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a b s t r a c t

Several studies of distribution network enhancement focused only on the optimization of either the
integration of distributed generations (DG) or network reconfiguration. However, very few researches
have been done for distribution network reconfiguration simultaneously with the DG location and sizing.
This paper presents a multi-objective management operations based on network reconfiguration in
parallel with renewable DGs allocation and sizing for minimizing active power loss, annual operation
costs (installation, maintenance, and active power loss costs) and pollutant gas emissions. The time
sequence variation in wind speed, solar irradiation and load are taken into consideration. An efficient
evolutionary technique based on the Pareto optimality is adopted to solve the problem. A fuzzy set
theory is used to select the best compromise solution among obtained Pareto set. The obtained results
prove the efficiency and the accuracy of the suggested method for the network manager to find the
optimal network configuration simultaneously with DG location and sizing considering multiple criteria.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, there has been a growing interest in renew-
able energy sources due to the increased demand of the electricity
and the significant depletion of fossil fuel. Therefore, research on
the integration of distributed generations (DG) [1] into the distri-
bution network has become very popular. Indeed, the placement of
DG in optimal locations andwith appropriate sizes may bring about
various benefits to the power system such as active power loss and
line loading reduction, reactive power requirement mitigation and
voltage profile improvement. To solve this problem, many re-
searchers have proposed various optimization techniques (e.g.
conventional, artificial intelligence and hybrid intelligent system
techniques) [2].

In the literature, the traditional studies of optimal DG integra-
tion in the distribution network consider the power loss as the
main objective to minimize, thus, the optimization problem is
tackled as a mono-objective using analytical approach [2,3,4] or
heuristic and meta-heuristic methods, e.g., ant lion optimization
algorithm [5], mixed integer non-linear programming [6], genetic
algorithm [7].

Recently, several studies have introduced other objectives to
optimize in the problem of sitting and sizing of DGs such as voltage
stability improvement, operation costs reduction, greenhouse gas
emissions, etc. According to the literature, this multi-objective
approach is tackled in two ways: for the first case, the objective
functions are aggregated with proper weights to constitute a single
objective. This approach is presented widely in several studies us-
ing artificial intelligent techniques such as genetic algorithm based
methods (BSOA [8], GA [9]), computational methods (ICA [10],
MNLP [11], ALOA [5]) and hybrid optimization techniques (GA/
Fuzzy [12], HPSO [13]). A key limitation of these methods is that are
not able to optimize multiple objectives equally, also the use of
weighted aggregation leads to a long research effort. In the second
case, the multi-objectives are solved using the Pareto optimality.
This concept is not discriminating because all objective functions
are optimized equally providing the Pareto set of optimal solutions.
However, the primary approach used to generate only one solution
with choosing weights of each objective. In order to avoid this
disadvantage, several recent researches have adopted the multi-
objective evolutionary algorithms based on the Pareto optimality
concept to find the best locations and sizing of DGs, e.g., NSGAII
[14], INSGAII [15], IMOHS [16], MOShBAT [17], etc. These evolu-
tionary algorithms provide a set of Pareto optimal solutions where
the network can select an option.
Besides the beneficial effects of the integration of DGs in a po-

wer system, the network reconfiguration can be considered as
another alternative for the loss reduction in the distribution
network. The distribution network reconfiguration can be defined
as a process that handles the open/close status of sectionalizing
switches and tie-switches in order to find the best network
configuration that optimizes different criteria while satisfying
operational constraints. The first study of network reconfiguration
was done in 1975 by Merlin and Back for active power loss reduc-
tion [18]. Over the years, several studies have been dedicated to
solving the network reconfiguration by introducing other criteria to
optimize such as the system reliability indices, voltage profile, etc.

The literature on distribution network reconfiguration shows a
variety of optimization methods to solve this multi-objective
problem such as weighted aggregation based techniques (genetic
algorithms [19,20], modified honey bee mating optimization [21],
binary group search [22], etc.) and Pareto optimality based tech-
niques (shuffled frog leaping algorithm [23], NSGAII [24], artificial
immune systems [25]).

The distribution network reconfiguration and the optimal
integration of DGs are usually studied separately. However, the
integration of these two sub-problems together can bring more
benefits to the whole system. There are very few studies in the
literature studying the network reconfiguration simultaneously
with optimal allocation and sizing of DGs. The most of these re-
searchers consider the power loss as a single objective to minimize.
One of the first examples of these studies are presented in
Refs. [26e28] where authors have investigated the significant
reduction of power loss when combining reconfiguration and
integration of DGs.

Recently, there are rare studies that have introduced other ob-
jectives to optimize to this complex problem. In Ref. [29], authors
solved the problem considering the objective of minimizing the
active power loss, increasing the feeder loading balance balancing
and enhancing the voltage profile of the system using fuzzy-ACO
(ant colony optimization) based on the Pareto optimality concept.
However, they considered only a single DG based on PV array and
DSTATCOM for determining their optimal location and size. In a
recent paper [30], authors solved the problem using a multi-
objective method based on bang-big crunch algorithm. They
determined the sizes of DGs without considering their optimal
placements. In Ref. [31], authors used an improved particle swarm
optimization technique (IPSO) to solve the multi-objective problem
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of combined reconfiguration and optimal DGs integration. How-
ever, the utilized method considers the weighted sum of objective
functions and thus, the objectives are not optimized equally as
when using the Pareto optimality concept.

In previous papers that are reviewed above, the DGs models are
assumed to be deterministic; however, they are intermittent in
nature, especially in the case of DG based on renewable energy.

