
Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Memetic algorithm for solving resource constrained project scheduling
problems
Humyun Fuad Rahman⁎, Ripon K. Chakrabortty, Michael J. Ryan
Capability Systems Centre, School of Engineering and IT, University of New South Wales, Canberra, ACT 2610, Australia

A R T I C L E I N F O

Keywords:
Project scheduling
Resource constrained
Makespan
Genetic algorithm
Memetic algorithm

A B S T R A C T

The resource constrained project scheduling problem (RCPSP) has a wide variety of practical applications in
construction, manufacturing, project planning, and other areas. Since the 1960s many optimization algorithms
have been proposed to solve this NP-hard problem, and their performances are evaluated in well-known test
problems with different complexities. Although it is desirable to find an algorithm which can provide promising
solutions with reasonable computational efforts for any problem under consideration, no single algorithm can
meet that condition. To deal with this challenge, we present a genetic algorithm based memetic algorithm (MA)
for solving RCPSP. The algorithm is initiated by a critical path-based heuristic and a variant of the Nawaz,
Enscore, and Ham (NEH) heuristic. The algorithm involves a similar block order crossover and a variable in-
sertion based local search. An automatic restart scheme is also presented which assists the algorithm to escape
from local optima. In addition, a design-of-experiment (DOE) method is used to determine the set of suitable
parameters for the proposed MA. Numerical results, statistical analysis and comparisons with state-of-the-art
algorithms demonstrate the effectiveness of the proposed approach.

1. Introduction

The resource constrained project scheduling problem (RCPSP) is
one of the important scheduling problems that attracts the attention of
researchers and practitioners due to its computational complexity
(known to be NP-Hard) [1,2] and several real-life applications such as
in construction industries, automobile manufacturing, steel production,
assembly production scheduling, and job-shop environments [3]. The
RCPSP can be defined as the need to minimize the duration of a project
(makespan) while satisfying relevant constraints. Normally, a project
consists of (n + 2) activities, i.e. {1, … j …, n + 2}, where the first and
the last activity of the project are dummy activities. Each activity j
requires either some or all k renewable resources, i.e. {r1j, r2j …, rkj} at
the same or different level at time s, and for the duration dj. Rk is the
maximum availability of the kth resource. Note that, duration and re-
source utilization of a dummy activity are both 0. Finally, each activity j
needs to follow its precedence constraint, i.e. an activity cannot be
started unless all its predecessors, pred(i) are completed.

Generally, a mathematical model of the single mode RCPSPs can be
expressed as follows.

Decision variable:

=

= +
= + +C a t d

a {

min . ()max t

T
n t n

jt 0,otherwise
1,if jth activity starts to process at time t

0 (2) 2 (1)

subject to:

=
=

a i n1
t

T
jt0 (2)

+
= =

t a t d a i n j pred i. (). and ()
t

T
it t

T
j jt0 0 (3)

=

+

+
r a R k K t T. and

j

n

t d

t
kj jt k1

2

1j (4)

a {0, 1}jt (5)

The objective function is the minimization of makespan, Cmax (Eq.
(1)). Eq. (2) ensures that an activity can be executed only once. Eq. (3)
ensures that each activity j cannot be started unless all its predecessors
have been completed. Eq. (4) ensures that an activity can be started
when its required renewable resources (such as workforce, machines,
tools or equipment) are available.

Over the years, exact techniques such as branch and bound [4–6],
branch and cut [7], and the event based approach [8] have been pro-
posed for the optimal solution of RCPSPs. Due to computational

https://doi.org/10.1016/j.autcon.2019.103052
Received 4 March 2019; Received in revised form 24 November 2019; Accepted 7 December 2019

⁎ Corresponding author.
E-mail address: humyun.fuad@adfa.edu.au (H.F. Rahman).

Automation in Construction 111 (2020) 103052

0926-5805/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2019.103052
https://doi.org/10.1016/j.autcon.2019.103052
mailto:humyun.fuad@adfa.edu.au
https://doi.org/10.1016/j.autcon.2019.103052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2019.103052&domain=pdf

complexity and NP-hard problems, these techniques can only solve
small problems. Recently, Coelho and Vanhoucke [9] proposed a
branch and bound method, which dynamically selects the lower bounds
for solving small and large RCPSPs problem instances. However, this
approach is computationally expensive. Thus, researchers have focused
on developing heuristics and meta-heuristic techniques, such as genetic
algorithm (GA) [10], differential evolution (DE), ant colony algorithm
(ACO), and particle swarm optimization (PSO) for finding optimal or
near-optimal solutions for RCPSPs within reasonable computational
times. A detail review of the heuristic and metaheuristic algorithms is
presented in Section 2 which reveals the following gaps in the litera-
ture.

• No single approach is suitable for solving all kinds of RCPSPs (from
a small number of activity instances to larger numbers of activities)
with reasonable solution quality and computational time.

• Even though some of those approaches have shown better perfor-
mance, their performance is however far from the lower bounds or
optimal solutions (if known).

The first point is the consequence of the no-free-lunch theorem [11]
and the second point relates to the nature of NP-Hard problems. Hence,
neither of the gaps can be closed and therefore, the best exact technique
can solve at most 60 activities for RCPSPs, where the instances are not
highly constrained by resources [12]. Thus, there is scope to design
improved heuristic or meta-heuristic algorithms that may be able to
solve RCPSPs effectively. In this study, we address this gap by devel-
oping an efficient GA-based memetic algorithm (MA) to handle the
entire spectrum of single-mode RCPSPs with makespan minimization as
the objective. More specifically, the key contributions of this study can
be summarized as follows.

• In order to initialize the proposed algorithm with promising in-
dividuals, an initialization method is proposed on the basis of the
Nawaz, Enscore, and Ham heuristic (NEH) [13], which is adopted
from application to the flow shop scheduling problem. This NEH
heuristic also has embedded the well-known critical path-based
heuristic, and some efficient priority rules from assembly line bal-
ancing problems.

• A modified crossover operator based on similar block order cross-
over (SBOX) is proposed to keep the block of activities in the same
point of the solution and explore more effective solutions.

• To avoid being stuck in local optima, an automated restart me-
chanism has been implemented. Further to enhance the local search
ability of MA, a local search approach based on variable insertion
neighborhood search is also proposed.

• Finally, a duplication scheme is presented which minimizes the
duplicity of generated schedules and improves diversity.

The efficiency of the proposed approach is evaluated by solving
2040 problem instances available in the standard project scheduling
library (PSPLIB) for 30, 60, 90, and 120 activities [14]. Moreover, 1800
instances for RG30, 480 instances for RG300 from http://www.
projectmanagement.ugent.be/?q=research/data/RanGen, and some
real-world case studies are also solved to verify this proposed approach.

The reminder of this paper is organized as follows. Section 2 pro-
vides a background on the existing literature on heuristics and meta-
heuristic techniques for RCPSPs. Section 3 gives a detail on the pro-
posed MA. Parameter tuning and a discussion on the experimental re-
sults is presented in Section 4. Section 5 describes the importance of the
proposed approach for solving construction project scheduling pro-
blems, while Section 6 provides some conclusions and highlights future
research directions.

2. Related work on solving RCPSPs

Over the last few decades there has been a growing literature in the
field of heuristic and meta-heuristics for solving RCPSPs. A review of
meta-heuristic algorithms for solving RCPSPs can be found in [12].
Explanation of some selected state-of-the art algorithms is provided
below.

2.1. Evolutionary algorithms

Alcaraz and Maroto [15] proposed a GA-based approach for solving
RCPSP utilizing three crossover operators (i.e. precedence set, forward-
backward and two-point forward-backward) and two mutation opera-
tors: (1) exchange each activity with its following one and (2) randomly
move the position of each activity to another one. Among these op-
erators, the forward-backward crossover and the second mutation op-
erator outperforms other variants. However, this algorithm is still far
away from the optimal or best-known solutions.

A decomposition-based GA (DBGA) was proposed by Debels and
Vanhoucke [16] where the algorithm was initiated with random solu-
tions and a serial generation scheme was used to convert the infeasible
schedules into a feasible solution. The algorithm decomposes the pro-
blem into subproblems and uses a modified version of peak crossover
operator [16] for competitively solving RCPSPs. The algorithm shows
competitive performance for the PSPLIB problem instances. In the GA
proposed by Valls et al. [17], a peak crossover was proposed to combine
the good parts of a chromosome and a double justification operator was
used as a local search operator. The algorithm shows promising per-
formance to other algorithms reported in that paper, for 60 and 120
activity instances from the PSPLIB benchmark. However, this algorithm
is outperformed by more-recent algorithms.

Mendes et al. [18] proposed a GA with random key representation
of chromosomes, and the schedules were constructed by a heuristic
rule. As the reproduction operator of the GA, they used a uniform and
single point crossover and a mutation operator. Although their ap-
proach showed competitive solutions, it could not outperform the state-
of-the art algorithms. Gonçalves et al. [19] proposed a similar approach
which also could not outperform the state-of-the art algorithms and
suffered from poor convergence rate.

Zamani [20] proposed a magnet crossover operator-based GA (GA-
MBX), which was an enhanced version of two-point crossover operator.
In that crossover operation, one contiguous part from the first parent
and two contiguous parts from the second parent's genotype are pre-
served. The performance of the algorithm was enhanced by a local
search scheme. Zamani [21] proposed GA and an implicit enumeration
search technique (IEST) based algorithm, where the algorithm initiated
with IEST and then the set of solutions were improved by GA. Although
the algorithm showed promising results, it is far away from the best-
known solutions.

Agarwal et al. [22] proposed GA and neural network (NN) based
approach for solving RCPSPs where a NN approach is used as a local
search. However, performance of the algorithm was inferior to other
competitive techniques. Anagnostopoulos and Koulinas [23] proposed a
genetic hyper heuristic algorithm where six heuristic were used in the
upper level and eight heuristic were used in the lower level. The al-
gorithm was not compared with other algorithms. Using the same al-
gorithmic framework, the same authors proposed another algorithm by
replacing GA with a greedy randomized adaptive search procedure
[23].

