
Fast Motion Deblurring

Sunghyun Cho
POSTECH

Seungyong Lee
POSTECH

Input blurred image Deblurring result Magnified views
Figure 1: Fast single image deblurring. Our method produces a deblurring result from a single image very quickly. Image size: 713 × 549. Motion blur kernel size: 27 × 27.
Processing time: 1.078 seconds.

Abstract
This paper presents a fast deblurring method that produces a deblur-
ring result from a single image of moderate size in a few seconds.
We accelerate both latent image estimation and kernel estimation
in an iterative deblurring process by introducing a novel prediction
step and working with image derivatives rather than pixel values.
In the prediction step, we use simple image processing techniques
to predict strong edges from an estimated latent image, which will
be solely used for kernel estimation. With this approach, a compu-
tationally efficient Gaussian prior becomes sufficient for deconvo-
lution to estimate the latent image, as small deconvolution artifacts
can be suppressed in the prediction. For kernel estimation, we for-
mulate the optimization function using image derivatives, and ac-
celerate the numerical process by reducing the number of Fourier
transforms needed for a conjugate gradient method. We also show
that the formulation results in a smaller condition number of the nu-
merical system than the use of pixel values, which gives faster con-
vergence. Experimental results demonstrate that our method runs
an order of magnitude faster than previous work, while the deblur-
ring quality is comparable. GPU implementation facilitates further
speed-up, making our method fast enough for practical use.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

Keywords: motion blur, deblurring, image restoration

1 Introduction
A motion blur is a common artifact that produces disappointing
blurry images with inevitable information loss. It is caused by the

nature of imaging sensors that accumulate incoming lights for an
amount of time to produce an image. During exposure, if the cam-
era sensor moves, a motion blurred image will be obtained.

If a motion blur is shift-invariant, it can be modeled as the con-
volution of a latent image with a motion blur kernel, where the ker-
nel describes the trace of a sensor. Then, removing a motion blur
from an image becomes a deconvolution operation. In non-blind
deconvolution, the motion blur kernel is given and the problem is
to recover the latent image from a blurry version using the kernel.
In blind deconvolution, the kernel is unknown and the recovery of
the latent image becomes more challenging. In this paper, we solve
the blind deconvolution problem of a single image, where both blur
kernel and latent image are estimated from an input blurred image.

Single-image blind deconvolution is an ill-posed problem be-
cause the number of unknowns exceeds the number of observed
data. Early approaches imposed constraints on motion blur kernels
and used parameterized forms for the kernels [Chen et al. 1996;
Chan and Wong 1998; Yitzhaky et al. 1998; Rav-Acha and Peleg
2005]. Recently, several methods were proposed to handle a more
general motion blur given a single image [Fergus et al. 2006; Jia
2007; Shan et al. 2008]. While these methods can produce excel-
lent deblurring results, they necessitate intensive computation. It
usually takes more than several minutes for the methods to deblur a
single image of moderate size.

Most blind deconvolution methods take an iterative process that
alternatingly optimizes the motion blur kernel and the latent image.
In the process, the blur kernel is obtained from the estimated la-
tent image and the given blurred image. The kernel is then used to
estimate the latent image by applying non-blind deconvolution to
the given blurred image. The new estimated latent image is used
for kernel estimation in the next iteration. The intensive computa-
tion of previous methods stems from the complicated methods used
for kernel estimation and latent image estimation. Optimization in-
volving large matrices and vectors is needed for kernel estimation,
and sophisticated optimization techniques are necessary to handle
non-blind deconvolution with non-linear priors.

This paper presents a fast blind deconvolution method that pro-
duces a deblurring result from a single image in only a few seconds.
The high speed of our method is enabled by accelerating both kernel
estimation and latent image estimation steps in the iterative deblur-
ring process. Our method produces motion deblurring results with

comparable quality to previous work, but runs an order of magni-
tude faster. A C++ implementation of our method usually takes less
than one minute to deblur an image of moderate size, which is about
20 times faster than the C-language implementation of the previous
method [Shan et al. 2008]. A GPU implementation of our method
further reduces the processing time to within a few seconds, which
is fast enough for practical applications of deblurring.