In this paper, we aim to solve the problem of simultaneous
network reconfiguration and optimal allocation and sizing of DGs
based on solar and wind energy, considering the research gaps of
the previous studies mentioned above. An evolutionary technique
called SPEA2 (Strength Pareto Evolutionary Algorithm 2) is pro-
posed to solve the multi-objective optimization problem. This
technique is based on obtaining a set of Pareto optimal solutions.
An original combination of SPEA2 and spanning trees theories in
order to generate feasible network configurations respecting the
topological constraints. The objectives of the proposed problem
consist of minimizing the active power loss, reducing the annual
operation costs and also the gas emissions produced by the power
plant feeding the substation of the distribution network. Then, a
fuzzy set theory is used to extract the best-compromised solution
from the obtained Pareto set. In addition, the stochastic nature of
DGs based renewable energy is taken into account by solving the
problem, according to hourly variation of solar irradiation, wind
speed and load.

The remainder of this paper is organized as follows. In section II,
the mathematical formulation for reconfiguration and DG sizing
and allocating is presented. In section III, the model of DGs based
renewable energy is described. In section IV, the principle concept
of the proposedmethod is presented and applied to the problem. In
section V, simulations, results, and comments are detailed. Finally,
section VI concludes with a summary.
Table 1
Parameters of operation cost.

Installation cost of photovoltaic DGs per kW (CinsPV ) 3000 $
Installation cost of wind DGs per kW (Cinswind

) 1000 $
Annual maintenance cost of photovoltaic DGs per kW (CmainPV

) 30 $
Annual maintenance cost of wind DGs per kW (Cmainwind

) 35 $
Unitary cost of active power loss EC 0.06 $/kWh
The active power loss factor Fls 0.48
2. Problem formulation

The problem of simultaneous reconfiguration and optimal
integration of DGs aims to find the optimal radial topology of the
distribution network as well as the best location and sizes of DGs in
order to minimize active power loss, annual operation cost and
pollutant gas emissions. This nonlinear combinatorial problem is
considered as a multi-objective optimization problem MOO with
the following mathematical formulation [36]:

x ¼ ½x1; x2; :::; xnv� (1)

min
�
f1ðxÞ; f2ðxÞ; :::; fNobj

ðxÞ
�

(2)

s:t: hiðxÞ ¼ 0; i ¼ 1; :::; p (3)

giðxÞ � 0; i ¼ 1; :::; q (4)

where x is the decision vector and nv is the number of decision
variables of the optimization problem. In our case of study, there
are 3 sets of variables types that are the possible network config-
uration, the DG locations and sizes. f1ðxÞ; f2ðxÞ; :::; fNobj

ðxÞ present the
different objective functions to minimize and Nobj is the number of
objective functions of the problem.

hiðxÞ and giðxÞ are the equality and inequality constraints that
should be satisfied. p and q are the number of equality and
inequality constraints, respectively. In the next section, the objec-
tive functions and the constraints of the optimization problem are
presented in details.
2.1. Objective functions

2.1.1. Minimization of active power loss
The first objective function is to minimize the sum of active

power losses in all branches, which is defined as [21]:

f1 ¼ PL ¼
XNb

b¼1

Rb$I
2
b (5)

where PL is the total active power losses of the network, Ib is the
module of current in the branch b, Rb is the resistance of branch b,
and Nb is the set of branches.

2.1.2. Minimization of annual operation costs
Operation costs reduction is considered as an important issue in

distribution network economics. It includes the total cost of DG
installations, maintenance and active power loss. This objective
function is as:

f2 ¼ fcos t ¼
�
Cins þ CmainPV

�
$PPV þ �

Cins þ Cmainwind

�
$Pwind þ CL

(6)

where CinsPV and CinsWind
are the installation costs of solar and wind

turbine DGs per kW, respectively. CmainPV and Cmainwind
are the

maintenance costs of photovoltaic and wind DGs, respectively. PPV
and Pwind are the optimal installation sizes of photovoltaic andwind
DGs. CL is the annual cost of active power loss, which is calculated at
peak load period as follows [4]:

CL ¼ EL$ðEC � 8760Þ (7)

where EC is unitary cost of active power loss in $/kWh and EL is the
active power loss value in kW, which is defined as:

EL ¼ Fls$PLpic (8)

where PLpic is the total active power loss at peak load and Fls is the
active loss factor for a given period (1 year in this study). All pa-
rameters of the annual operation costs are listed in Table 1:

2.1.3. Minimization of pollutant gas emissions
In the last decade, most governments in the world have been

paid a considerable attention to air pollution caused by greenhouse
gas emissions. Therefore, in this study, the minimization of gas
emissions due to the integration of renewable DGs is taken into
consideration. The gas emissions values are calculated according to
the variation of power produced by the thermal plant feeding the
distribution network substation after integration of DGs.

The emissions objective function to minimize is defined as fol-
lows [14]:

f3 ¼ femission ¼
XNp

i¼1

Ki$Psub (9)



Table 2
Pollutant gas emission intensities [14].

Gas SO2 NOx CO2 CO

Emission intensity (g/kWh) 6.48 2.88 623 0.1083
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where Np is the number of types of pollutant gas; Ki is the emission

intensity of the ith pollutant gas from the thermal plant that feeds
the substation; Psub is the active power generated by the substation,
which is expressed as:

Psub ¼
XNcus

i¼1

Ploadi
þ PL �

XNDG

j¼1

PDGj
(10)

where Ploadi
is the load at node i, Ncus is the number of customer

nodes, PDGi
is the active power generated from the DG j , and NDG is

the number of DGs installed in power system. The emission in-
tensities of the different pollutant gases are illustrated in Table 2.

2.2. Constraints

The combined reconfiguration and optimal allocation and sizing
of renewable DGs in the distribution network must respect certain
system security and topological constraints.

2.2.1. Equality constraint
The power balance constraint is defined as follows:

Psub þ
XNDG

j¼1

PDGj
�
XNcus

i¼1

Ploadi
� PL ¼ 0 (11)

2.2.2. Inequality constraints

� Bus voltage limits:

Vmin � Vi � Vmax (12)

The voltage Vi at each bus i should be kept between its mini-
mum and maximum values.

� Branch current limits:

jIbj � Imax
b (13)

The module of the current Ib at each branch should not exceed it
maximum thermal value Imax

b .

