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Fast -Regularized Kernel Estimation
for Robust Motion Deblurring

Jinshan Pan and Zhixun Su

Abstract—Blind image deblurring is a challenging problem in
computer vision and image processing. In this paper, we propose
a new -regularized approach to estimate a blur kernel from a
single blurred image by regularizing the sparsity property of nat-
ural images. Furthermore, by introducing an adaptive structure
map in the deblurring process, our method is able to restore useful
salient edges for kernel estimation. Finally, we propose an efficient
algorithm which can solve the proposed model efficiently. Exten-
sive experiments compared with state-of-the-art blind deblurring
methods demonstrate the effectiveness of the proposed method.

Index Terms— -regularized method, blind image deblurring,
image restoration, kernel estimation.

I. INTRODUCTION

I MAGE deblurring is a widely existing problem in image
formation process. Due to the imperfection of the imaging

devices, it still remains an active research area in image pro-
cessing communities [1]–[9]. The formation process of image
blur is usually modeled as

(1)

where , , , and represent the blurred image, latent image,
blur kernel, and the additive noise, respectively. denotes the
convolution operator. Because image deblurring is an ill-posed
problem, most approaches introduce an image prior that favors
natural images over degraded ones. By regularizing the problem
in this fashion, a high quality result can be achieved.

A. Related Work

To make blind deblurring more tractable, a wide range of
parametric image priors have been proposed. Early approaches
usually adopted Gaussian prior smoothness penalties on the nat-
ural images or gradients. These priors cannot preserve the sharp
edges of natural images. To overcome this limitation, Total Vari-
ation (TV) and its variations as popular choices of the regu-
larization term have been proposed to solve deblurring prob-
lems [10], [11]. Since natural image gradients do not obey the
Gaussian distribution, Fergus et al. [1] proposed a zero-mean
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Mixture of Gaussian to fit the distribution of natural image gra-
dients. Shan et al. [2] used a certain parametric model to ap-
proximate the heavy-tailed natural image prior. Some other ap-
proaches [12], [13] proposed hyper-Laplacian prior to fit the dis-
tribution of natural image gradients. Roth and Black [14] devel-
oped the Fields of Experts model for learning the filters. Re-
cently, sparse representation methods have also been employed
in blind deblurring [15]–[17].
Summarizing above discussions, most priors imposed on

image gradients can be regarded as some approximations of
-metric which has a good natural interpretation of sparsity

of image gradients, but minimizing -regularized model is an
NP-hard problem.

B. Our Contributions

In this paper, we propose a new -regularized method for
blur kernel estimation. By introducing this prior, our kernel es-
timation method is significantly different from previous works
in the following aspects:
1) In our kernel estimation framework, we develop an ef-
ficient Alternating Direction Method (ADM) to solve
the proposed model whose sub-problems have their own
closed form solutions.

2) Due to adopting an adaptive structure map, the perfor-
mance of our method is comparable or even better than
salient edge selection methods [3], [5], [18]. In addition,
our method is much simpler, because it does not take the
additional salient edge selection to avoid the delta kernel
solution.

To enable comparison and further testify to validity of our
method, we will make our source code available online.

II. -REGULARIZED KERNEL ESTIMATION

Most blind delurring methods can be attributed to recovering
the sharp edges in kernel estimation. Therefore, instead of re-
covering latent images, our kernel estimation is performed on
the high frequencies of images, i.e., given the blurred image ,
we want to recover the edges . Our kernel estimation model
is written as

(2)

where denotes , denotes
, and is the -norm that counts the number

of non-zero values of .
Model (2) consists of 3 terms. The first term is the likeli-

hood term, i.e., the restored data should be consistent with the
observation with respect to the estimated degradation model.
The second term is the Tikhonov regularization on kernel
which can stabilize the blur kernel estimation. The third term
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is -norm based regularization that can preserve the sparsity of
natural image gradients.