Cheng et al. [24] proposed a fuzzy clustering and a chaotic ap-
proach based DE algorithm (FCDE) and solved two real case studies. In
that algorithm, a logistic map generated chaotic sequence was then
converted to feasible schedules by a serial generator. Although the al-
gorithm showed competitive results, it was tested for small number of

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

2

http://www.projectmanagement.ugent.be/?q=research/data/RanGen
http://www.projectmanagement.ugent.be/?q=research/data/RanGen

tested problems and it is therefore difficult to judge its performance
against other competitive algorithms. Fang and Wang [25] proposed
GA and DE fused shuffled frog-leaping algorithm (SFLA) where a virtual
frog was encoded as the extended activity list (EAL) and decoded by a
serial schedule generation process. The algorithm was initialized by
priority rules and the regret-based sampling method and the population
was evolved through a resource-based crossover operator. Diversity of
SFLA was maintained by regular shuffling of the virtual frogs and a
forward-backward improvement and permutation-based local search.
Although the algorithm showed inferior performances for the problem
instances with 30 and 60 activities, it showed promising performances
for the problem instances with 120 activities.

Recently, Elsayed et al. [26] proposed a two-operator based con-
solidated evolutionary algorithm in which meta-heuristics are selected
self-adaptively.

2.2. Swarm intelligence based algorithms

Zhang et al. [27] proposed two PSO variants, where the first algo-
rithm used priority-based solution representation and the second used
serial method with permutation-based representation to convert the
particles into feasible solutions. However, recently these algorithms are
outperformed by recent PSO-based algorithms [3,28]. Later, Zhang
et al. [29] extended this algorithm with parallel method to generate
feasible solutions but it is hard to judge their algorithm's competitive-
ness since they tested their algorithm with small test problems.

Jia and Seo [28] introduced an improved PSO where particles were
represented by a rank-priority technique and the solutions were en-
hanced by a double justification based local search technique. This al-
gorithm showed superior performances than other PSO variants for
solving PSPLIB problem instances. However, it is still inferior to other
algorithms previously reported in the literature. In Koulinas et al. [30],
a PSO based hyper-heuristic was proposed where eight heuristics were
used in lower level. Each particle was encoded by random keys and

decoded by serial schedule generation scheme. In addition, each par-
ticle was improved by a local search. Although the algorithm shows
promising results for solving PSPLIB instances, it suffers from low
convergence rate.

Ziarati et al. [31] developed three variants of bee algorithms for
tackling RCPSPs, namely: (i) bee algorithm (BA), (ii) artificial bee
colony (ABC), and (iii) bee swarm optimization (BSO). Each of these
algorithms were enhanced by three different local search techniques.
Although BSO with FBI approach showed better performance than
other two variants, it was inferior to state-of-the-art algorithms. In [32],
an ACO, scatter search (SS), and a local search-based hybrid algorithm
was proposed to tackle RCPSPs. Firstly, the algorithm was initialized by
ACO and then solutions were transferred to SS. The algorithm showed
promising performances for 120 activities, but they were not compe-
titive for 30 and 60 activities.

2.3. Other approaches

To tackle RCPSPs, tabu search based approaches were proposed by
Klein [33] and Palpant et al. [34]. Bouleimen and Lecocq [35] devel-
oped a simulated annealing algorithm for solving the same problem.
Wang and Fang [36] proposed an estimation of distribution algorithm
where the solution was encoded by EAL and decoded by a serial sche-
dule generation scheme to generate feasible schedules. The algorithm
was enhanced by a local search, but it did not provide competitive
solutions while solving PSPLIB instances.

3. Proposed GA based MA

As the aim of this study is to provide an efficient methodology to
solve RCPSPs with makespan minimization as the objective, a genetic
algorithm (GA) based MA has been proposed to solve the problem. The
genetic algorithm is an evolutionary algorithm proposed by Holland
[37,38], and has been applied for solving complex engineering

Fig. 1. Flowchart describing the proposed framework of MA.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

3

optimization problems [37–39]. A genetic algorithm is a convenient
choice for RCPSPs given its achievements in all sorts of optimization
domains [37,38]. The GA concept considers a population of a set of
random solutions, called chromosomes. These chromosomes are
evolved by a natural evolution process, namely selection, crossover,
and mutation operations to search the best chromosome (i.e. solution)
with best fitness. Furthermore, the search process can be enhanced by
local search. This framework (i.e. GA with local search process) is
known as MA. The search process of MA continues until the stopping
criteria is met. The detail framework of the proposed MA is presented in
Fig. 1. Following this figure, the detailed structure of the proposed MA
is discussed in the following section.

3.1. Solution encoding and population initialization

A chromosome of a GA can be represented as an integer, binary, or
real value. For solving RCPSP, solutions can be represented by parallel
or serial schedule generation schemes. In this study, a chromosome
represents a solution by a serial schedule generation scheme, where the

sequence of activities follows a start-to-finish pattern. Traditionally, a
GA starts with a set of random population. However, with random in-
itialization, a GA may not converge to quality solutions within a rea-
sonable computational time for solving complex problems [38]. Hence,
we propose a non-random initialization in the following way: first two
members of the initial population of the proposed MA are generated by
two proposed heuristics, namely modified NEH and critical path
method (CPM) based heuristic. The following six priority rules are also
applied as the following six members of the initial population. Among
those rules, maximum rank positional weight and maximum total
number of follower tasks have already been implemented for solving
RCPSPs [40]. The remaining four rules are adopted from assembly line
balancing problems (ALBPs) [41]: maximum activity time, minimum
activity time, minimum inverse positional weight, and minimum total
number of predecessors activities. The reason to adopt these rules are:
(1) these rules are effective in solving ALBPs and (2) these rules are
simple and, can be applied for solving RCPSPs without any modifica-
tion. Finally, the remaining members of the initial population are ran-
domly generated.

3.1.1. Modified NEH heuristic
The NEH heuristic is an effective algorithm for solving the

permutation flow shop scheduling problem (PFSP) and its variants [42].
Due to similarity in the attributes of these problems, this heuristic has
been adopted to solve RCPSPs. However, unlike PFSPs, RCPSP has
precedence and resource constraints, and therefore the original NEH
heuristic cannot be employed to solve RCPSPs. Hence, we have pro-
posed a modified NEH heuristic algorithm for solving RCPSPs. The
proposed modified NEH heuristic is as follows. In the first stage of
original NEH heuristic, all activities (or jobs) are sorted by the longest
processing time rule. However, in RCPSPs each activity must occupy
single or multiple resources for a certain duration. Hence, in the first
stage of the algorithm we sort all the activities based on both processing
time and resource utilization. Considering precedence constraints, the
generated schedule may be infeasible, which needs to be repaired to
make it feasible. Next, a partial schedule is generated by inserting jth
activity in all possible positions while considering its precedence rela-
tions. The pseudocode of the modified NEH heuristic algorithm is
shown in Algorithm 1.

Algorithm 1. Modified NEH heuristic for RCPSPs.

3.1.2. Critical path method (CPM) based heuristic
Delaying activities which are on the critical path (i.e., have zero

slack time) may delay the schedule. Hence, the CPM heuristic identifies
the activities on the critical path and schedules them as early as pos-
sible. The generated schedule is then improved by the insertion process
by the fourth and fifth stage of the modified NEH heuristic. Fig. 2
presents a project network of eight activities. From the figure activities
1, 2, 4, 7, and 8 are critical activities. These activities are placed as soon
as possible, and the generated partial sequence is 1-2-4-7-8. The re-
maining or non-critical activities are inserted one by one such that
critical activities are placed as soon as possible while satisfying the
precedence relationships. For example, consider activity 5 needs to be
inserted into the partial schedule. Since activity 5 is the predecessor of
activity critical activity 7, in the activity sequence it needs to be placed
before activity 7. After inserting all the non-critical activities in the
sequence, the final feasible activity sequence is 1-2-4-3-5-7-6-8 with
makespan 29. Finally, after applying NEH-based insertion process the
final makespan of the schedule is reduced to 23 (with sequence 1-3-6-5-
2-4-7-8). The pseudo code of the CPM heuristic is shown in Algorithm 2.
The relevant data of the example problem is available in Table A1 in the
Appendix A.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

4

Algorithm 2. CPM heuristic for RCPSPs.

3.2. Selection operator and generational scheme

In the proposed algorithm, a classical tournament selection process
is employed for reproduction operations. After reproduction operations,
the newly generated candidate solution replaces the worst member of
the current generation if its makespan is better than that member. It is
important to note that, in tightly constrained combinatorial optimiza-
tion problems such as RCPSPs, after a few iterations many duplicate
individuals are generated, which reduces the diversity of an algorithm
and it converges to a local optimum. To avoid this problem, a candidate
solution replaces the worst member in the generation if it is non-du-
plicate or unique. Note that, in RCPSPs there can be many different
activity sequences with the same makespan (i.e. fitness). So, duplicate
individuals that have same activity sequence and the sequence of ac-
tivities of each member in the current generations are checked to
identify duplicate individuals.

3.3. Similar block order crossover operator (SBOX) and shift mutation

In GA, the crossover operator plays a vital role in reproduction
operation [43]. Our proposed MA utilizes a modified single point si-
milar block order crossover (SBOX) [44] designed for flow shop sche-
duling problems for two reasons:

1. Preliminary experiments show that, with the evolution process there
are many blocks of activities are generated within a sequence. These
blocks are often broken apart by traditional single point crossover
operation which results worst offspring.

2. Since precedence constraints are not violated within a block,
maintaining the blocks in crossover process can reduces the viola-
tion of predecessor-successor relationships.

In SBOX, block of activities from both parents are identified and
inserted directly to the same positions of each offspring. Then, the ac-
tivities prior to the random crossover point from each parent are di-
rectly inserted to each offspring and finally, the missing activities of
each offspring are inherited from the other parent. The motivation
behind selecting SBOX over few other similar one-point crossover op-
erators (i.e., similar job order crossover, similar point order crossover)
are outlined in Section 4.1 (i.e., Fig. 6). Due to precedence constraints,
step 2 and 3 of SBOX (Algorithm 3) operator cannot be used directly to
RCPSPs. Hence, in step 2 and step 3 of modified SBOX, activities are
inserted from parents to offspring in sequence while checking the pre-
decessor-successor relationships and an activity is placed in an activity
sequence only if the precedence constraints are not violated. An ex-
ample of modified SBOX is shown in Fig. 3. Pseudo codes for that
modified SBOX are also highlighted in Algorithm 3. From the Fig. 3,
activity block 7-6-8 is directly inserted at the same position of both
offspring without any modification. Activity 1, 2, 3 from parent 1 are
inserted to offspring 1 and activity 1, 2, 4 are inserted from parent 2 to
offspring 2. Finally, missing elements of both offspring are inherited
from other parents, (i.e. activities 3 and 5 are inserted to offspring 1
from parent 2 and activity 4 and 5 are inserted to offspring 2 from
parent 1) while considering precedence constraints as shown in Fig. 2.