� DG capacity constraint:

In general, the penetration rate of DGs varies according of to the
renewable energy policies of countries. In this work, it is assumed
that the total injected active power from the renewable DGs should
be between 10% and 60% of the total active power load in the dis-
tribution network, i.e.:

0:1�
Xn
i¼1

Ploadi
�

XNDG

i¼1

PDGi
�0:6�

Xn
i¼1

Ploadi
(14)

2.2.3. Topological constraint
The distribution network configurations determined during the
evolutionary process should be radial. Moreover, there must be no
loops in the network and all loads must be supplied. In this study,
the theories of the spanning trees (graph theories) [32] is used for
the distribution network reconfiguration. According to these the-
ories, the radial structure of a graph, which is in our case a distri-
bution network configuration, can be verified as follows:

XNb

b¼1

bb ¼ n� Nsub (15)

where bb is a binary variable that represents the status of a branch
(0-open, 1-closed), n is the number of network buses, and Nsub is
the number of substations.

3. Renewable DG generation output

The models of renewable DG output generations, used in this
study, are defined according to the metrological variables (solar
irradiance, temperature and wind speed). Once, the network
manager is provided with the forecast data of the metrological
variables for the period of study, it will be possible to determine the
variation in the power output of renewable DGs for each time
sequence of the period, which will be used in the research of an
optimal solution of the problem.

In fact, the variation in the DG power output and load causes the
variation in the load flow of the power system. The time sequence
variation in the load flow intervenes in the search process of the
best network configuration and DG locations and sizes that provide
the optimal reduction in power losses, pollutant gas emissions and
operations cost. The power output of each renewable DG used in
this study (i.e. wind turbine and solar generator based on photo-
voltaic modules) is calculated utilizing its corresponding power
generation function, which is defined in detail in the next
subsections.

3.1. Solar DG power output

The active generation output of solar DG is calculated by the
summation of the total energy produced by the photovoltaic (PV)
modules. The adopted computational method of PV module has
been used by several studies in the literature [33], [34]. This power
generation function takes into consideration the solar irradiance,
the ambient temperature, and the characteristics of the PV module.
The active generation output of a PV module is expressed as a
function of the solar irradiance as follows:

PDGPV
ðirÞ ¼ NPV$FF$Vy$Iy (16)

where ir is the solar irradiance (W/m2), FF is the fill factor, Vy and Iy
are the voltage and the current outputs of the PV module, respec-
tively. These parameters are presented in details in the equations
below:

3.1.1. The module fill factor
The fill factor FF measures the quality of a solar module. It is

defined as the ratio of the maximum, obtained power output from
the module, to the product of open circuit voltage and short-circuit
current [33,34,43]:

FF ¼ VMPPT$IMPPT

Voc$Isc
(17)

where VMPPT and IMPPT are respectively the voltage and current
maximum power point, respectively. Isc and Voc are the short-
circuit current (A) and the open-circuit voltage (V), respectively.
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3.1.2. The module voltage output
The voltage output of a solar module is calculated as follows

[33,34]:

Vy ¼ Voc � TempV $Tcy (18)

where TempV is the voltage temperature coefficient (V/�C) and Tcy is
the temperature of the PV module (�C) expressed as [33,34]:

Tcy ¼ Tamb þ ir$
�
Not � 20

0:8

�
(19)

where Tamb and Not are the ambient temperature and the nominal
operating temperature (�C) of the PV module, respectively.
3.1.3. The module current output
The current output of the module is defined in function of the

solar irradiance ir, the short-circuit current Isc (A), the ambient
temperature Tamb (�C), and the current temperature coefficient Temp

(A/�C). That is [33,34]:

Iy ¼ ir$
�
Isc þ TempI$

�
Tcy � 25

��
(20)
3.2. Wind turbine DG power output

The output power of wind turbine DG (WT) depends on the
wind speed as well as the parameters of the power performance
curve (Fig. 1). The WT DGs are classified according to their speed
regulation capacity and their power output into two categories, i.e.
fixed speed WT DG and variable speed WT DG. Commonly, the
variable speed WT DG type is the most preferred by utilities for
integration in distribution networks [35]. Indeed, this type of WT
DG ensures a more efficient power caption from the wind speed
than fixed speed WT DG, also it provides voltage and frequency
control in the network. The power generation function of a typical
wind turbine is expressed as follows [34]:

PDGwind
¼

8>>><
>>>:

0 Vwind <VcinorVwind >Vcout

Prated$
Vwind � Vcin

VN � Vcin
; Vcin � Vwind � VN

Prated VN � Vwind � Vcout

(21)

where Vcin, Vcout and VN are the cut-in speed, the cut-out speed and
Fig. 1. Wind turbine power output with steady wind speed.
nominal speed of wind turbine, respectively. Vwind is the wind
speed and Prated is the rated output power of turbine that is be
defined as:

Prated ¼ 0:5$r$A$V3
wind$Cp (22)

where A is the swept area of rotor [34,36] r is the density of air,
Vwind is wind speed, and Cp is the power co-efficient.

4. Proposed optimization method and its application to
network reconfiguration problem in parallel with DG
integration

In this work, several criteria are considered in solving the
problem of network reconfiguration in parallel with DG integration.
In this framework, the evolutionary approach is chosen thanks to
its developed potential in solving multi-objective optimization
problems [37].

In general, evolutionary algorithms have the same structure of
genetic algorithms but with certain modified operators such as the
selection and the reproduction. Furthermore, despite the classical
approaches, the evolutionary algorithms are based on the Pareto
optimality that has the feature of optimizing multiple objectives
equally without discrimination. Thus, a set of optimal solutions can
be obtained in a single run instead of several runs as in classical
methods. At the end of the evolutionary process, a set of optimal
solutions are obtained presenting the Pareto front where the
optimizer can select an option.