To accelerate latent image estimation, we introduce a novel pre-
diction step into the iterative deblurring process. Strong edges are
predicted from the estimated latent image in the prediction step and
then solely used for kernel estimation. This approach allows us to
avoid using computationally inefficient priors for non-blind decon-
volution to estimate the latent image. Small deconvolution artifacts
could be discarded in the prediction step of the next iteration with-
out hindering kernel estimation. For non-blind deconvolution, we
use a simple method with a Gaussian prior, which can be computed
quickly using Fourier transforms. Since only simple image process-
ing techniques are used in the prediction step, the combination of
simple non-blind deconvolution and prediction can efficiently ob-
tain an estimated latent image used for kernel estimation.

For kernel estimation, we formulate the optimization function
using image derivatives rather than pixel values. We take a conju-
gate gradient (CG) method to solve the numerical system derived
from the optimization function, and use Fourier transforms to cal-
culate the gradient needed for the CG method. Working with image
derivatives allows us to reduce the number of Fourier transforms
from twelve to two, saving 5/6 of the computation required for
calculating the gradient. In addition, we show that the condition
number of the numerical system using image derivatives is smaller
than that using pixel values, which enables the CG method to con-
verge faster. Consequently, the numerical optimization process for
kernel estimation is significantly accelerated in our method.

The contributions of this paper can be summarized as follows.

• We propose a fast method for single-image blind deconvolu-
tion, which deblurs an image of moderate size within a few
seconds.

• We accelerate latent image estimation in the iterative deblur-
ring process, without degrading the accuracy of kernel esti-
mation, by combining a prediction step with simple non-blind
deconvolution.

• We achieve significant acceleration of the numerical opti-
mization for kernel estimation with formulation using image
derivatives rather than pixel values.

• The acceleration technique for kernel estimation can be
adopted to other deblurring methods for performance im-
provement.

2 Related Work
To reduce the ill-posedness of blind deconvolution, many previous
approaches made restrictive assumptions on a motion blur, such as a
parameterized linear motion in a single or multiple images. Chen et
al. [1996] used two consecutively blurred images to estimate a mo-
tion blur. Rav-Acha and Peleg [2005] used horizontally and verti-
cally blurred images to help reconstruct details. Cho et al. [2007]
used multiple images with space-variant blurs for finding the blur
kernels. For a single image input, Yitzhaky et al. [1998] made an
isotropy assumption to estimate a motion blur. Dai and Wu [2008]
used the blur information obtained by alpha matting to estimate per-
pixel blur kernels. Ji and Liu [2008] proposed a method to handle
more general types of blur, such as 1D accelerated motions. Due to
the assumption of simple parametric blur kernels, these approaches
cannot handle the high diversity of a 2D motion blur.

Recently, several algorithms were proposed to handle a more
general motion blur. Fergus et al. [2006] used a variational

Bayesian method with natural image statistics to deblur an image.
However, with the complexity of their statistical model, it takes a
relatively long time to estimate a PSF, even on a small image patch.
Jia [2007] used an alpha matte that describes transparency changes
caused by a motion blur for kernel estimation. The method largely
depends on the quality of the input alpha matte. Yuan et al. [2007]
used two images for motion deblurring, of which one is noisy but
has sharp edges, and the other is motion blurred. Shan et al. [2008]
introduced an effective deblurring method using a series of opti-
mization techniques. It however still needs several minutes to de-
blur an image. Levin et al. [2009] analyzed previous blind decon-
volution methods and quantitatively evaluated [Fergus et al. 2006]
and [Shan et al. 2008] using a data set.

Hardware approaches have also been introduced for image de-
blurring. Ben-Ezra and Nayar [2004] proposed a hybrid imaging
system, where a high-resolution camera captures the blurred frame
and a low-resolution camera with a faster shutter speed is used to
estimate the camera motion. Tai et al. [2008] also built a similar
hybrid system to handle a spatially varying motion blur. Levin et
al. [2008] introduced a system for capturing a uniformly blurred
image by controlling the camera motion even if the objects have
different 1D movements.