Algorithm 3. Modified SBOX process.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

5

In our proposed MA, shift mutation [45,46] is employed as mutation
operator, since it shows promising performance in the preliminary ex-
periments. In this mutation operation, an activity (except the first and
last activity) from the activity sequence is randomly extracted and re-
inserted in another randomly selected position while maintaining the
precedence relationships.

3.4. Self-restart mechanism

In GA, the evolution process may lose diversity over generations and
this may cause the algorithm to stall in a local optimum. To avoid this
issue, the proposed MA measures the diversity value, ∂ of its population
at each generation and it restarts when the diversity of the algorithm is
below a restart threshold value, ∆. Our proposed restart mechanism is
inspired by [47] approach, where a job/activity position-based restart
mechanism was proposed for solving lot-streaming flow shop sche-
duling problem. However, they ignored the frequency of activities and
block of activities in a set of solutions, which is an important factor to
consider while measuring the diversity. Hence, in this study, we pro-
pose an improved and simple diversity measurement technique based
on position and frequency of activities and activity blocks in the se-
quence, which is described as follows.

Algorithm 4. Self-restart mechanism.

It is obvious that higher value of ∂ means the algorithm is more
diversified (i.e. each activity occupies different positions of each se-
quence and there is less or no block of activities among the individuals).
For example, consider three individuals of a generation with five ac-
tivities: s(1) = {1,2,3,4,5}, s(2) = {1,3,2,4,5}, s(3) = {1,4,2,3,5}.
First, [PMjk]n+2×n+2 and [BMxy]n+2×n+2 are calculated as follows.

=+ × +PM[]

3
0
0

0
1
2

0
1
1

0 0
1 0
0 0

0
0

0
0

1
0

2
0

0
3

jk n n2 2 and =+ × +BM[]xy n n2 2

0
0

1

1

1
2

1 0
1 0
1 1

0
0

1
0

0
0 0

2

Then, ρ = 0.267 and ω = 0.36, and final diversity score of three
individuals are ∂ = 0.3135.

Further, an elitism strategy is used to save the best individual from
the current generation and transfer it to the next generation. In our
proposed algorithm, we set elite size to one.

3.5. Local search operation

It is obvious to add a local search into MA to enhance intensification
process. In our proposed MA, we employ a variable insertion neigh-
borhood search (VINS) scheme as a local search operator, which has
already been proved to be successful in solving other complex sche-
duling problems [48]. In traditional VINS mechanism, an activity is
selected from kth position in the sequence and place in pth position.
With this movement of a task, if the new activity sequence has a better

fitness value than the current best activity sequence, then the current
sequence is replaced by that sequence. The process continues until all
(n − 1)2 are evaluated. However, due to precedence constraints and
dummy activities in the sequence traditional VINS cannot be adopted
for solving RCPSPs. Hence, we modified VINS algorithm in the fol-
lowing way: (1) first and last activities are dummy activities and their
positions are fixed and excluded from the insertion operation, (2) an
activity is inserted into all possible position which satisfies its

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

6

precedence constraints i.e. without violating its predecessor and suc-
cessor relationships. For example, consider the sequence 1-2-4-3-5-7-6-
8 (from Fig. 2 Section 3.1), where activity 3 is selected to be inserted in
all possible feasible positions, which is shown in Fig. 4. In this case,
either the second or third sequence can replace the original sequence
since they provide a better makespan value (26 < 29) than the original
sequence.

Considering all sub-algorithms and processes, the final pseudo code
of the proposed GA-based MA is presented as follows:

Algorithm 4. A GA based MA for solving RCPSPs.

3.6. Computational complexity analysis

Let us assume that ng is the number of generations and np is the
number of populations per generation. The initial generation has the
time complexity of O(n2), since the complexity of the modified NEH
algorithm and CPH based heuristic has the complexity of O(n4K). The
complexity of the modified SBOX operation is O(nlogn). The selection
and shift mutation require O(n). The computational complexity of the

self-restart mechanism is O(npn2) in the worst case. The modified VINS
has the complexity of O(n4K). The overall complexity is O
[np(n4K + (ng − 1) ∗ (nlogn + n + n4K) + n2)]. Therefore, the overall
complexity of the algorithm can be expressed as O(ngnpn4K).

4. Experimental results and analysis

In this section, we present, discuss, and analyze the computational
results obtained by the proposed GA-based MA on 2040 instances from
the PSPLIB benchmark [14] datasets with J30, J60, J90 and J120. In

addition, we have also solved the RG30 and RG300 problem sets taken
from the http://www.projectmanagement.ugent.be/?q=research/
data/RanGen weblink, which was primarily cited by Debels and Van-
houcke [16]. The J30, J60 and J90 datasets contain 480 problems each
and J120 dataset contains 600 problem instances. The RG30 dataset
contains 1800 instances and the RG300 dataset contains 480 instances.
The complexity of these problem instances depends on three para-
meters: (1) network complexity (NC); (2) the resource factor (RF); and

Fig. 2. Project network.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

7

http://www.projectmanagement.ugent.be/?q=research/data/RanGen
http://www.projectmanagement.ugent.be/?q=research/data/RanGen

Fig. 3. Similar block order crossover (SBOX) for RCPSPs.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

8

resource strength (RS). In this paper, we compare the proposed MA
with some typical state-of-the-art exact and heuristic algorithms in the
literature. All of the numerical experiments were conducted on an Intel
core i7 processor with a 3.40 GHz CPU and 16 GB RAM. The algorithm
was coded in C++.

To evaluate the performance of our algorithm, we use the average
percentage of deviation from the best-known solutions and the critical
path based lower bound.

For PSPLIB benchmark instances, the average deviations from cri-
tical path (lower bound) can be calculated as:

= ×
=

=
ARD

C C
C

p() 100% /CP p

p P max alg p max CP p

max CP p1
, , , ,

, , (6)

Similarly, for RG benchmark instances, the average deviations from
upper bound (best known solution) and lower bound can be calculated
as:

= ×
=

=
ARD

C C
C

p() 100% /UB p

p P max alg p max UB p

max UB p1
, , , ,

, , (7)

= ×
=

=
ARD

C C
C

p() 100% /LB p

p P max alg p max LB p

max LB p1
, , , ,

, , (8)

where P is the maximum of problem instances from J30, J60, J90 and
J120 problem and pth problem instance: Cmax, alg, p is the makespan
obtained by MA, Cmax, CP, p is the makespan obtained by critical path
method while ignoring the violations of resource constraints, Cmax, UB, p

is the best known or optimal makespan, Cmax, UB, p is the best known or
optimal makespan, and Cmax, LB, p is the lower bound/critical path
method value for each instances. The upper bound (UB) and lower
bound (LB) values of RG instances are taken from the Excel file created
by Vanhoucke and Coelho [49] and are downloaded from the weblink:
http://www.projectmanagement.ugent.be/sites/default/files/files/
datasets/RG300.zip.

4.1. Parameter analysis

As we mentioned earlier, the proposed MA has parameters that re-
quire calibration to obtain the best performance. In order to calibrate
the algorithm, we use Taguchi's design of experiment (DOE) technique
which reduces the computational times and required tests for identi-
fying the best possible parameter combination for MA. The combination

of parameters for MA is shown in Table 1. We employ the orthogonal
array L27(35) since the number of parameters is 5 and each of the
parameters has three levels. So, there are 27 treatments in the DOE,
which are tested in 40 most complex problem instances from J60.
Considering NC, RF, RS, these complex instances are: J60_9_1 to
J60_11_10 and J60_13_1 to J60_14_10 [50]. For parameter tuning, we
set 1000 schedules as the stopping criterion. The orthogonal array and
the ARDCP values for 27 treatment are listed in Table 2.

In accordance with to the orthogonal table the trend (response value
and the significance rank) of parameters is listed and illustrated in
Table 3 and Fig. 5 respectively. From Table 3, we can note that the local
search probability is the most significant parameter. As expected, a
large value of local search probability enhances the intensification
process of the algorithm. In addition, mutation rate (ranked second)
plays an essential role to maintain diversity of the evolution process. As
well as mutation, the value for restart also plays an important role in
maintaining diversity in the population. Hence, the choice of proper
values for diversity threshold affect the convergence of the algorithm
and the possibility of finding the global minimum. The population size
is ranked in fourth position. Consequently, we can say that large po-
pulation size may boost the optimization process but is computationally
expensive. On the other hand, small population size may potentially be
unable to evolve the algorithm which may become stuck in a local
minimum. Finally, crossover rate has ranked in the last of the set. Ac-
cording to this analysis, a good choice of parameter can be suggested as:
Population size = 50, crossover rate = 50%, mutation rate = 1.5%,
local search probability = 4%, and restart threshold = 0.02.

Following the parameter analysis, we further investigate the per-
formance of modified SBOX operator over its similar variants, e.g.
single point similar job (i.e. activity) order crossover (SJOX) and single
point ordered crossover (SPOX). To evaluate the performance, all op-
timal parameter combinations which are identified through DOE are
fixed for MA, and the algorithm solved 40 most complex problem in-
stances for J60 (i.e., J60_9_1 to J60_11_10 and J60_13_1 to J60_14_10)
used for parameter tuning, under the same stopping condition. Fig. 6
shows ARDCP values for three crossover operators and, as shown in the
figure, SBOX outperforms the other two crossover operators.

