of a principal matrix V , which has size p × p.
Likewise, we can form the t × p matrix U in which column
i is ui, that V , U and σi can be arranged to write each OD
flow Xi as:

Xi

σi
= U(V T)i i = 1, ..., p. (10)

The elements of {σi}pi=1 are called the singular values, and
‖Xvi‖ = vTi X

TXvi = λiv
T
i vi = λi.

III. SYSTEM STATEMENT AND PROBLEM STATEMENT

A. SDN Matching Process

Packet matching process in SDN has limited storage spaces
and process resources. These resources could be easily run
out when DDoS attacks occur in SDN. Details of matching
process in SDN is as following.

According to OpenFlow switch specification [17], through
the pipeline processing is able to lookup through different flow
table in a switch, we could simply consider that there is one
flow table in a switch.

In each switch in SDN, there contains at least one flow
table recording rules describing how should the switch deals
with incoming traffic packets. The rules include registering
information (e.g., IP address, MAC address, Port) of both
original and destination host, and record actions should be
processed for this packet (e.g., forwarding, or drop) with
priority. In one flow table, one packet may match multiple
rules. With priority, only the rule with the highest priority
will process. If there exists multiple flow tables, the switch

could executes a different rule from another flow table after
the original rule been executed.

For those packets with no rules matched in the flow table,
it will temporally store in a buffer area when the switch
requests and be instructed by the controller. The switch stores
the packets in this area, and send necessary part, usually the
header of the packet, to the controller and waiting for an
instruction. If this area fills with packets and has no space
for a new packet, the switch will have to drop some packets.
The dropping method depends on the configuration, usually
FIFO (first in first out), or LIFO (last in first out). When the
controller receives the message, it searches its flow table for
a match, if there exists a match, the controller will instruct
the switch to install a rule on the flow table, so that the
switch knows how to handle the packet. If there is no match,
the controller sends PACKET-OUT to all connected switches,
request for the target host, if one switch get a match, it will
return a message to controller, and the controller will record
the rule on its own flow table, and instruct the original switch.
If there is no match, it will need to wait till timeout.

When DDoS occurs, there is packet burst occurs in the
network. However, for those packets there are two patterns
that only contains in DDoS packets. One is there are lot of
packets be sent from different sources to one destination, and
the other is they start in short time. Unlike other occasion like a
burst hot topic, the topic requires time for separation, therefore
they usually has exponential growth rate. DDoS attack usually
grows like a spark. Another different between those hot topics
with DDoS is that one people usually view this topic once, but
DDoS requires those bots continually access to destination to
increase its effectiveness and strength. There will be two extra
side effect on SDN environments.

1. Impact on switches. We assume that the DDoS attack
occurs among all this network, and bots of the “botnet”
controlled by the attacker separated in each switch. There is
no matching flow table rule exists, all DDoS packets will be
stored in the buffer area. The space of buffer area will easily
exhausted, and have to drop old or new packet (depending on
the policy) when a new uninstructed packet comes in. Another
problem is that, if the controller manage the flow table poorly,
that each separate packet with different source and destination,
usually called OD (origin-destination) pair, needs an individual
rule in flow table, the flow table will also run out of space
quickly.
2. Impact on controller. When DDos attack occurs, huge
amount of uninstructed packets passing through different
switches waiting for the controller’s instruction, this will run
out the controller’s process ability quickly, and cause the
latency of instruction and cause time out, leading to packet
lost, or the controller down totally and the network is unable
to work.

With higher specification device of switch and controller,
that has larger space and faster process spend, allows SDN
environment to handle more packets, but this can’t fix the
problem. There are also other methods to amplify these side
effect.

TABLE I: Main components of a flow entry in a flow table [17].

Match Fields Priority Counters Instructions Timeouts Cookie

1. Low-traffic flow. The work [8] introduced that, no matter
how heavy the traffic of a new flow is, only the first few
packets of the flow will be encapsulated in the packet-in
messages and sent to the controller. Thus, the attackers will
prefer to use low-traffic flows to gain more impact to trigger
attack on controller.