Assuming the blur kernel is known, several non-blind deconvo-
lution methods were proposed, aiming at correctly estimating the
latent sharp image [Lucy 1974; Wiener 1964]. Recently, Yuan et
al. [2008] introduced an effective non-blind deconvolution method,
which utilizes bilateral filtering and residual deconvolution to re-
duce ringing artifacts.

There have been image deblurring methods that include image
filtering similar to our prediction step. Money and Kang [2008]
used a shock filter to find sharp edges, and estimated a motion
blur kernel using the filtered image. As a simple parametric blur
kernel is assumed, this method cannot handle a more complicated
blur. Joshi et al. [2008] predicted sharp edges using edge profiles
and estimated motion blur kernels from the predicted edges. How-
ever, their goal is to remove small blurs, which can be described
with single peaks. Independently of our work, the PhD dissertation
of Joshi [2008] mentioned as future work a blind deconvolution
method that uses prediction in an iterative process. However, the
dissertation does not contain details of the method, and the prelim-
inary results show a far lower quality of deblurring than ours.

3 Fast Single Image Blind Deconvolution
3.1 Single Image Blind Deconvolution
A motion blur is generally modeled as

B = K ∗ L+N, (1)

where B is a blurred image, K is a motion blur kernel or a point
spread function (PSF), L is a latent image, N is unknown noise
introduced during image acquisition, and ∗ is the convolution op-
erator. In blind deconvolution, we estimate both K and L from B,
which is a severely ill-posed problem.

A successful approach for blind deconvolution is alternating op-
timization of L and K in an iterative process. In the latent image
estimation and kernel estimation steps of the process, we respec-
tively solve the equations similar to

L′ = argminL{‖B −K ∗ L‖+ ρL(L)}, (2)

K′ = argminK{‖B −K ∗ L‖+ ρK(K)}. (3)

In Eqs. (2) and (3), ‖B −K ∗L‖ is the data fitting term, for which
the L2 norm is usually used, and ρL and ρK are regularization
terms. For ρL, Chan and Wong [1998] used total variation, and
Jia [2007] used a term that prefers a two-tone image for the trans-
parency map. Shan et al. [2008] used image derivatives as well as

pixel values for the data fitting term while a natural image prior is
used for ρL. Several regularization terms have been used for ρK ,
such as L1 and L2 norms, total variation, and a uniform prior that
means no regularization.

The main purpose of the iterative alternating optimization is to
progressively refine the motion blur kernel K. The final deblurring
result is obtained by the last non-blind deconvolution operation that
is performed with the final kernel K and the given blurred image
B. The intermediate latent images estimated during the iterations
have no direct influence on the deblurring result. They only affect
the result indirectly by contributing to the refinement of kernel K.

The success of previous iterative methods comes from two im-
portant properties of their latent image estimation, sharp edge
restoration and noise suppression in smooth regions, which enable
accurate kernel estimation. Although we assume the blur is uniform
over the given image, a more accurate blur kernel can be obtained
around sharp edges. For example, we cannot estimate a blur kernel
on a region with a constant intensity. Since a natural image usually
contains strong edges, a blur kernel can be effectively estimated
from the edges reconstructed in latent image estimation. Noise sup-
pression in smooth regions is also important because such regions
usually occupy much larger areas than strong edges in a natural im-
age. If noise has not been suppressed in smooth regions, the data
fitting term in Eq. (3) would be significantly affected by the noise,
compromising the accuracy of kernel estimation from strong edges.

To achieve sharp edge restoration and noise suppression when
solving Eq. (2), previous methods usually perform computationally
expensive non-linear optimization. In addition, kernel estimation
using Eq. (3) is computationally demanding as it involves a number
of operations on huge matrices and vectors. As a result, both latent
image estimation and kernel estimation require heavy computation
in the iterative process of previous blind deconvolution methods.