4.2. Comparisons of MA with the existing powerful algorithms

This section provides a comparison of the proposed MA with some
exact and powerful heuristic algorithms from the literature. For fair
comparison, we set 5000 schedules generation in MA as the evaluation
criteria, since this stopping criterion is widely used in the literature.
Table 4 presents the performance of our proposed approach with re-
spect to ARDCP values and computational time, CT for all 4320 (=2040
instances from PSPLIB + and 2280 instances from RG30 and RG300)
problem instances. Considering these ARDCP values, in Table 5, we
demonstrate the comparisons between our proposed approach with the
heuristic and metaheuristic algorithms available in the literature: con-
solidated optimization algorithm [26], PSO based hyper-heuristic al-
gorithm (PSO-HH) of Koulinas et al. [30], the genetic algorithm for
project scheduling (GAPS) of [18], the hybrid algorithm, ACOSS
(combination of ant colony optimization, local search strategy and a

Table 1
Combination of parameter values.

Parameters Parameter level

1 2 3

Population size 20 30 50
Crossover probability (%) 50 70 90
Mutation probability (%) 5 10 15
Local search probability (%) 2 3 4
Restart threshold 0.02 0.06 0.08

Fig. 4. VINS for RCPSPs.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

9

http://www.projectmanagement.ugent.be/sites/default/files/files/datasets/RG300.zip
http://www.projectmanagement.ugent.be/sites/default/files/files/datasets/RG300.zip

scatter search) of [32], the genetic algorithm with forward-backward
improvement (GA-FBI) of Gonçalves et al. [19], the scatter search
electromagnetism meta-heuristic (SS-EM) of [51], the multiple justifi-
cation PSO (MJPSO) algorithm of [52], the hybrid genetic algorithm of
Valls et al. [17], the justification particle swarm optimization (JPSO) of
[3], the Neurogenetic approach of [22], and event-based list and scatter
search by Paraskevopoulos et al. [53].

From the results presented in Table 5, for J30 problem sets, our
proposed algorithm almost always outperforms other approaches
available in the literature. Furthermore, for J60, J90 and J120 problem
sets, this proposed MA shows competitive performance comparing to all

Table 2
Orthogonal table and ARDCP values.

Experiment number Parameters ARDCP

Population size Crossover rate Mutation rate Local search probability Restart threshold

1 20 50 0.05 2 0.02 12.11
2 20 50 0.05 2 0.05 12.05
3 20 50 0.05 2 0.08 11.77
4 20 70 1.00 3 0.02 11.37
5 20 70 1.00 3 0.05 11.76
6 20 70 1.00 3 0.08 11.75
7 20 90 1.50 4 0.02 11.30
8 20 90 1.50 4 0.05 11.46
9 20 90 1.50 4 0.08 11.62

10 30 50 1.00 4 0.02 11.16
11 30 50 1.00 4 0.05 11.38
12 30 50 1.00 4 0.08 11.83
13 30 70 1.50 2 0.02 11.77
14 30 70 1.50 2 0.05 11.68
15 30 70 1.50 2 0.08 12.02
16 30 90 0.05 3 0.02 11.69
17 30 90 0.05 3 0.05 11.70
18 30 90 0.05 3 0.08 11.86
19 50 50 1.50 3 0.02 11.51
20 50 50 1.50 3 0.05 11.50
21 50 50 1.50 3 0.08 11.35
22 50 70 0.05 4 0.02 11.42
23 50 70 0.05 4 0.05 11.66
24 50 70 0.05 4 0.08 11.46
25 50 90 1.00 2 0.02 11.91
26 50 90 1.00 2 0.05 11.82
27 50 90 1.00 2 0.08 11.87

Table 3
Response table for means.

Level Population size Crossover rate Mutation rate Local
search
probability

Restart
threshold

1 11.69 11.63 11.75 11.89 11.59
2 11.68 11.66 11.65 11.62 11.67
3 11.62 11.70 11.58 11.48 11.73
Delta 0.08 0.06 0.17 0.41 0.14
Rank 4 5 2 1 3

Fig. 5. Factor level trend for each parameter.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

10

cited algorithms. In addition, to verify the performance of this proposed
MA against large datasets, we have solved all available benchmark in-
stances for RG30 and RG300 and compared with the average percen-
tage deviation from critical path values (i.e., ARDcp) against the re-
ported results by Debels and Vanhoucke [16] and Vanhoucke and
Coelho [49]. As reported earlier, the upper bound (UB) and lower
bound (LB) values of RG instances are taken from the Excel file created
by Vanhoucke and Coelho [49]. As can be seen from Table 6, the
proposed MA could not outperform any of those available results for
RG300 dataset. On the contrary, for RG30, ARDCP values are almost
similar to the ones reported in Vanhoucke and Coelho [49] (i.e., we
obtained 39.34% deviations while the best reported is 39.33%).
Meanwhile, the percentage deviations from the best-known UBs
(ARDUB) and LBs (ARDLB) are only 1.64% and 7.28% respectively for
RG300 instances after executing for 50,000 schedules. Overall devia-
tions for RG30 are also very insignificant for 50,000 schedules (0.01%
and 0.40% respectively). Hence, even though our proposed MA did not

obtain any improved solutions or upper bounds compared to existing
approaches, we can claim that this proposed approach is highly com-
petitive and an effective alternative approach to solve harder and larger
activity-based instances. Critical path values (CP), UBs, LBs and ob-
tained makespan values for each of the RG30 and RG300 instances are
available on request to the corresponding author.

In addition, even though the homogeneous interval algorithm (HIA)
of Valls et al. [54] and large neighborhood search of Palpant et al. [34]
did not provide any information about number of schedule as the
stopping condition, our proposed algorithm still shows better perfor-
mance than those approaches. In a nutshell, MA shows exceptional
consistency and faster solving capability while solving RCPSPs.

4.3. Statistical analysis

Since the proposed MA shows a stochastic nature, to better reflect
any statistical differences among existing algorithms, this work carried
out a number of statistical and nonparametric tests. As illustrated in the
previous section, under all three different instance sets, there is no firm
evidence on the superiority of any algorithm over the others. Hence to
assist decision making and to evaluate the overall performance of the
proposed MA, we have executed a ranking procedure based on a non-
parametric test, called the Friedman test [57]. The Friedman test is
often used for a randomized complete block design when the normality
assumption is not satisfied, or the data is ordinal. Under each instance
type, for each of the algorithms, relative ranks are calculated by con-
sidering ARDcp. All relative ranks are addressed in Table 7. As evident,
MA exhibits the second-least rank value of 3.33 after GH-SS among all
recent algorithms. Hence, it can be claimed that the performance of MA
is highly competitive and consistent among all statistically dispersed
results.

For better justification, we have also executed the Wilcoxon signed
ranks test [58] to analyze the differences between the best and the near-
best results according to Table 7 (i.e., MA, GH-SS and SS-FBI). Using a
5% significance level, the obtained p values are: 0.317 (GH-SS - MA),
0.180 (SS-FBI - MA) and 0.180 (SS-FBI – GH-SS). Meanwhile, based on
the relative positive and negative ranks, the Z values are as follows:
Z(GH_SS−MA) = − 1.00, Z(SS_FBI−MA) = − 1.342 and
Z(SS_FBI−GH_SS) = − 1.342. Hence, it can be ensured that there is no
unitary evidence of significant dominance of any algorithm over the
others (as p > 0.05), even though the proposed MA algorithm has been
outperformed by very few existing algorithms (i.e., GH_SS), particularly
for the larger instance set (i.e., J120).

Fig. 6. Evaluation of different crossover operators.

Table 4
Performance of MA for PSPLIB datasets.

Algorithm Schedule Problem J30 J60 J90 J120

MA 5000 ARDCP 0.00 10.72 10.37 32.76
Ct (second) 0.034 1.16 11.41 18.14

50,000 ARDCP 0.00 10.55 9.94 31.12
Ct (second) 0.21 9.06 90.78 140.08

Table 5
Comparison of the average deviation (%) among PSPLIB datasets.

Algorithms [reference] J30 J60 J90 J120

5000 50,000 5000 50,000 5000 50,000 5000 50,000

ARDCP ARDCP ARDCP ARDCP ARDCP ARDCP ARDCP ARDCP

MA [our proposed approach] 0.00 0.00 10.72 10.55 10.37 9.94 32.76 31.12
COA [26] 0.00 0.00 10.77 10.58 – – 32.90 31.22
GH-SS (LS) [53] 0.01 0.00 10.72 10.55 – – 32.12 30.78
Sequential (SS-FBI) [55] 0.02 0.00 10.93 10.58 10.40 9.96 32.52 31.16
GA [21] 0.07 0.01 11.08 10.71 – – 33.36 31.81
PSO-HH [30] 0.04 0.01 11.13 10.68 – – 32.59 31.23
GA-FBI [19] 0.01 0.01 11.56 10.56 – – 35.94 32.76
ACOSS [32] 0.04 0.01 10.98 10.68 – – 32.48 30.56
GAPS [18] 0.01 0.01 11.04 10.67 – – 33.03 31.44
SS-EM [51] 0.11 0.01 11.71 10.71 – – 33.57 31.57
MJPSO [52] 0.02 0.02 11.19 10.85 – – 33.78 32.40
HGA [17] 0.06 0.02 11.10 10.73 – – 32.54 31.24
GA-FBI2 [16] 0.04 0.02 10.95 10.68 10.35 9.90 32.18 30.69
JPSO [3] 0.14 0.04 10.43 11.00 – – 33.88 32.89
GANS [56] 1.27 0.71 10.53 10.52 – – 31.51 30.45
NG-FBI [22] 0.10 – 11.29 – 11.29 – 34.15 –

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

11

For better illustration, Table 7 has been used to generate perfor-
mance profiles and to execute nonparametric tests for the PSPLIB da-
tasets. Fig. 7 represents the performance profile for the PSPLIB dataset
(based on the results obtained after 50,000 schedules), which has been
used as a tool for evaluating and comparing the performance of opti-
mization algorithms. If the set of problems P is suitably large and re-
presentative of problems that are likely to occur in applications, then
algorithms with large probability ρs(τ) are to be preferred. The perfor-
mance profile for an algorithm is the (cumulative) distribution function
for a performance metric. For a better understanding of performance
profiles, see the work of Dolan and Moré [59]. In this paper we use the
ARDcp as a performance metric. As reflected from Fig. 7, the proposed
MA algorithm has the second-best probability (after GH + SS ap-
proach) of obtaining smallest deviations and converges fast towards
100% than a significant number of existing algorithms.