4.1. Overview of Strength Pareto Evolutionary Algorithm 2

An evolutionary algorithm called the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) is adopted, in this paper, to solve the
problem of simultaneous network reconfiguration and optimal
integration of DGs.

The proposed SPEA2 is a multi-objective evolutionary algorithm
developed by the scholar Zitzler in 2001 and published in his report
[38], which is an improved version of SPEA [39] (developed by the
same author in 1999).

As an evolutionary algorithm, SPEA2 has the structure of genetic
algorithms with modifications in certain operations such as selec-
tion and reproduction. In general, a genetic algorithm is based on
the biology evolution. It uses a population of individuals, also
known as chromosomes: Each one represents a possible solution to
the optimization problem. All individuals are assigned fitness
values, based on their performance, and only the fittest individuals
are combined through a crossover and mutation operations to
produce offspring. The selection, crossover and mutation opera-
tions are repeated across generations in order to create individuals
that are fitter than their predecessors. The termination condition
corresponds to a specified number of generations or until all the
population converges to a single individual (solution).

All evolutionary algorithms, including SPEA2, differ from the
genetic algorithm in the fitness assignment by using the dominance
concept (explained in the next section) to rank solutions. This
concept leads, at the end of the evolutionary process, to a set of
Pareto optimal solutions instead of one. Furthermore, the domi-
nance concept ensures an equally optimization of objective func-
tions without discrimination, which lead to more accurate
solutions.

The only similarity of SPEA2 and its previous version, SPEA [39],
is that both use an external archive to conserve the fittest solutions.
However, SPEA is criticized for its lack of efficiency in its fitness
assignment procedure and external archive exploitation. Indeed, in
SPEA fitness assignment, individuals are dominated by the same
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Pareto member receive the same level of fitness, which is not
realistic, and also the Pareto optimal solutions dominate a large
number of solutions are assigned worse fitness instead of better
one [40]. In addition, the clustering procedure used by the SPEA
technique tends to lose optimal solutions that are in the extremes
of the archive and sometimes leads to the non convergence of so-
lutions [41].

In response to the SPEA criticisms, a new version, called SPEA2,
is developed with new features including a more complicated se-
lection of operations (i.e. fitness assignment and environmental
selection): Firstly, unlike the SPEA clustering mechanism, SPEA2
uses a newarchive truncation operator (defined in section 4.2.3 and
Appendix A.2), which guarantees the preservation of boundary
solutions from loss. For of an overloaded archive, this operator uses
a density estimation technique, in order to conserve only the
optimal solutions in less crowded regions, which leads to better
results in terms of convergence and spread.

Secondly, SPEA2 differs from other evolutionary algorithms,
such as SPEA, NSGAII and PESA, in the way it performs the fitness
assignment (explained in details in section 4.2.2). Indeed, the
SPEA2 method is the only evolutionary algorithm that uses the
nearest neighbor density technique estimation (see Appendix A.1)
in its fitness calculation mechanism, which provides a better
guidance of the research process. Furthermore, this feature allows
the SPEA2 method to provide more accurate and well spread so-
lutions than the other evolutionary algorithms [38]. Finally, unlike
SPEA, SPEA2 uses a fixed size of the archive, which is conserved
constant by the truncation operator and only the fittest individuals
of the archive participate in recombination process. Thus, a high
quality offspring can be obtained.

SPEA2 is also a well-tested algorithm that has been verified to
outperform other state of the art counterparts. In fact, according to
certain studies of performance analysis in the literature [38,42] this
technique has been demonstrated to outperform SPEA, PESA, and
NSGAII in multiple test problems. Kinkle [42] and Mori [43]
compared NSGAII and SPEA2 in solving practical problems (a multi-
objective environmental/economic dispatch problem and distri-
bution network expansion planning) and demonstrated that the
solutions obtained using SPEA2 were better than NSGA II in terms
of convergence and diversity.

Owing to these features, SPEA2 is chosen to be applied to the
multi-objective planning framework presented in this paper. The
application of the suggested SPEA2 to our case study is explained in
details in the next sub-section.

4.2. Optimization problem resolution using SPEA2

The aim of the problem of simultaneous network reconfigura-
tion and optimal DG integration is to find the best radial configu-
ration of the distribution network and the optimal locations and
sizes of DGs that satisfy a single objective or multiple ones fixed by
the network manager.

In this work, multiple objectives are considered for minimiza-
tion, e. i., the active power loss, the operation costs and the
pollutant gas emissions.

In this section, the different steps of this multi-objective opti-
mization problem resolution are explained using the proposed
SPEA2 technique.

4.2.1. Generation of initial population
The SPEA2 technique starts by a random generation of an initial

population P0 of individuals (chromosomes) and an external
archive At where the best individuals will be copied in the selection
step of the algorithm. An individual presents a possible decision
vector of the optimization problem. According to our case of study,
an individual is composed of a possible radial network configura-
tion as well potential DG locations and sizes.

The radial structure of distribution networks topology is defined
as the indices of its opened switches that can be changed to give
other possible radial network configurations. These latter are
generated randomly when creating the initial population, so un-
feasible ones can be obtained, such as network structures including
closed loops or islanded nodes. Thus, referring to graph theories,
the Depth First Search (DFS) algorithm [32] is put forward to
evaluate the feasibility of the generated network configurations.

The DFS is defined as a recursive algorithm that involves
exhaustive searches of all nodes and their incident closed branches
from terminal nodes to the source node by using the idea of
backtracking. The radial structure and the feasibility of the obtained
configurations are proved when each node in the graph (the
network) has a unique path between it and the source node.

Added to that, each generated individual is evaluated according
to the problem security constraints. Hence, a power flow calcula-
tion is done for each combination of network configuration and DG
locations and sizes to verify whether the solution causes any
violation of the system security constraints (bus voltage and branch
current limits presented in section 2.2). The verification is per-
formed utilizing the load flow calculation based on the Backward
Forward Sweep (BFS) method [44]. This load flow technique is
widely used in many studies of distribution network optimization
thanks to its simplicity and promptness.