3.2 Fast Blind Deconvolution

In this paper, we present a fast blind deconvolution technique by
reducing the computational overhead for latent image estimation
and kernel estimation. For accelerating latent image estimation, we
assume that the latent image has enough strong edges, and explic-
itly pursue sharp edge restoration and noise suppression using im-
age filters, instead of taking a computationally expensive non-linear
prior in Eq. (2). For kernel estimation, we accelerate the numeri-
cal optimization process of Eq. (3) by excluding pixel values in the
formulation.

In our method, latent image estimation is divided into two parts:
simple deconvolution and prediction. Given a blurred image B and
kernel K, we first remove the blur to obtain an estimate L of the
latent image using simple and fast deconvolution with a Gaussian
prior. Due to the characteristics of a Gaussian prior, L would con-
tain smooth edges and noise in smooth regions. In the prediction
step, we obtain a refined estimate L′ by restoring sharp edges and
removing noise fromLwith efficient image filtering techniques. As
a result, L′ provides a high-quality latent image estimation needed
for accurate kernel estimation, in spite of the poor quality of simple
deconvolution (see Fig. 2).

For kernel estimation, we use a CG method to solve Eq. (3).
During the solution process, we need to calculate the gradient of
the energy function many times. The gradient calculation requires
heavy computation, involving multiplications of huge matrices and
vectors. Fortunately, the multiplications correspond to convolu-
tion operations and can be accelerated using fast Fourier transforms
(FFTs). However, when we perform FFTs in sequence, we should
properly handle image boundaries, which prohibits direct concate-
nation of FFTs. By formulating the energy function in Eq. (3)
with only image derivatives, we can simplify the boundary handling
and reduce the number of FFTs significantly. The formulation also
makes the numerical system derived from Eq. (3) well-conditioned,

(e) previous kernel

(a) blurred image (b) deconvolution
result

(c) prediction result

(f) updated kernel

(d) deconvolution of
[Shan et al. 2008]

Figure 2: Effect of prediction. Our simple deconvolution with (a) and (e) produces a
poor result (b). However, the prediction result (c) from (b) has only sharp edges while
ringing artifacts have been removed. The kernel (f) estimated using (c) shows a re-
finement toward the real kernel, shown in Fig. 4. Comparison of (c) with (d) obtained
directly from (a) and (e) shows that combination of simple deconvolution with predic-
tion can produce a similar result to sophisticated deconvolution, for the purpose of the
input for kernel estimation. For visualization, the image in (c) has been restored from
the predicted gradient maps by Poisson reconstruction.

providing a fast convergence.

3.3 Process Overview
Fig. 3 shows the overall process of our blind deconvolution method.
An algorithm summarizing the process can also be found in the sup-
plementary material. To progressively refine the motion blur kernel
K and the latent image L, our method iterates three steps: predic-
tion, kernel estimation, and deconvolution. Recall that our latent
image estimation is divided into prediction and deconvolution. We
place prediction at the beginning of the loop to provide an initial
value of L for kernel estimation, where the input of the prediction
is the given blurred image B.

In the prediction step, we compute gradient maps {Px, Py} of L
along the x and y directions which predict salient edges in L with
noise suppression in smooth regions. Except at the beginning of
the iteration, the input of the prediction step is the estimate of L
obtained in the deconvolution step of the previous iteration. In the
kernel estimation step, we estimate K using the predicted gradient
maps {Px, Py} and the gradient maps of B. In the deconvolution
step, we obtain an estimate of L using K and B, which will be
processed by the prediction step of the next iteration.

To make the estimations of K and L more effective and effi-
cient, our method employs a coarse-to-fine scheme. At the coarsest
level, we use the down-sampled version of B to initialize the pro-
cess with the prediction step. After the final estimate of L has been
obtained at a coarse level, it is up-sampled by bilinear interpolation
and then used for the input of the first prediction step at the next
finer level. In our experiments, we performed seven iterations of
the three steps at each scale. As detailed in Sec. 4, this coarse-to-
fine scheme enables handling of large blurs for which prediction
with image filtering may not suffice to capture sharp edges.