2. Heavy-traffic flow. On the contrary, we could use heavy-
traffic that each packet filled with meaningless data to achieve
maximum size to consume the space of switches.

B. The New Type DDoS Attack in SDN

In this paper, we identify a new type DDoS could amplify
the impact on SDN environment. This new type DDoS attack
is different from traditional DDoS attack, that the destination
of packet is randomly chosen. This attack is not aiming at
one fixed target server, but the SDN network system. Thus,
there will be no server detecting been attacked, therefore no
server will alarm the attack, therefore harder to be detected
and reported.

(1). Extend Buffer. Buffer store all packets waiting for
controller’s instruction. However, once this controller was
instructed, until the controller give another instruction to
remove this instruction, the switch has table flow recording
how to deliver the packets. It means that only the first packet
of a new flow, and if this flow occurs before, the first packet
may even don’t need to be buffered and wait.

With new type DDoS, due to the randomness of destination
IP, there is only small chance this flow has been instructed
and recorded in the switch. Thus, almost every packet at any
time need to be buffered, and wait for controller’s instruction,
while the traditional DDoS attack usually has same target, that
once instructed no packet would need to be buffered.

(2). Extend Flow Table. As we mentioned above, once the
controller instructs using a table flow with fixed target IP,
following packets will all match this table flow.

However, with new type DDoS, the following packets have
different origin and destination, so that need a new table
flow for every packet. Since there are no pattern between the
packets, it is very hard to classify table flows, which means it
will cost a lot of flow table space. Further more, when each
packet consumes a table flow, the table could be easily filled
with attack flow.

With randomly OD pairs, it is difficult for controller to
classify the flow table, cost more flow table space, running
out flow table space. Since the destination is randomly chosen,
instead of the original attack only affect the switch in the
beginning, there is no matching flow table all the time, there
will be uninstructed packets all the time, and exhaust the space
storing uninstructed packets. On controller side, with randomly
destination, which would not exist in high possibility, without
reply from other switches, the controller has to wait time out,
it will be much easier to exhaust the controller’s resource.

Therefore, automatically real time DDoS attack detection is
one urgent problem in SDN environment.

IV. PROPOSED SCHEME

In a typical SDN, all the extra work (data collection,
matrix calculation, result comparisons) need to be done at
the controller side in each time interval. Consider of the
bandwidth between controller and switches, and controller’s
computational capabilities, this could put the controller into a
risky position.

Inspired by [18] [19] [20] [21], in which OpenFlow assumes
a logically centralized controller, which ideally can be physi-
cally distributed, and Onix is a network-wide control platform
running on one or more servers in the network handling
switches by partition and aggregation, we are interested in
partitioning the network using several sub-controllers, to get
separated data, and report it to the controller.

We assume that we partition one network into s subnets,
we can get a set of OD flows {p1, p2, ..., ps}. For each OD
flow pi of the i-th subnet, it contains the OD pairs that origin
or destination is in this subnet (or both). Therefore we get a
set of Matrices {X ′1, X ′2, ..., X ′s}. Each X ′ have same time
interval amounts as X .

Fig. 1: System Model

As in figure 1, our system basically needs extra computer(s)
to collect packet flows through every switches. It would be
easier if every switch has a computer connected closely, only
collecting this switch’s data. These computers could be used to
do the calculation of this switch, therefore we could get a quick
result. A simpler system could be only one main data collector
unit in the middle of the network (smallest connecting lag with
all switches).

We have noticed that original scheme and our scheme have
a same problem that such a scheme needs to recalculate the
SPE threshold δ2α using full period data. This will also cause
a heavy overload. As the data become larger and larger, the
calculation period would become longer and longer, and finally
it could not be done in one time interval. For example, if we
continue calculating the data of time interval of one second,
and last for one week, and than we will get a matrix that
the number of row is 604,800, about 600 kilo-bits(Kb), then
XTX is about 360 Giga-bits (Gb), and each item is stored as

type of Double of size 8 bits, so it will need 360Gbs to store
matrix XTX , without needs of mentioning PCA calculation
and spaces.

Therefore, we consider using the threshold and normal
subspace calculated in the former period, and directly use in
next intervals.