A. Numerical Algorithm

Our kernel estimation method originates from traditional
Maximum a-Posteriori (MAP) framework. It can be separated
into the following two steps: (1) kernel estimation and (2) sharp
edges restoration.
In the kernel estimation step, the blur kernel is obtained by

(3)

Obviously, model (3) is a least square problem whose solution
can be fast obtained by

(4)

where and denote the Fast Fourier Transform
(FFT) and inverse FFT, respectively, and is the complex
conjugate operator.
In the second step, i.e., sharp edges restoration, the problem

can be reformulated as

(5)

Note that model (5) is a discrete optimization problem, which
is difficult to solve by traditional gradient decent or other dis-
crete optimization methods. Furthermore, the brute force search
method is time-consuming. Inspired by the idea of ADM, we
apply it to solve model (5).
We first convert model (5) to the following equivalent

problem:

(6)

Then, we have the following Lagrangian function:

(7)

where and are Lagrange multipliers and is a penalty
parameter. Hence, the corresponding iterative scheme of ADM
is

(8)

It is easy to show that the minimization of
is equivalent to the following problem:

(9)

Obviously, model (9) is a least square problem and the corre-
sponding solution can be obtained by using FFT, i.e.,

(10)

Similar to the sub-problem, the minimization of
can be equivalently written as

(11)

Although model (11)1 involves a discrete -metric, we can still
obtain its explicit solution by the following lemma:
Lemma II.1: Let be a single variable, if the optimal solution

of

(12)

is , then is defined as

,
otherwise,

(13)

where

,
otherwise.

(14)

According to Lemma II.1, the solution of (11) is

,
otherwise.

(15)

Hence, the ADM algorithm for solving model (5) is summa-
rized in Algorithm 1.

Algorithm 1 ADM Algorithm for Solving (5)

Input: blurred image and blur kernel ;
Initialize: , , , ,

, , .
while not converged && do
Step 1: Compute by (15).
Step 2: Compute by (10).
Step 3: Update the multipliers and penalty parameters:

, ,
.

Step 4: Check the convergence conditions:
and .

.
end while
Output: sharp edges .

Note that the ADMalgorithm originates fromAugmented La-
grangian Method (ALM), thus its convergence property is guar-
anteed in theory.

1The sub-problem can also be regarded as an -smoothing approach [19].
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Fig. 1. Evaluation results: Cumulative histogram of the deconvolution error
ratio across test examples.

Finally, we summarize our -regularized kernel estimation
method in Algorithm 2.2

Algorithm 2 Algorithm for -Regularized Kernel Estimation

Input: blurred image , parameters , ,
and kernel size: .
for do
Step 1: Update kernel by (4).
Step 2: Update sharp edges by Algorithm 1.

.
end for
Output: blur kernel .

B. Increasing the Robustness for Kernel Estimation

Not all edges in the interim latent image can help the kernel
estimation. Like the strategy [18], we adopt the adaptive
weighted method to enhance the robustness for kernel estima-
tion. The modified model is defined as

(16)

where and is defined as

(17)

in which is the blurred image and is an window
centered at pixel . Equation (17) is first proposed by [5] to
remove some narrow strips in the kernel estimation process.
Because is a pixel-wise adaptive map, the optimization

strategy for (16) is still the same as (2). We only need to modify
(15) as

,
otherwise.

(18)

One can see that (18) has a similar form to the edge selection
method discussed in [5]. This further verifies the effectiveness
of model (16).
1) Some Notes About Adaptive Kernel Estimation Method:

In our kernel estimation process, the adaptive -metric in (16)
can be regarded as a selective method. This means that our

2The number of iterations is set to be 30 in our experiment. To increase the
accuracy of kernel estimates, we adopt coarse-to-fine strategy proposed by [3].

Fig. 2. One visualization example. (a) Blurred image and kernel. (b) – (g) rep-
resent the results of Fergus et al. [1], Shan et al. [2], Cho and Lee [3], Krishnan
et al. [4], Xu and Jia [5], and Levin et al. [9], respectively. (h) Our results. Our
recovered image has a higher PSNR value.

kernel estimation is similar to the salient edge selection methods
[3], [5], [18]3. However, our method does not take the additional
salient edge selection step (e.g., computing shock filtering, bilat-
eral filtering, Gaussian filtering or adaptive TV denoising). This
can greatly simplify the kernel estimation process and save the
computing time. Furthermore, the proposed efficient solver en-
sures the fast convergence of our algorithm.