In the coarse-to-fine iterative process for updating K and L, we
use the gray-scale versions of B and L. After the final K has been
obtained at the finest level, i.e., with the input image size, we per-
form the final deconvolution with K on each color channel of B to
obtain the deblurring result. Although any non-blind deconvolution
technique can be used for this step, we use the technique proposed
in [Shan et al. 2008], which efficiently obtains high quality decon-
volution results. Fig. 4 shows an example of our deblurring process
with intermediate estimates of K and L.

Blurred image Prediction Kernel estimation Deconvolution Final deconvolution

Figure 3: Overview of our deblurring process.

1st iteration 3rd iteration 5th iterationOutputInput

Figure 4: Deblurring process example. The leftmost image shows the input blurred image and the original motion blur kernel. The second image shows the deblurring result and the
final estimated kernel. The remaining three columns show the predicted gradient maps {Px, Py} (top) and the deconvolution results with estimated kernels (bottom) after different
numbers of iterations. For visualizing {Px, Py}, we used Poisson reconstruction. Note that the deblurring process itself does not use Poisson reconstruction of predicted gradients.
All intermediate results are shown at the finest scale.

4 Fast Latent Image Estimation
Prediction In the prediction step, we estimate the image gradient
maps {Px, Py} of the latent imageL in which only the salient edges
remain and other regions have zero gradients. Consequently, in the
kernel estimation step, only the salient edges have influences on
optimization of the kernel because convolution of zero gradients is
always zero regardless of the kernel.

We use a shock filter to restore strong edges in L. A shock filter
is an effective tool for enhancing image features, which can recover
sharp edges from blurred step signals [Osher and Rudin 1990]. The
evolution equation of a shock filter is formulated as

It+1 = It − sign(∆It)‖∇It‖dt, (4)

where It is an image at time t, and ∆It and ∇It are the Laplacian
and gradient of It, respectively. dt is the time step for a single
evolution.

Our prediction step consists of bilateral filtering, shock filtering,
and gradient magnitude thresholding. We first apply bilateral fil-
tering [Tomasi and Manduchi 1998] to the current estimate of L
to suppress possible noise and small details. A shock filter is then
used to restore strong edges of L. The result L′ of shock filtering
contains not only high-contrast edges but also enhanced noise. We
remove the noise by computing and thresholding the gradient maps
{∂xL

′, ∂yL
′} of L′. The truncated gradient maps {Px, Py} give

the final output of the prediction step.
The support size of bilateral filtering is fixed as 5 × 5, and the

spatial sigma σs is set to 2.0. The range sigma σr is a user param-
eter, which is related to the noise level of the input blurred image
B. When B contains much noise, we use a large value for σr . For
shock filtering, we perform a single evolution of Eq. (4) with the
time step dt. At the beginning of the iterative deblurring process,
we use large values for σr and dt to clearly restore strong sharp
edges in L. As the iteration goes, we gradually decrease the values
by multiplying 0.9 at each iteration. For most of our experiments,
we used 0.5 and 1.0 for the initial values of σr and dt, respectively.

The threshold for truncating gradients is determined as follows.
To estimate an m ×m kernel, we need the information of blurred
edges in at leastm different directions. We construct the histograms
of gradient magnitudes and directions for each ∂L′. Angles are

quantized by 45◦, and gradients of opposite directions are counted
together. Then, we find a threshold that keeps at least rm pixels
from the largest magnitude for each quantized angle. We use 2 for
r by default. To include more gradient values in {Px, Py} as the
deblurring iteration progresses, we gradually decrease the threshold
determined at the beginning by multiplying 0.9 at each iteration.
Deconvolution In the deconvolution step, we estimate the latent
image L from a given kernel K and the input blurred image B. We
use the energy function