The genetic encoding of individuals in this study is presented as
follows:

indi ¼
h
s1; s2; :::; snopen ; loc1; loc2; :::; locNDG

; PDG1
; PDG2

; :::; PDGNDG

iT
(23)

where indi is an individual i of the population, s1; s2; :::; snopen is the
set of open switches (a possible configuration of the network),
loc1; loc2; :::; locNDG

is the set of possible locations of each DG, and
PDG1

; PDG2
; :::; PDGNDG

is the set of possible sizes of each DG.

Only feasible individuals satisfying the topological and security
constraints of the optimization problem will be maintained in the
initial population.
4.2.2. Fitness assignment
In this step, the objective-function values of each individual of

the population are calculated in order to evaluate them according
to their fitness values. In the proposed SPEA2, the performance
calculation is based on the relationship of “dominance” that de-
termines the Pareto optimality concept. The definitions of the
dominance relationship are as follows [15]:

A solution x*1 dominates (is better than) a solution x*2 (denoted

by x*13x*2) if and only if:

1Þ ci; j2
n
1;2; :::;Nobj

o
;dfi

�
x*1
�� fj

�
x*2
�
∧fi

�
x*1
�
< fj

�
x*2
�

for jsi

(24)

2) For U ¼ fx*i ; i ¼ 1; :::; nsolutionsg, solution x* is said to be a non-
dominated solution (Pareto solution) of the set of U if x*i 2U,
and there is no solution x*j 2U for which x*j dominates x*, jsi.

In our case of study, a solution x* is an individual (a possible
combination of network configuration and DG locations and sizes).
The set functions f present the different objective functions of the
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problem, namely the active power loss, the operation costs and the
pollutant gas emissions.

3) Assume that set P* contains all non-dominated solutions of
x*2U, then PF ¼ f½f1ðx*Þ; f2ðx*Þ; :::; fNobjðx*Þ�T ; x*2P*g is the
Pareto front of set U.

SPEA2 is based on a complicated fitness assignment (see
appendix A.1) that simultaneously takes into account the non-
domination rank of each individual in the population and its den-
sity information. Therefore, individuals that dominate a large
number of other ones in the population and that are not in crowded
regions of the Pareto front are considered as the fittest.

The purpose of using such a fitness assignment is to push the
search of optimal solutions towards less crowded regions and to
help obtain a well-spread Pareto front.

Fig. 2 shows the Pareto front structure of our case of study when
considering two objective functions to minimize. In this example,
active power loss and operation costs are considered as the
objective functions of the problem. Each non-dominated solution
presents the set of objective functions corresponding to an optimal
composition of network reconfiguration and DG locations and sizes
(decision vector). The purpose of this is to obtain a shape of the
Pareto front, as the one depicted in Fig. 2, where the optimal so-
lutions are uniformly distributed along it. This Pareto front shape is
a proof of the efficiency and accuracy of an optimization algorithm.
4.2.3. Environmental selection
In the environmental selection of the proposed SPEA2, the fittest

individuals are copied to an external archive with a specified size to
keep them from loss during the crossover andmutation operations.
The archive is updated from one generation to another by adding
new non-dominated individuals until the size of the archive over-
flows. In this case, a truncation operator (see Appendix A.2) in-
tervenes by conserving the best non-dominated solutions in less
crowded regions for the next generation and removing the others.
This operator is iteratively applied until the archive reaches its fixed
size. This truncation strategy preserves the fittest and the most
spread solutions that will constitute the mating pool of the
recombination step.
4.2.4. Genetic recombination
In the suggested SPEA2, individuals are selected from the

archive for reproduction. The selection approach is based on a
tournament selectionwhere the best non-dominated individuals in
less crowded regions are preferred for recombination. Commonly,
SPEA2will use uniform crossover andmutation operators when the
decision variables are of an integer or float type. However, in our
case of study, a network configuration is encoded as indices of the
Real Pareto
front
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Fig. 2. Pareto front shape of power-loss and operation-cost minimization.
network's open switches; thereby, non feasible configurations can
be obtained like isolated nodes, loops, and non radial structures. To
prevent this drawback, spanning-tree theories are applied to the
crossover and mutation operators so as to preserve the radial
structure of the obtained network configurations.

Firstly, in the crossover step the property of Kruskal based on the
spanning-tree theories is utilized by exchanging one or several
branches between two network configurations that present the
parents to obtain new ones (offspring) with radial structures. This
property is defined as follows [45]:

Let U and T be two spanning trees of a graph G, and let a be a
branch such that a2U, then there exists a branch b such that b2T .
Accordingly, U � a� b is also a spanning tree of the graph G.

The mutation operator is applied using the same property by
randomly selecting an open branch to be exchanged by another one
in the same spanning tree while preserving its radial structure.
After the reproduction step, the new obtained individuals are
evaluated according to the problem's constraints, and only feasible
ones will constitute the population of the next generation. The al-
gorithm is iteratively repeated until a specified number of gener-
ations is reached or the fitness values of individuals remain
constant through generations.

The reproduction is a very pertinent step in the evolutionary
process. In fact, the creation of new individuals ensures the di-
versity of solutions and their convergence towards the Pareto front.

4.3. Best compromise solution

The resolution of the problem of combined network configu-
ration and DG placement and sizing provides, at the end of the
evolutionary process of the proposed SPEA2, a set of Pareto optimal
solutions corresponding to the best values of objective functions.
The network manager can select, from this Pareto set, a final so-
lution regard to his preference. Otherwise, a decision-making based
on fuzzy set theory [46] can be used to extract the best compromise
solution among the Pareto set. The membership function of this
theory is formulated as follows:

mji ¼

8>>>>>><
>>>>>>:

1; fi � fmin
i

fmax
i � f ji

fmax
i � fmin

i

; fmin
i � fi � fmax

i

0; fi � fmax
i

(25)

where mji is the membership function of the jth solution for the ith

objective function f ji , and fmax
i and fmin

i present the maximum and

minimum values of the ith objective function among all non-
dominated solutions, respectively.