4.4. Case study

To demonstrate the effectiveness of the proposed MA in solving real-
life problems, we have also considered five real-life projects from three
different areas: construction industry, information technology, and
healthcare systems. As reflected in Table 8, cases 1–3 are directly
adapted from their cited references. Meanwhile, case 4 (Commercial IT
Project-CIT), case 5 (Patient Transport System-PTS), and case 6 (Nur-
sing Home Noordhinder) are taken from the online database (http://
www.or-as.be/research/database) [60]. The PTS project deals with the
design, installation (including staff training) and evaluation of an ICT-
supported patient transport system in the general hospital Sint-Jan in
Bruges (Belgium). The overall project networks and resource distribu-
tions are provided in Appendix A and Tables A2 and A3 respectively.
Meanwhile the CIT project deals with the complete developing process
of a software program for magazine publishers, including a preliminary
market analysis. The project consists of activity, resource and cost data
that were created by the user. The overall project networks and re-
source distributions are also provided in Appendix A and Tables A4 and
A5 respectively. The Nursing Home Noordhinder is a construction
project for building a nursing home in Knokke-Heist (Belgium). Project
card excel file and all relevant information of this case study can be
found from this online source: http://www.or-as.be/research/database.

The performance of the proposed approach has been compared with
an exact approach (i.e., B&B algorithm) and with the existing

approaches available in the literature. The stopping criteria for our
proposed algorithm is set to 100 schedules evaluation and B&B algo-
rithm was coded with CPLEX embedded in Matlab R2017b. Each of the
algorithms was run for 30 times and the results are tabulated in Table 8.
However, owing to the inability to solve higher activity instances (i.e.,
Case 2, 4, 5, and 6) by B&B exact approach, we have highlighted the
best obtained results after 1000 s of execution. As can be seen from that
table, the proposed algorithm shows promising results in finding op-
timal makespan with significantly lower computational effort (i.e., only
within 100 schedule evaluations), even for case studies with a higher
number of activities.

5. Applicability of the proposed approach in construction project
scheduling

In the construction industry, project management decisions relevant
to time and budget are made based on schedules that are developed in
the planning phase of a project. Hence, one of the challenging tasks for
the construction project manager is to minimize the total project
duration with limited resource availability. Although one traditional
project scheduling technique, namely CPM, has been used as a sche-
duling tool in the construction industry since the 1950s [63], it can
provide optimal solutions when the availability of resource is un-
limited. However, as discussed in Section 2, adding resource constraints
to project scheduling problem makes it NP-hard and as shown from the
example in Section 3.1, CPM based schedule can be possibly improved
in RCPSPs. In today's competitive construction industry, the availability
of resources should be limited (e.g., construction equipment, workers)
to make it profitable and therefore, it is essential to develop an efficient
decision-making tool that can provide optimal or near optimal sche-
dules in reasonable computational time. Another important aspect is
that the complexity in modern projects varies with respect to the
number of activities, resources, maximum resource availabilities, and
project managers need to deal with such complex project network fre-
quently [64]. Therefore, it is desirable to have a solution approach that
can provide competitive solutions, within computational time, for
project scheduling problems with any degree of complexity.

To serve these purposes, we propose a MA that is easy to implement.
The performance of the proposed approach has been evaluated with a
wide range of complex scheduling problems, from two different artifi-
cial standard benchmark data (PSPLIB and RG). Furthermore, we have

Table 6
Performance of MA for RG instances.

Schedule Problem RG30 RG300

S1 S2 S3 S4 S5 All

5000 ARDUB 0.10% 0.14% 0.08% 0.16% 0.14% 0.12% 3.63%
ARDLB 0.42% 0.77% 0.08% 0.91% 0.39% 0.52% 9.44%
ARDCP [this paper] 42.82% 45.68% 34.31% 34.80% 34.80% 39.52% 984.43%
ARDCP [16] – – – – – – 817.36%
ARDCP [49] – – – – – – –
Ct (sec) 0.042 0.044 0.041 0.043 0.043 0.043 29.07

50,000 ARDUB 0.01% 0.02% 0.003% 0.01% 0.01% 0.01% 1.64%
ARDLB 0.33% 0.65% 0.003% 0.77% 0.26% 0.40% 7.28%
ARDCP [this paper] 42.67% 45.45% 34.18% 34.58% 34.58% 39.34% 968.57%
ARDCP [16] – – – – – – 809.93%
ARDCP [49] – – – – – 39.33% 956.71%
Ct (sec) 0.287 0.289 0.301 0.310 0.278 0.293 202.14

Table 7
Rank measurement of different algorithms using Friedman test.

MA COA GH-SS SS-FBI GA PSO-HH GA-FBI ACOSS GAPS SS-EM MJPSO HGA GA-FBI2 JPSO GANS

3.33 5.00 3.00 4.67 10.33 8.17 8.50 6.17 8.17 10.00 13.00 11.33 8.00 14.67 5.67

The bold values signifies the first, second, and third best performing algorithm algorithms among the list using the Friedman test.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

12

http://www.or-as.be/research/database
http://www.or-as.be/research/database
http://www.or-as.be/research/database

evaluated our proposed approach for solving practical project sche-
duling problems, where relevant empirical data were collected from the
construction and other industries (as discussed in Section 4). From the
experimental evaluations it can be safely said that for all these set of
problems, our proposed approach shows competitive performance in
terms of solution quality and computational speed. In a nutshell,

adaptation of our proposed approach can be a useful tool for practi-
tioners to significantly reduce time and financial losses, and to predict
future budgets more carefully.

Fig. 7. Performance profile of different competitive algorithms.

Table 8
Result comparison between MA and Other approaches in practical problems.

Problem [source] Problem size Average Cmax value Average computational times (seconds)

Existing approach B&B MA Existing approaches B&B MANumber of
activities

Number of
resources

Case 1: construction project [24,61] 20 1 42.53 (PSO) 42 42 Not available 68.87 0.013
42.51 (GA)
42.50 (DE)
42.07 (CDE)
42.17 (FDE)
42 (FCDE-RCPSP)

Case 2: construction project [24,61] 37 1 192.47 (PSO) 236a 190 Not available 1000 0.015
191.33 (GA)
191.27 (DE)
190.47 (CDE)
191.20 (FDE)
190.13 (FCDE-
RCPSP)

Case 3: highway bridge construction project
[62]

43 3 118.25 (PSO) 117 117 Not available 100.52 0.041
118.35 (GA)
117.75 (DE)
117.7 (ABC)
117 (ABCDE-RC)

Case 4: commercial IT project [60] 42 8 Not available 340 309 Not available 0.038
Case 5: patient transport system [60] 49 5 Not available 1136a 1068 Not available 1000 0.047
Case 6: nursing home noordhinder [60] 153 12 Not available 10931a 10,676 Not available 1000 0.12

a Best obtained result after 1000 s.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

13

6. Conclusion and future research directions

Despite of significant number of approaches to solve RCPSPs over
the decades, no single algorithm can offer sound performance in terms
of accuracy and speed for all range of RCPSP datasets. Often, these
algorithms have complex structures which makes their implementation
difficult. As a result, in this study, we bring forward a unique and
competitive GA-based MA algorithm in the quest for better optimiza-
tion performance. This proposed approach initiates with a mix of
quality solutions generated by two simple heuristics and some priority
rules, and some random solutions, which eliminates the drawback of
random initialization of the original GA. During the evaluation process
a single-point similar block order crossover finds the simpler blocks of
activities which act as the building blocks of quality solutions. This
crossover operator has shown better performance than the traditional
single point ordered crossover operator. Further, a shift mutation op-
eration ensures population diversity and a self-restart mechanism
measures population diversity at each iteration and restarts auto-
matically to avoid local optima, when needed. Therefore, this me-
chanism helps MA to avoid entanglement in the local optima. Further, a
variable insertion neighborhood search was introduced to further en-
hance performance, which show excellent performance, considering
their simplicity and speed. More importantly, the proposed algorithm is
simple and easy to implement, and generates competitive solutions.

The parameters of the algorithm were adjusted by DOE and the
effectiveness of the algorithm was verified by solving the popular
PSPLIB and RG benchmark problems, with J30, J60, J90, J120, RG30
and RG300 problem sets. The results showed that the proposed algo-
rithm is capable of converging to high quality solutions within rea-
sonable computational efforts, especially for J30, J60 and J90 sets.
Further, the proposed algorithm was compared with the state-of-the-art
algorithms in terms of solution quality and it showed best performances
for the lower activity problem sets (i.e., for J30, J60 and J90 instances)

and promising performance for J120, RG30 and RG300 problem sets.
Six real-world projects from three different areas are also used to
evaluate the comparative effectiveness of the proposed algorithm in
handling real-world resource constrained problems.

In future work, further investigations are needed to accelerate the
performance of the algorithm for J120 and RG300 problem sets. The
work presented in this paper is very relevant to modern construction
and manufacturing industries to assist project managers with real-time
decision support, to allow project scheduling decisions to be taken in a
short computation time within the resource constraints. The developed
MA can be employed by project managers to execute projects more
efficiently and utilizing the available resources more effectively, and
thus reduce project execution costs. Hence, the proposed approach as-
sists project managers obtain a satisfactory schedule within reasonable
computational time.

Moreover, future studies might extend the presented algorithms to
other interesting project scheduling problems from real-life, such as
multi-mode resource constraint project scheduling problems. Another
research opportunity is to study the extension of existing problems
while considering multiple temporal constraints such as including aging
and learning effects in activity durations, transportation time, alter-
native supplier shipping times, and project inspection time, and so on.
There are also multiple conflicting objectives, including minimizing
makespan and maximizing net present value, that need to be optimized
simultaneously in real applications. Finally, it is also observed that in
industry there are uncertainties in project durations and resource
availability and its utilization, and hence it will be interesting to extend
our proposed method to study these realistic cases.

Declaration of competing interest

These authors declare that they have no conflict of interests on the
work reported in this paper.

Appendix A

Data for example problem
Number of activities: 8
Maximum available resources: 4
Resource availabilities: [12 13 4 12]

Table A1
Activity durations and successors.