V. EXPERIMENT AND RESULT

In order to test the performance of our scheme, we do the
following experiments to see how PCA, partition PCA and
sample entropy perform under different situations.

A. Experiment Setting

Fig. 2: The Topology In Our Experiment

We set up a test environment by using Mininet creating
a small scale of network of ring topology of three switches
and 11 nodes (which could be a terminal or another network)
directly connected to switch. There are 11 host in this network,
so that there could be 11 original node, and 11 destination
node, although the original node can not be the same with
destination node. For each OD-pair (o, d) we could represent
that:

(o, d), o = 1, 2, ..., 11, d = 1, 2, ..., 11, and o 6= d. (11)

We choose such a kind of network since it is one kind of
the most popular topologies, and switches could connect with
each other directly.

We generating dummy traffic by using Scapy, simulate
normal traffic since time 0 and launch a DDoS attack at 180
second, and collect all data in 200 seconds (DDoS attack last
for 20 seconds). Since these are 11 nodes, the OD flows
number is 121 maximum, to get enough number of time
interval, the time interval is set to “1 second”, so that the
number of time interval will be 200, and the 1−α confidence
level is set to 99%.

The topology is shown in Fig.2, each switch connected to
another switches, and linked to 3 to 4 nodes. “Node 10” is
set to be the victim server, and “node 3,6,9” are three zombie
computers who will execute DDoS attack.

B. Comparison Between PCA and Sample Entropy

1) Sample Entropy: A general way for DDoS detection in
SDN is conducted by collecting the flow statistics or traffic
feature from the switches, and calculate the entropy measure
randomness in the packets that are coming to a network. The

higher randomness the higher is the entropy and vice versa.
By setting a threshold, if the entropy passes it or below it,
depending on the scheme, an attack is detected.

(a) Sample Entropy (b) PCA

(c) PCA on Switch 1 (d) PCA on Switch 2 (e) PCA on Switch 3

Fig. 3: Comparison Between Sample Entropy, PCA, and
partition PCA with normal traffic doubled since time interval
173

One metric that captures the degree of dispersal or concen-
tration is sample entropy. Assuming in one observation, total
number of traffic is S, in which exists N OD-pairs (Origin-
Destination Pairs), and ni stands for the traffic amount of
OD-pair i. Therefore OD-pair i will occur ni times in this
observation. So that S =

∑N
i=1 ni. And sample entropy of

this network is defined as following:

H(X) = −
N∑
i=1

ni
S
log2

ni
S
. (12)

The result H(X) lies in the range (0, log2N). It will takes
the value 0 when the distribution is maximally concentrated,
and takes the value log2N when the distribution is maximally
dispersed.

We continually the experiment setting, and change some
parameters to make a comparison between PCA and sample
entropy.

We want to verify following questions: (i) whether the
amount of normal traffic would impact the result, (ii) will these
scheme detect when DDoS attack stop, and (iii) introduce a
mutated DDoS attack aiming SDN, and to check whether these
scheme are able to detect this attack.

2) Evaluation of DDoS: .
The result of sample entropy is not only affected by the

distribution but also effected by the amount of OD-pairs
appeared. In this experiment, the time interval is set to each
one second, the normal network traffic start at time interval
11, start the DDoS attacks at time interval 152, and double the
amount of normal traffic at time interval 172. We want to see
how the change of normal traffic would effect the result. We
analyze the data through sample entropy, conventional PCA
scheme, and our partition PCA scheme on each switches, and

get a result from Fig.3 that sample entropy, PCA and partition
PCA all captured the DDoS attack. And the value of sample
entropy slightly increased when the amount of normal traffic
doubled. Meanwhile, the result calculated by PCA scheme
and partition PCA scheme clearly separated with normal time
interval, and didn’t affected by the doubled normal traffic.

3) Evaluation of New Type DDoS attack: Sample entropy
detect DDoS attack by that the destination IP is fixed, so
that the entropy will decrease when DDoS attacks happened.
But we can simply adjust the DDoS attack, that to set the
destination IP randomly, so that sample entropy may not able
to detect such attacks. So in this experiment, we start normal
traffic from time interval 8, and launch mutated DDoS attack
from time interval 43. And the result is shown in Fig.4.