The fuzzy decision will be applied to extract the best compro-
mise solution xj* in Pareto optimal solutions, such that:

mj* ¼ max
j¼1;:::;M

8>>>><
>>>>:

PNobj

i¼1
mji

PM
j¼h

PNobj

i¼1
mhi

9>>>>=
>>>>;

(26)

where M is the number of non-dominated solutions and Nobj is the
number of optimization objectives.

4.4. Flowchart of the proposed method

The flowchart of the SPEA2 technique applied to the
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optimization problem of simultaneous network configuration and
optimal DG sitting and sizing is depicted in Fig. 3.
Fig. 4. IEEE 33 buses test system.
5. Tests and results

The application of the proposed method to the optimization
problem of simultaneous network reconfiguration and integration
of DGs is implemented in MATLAB's environmental programming.
The simulations are carried out on the 33 IEEE bus power system
[47], presented in Fig. 4. The IEEE 33 bus is a 12.66 KV radial dis-
tribution network, which has 5 open switches with branch number
s33, s34, s35, s36, s37. The total active and reactive loads of the test
system are respectively 3.715MW and 2.3 MVAR. The corre-
sponding line impedances, and the active and reactive power can
Fig. 3. Flowchart of proposed method.
be found in Ref. [15].

5.1. Benefits of combining network reconfiguration and DG
integration

In order to illustrate the benefits of combining the integration of
DGs with the network reconfiguration, two scenarios are simulated
utilizing the suggested method and taking into account the same
penetration rate of the DG:

- Scenario 1: Solving the problem of optimal allocation and sizing
of a DG for active loss minimization without network
reconfiguration.

- Scenario 2: Solving the problem of DG integration combined
with optimal network reconfiguration for active power loss
minimization.

The obtained results of the two simulation scenarios are pre-
sented in Table 3. It is clear, the scenario 1 where the DG is opti-
mally integrated without the network reconfiguration, provides a
47.88% reduction of active power loss. However, the active power
loss is reduced by 60.23% of the scenario 2. These results justify the
benefits of combining the network reconfiguration and the DG
integration in minimizing the active power loss of the distribution
network.

Besides, the obtained bus voltage profile for the two scenarios is
investigated. It is observed from Fig. 5, that the bus voltage values
are improved more significantly when combining the network
reconfiguration with the DG integration (scenario 2) than when
integrating a DG only (scenarios 1). Indeed, the minimum voltage
for scenario 2 is enhanced to 0.9616 p. u, which is above the min-
imum threshold of 0.95 p. u.

5.2. Mono-objective optimization

There are few studies in the literature treating the problem of
simultaneous reconfiguration and optimal integration of DG in the
distribution network, and most of them have considered a single
objective to minimize (active power loss) [48], [27]. In this section,
the proposed method is compared with other techniques that were
utilized in the literature to solve this problem. The comparisons are
based on similar assumptions and initial conditions, which are:

Table 4 illustrates the obtained results using the proposed
method (SPEA2) as well as those in the literature (harmony search
algorithm (HSA) and fireworks algorithm (FWA)). As seen, the
suggested method provides an optimal solution, giving the best
reduction of active power loss (71.11%) comparing with the other
methods. Consequently, the SPEA2 could be considered as an effi-
cient tool for solving the proposed problem due to its high
convergence ability and accuracy.



Table 3
Benefits of the proposed operations in power loss reduction.

Scenarios Configuration Optimal DG location Optimal DG size (MW) Active power loss (kW) % Power loss reduction

Base case s33, s34, s35, s36, s37 e e 202.67 e

Scenarios1 (only DG integration) s33, s34, s35, s36, s37 6 2.229 105.63 47.88%
Scenarios 2 (DG þ reconfiguration) s9, s14, s27, s33, s34 29 1.930 80.59 60.23%
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Fig. 5. Bus voltage profile improvement before and after combining the network reconfiguration with DG integration.

Table 4
Comparison with other studies in mono-objective optimization.

Method Active power loss (kW) %Power loss reduction Optimal network configuration Optimal Locations of DGs Optimal sizes (MW) of DGs

Base case 202.67 e s33, s34, s35, s36, s37 e e

HSA [48] 63.95 68.44% s7, s14, s10, s32, s28 32 0.5258
31 0.5586
33 0.5840

FWA [27] 67.11 66.88% s7, s14, s11, s32, s28 32 0.5367
29 0.6158
18 0.5315

The proposed method 58.55 71.11% s11, s27, s30, s33, s34 18 0.6910
29 0.7334
8 0.7429
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5.3. Bi-objective optimization

The purpose of the bi-objective optimization is to investigate
the relation among the different objective functions considered in
this work. Thus, the problem of simultaneous network reconfigu-
ration and optimal DG integration is solved considering the mini-
mization of a pair of objective functions in each case. Simulations
are performed for each case using the proposed method and
considering the following assumptions:

- 3 DGs are considered for integration in IEEE 33 bus test system.
- The penetration rate is between 10% and 60% of the total load of
the system.

- Two objectives to minimize in each case.

Distribution relations of the Pareto optimal solutions among
different objective functions are depicted in Fig. 6. As seen in Fig. 6
(a), the Pareto front of optimal solutions is a linear distribution for
active power loss objective and gas emissions objective. The rela-
tion between annual operation costs objective and gas emissions
objective is shown in Fig. 6 (b). The Pareto front in Fig. 6 (b) presents
a reciprocal distribution for two objectives. Indeed, a minimum
value of operation costs (3390M$/yr) corresponds to a high value of
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gas emissions (27990 ton/year) and vice versa. Fig. 6 (c) shows also
a contrasting relation between the active power loss objective and
annual operation costs. According to the Pareto front, the minimum
value of active power loss (60.68 kW) corresponds to a higher value
Table 5
The best compromise solution of active power loss and costs minimization.