Activity ID Activity duration Resource use Number of successors Successors

R1 R2 R3 R4

1 0 0 0 0 0 2 2 3
2 8 4 0 0 0 1 4
3 4 10 0 0 0 2 5 6
4 6 4 0 0 3 1 7
5 3 3 0 0 0 1 7
6 8 0 0 0 8 1 8
7 5 4 0 0 0 1 8
8 0 0 0 0 0 0

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

14

Table A2
Patient transport system.

ID Name Successors Duration

1 Compose survey for the staff FS2 + 1 w 1 d 4 h
2 Brainstorming and filling in the survey FS3 + 7 w 2 h 2 h
3 Collecting and analysing the surveys FS4 1 d
4 Get-together PC, ICT committee & board FS5 + 2 h 4 h
5 Enrolment of the meeting FS6 2 h
6 Registering the technical requirements FS7 + 2 w 2 d
7 Set-up a detailed budget study FS8 + 3 w 2 d
8 Putting together the formal document FS9;FS20 + 1 w 3 d
9 Research suppliers transport systems FS10 + 1 w 1 d 4 h 3 d

10 Meeting with board for final proposal FS11 + 2 w 4 h
11 Contacting suppliers and sending proposal FS12 + 3 w 2 d
12 Analysing the received offers FS13 + 4 w 3 d
13 Presentation to board & ICT staff FS14 + 3 w 1 d
14 Collecting and registering comments on offers FS15 + 6 w 1 d
15 Taking final decision and contacting supplier FS16 2 d
16 Discussing project development with supplier FS17 + 7 w 3 d 4 h 3 d
17 Discussing project development with board FS18 + 6 w 4 h
18 Final agreement with supplier FS19 2 d
19 Signing contract FS27 + 4 d 4 h 4 h
20 Meeting with ICT committee FS21 + 1 w 2 d 2 d
21 Contacting Siemens and sending proposal FS22 + 2 w 3 d
22 Discussing project development with supplier FS23 + 1 w 2 d
23 Discussing progress with board FS24 + 2 d 2 h
24 Discussing progress with ICT committee FS25 + 1 d 6 h 4 h
25 Final agreement with supplier FS26 4 h
26 Signing contract FS27 + 8 w 4 h
27 Information session FS28 + 4 h 2 h
28 Explanation project implementation to staff FS29;FS30;FS31;FS34 2 h
29 Installation transport system FS36 6 d
30 Installation DACS FS38;FS44 6 d
31 Training coordinator FS32;FS36 1 d
32 Train de trainer FS38;FS44 1 d
33 Training rapportage FS47 1 d
34 Surveying the required functionalities FS35 + 4 w 4 d 1 d
35 Creating codes FF37 + 1 w 2 d
36 Registration data about employees FS37 + 3 w 2 d 4 d
37 Registration hospital data FS38;FS44 6 d
38 Training team 1 FS39 2 d
39 Training team 2 FS40 2 d
40 Training team 3 FS41 2 d
41 Training team 4 FS42 2 d
42 Training team 5 FS43 2 d
43 Training team 6 FS46 2 d
44 Check-up by PC FS45 + 2 w 1 d
45 Check-up by ICT committee FS46 1 d
46 Live pilot period FS33 71 d
47 Discussing project with board FS48 + 4 d 2 h 2 h
48 Discussing project with head nurses FS49 4 h
49 Enrolment of the entire project 1 d

Table A3
Resource distribution for patient transport system.

General Resource demand

ID Name Type Availability Assigned to

1 Project co-
ordinator

Renewable 1 #persons 1;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;31;32;33;34;35;36;37;38;39;40;41;42;43;44;47;48;49;

2 Head nurses Renewable 65 #persons 2[65.00 Head nurses];28[65.00 Head nurses];40[17.00 Head nurses];41[16.00 Head nurses];42[16.00 Head nurses];43[16.00 Head
nurses];48[65.00 Head nurses];

3 ICT com-
mittee

Renewable 5 #persons 4[5.00 ICT committee];6;10;13[5.00 ICT committee];20[5.00 ICT committee];24[5.00 ICT committee];27[5.00 ICT com-
mittee];29[2.00 ICT committee];30[2.00 ICT committee];35;45[5.00 ICT committee];

4 Board of di-
rectors

Renewable 7 #persons 4[7.00 Board of directors];10[7.00 Board of directors];13[7.00 Board of directors];17[7.00 Board of directors];19;23[7.00 Board of
directors];26;27[7.00 Board of directors];47[7.00 Board of directors];

5 Stretcher-
bearer/lo-
gisticians

Renewable 24 #persons 2[24.00 Stretcher-bearer/logisticians];28[24.00 Stretcher-bearer/logisticians];34[24.00 Stretcher-bearer/logisticians];38[12.00
Stretcher-bearer/logisticians];39[12.00 Stretcher-bearer/logisticians];

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

15

Table A4
Commercial IT (CIT) project.

ID Name Predecessors Successors Duration

0 Commercial IT project 56 d 5 h
22 Explore the market FS23 10 d
23 Set up a survey 22FS FS24 3 d
24 Analysis of the market 23FS FS1 15 d

1 Problem study/analysis 24FS FS2;FS3;FS39;FS40 3 d
39 Negotiate and buy server 1FS FS41 2 d
40 Negotiate and buy computer 1FS FS42 2 d

2 Processmodels (BPMN) 1FS FS4;FS7 7 h
3 Conceptual datamodel (ER) 1FS FS4;FS7 1 d
4 Normalisation DB 2FS;3FS FS5 4 h
5 Datamap 4FS FS6 1 h
6 Logic database model 5FS FS8;FS9 2 h
7 Software design (UML-class diagram) 2FS;3FS FS10;FS11 2 d
8 Develop database Table 1 6FS FS12 6 h
9 Develop database Table 2 6FS FS13 1 d

10 Design & develop GUI 1 7FS FS18;FS25;FS26 2 d
11 Design & develop GUI 2 7FS FS19;FS25;FS26 2 d 5 h
25 Design CD-box 10FS;11FS 10 d
26 Design CD-labels 10FS;11FS 10 d
12 Develop SQL's 1 8FS FS14 2 d 2 h
13 Develop SQL's 2 9FS FS15 2 d 4 h
14 Debug SQL's 1 12FS FS16 1 d 2 h
15 Debug SQL's 2 13FS FS17 1 d 4 h
16 Implement SQL's in JAVA 1 14FS FS18 1 h
17 Implement SQL's in JAVA 2 15FS FS19 1 h
18 Develop program 1 16FS;10FS FS20 3 d
19 Develop program 2 17FS;11FS FS21 3 d 5 h
20 Testing & debugging 1 18FS FS27;FS37;FS38 1 d
21 Testing & debugging 2 19FS FS27;FS37;FS38 1 d
38 Visitations by sales representatives 20FS;21FS 10 d
37 Direct mailings 20FS;21FS 2 h
27 Make up report + presentation alpha version 20FS;21FS FS28 2 d
28 Presentation alpha version 27FS FS29 2 h
29 Reading of management report + approval alpha 28FS FS31 5 h
31 Testing phase alpha version 29FS FS32 3 d
32 Fix outstanding problems from alpha 31FS FS33 1 d 2 h
33 Make up report + presentation beta version 32FS FS34 1 d
34 Presentation beta version 33FS FS35 2 h
35 Reading of management report + approval beta 34FS FS36;FS41;FS42 5 h
36 Launch and installation beta version 35FS 5 d
41 Installation server 35FS;39FS 5 d
42 Installation computer 35FS;40FS 5 d

Table A5
Resource distribution for commercial IT (CIT) project.

General Resource demand

ID Name Type Availability Assigned to

1 Programmers Renewable 3 Programmers 10;11[1.50Programmers];16[2.00Programmers];17[2.50 Programmers];18[2.00 Programmers];19[3.00
Programmers];20[2.00 Programmers];21[3.00 Programmers];31[2.00 Programmers];32;

2 IT Manager Renewable 1 IT manager 1[0.20 IT Manager];39[0.10 IT Manager];40[0.10 IT Manager];28;29[0.50 IT Manager];34;35[0.50 IT Manager];
3 Database ad-

ministrator
Renewable 1 Database ad-

ministrator
4;5[0.50 Database administrator];6;8;9;12[0.40 Database administrator];13[0.60 Database administrator];14[0.40
Database administrator];15[0.60 Database administrator];31[0.30 Database administrator];

4 Analyst pro-
grammer

Renewable 1 Analyst pro-
grammer

1;2;3;5[0.50 Analyst programmer];7[0.30 Analyst programmer];27[0.30 Analyst programmer];28;31[0.10 Analyst pro-
grammer];33[0.20 Analyst programmer];34;

5 Secretary Renewable 1 Secretary 37;27;33;
6 Marketing man-

ager
Renewable 1 Marketing

manager
39[0.50 Marketing manager];40[0.50 Marketing manager];37[0.50 Marketing manager];

7 Sales represen-
tatives

Renewable 2 Sales represen-
tatives

38[2.00 Sales representatives];

8 Technicians Renewable 3 Technicians 36[3.00 Technicians];41;42;

References

[1] P. Brucker, Scheduling and constraint propagation, Discret. Appl. Math. 123 (1–3)
(2002) 227–256, https://doi.org/10.1016/S0166-218X(01)00342-0.

[2] J. Blazewicz, J.K. Lenstra, A.R. Kan, Scheduling subject to resource constraints:
classification and complexity, Discret. Appl. Math. 5 (1) (1983) 11–24, https://doi.

org/10.1016/0166-218X(83)90012-4.
[3] R.-M. Chen, Particle swarm optimization with justification and designed mechan-

isms for resource-constrained project scheduling problem, Expert Syst. Appl. 38 (6)
(2011) 7102–7111, https://doi.org/10.1016/j.eswa.2010.12.059.