III. LATENT IMAGE ESTIMATION

Once the kernel has been estimated, we can use a variety
of non-blind deconvolution methods to recover the latent image
from blurred image . It is well known that TV regularized

deblurring has been proven an effectivemethodwhich can be ef-
ficiently solved by many fast algorithms. In this work, we adopt
the following model to recover the latent image:

(19)

We set and employ the fast alternating minimization
algorithm (e.g., [11], [12]) to solve (19).

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Evaluation on Synthetic Data

We first perform quantitative evaluation of our method using
the data set from [6]. The test data consists of 32 examples
with 8 kernels. For evaluation with each example, we use the
Sum of Squared Differences (SSD) ratio (see [6]) to measure
the quality of restored images. We compare our method with
state-of-the-art methods [1]–[5], [9]. The kernel estimates of
these methods are all generated by their executable programs or
source codes. The final deblurred results are obtained by using
the sparse deconvolution method of [9] with the same param-
eter settings. In Fig. 1 we plot the cumulative histograms of the
error ratios in the same way as [6].4 As can be seen from Fig. 1,
the performance of our method is better than the other methods
on the whole, because all results’ error ratio values are below
5. Furthermore, our method significantly outperforms those of
Fergus et al. [1], Shan et al. [2], Krishnan et al. [4], and Cho
and Lee [3]. In addition, compared with methods [3], [5], our

3Equation (18) provides an intuitive illustration.
4For example, in the histograms, a bin of 3 shows the percentage of test cases

whose deconvolution error ratios are below 3 (see [6] for more details).
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TABLE I
COMPARISON OF RUNNING TIME (/S)

Fig. 3. A real challenging example with large blur. (a) Blurred image. (b) – (e)
represent the results of Shan et al. [2], Cho and Lee [3], Krishnan et al. [4], and
Xu and Jia [5], respectively. (f) Our results. The size of blur kernel is estimated
as 95 95. (The images are best viewed on screen!).

method does not need to select salient edges from interim re-
covered images in every iterations. Thus, our kernel estimation
process is simpler.
We choose an example from above experiment and show it

in Fig. 2. In this example, the traditional Peak Signal to Noise
Ratio (PSNR) is employed to measure the quality of the restored
images. We can see that our result still outperforms the results
of [1]–[5], [9] under this metric.
Our method is very efficient, because each sub-problem that

is designed by our algorithm has its own explicit solutions. To
demonstrate its efficiency, we compare with the methods whose
source codes are available.
Table I shows the comparison of running time by using some

test cases of the first experiment.5 Compared with Fergus et al.
[1], Krishnan et al. [4], and Levin et al. [9], our method needs
much less computational time.

B. Evaluation on Real Challenging Examples With Large Blur

It is known that large blur kernel estimation is a challenging
problem in blind deblurring. However, our method can estimate
large blur kernels correctly. Fig. 3 is a challenging example with
large blur6. From the estimated results of Fig. 3, we can see
that the restored images of methods [2]–[4] still contain some
noises and several visual artifacts. Compared with method [5],
our method provides a correct blur kernel successfully, and the
final restored image is visually comparable with [5].

V. CONCLUSION

We have presented an effective method for blind image
deblurring. The proposed method develops an -regularized

5The testing environment is a computer runningMSWindows 7 64 bit version
with an Intel Xeon CPU@2.53 GHz and 12 GB RAM.
6The image can be obtained from: http://www.cse.cuhk.edu.hk/~leojia/

projects/robust_deblur/index.html.

method to increase the robustness of kernel estimation. Al-
though the -regularized problem is hard to be optimized, we
develop an efficient ADM algorithm which splits this NP-hard
problem into some simple sub-problems. We also show that
each sub-problem has its own explicit solutions and can be
easily solved. Furthermore, we find that our kernel estimation
process is simpler than the state-of-the-art methods which ex-
ploit salient edges to estimate kernels. Extensive experiments
testify to the superiority of our method over state-of-the-art
methods, both qualitatively and quantitatively.
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