Active power loss (kW) Annual operation costs (M$/year) Optimal netw

67.787 4569.788 s7, s9, s14, s

Table 6
The best compromise solution of active power loss and emissions minimization.

Active power loss (kW) Pollutant gas emissions (MTon/year) Optimal ne

60.225 8985 s7, s10, s14
of operation cost (6041M$).
The best compromise solutions of the bi-objective optimization

problems are presented in Tables 5e7. The compromise solution of
each case is extracted from the Pareto set using the fuzzy set theory
ork configuration Optimal DGs locations Optimal DG sizes (MW)

28, s30 25 0.4471
14 0.3915
32 0.6664

twork configuration Optimal DGs locations Optimal DG sizes (MW)

, s28, s31 24 0.7416
30 0.6689
18 0.7429



Table 7
The best compromise solution of emissions and costs minimization.

Pollutant gas emissions (MTon/year) Annual operation costs (M$/year) Optimal network configuration Optimal DGs locations Optimal DG sizes (MW)

22,479 5245.109 s7, s8, s10, s27, s32 29 0.6384
15 0.6775
31 0.4125
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(defined in section 4) in order to facilitate the decision making of
the network manager.

5.4. Experiment on tri-objective optimization considering time
sequence variance in renewable DGs and load

In this section, we propose to solve the network reconfiguration
simultaneously with optimal sitting and sizing of renewable DGs
taking into account the time sequence variance in load and DGs.
Indeed, in the literature, the optimization problem of parallel
network reconfiguration and optimal integration of renewable DGs
has been solved considering a constant power generation model.
However, these types of DGs (PV and WT DG) are intermittent in
the real world and depend on environmental and geographical
location. Furthermore, taking into account the time variation of
Fig. 7. Hourly average variation curves of PV, WT DGs
load and DG generation allows the network manager to be pro-
vided by an accurate andmore realistic solution of optimal network
configuration and DG sizes and locations.

The hourly data of renewable DG power outputs are calculated
using their corresponding power generation functions (defined in
section 3) and the load forecasts of an average day in a summer
season, which is assumed as a reference period of the optimization
study. The curves of the hourly variance in the PV DG, WT DG and
load of an average summer day as example of study are illustrated
in Fig. 7 (a), (b) and (c).

This optimization problem is solved using the proposed SPEA2
and considering tri-objective functions to minimize, i.e. active po-
wer loss, annual operation costs and pollutant gas emissions. Two
types of renewable DGs will be installed, that are WT DG and PV
DG. The rated unit power of each wind turbine and PVmodule is set
and load (on an average summer's day example).



Table 8
Optimal solutions of 24 h.

Hour Optimal configuration PV DG WT DG Active power loss
(kW)

Operation costs
(M$/yr)

Pollutant gas emissions
(MTon/yr)

Optimal
Location

Optimal Size
(MW)

Optimal
location

Optimal size
(MW)

1 Base case: s33, s34, s35,
s36, s37

e e e e 202.67 28.761 21,705

2 s33, s34, s35, s36, s37 e e e e 202.67 28.761 21,705
3 s33, s34, s35, s36, s37 e e e e 202.67 28.761 21,705
4 s33, s34, s35, s36, s37 e e e e 202.67 28.761 21,705
5 S7, s9, s29, s34, s36, 32 0.170182 e e 11.9019 516.791 6019
6 s7, s9, s14, s28, s36 31 0.1579 e e 19.863 481.562 7982
7 s7, s9, s14, s28, s36 31 0.23030 e e 42.932 703.000 11,725
8 s7, s21, s31, s37, s17 25 0.712583 e e 62.663 2169.294 12,503
9 s7, s10, s27, s32, s34 16 0.420650 25 0.746481 51.902 231,014.003 10,905
10 s7, s10, s13, s28, s36 30 0.551347 17 0.379990 65.965 118,700.054 13,372
11 s7, s8, s9, s32, s37 15 0.568230 32 0.613227 52.217 190,502.054 10,881
12 s10, s14, s28, s33, s36 31 0.368027 8 0.21203 24.455 66,403.999 7985
13 s7, s10, s14, s28, s31 33 0.391721 29 0.506069 26.572 157,014.438 7985
14 s7, s11, s14, s28, s32 32 0.434409 16 0.303035 57.667 94,632.185 13,011
15 s7, s8, s32, s 34,s37 30 0.512284 16 0.302455 57.196 94,560.507 12,589
16 S9, s14, s17, s26, s33 30 0.421373 27 0.321599 58.829 100,444.017 123,669
17 s7, s8, s14, s17, s27 29 0.456865 12 0.302279 46.324 94,392.312 10,717
18 s7, s10, s13, s26, s36 31 0.570452 8 0.210289 35.815 66,401.772, 9255
19 s7, s9, s14, s27, s31 33 0.224800 25 0.520183 28.446 160,819.999 8482
20 s7, s9, s15, s28, s34 e e 31 0.599558 23.637 184,773.599 7,664
21 s7, s9, s14, s16, s28 e e 31 0.499919 19.323 153,977.945 7113
22 s7, s9, s14, s16, s27 e e 31 0.399941 11.716 123,181.825 5464
23 s7, s8, s28, s31, s34 e e 15 0.273965 6.418 81,299.817 3979
24 s9, s14, s25, s32, s33 e e 30 0.199920 3.789 61,590.618 3132
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to 100 kW and 100W, respectively. For simplicity, each DG is PQ
type with stable unitary power factor.