[4] A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bianco, An exact algorithm for the
resource-constrained project scheduling problem based on a new mathematical
formulation, Manag. Sci. 44 (5) (1998) 714–729, https://doi.org/10.1287/mnsc.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

16

https://doi.org/10.1016/S0166-218X(01)00342-0
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/j.eswa.2010.12.059
https://doi.org/10.1287/mnsc.44.5.714

44.5.714.
[5] U. Dorndorf, E. Pesch, T. Phan-Huy, A branch-and-bound algorithm for the re-

source-constrained project scheduling problem, Math. Meth. Oper. Res. 52 (3)
(2000) 413–439, https://doi.org/10.1016/S0377-2217(97)00335-4.

[6] P. Brucker, S. Knust, A. Schoo, O. Thiele, A branch and bound algorithm for the
resource-constrained project scheduling problem, Eur. J. Oper. Res. 107 (2) (1998)
272–288, https://doi.org/10.1016/S0377-2217(97)00335-4.

[7] R.K. Chakrabortty, R.A. Sarker, D.L. Essam, Resource constrained project sche-
duling with uncertain activity durations, Comput. Ind. Eng. 112 (2017) 537–550,
https://doi.org/10.1016/j.cie.2016.12.040 10/01/2017.

[8] R. Chakrabortty, R.A. Sarker, D.L. Essam, Event based approaches for solving multi-
mode resource constraints project scheduling problem, IFIP International
Conference on Computer Information Systems and Industrial Management,
Vietnam, 8838 Springer, Berlin, Heidelberg, 2014, pp. 375–386, , https://doi.org/
10.1007/978-3-662-45237-0_35.

[9] J. Coelho, M. Vanhoucke, An exact composite lower bound strategy for the re-
source-constrained project scheduling problem, Comput. Oper. Res. 93 (2018)
135–150, https://doi.org/10.1016/j.cor.2018.01.017 05/01/2018.

[10] A. Lova, P. Tormos, M. Cervantes, F. Barber, An efficient hybrid genetic algorithm
for scheduling projects with resource constraints and multiple execution modes, Int.
J. Prod. Econ. 117 (2) (2009) 302–316, https://doi.org/10.1016/j.ijpe.2008.11.
002.

[11] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans.
Evol. Comput. 1 (1) (1997) 67–82, https://doi.org/10.1109/4235.585893.

[12] R. Pellerin, N. Perrier, F. Berthaut, A survey of hybrid metaheuristics for the re-
source-constrained project scheduling problem, Eur. J. Oper. Res. 280 (2) (2020)
395–416, https://doi.org/10.1016/j.ejor.2019.01.063.

[13] M. Nawaz, E.E. Enscore Jr., I. Ham, A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem, Omega 11 (1) (1983) 91–95, https://doi.org/10.
1016/0305-0483(83)90088-9.

[14] R. Kolisch, A. Sprecher, PSPLIB—a project scheduling problem library: OR soft-
ware-ORSEP Operations Research Software Exchange Program, Eur. J. Oper. Res.
96 (1) (1997) 205–216 1997/01/10/ https://doi.org/10.1016/S0377-2217(96)
00170-1.

[15] J. Alcaraz, C. Maroto, A robust genetic algorithm for resource allocation in project
scheduling, Ann. Oper. Res. 102 (1–4) (2001) 83–109, https://doi.org/10.1023/
A:1010949931021.

[16] D. Debels, M.J.O.R. Vanhoucke, A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem, Oper. Res. 55 (3) (2007)
457–469, https://doi.org/10.1287/opre.1060.0358.

[17] V. Valls, F. Ballestin, S. Quintanilla, A hybrid genetic algorithm for the resource-
constrained project scheduling problem, Eur. J. Oper. Res. 185 (2) (2008) 495–508,
https://doi.org/10.1016/j.ejor.2006.12.033.

[18] J.J. Mendes, J.F. Gonçalves, M.G. Resende, A random key based genetic algorithm
for the resource constrained project scheduling problem, Comput. Oper. Res. 36 (1)
(2009) 92–109, https://doi.org/10.1016/j.cor.2007.07.001.

[19] J.F. Gonçalves, M.G. Resende, J.J. Mendes, A biased random-key genetic algorithm
with forward-backward improvement for the resource constrained project sche-
duling problem, J. Heuristics 17 (5) (2011) 467–486, https://doi.org/10.1007/
s10732-010-9142-2.

[20] R. Zamani, A competitive magnet-based genetic algorithm for solving the resource-
constrained project scheduling problem, Eur. J. Oper. Res. 229 (2) (2013) 552–559,
https://doi.org/10.1016/j.ejor.2013.03.005.

[21] R. Zamani, An evolutionary implicit enumeration procedure for solving the re-
source-constrained project scheduling problem, Int. Trans. Oper. Res. 24 (6) (2017)
1525–1547, https://doi.org/10.1111/itor.12196.

[22] A. Agarwal, S. Colak, S. Erenguc, A neurogenetic approach for the resource-con-
strained project scheduling problem, Comput. Oper. Res. 38 (1) (2011) 44–50,
https://doi.org/10.1016/j.cor.2010.01.007.

[23] K. Anagnostopoulos, G. Koulinas, Resource-constrained critical path scheduling by
a GRASP-based hyperheuristic, J. Comput. Civ. Eng. 26 (2) (2011) 204–213,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000116.

[24] M.-Y. Cheng, D.-H. Tran, Y.-W. Wu, Using a fuzzy clustering chaotic-based differ-
ential evolution with serial method to solve resource-constrained project scheduling
problems, Autom. Constr. 37 (2014) 88–97, https://doi.org/10.1016/j.autcon.
2013.10.002.

[25] C. Fang, L. Wang, An effective shuffled frog-leaping algorithm for resource-con-
strained project scheduling problem, Comput. Oper. Res. 39 (5) (2012) 890–901,
https://doi.org/10.1016/j.cor.2011.07.010.

[26] S. Elsayed, R. Sarker, T. Ray, C.C. Coello, Consolidated optimization algorithm for
resource-constrained project scheduling problems, Inf. Sci. 418 (2017) 346–362,
https://doi.org/10.1016/j.ins.2017.08.023.

[27] H. Zhang, X. Li, H. Li, F. Huang, Particle swarm optimization-based schemes for
resource-constrained project scheduling, Autom. Constr. 14 (3) (2005) 393–404,
https://doi.org/10.1016/j.autcon.2004.08.006.

[28] Q. Jia, Y. Seo, An improved particle swarm optimization for the resource-con-
strained project scheduling problem, Int. J. Adv. Manuf. Technol. 67 (9–12) (2013)
2627–2638, https://doi.org/10.1007/s00170-012-4679-x.

[29] H. Zhang, H. Li, C. Tam, Particle swarm optimization for resource-constrained
project scheduling, Int. J. Proj. Manag. 24 (1) (2006) 83–92, https://doi.org/10.
1016/j.ijproman.2005.06.006.

[30] G. Koulinas, L. Kotsikas, K. Anagnostopoulos, A particle swarm optimization based
hyper-heuristic algorithm for the classic resource constrained project scheduling
problem, Inf. Sci. 277 (2014) 680–693, https://doi.org/10.1016/j.ins.2014.02.155.

[31] K. Ziarati, R. Akbari, V. Zeighami, On the performance of bee algorithms for re-
source-constrained project scheduling problem, Appl. Soft Comput. 11 (4) (2011)

3720–3733, https://doi.org/10.1016/j.asoc.2011.02.002.
[32] W. Chen, Y. Shi, H. Teng, X. Lan, L. Hu, An efficient hybrid algorithm for resource-

constrained project scheduling, Inf. Sci. 180 (6) (2010) 1031–1039, https://doi.
org/10.1016/j.ins.2009.11.044.

[33] R. Klein, Project scheduling with time-varying resource constraints, Int. J. Prod.
Res. 38 (16) (2000) 3937–3952, https://doi.org/10.1080/00207540050176094.

[34] M. Palpant, C. Artigues, P. Michelon, LSSPER: solving the resource-constrained
project scheduling problem with large neighbourhood search, Ann. Oper. Res. 131
(1–4) (2004) 237–257, https://doi.org/10.1023/B:ANOR.0000039521.26237.62.

[35] K. Bouleimen, H. Lecocq, A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version,
Eur. J. Oper. Res. 149 (2) (2003) 268–281, https://doi.org/10.1016/S0377-
2217(02)00761-0.

[36] L. Wang, C. Fang, A hybrid estimation of distribution algorithm for solving the
resource-constrained project scheduling problem, Expert Syst. Appl. 39 (3) (2012)
2451–2460, https://doi.org/10.1016/j.eswa.2011.08.095.

[37] H.F. Rahman, R. Sarker, D. Essam, A real-time order acceptance and scheduling
approach for permutation flow shop problems, Eur. J. Oper. Res. 247 (2) (2015)
488–503, https://doi.org/10.1016/j.ejor.2015.06.018 12/01/2015.

[38] H.F. Rahman, R. Sarker, D. Essam, A genetic algorithm for permutation flow shop
scheduling under make to stock production system, Comput. Ind. Eng. 90
(Supplement C) (2015) 12–24, https://doi.org/10.1016/j.cie.2015.08.006.

[39] H.F. Rahman, I. Nielsen, Scheduling automated transport vehicles for material
distribution systems, Appl. Soft Comput. 82 (2019) 105552, , https://doi.org/10.
1016/j.asoc.2019.105552.

[40] R. Kolisch, Efficient priority rules for the resource-constrained project scheduling
problem, J. Oper. Manag. 14 (3) (1996) 179–192, https://doi.org/10.1016/0272-
6963(95)00032-1.

[41] S. Ponnambalam, P. Aravindan, G.M. Naidu, A multi-objective genetic algorithm for
solving assembly line balancing problem, Int. J. Adv. Manuf. Technol. 16 (5) (2000)
341–352, https://doi.org/10.1007/s001700050166.

[42] R. Ruiz, C. Maroto, A comprehensive review and evaluation of permutation flow-
shop heuristics, Eur. J. Oper. Res. 165 (2) (2005) 479–494, https://doi.org/10.
1016/j.ejor.2004.04.017.

[43] D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach.
Learn. 3 (2) (1988) 95–99, https://doi.org/10.1023/A:1022602019183.

[44] R. Ruiz, C. Maroto, J. Alcaraz, Two new robust genetic algorithms for the flowshop
scheduling problem, Omega 34 (5) (2006) 461–476, https://doi.org/10.1016/j.
omega.2004.12.006.