(a) Sample Entropy

(b) PCA

Fig. 4: Comparison Between Sample Entropy, PCA react when
DDoS stop at time interval 173

We can see that sample entropy can not handle this mutated
attack, when PCA value level still change significantly. In the
meantime, we also try to remove the parameter N by dividing
the result by log2N , but the result is hard for us to separate
the normal condition with attacked condition.

VI. CONCLUSION

In this paper, we have proposed a novel DDoS scheme
using principal component analysis, to detect DDoS attack on
SDN environment. Then, we have evaluated the performance
of the proposed scheme with sample entropy, a popular used
scheme. We have shown that this scheme have clearer results
than another. Meanwhile, we have identified a novel DDoS

attack aiming on SDN environment, which could cause more
damages on SDN, and used the two detection method on
this novel DDoS attack, and found this novel attack is hardly
detected by sample entropy, and still be captured by PCA.

REFERENCES

[1] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pp. 99–111,
2013.

[2] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
verifying network-wide invariants in real time,” in Presented as part
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pp. 15–27, 2013.

[3] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks, pp. 121–
126, ACM, 2012.

[4] S. Shirali-Shahreza and Y. Ganjali, “Rewiflow: Restricted wildcard
openflow rules,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 5, pp. 29–35, 2015.

[5] M. Wang, H. Zhou, J. Chen, and B. Tong, “An approach for protecting
the openflow switch from the saturation attack,” 2016.

[6] G. Garg and R. Garg, “Detecting anomalies efficiently in sdn using adap-
tive mechanism,” in 2015 Fifth International Conference on Advanced
Computing & Communication Technologies, pp. 367–370, IEEE, 2015.

[7] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures.,” in
NDSS, 2015.

[8] P. Dong, X. Du, H. Zhang, and T. Xu, “A detection method for a novel
ddos attack against sdn controllers by vast new low-traffic flows,” in
Communications (ICC), 2016 IEEE International Conference on, pp. 1–
6, IEEE, 2016.

[9] B. Zhou, J. Li, S. Guo, J. Wu, Y. Hu, and L. Zhu, “Online internet
traffic measurement and monitoring using spark streaming,” in Proc.
IEEE GlobeCom 2017, IEEE, 2017.

[10] B. Zhou, J. Li, X. Wang, Y. Gu, L. Xu, Y. Hu, and L. Zhu, “Online
internet traffic monitoring system using spark streaming,” Journal of Big
Data Mining and Analytics, vol. 1, no. 1, 2018.

[11] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, pp. 408–415, IEEE, 2010.

[12] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks
against sdn controllers,” in Computing, Networking and Communications
(ICNC), 2015 International Conference on, pp. 77–81, IEEE, 2015.

[13] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in ACM SIGCOMM Computer Communication
Review, vol. 35, pp. 217–228, ACM, 2005.

[14] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in ACM SIGCOMM Computer Communication Review,
vol. 34, pp. 219–230, ACM, 2004.

[15] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural analysis of network traffic flows,” in ACM
SIGMETRICS Performance evaluation review, vol. 32, pp. 61–72, ACM,
2004.

[16] J. E. Jackson and G. S. Mudholkar, “Control procedures for residuals
associated with principal component analysis,” Technometrics, vol. 21,
no. 3, pp. 341–349, 1979.

[17] “Openflow switch specification 1.3.1.” https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.1.pdf. Accessed: 2017-2-09.

[18] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, pp. 3–3, 2010.

[19] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., “Onix: A distributed
control platform for large-scale production networks.,” in OSDI, vol. 10,
pp. 1–6, 2010.

[20] J. Li, R. Li, and J. Kato, “Future trust management framework for mobile
ad hoc networks,” IEEE Communications Magazine, vol. 46, no. 4, 2008.

[21] H. Lu, J. Li, and M. Guizani, “Secure and efficient data transmission for
cluster-based wireless sensor networks,” IEEE transactions on parallel
and distributed systems, vol. 25, no. 3, pp. 750–761, 2014.