Taking into account the time sequence variance in renewable
DGs (solar irradiation, wind speed and temperature), and the load
on an average summer day as an example, the proposed multi-
objective problem is optimized at each time sequence. The
optimal solutions of each time period are presented in Table 8, from
which a best compromise solution (network configuration and DG
locations and sizes) is chosen, from the obtained hourly solutions,
in order to be applied to the distribution network. This compromise
solution is considered as the best solution that simultaneously
provides the optimal values of objective functions without
discrimination. In this case, the fuzzy set theory is put forward to
help the network manager to extract this best compromise solu-
tion, to be applied to the power system, referring to the hour that
Fig. 8. Time sequence variance in power loss and em
provides the best values of objective functions.
As seen in Table 8, there are no optimal solutions of PV DG

location and sizing at 1~4th, and 20e24th time periods; this is due
to the weak or the absence of solar irradiance at these time se-
quences. For WT DG location and sizing, there are no optimal so-
lutions at 1~8th time period because the wind speed intensity is
less than the value of the interlocking of thewind turbine. In return,
the period of the common functioning of PV DG and WT DG is
during 9e19th time period, where the optimal location and sizing
of both renewable DGs are obtained.

During the period of the common functioning, the obtained
optimal solutions provided a significant reduction of active power
loss and pollutant gas emissions that reached about 88% and 63% at
hour 12, respectively. The variations of these objective functions
before and after the simultaneous network reconfiguration and
issions before and after network optimization.



Table 9
The best compromise solution.

Optimal
configuration

PV DG WT PV Power loss
(kW)

Operation costs
(M$/an)

Pollutant gas emissions
(MTon/yr)

Optimal
location

Optimal size
(MW)

Optimal
location

Optimal size
(MW)

s10, s14, s28, s33, s36 31 0.368027 (36802 modules) 8 0.506069 (5 WT) 24.455 66403,999 7985
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Fig. 9. Pareto surface of optimal solutions.
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optimal integration of the renewable DGs are depicted in Fig. 8.
The best obtained compromise solution is referred to hour 12. It

provides the optimal network configuration, as well as the best
locations and sizing of the renewable DGs ensuring the most sig-
nificant benefits for the whole power system (Table 9). It ensures a
reduction of 88% of power loss and 63% of pollutant gas emissions,
as well as a best minimum value of annual operation costs
compared with those of other periods. Consequently, this solution
is chosen to be applied to the power system for the period of
planning (summer season).

The Pareto surface depicted in Fig. 9 presents the database of
Pareto optimal solutions corresponding to hour 12. Consequently,
the network manager have the choice between considering the
best compromise solution or selecting from the Pareto set the one
responding to his preference.
6. Conclusion

In this paper, a multi-objective optimization model of simulta-
neous distribution network reconfiguration and optimal renewable
DG allocation and sizing is established. The objective functions
include minimization of active power loss, operation cost and
pollutant gas emissions considering topological and security
constraints. The Pareto optimality-based SPEA2 algorithm is used
to solve the optimization problem. The SPEA2 technique provides
as results a set of Pareto optimal solutions where the network
manager can select an option. The proposed method is tested for
mono-objective optimization with and without considering the
combination of reconfiguration and integration of DGs. According
to the obtained results, the suggestedmethod converges to the best
minimum value of objective function compared to the other
methods in the literature. Besides, the benefits of combining the
distribution network reconfiguration with DG integration are
investigated. Then, the main contribution of this work is success-
fully achieved by solving the optimization problem considering the
time sequence variance in renewable DGs and load. Multi-period
optimal solutions are obtained and the best compromise solution
is extracted using a fuzzy set theory. This solution provides a
reduction of 88% of active power loss and 63% of pollutant gas
emissions with the best value of operation costs (66404M$/year).
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Appendix A. SPEA2's fitness and environmental selection

A.1. SPEA2's fitness assignment

Each individual i in the archive At and the population Pt is
assigned a strength value SðiÞ representing the number of solutions
(individuals), which it dominates:

SðiÞ ¼ jfjjj2ðPt þ AtÞ∧i_jgj (A.1.1)

where j:j denotes the cardinality of a set (the number of elements in
a set). On the basis of the S values, the raw fitness is determined by
the strengths of its dominators in both archive and population. The
raw fitness RðiÞ of an individual i is calculated:

RðiÞ ¼
X

j2PtþAt ;j_i

SðiÞ (A.1.2)

Since the non-dominated individuals would have the same raw
fitness values RðiÞ ¼ 0, while a high RðiÞ valuemeans that individual
i is dominated by many individuals. Therefore additional density
information is incorporated to discriminate between individuals
having identical raw fitness values. The density estimation tech-
nique used in SPEA2 is an adaptation of the nearest neighbor
method for each individual i the distances (in objective space) to all
other individuals j in archive and population are calculated and
stored in a list. After sorting the list in ascending order, the kth

element gives the distance sought. As a common setting, k equal to
the square root of the entire population k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npop þ narchive
p

. Where
npop is a population (Pt) size and narchive is an archive (At) size.

The distance between the individuals iand k is denoted as ski .
Density DðiÞ corresponding to i is defined by:

DðiÞ ¼ 1
ski þ 2

(A.1.3)

By adding DðiÞ to the raw fitness value RðiÞ of an individual i
yields its fitnessFitnessðiÞ :

FitnessðiÞ ¼ RðiÞ þ DðiÞ (A.1.4)

A.2. SPEA2's environmental selection

In the environmental selection step, all non-dominated in-
dividuals are copied from Pt and At to Atþ1 (the archive of the next
generation). If size of Atþ1 exceeds narchive then reduce Atþ1 by
means of truncation operator defined as follows:

c0< k< jAtþ1j : ski ¼ skj ∨

d0< k< jAtþ1j :
h�

c0< l< k : sli ¼ slj

�
∧ski < skj

i (A.2.1)

where ski is the distance of i to its kth nearest neighbor in Atþ1, l is
index of the second individual with the smallest distance.

Otherwise if size of Atþ1 is less than narchive then fill Atþ1with
dominated individuals in At , and Pt , by sorting the multi-set Pt þ At

according to the fitness values and copy the first individuals with
FitnessðiÞ � 1from the resulting ordered list to Atþ1.
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