[45] H.F. Rahman, R.A. Sarker, D.L. Essam, A memetic algorithm for permutation flow
shop problems," in IEEE Congress on Evolutionary Computation (CEC), IEEE (2013)
1618–1625, https://doi.org/10.1109/CEC.2013.6557755.

[46] H.F. Rahman, R.A. Sarker, D.L. Essam, G. Chang, A memetic algorithm for solving
permutation flow shop problems with known and unknown machine breakdowns,"
in IEEE Congress on Evolutionary Computation (CEC), IEEE (2014) 42–49, https://
doi.org/10.1109/CEC.2014.6900242.

[47] Q.-K. Pan, R. Ruiz, An estimation of distribution algorithm for lot-streaming flow
shop problems with setup times, Omega 40 (2) (2012) 166–180, https://doi.org/10.
1016/j.omega.2011.05.002.

[48] H.F. Rahman, R. Sarker, D. Essam, Multiple-order permutation flow shop sche-
duling under process interruptions, Int. J. Adv. Manuf. Technol. 97 (5–8) (2018)
2781–2808, https://doi.org/10.1007/s00170-018-2146-z.

[49] M. Vanhoucke, J. Coelho, A tool to test and validate algorithms for the resource-
constrained project scheduling problem, Comput. Ind. Eng. 118 (2018) 251–265
2018/04/01/ https://doi.org/10.1016/j.cie.2018.02.001.

[50] R. Chakrabortty, R. Sarker, D. Essam, Single mode resource constrained project
scheduling with unreliable resources, Oper. Res. (2018) 1–35, https://doi.org/10.
1007/s12351-018-0380-7.

[51] D. Debels, B. De Reyck, R. Leus, M. Vanhoucke, A hybrid scatter search/electro-
magnetism meta-heuristic for project scheduling, Eur. J. Oper. Res. 169 (2) (2006)
638–653, https://doi.org/10.1016/j.ejor.2004.08.020.

[52] A. Fahmy, T.M. Hassan, H. Bassioni, Improving RCPSP solutions quality with
stacking justification–application with particle swarm optimization, Expert Syst.
Appl. 41 (13) (2014) 5870–5881, https://doi.org/10.1016/j.eswa.2014.03.027.

[53] D.C. Paraskevopoulos, C.D. Tarantilis, G. Ioannou, Solving project scheduling pro-
blems with resource constraints via an event list-based evolutionary algorithm,
Expert Syst. Appl. 39 (4) (2012) 3983–3994, https://doi.org/10.1016/j.eswa.2011.
09.062.

[54] V. Valls, F. Ballestín, S. Quintanilla, A population-based approach to the resource-
constrained project scheduling problem, Ann. Oper. Res. 131 (1–4) (2004)
305–324, https://doi.org/10.1023/B:ANOR.0000039524.09792.c9.

[55] F. Berthaut, R. Pellerin, A. Hajji, N. Perrier, A path relinking-based scatter search for
the resource-constrained project scheduling problem, Int. J. Proj. Organ. Manag.
Sci. 10 (1) (2018) 1–36, https://doi.org/10.1504/IJPOM.2018.090372.

[56] S. Proon, M. Jin, A genetic algorithm with neighborhood search for the resource-
constrained project scheduling problem, Nav. Res. Logist. 58 (2) (2011) 73–82,
https://doi.org/10.1002/nav.20439.

[57] D.W. Zimmerman, B.D. Zumbo, Relative power of the Wilcoxon test, the Friedman
test, and repeated-measures ANOVA on ranks, J. Exp. Educ. 62 (1) (1993) 75–86,
https://doi.org/10.1080/00220973.1993.9943832.

[58] E.A. Gehan, A generalized Wilcoxon test for comparing arbitrarily singly-censored
samples, Biometrika 52 (1–2) (1965) 203–224, https://doi.org/10.2307/2333825.

[59] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance
profiles, Math. Program. 91 (2) (2002) 201–213, https://doi.org/10.1007/
s101070100263.

[60] J. Batselier, M. Vanhoucke, Construction and evaluation framework for a real-life

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

17

https://doi.org/10.1287/mnsc.44.5.714
https://doi.org/10.1016/S0377-2217(97)00335-4
https://doi.org/10.1016/S0377-2217(97)00335-4
https://doi.org/10.1016/j.cie.2016.12.040
https://doi.org/10.1007/978-3-662-45237-0_35
https://doi.org/10.1007/978-3-662-45237-0_35
https://doi.org/10.1016/j.cor.2018.01.017
https://doi.org/10.1016/j.ijpe.2008.11.002
https://doi.org/10.1016/j.ijpe.2008.11.002
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.ejor.2019.01.063
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1023/A:1010949931021
https://doi.org/10.1023/A:1010949931021
https://doi.org/10.1287/opre.1060.0358
https://doi.org/10.1016/j.ejor.2006.12.033
https://doi.org/10.1016/j.cor.2007.07.001
https://doi.org/10.1007/s10732-010-9142-2
https://doi.org/10.1007/s10732-010-9142-2
https://doi.org/10.1016/j.ejor.2013.03.005
https://doi.org/10.1111/itor.12196
https://doi.org/10.1016/j.cor.2010.01.007
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000116
https://doi.org/10.1016/j.autcon.2013.10.002
https://doi.org/10.1016/j.autcon.2013.10.002
https://doi.org/10.1016/j.cor.2011.07.010
https://doi.org/10.1016/j.ins.2017.08.023
https://doi.org/10.1016/j.autcon.2004.08.006
https://doi.org/10.1007/s00170-012-4679-x
https://doi.org/10.1016/j.ijproman.2005.06.006
https://doi.org/10.1016/j.ijproman.2005.06.006
https://doi.org/10.1016/j.ins.2014.02.155
https://doi.org/10.1016/j.asoc.2011.02.002
https://doi.org/10.1016/j.ins.2009.11.044
https://doi.org/10.1016/j.ins.2009.11.044
https://doi.org/10.1080/00207540050176094
https://doi.org/10.1023/B:ANOR.0000039521.26237.62
https://doi.org/10.1016/S0377-2217(02)00761-0
https://doi.org/10.1016/S0377-2217(02)00761-0
https://doi.org/10.1016/j.eswa.2011.08.095
https://doi.org/10.1016/j.ejor.2015.06.018
https://doi.org/10.1016/j.cie.2015.08.006
https://doi.org/10.1016/j.asoc.2019.105552
https://doi.org/10.1016/j.asoc.2019.105552
https://doi.org/10.1016/0272-6963(95)00032-1
https://doi.org/10.1016/0272-6963(95)00032-1
https://doi.org/10.1007/s001700050166
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1016/j.omega.2004.12.006
https://doi.org/10.1016/j.omega.2004.12.006
https://doi.org/10.1109/CEC.2013.6557755
https://doi.org/10.1109/CEC.2014.6900242
https://doi.org/10.1109/CEC.2014.6900242
https://doi.org/10.1016/j.omega.2011.05.002
https://doi.org/10.1016/j.omega.2011.05.002
https://doi.org/10.1007/s00170-018-2146-z
https://doi.org/10.1016/j.cie.2018.02.001
https://doi.org/10.1007/s12351-018-0380-7
https://doi.org/10.1007/s12351-018-0380-7
https://doi.org/10.1016/j.ejor.2004.08.020
https://doi.org/10.1016/j.eswa.2014.03.027
https://doi.org/10.1016/j.eswa.2011.09.062
https://doi.org/10.1016/j.eswa.2011.09.062
https://doi.org/10.1023/B:ANOR.0000039524.09792.c9
https://doi.org/10.1504/IJPOM.2018.090372
https://doi.org/10.1002/nav.20439
https://doi.org/10.1080/00220973.1993.9943832
https://doi.org/10.2307/2333825
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263

project database, Int. J. Proj. Manag. 33 (3) (2015) 697–710, https://doi.org/10.
1016/j.ijproman.2014.09.004.

[61] P.-H. Chen, H. Weng, A two-phase GA model for resource-constrained project
scheduling, Autom. Constr. 18 (4) (2009) 485–498, https://doi.org/10.1016/j.
autcon.2008.11.003.

[62] D.-H. Tran, M.-Y. Cheng, M.-T. Cao, Solving resource-constrained project sche-
duling problems using hybrid artificial bee colony with differential evolution, J.
Comput. Civ. Eng. 30 (4) (2016), https://doi.org/10.1061/(ASCE)CP.1943-5487.

0000544.
[63] D. Castro-Lacouture, G.A. Süer, J. Gonzalez-Joaqui, J.K. Yates, Construction project

scheduling with time, cost, and material restrictions using fuzzy mathematical
models and critical path method, J. Constr. Eng. Manag. 135 (10) (2009)
1096–1104, https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(1096.

[64] X. Hu, N. Cui, E. Demeulemeester, L. Bie, Incorporation of activity sensitivity
measures into buffer management to manage project schedule risk, Eur. J. Oper.
Res. 249 (2) (2016) 717–727, https://doi.org/10.1016/j.ejor.2015.08.066.

H.F. Rahman, et al. Automation in Construction 111 (2020) 103052

18

https://doi.org/10.1016/j.ijproman.2014.09.004
https://doi.org/10.1016/j.ijproman.2014.09.004
https://doi.org/10.1016/j.autcon.2008.11.003
https://doi.org/10.1016/j.autcon.2008.11.003
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000544
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000544
https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(1096
https://doi.org/10.1016/j.ejor.2015.08.066

	Memetic algorithm for solving resource constrained project scheduling problems
	Introduction
	Related work on solving RCPSPs
	Evolutionary algorithms
	Swarm intelligence based algorithms
	Other approaches

	Proposed GA based MA
	Solution encoding and population initialization
	Modified NEH heuristic
	Critical path method (CPM) based heuristic

	Selection operator and generational scheme
	Similar block order crossover operator (SBOX) and shift mutation
	Self-restart mechanism
	Local search operation
	Computational complexity analysis

	Experimental results and analysis
	Parameter analysis
	Comparisons of MA with the existing powerful algorithms
	Statistical analysis
	Case study

	Applicability of the proposed approach in construction project scheduling
	Conclusion and future research directions
	mk:H1_22
	mk:H1_23
	References