fL(L) =
∑
∂∗

ω∗‖K ∗ ∂∗L− ∂∗B‖2 + α‖∇L‖2, (5)

where ∂∗ ∈ {∂o, ∂x, ∂y, ∂xx, ∂xy, ∂yy} denotes the partial deriva-
tive operator in different directions and orders, ω∗ ∈ {ω0, ω1, ω2}
is a weight for each partial derivative, and α is a weight for the reg-
ularization term. The first term in the energy is based on the blur
model of [Shan et al. 2008], which uses image derivatives for re-
ducing ringing artifacts. The regularization term ‖∇L‖2 prefers L
with smooth gradients, as mentioned in [Levin et al. 2007]. Eq. (5)
can be optimized very fast by pixel-wise division in the frequency
domain, which needs only two FFTs. For ω∗, we used the values
given in [Shan et al. 2008]. We used 0.1 for α.

Optimizing Eq. (5) may not produce high-quality results, com-
pared to sophisticated deconvolution methods (e.g., [Levin et al.
2007; Yuan et al. 2008; Shan et al. 2008]), and the results can
contain smoothed edges and ringing artifacts. However, due to the
prediction step that sharpens edges and discards small details, this
simple deconvolution does not hinder accurate estimation of a blur
kernel in our iterative process.
Large blurs Our prediction method may fail to correctly predict
sharp edges for large blurs. However, our coarse-to-fine scheme en-
ables us to avoid direct prediction of edges from a largely blurred
image. We first predict sharp edges in a low resolution image,
where the extents of blurs have been narrowed and most edges can
be predicted without severe localization errors. At a higher resolu-
tion, we start prediction of sharp edges with an upsampled version
of the deconvolved image obtained at a coarser resolution, which
contains reduced amounts of blurs. In the iterative process at a spe-
cific scale, sharp edge prediction is applied to the deconvolution

Figure 5: Estimated kernels at different scales for the deblurring example in Fig. 4.
As the scale becomes finer, a more detailed structure of the kernel is recovered.

result obtained by an updated kernel in the previous iteration, pro-
gressively improving the prediction accuracy. With the multi-scale
iterative process, we can estimate kernels for large blurs using pre-
diction with small size bilateral and shock filters. This multi-scale
iterative process is also the main difference from [Joshi et al. 2008]
and [Money and Kang 2008], which enables our method to estimate
complex large motion blurs that cannot be handled by the previous
methods. Fig. 5 shows estimated kernels at different scales in our
multi-scale process.
Speed comparison For estimating latent image gradient maps
to be used for kernel estimation, our method requires two FFTs
for deconvolution and simple image filtering operations for predic-
tion. Bilateral filtering with a small support size and shock filter-
ing, as well as gradient thresholding, can be performed very fast.
In contrast, the highly efficient deconvolution method of Shan et
al. [2008], which is based on variable substitution, commonly needs
30 to 60 FFTs, i.e., 15 to 30 times more FFTs than our method.
Obviously, our method with simple convolution and prediction is
much faster than the latent image estimation with a sophisticated
deconvolution technique.

5 Fast Kernel Estimation
To estimate a motion blur kernel using the predicted gradient maps
{Px, Py}, we minimize the energy function

fK(K) =
∑

(P∗,B∗)

ω∗‖K ∗ P∗ −B∗‖2 + β‖K‖2, (6)

where ω∗ ∈ {ω1, ω2} denotes a weight for each partial derivative.
P∗ and B∗ vary among

(P∗, B∗) ∈ {(Px, ∂xB), (Py, ∂yB),

(∂xPx, ∂xxB), (∂yPy, ∂yyB),

((∂xPy + ∂yPx)/2, ∂xyB)}. (7)

Each (K ∗ P∗ − B∗) forms a map and we define ‖I‖2 =∑
(x,y)

I(x,y)2 for map I , where (x, y) indexes a pixel in I . β is
a weight for the Tikhonov regularization.

Our energy function in Eq. (6) is similar to [Shan et al. 2008].
A difference is that we use only the image derivatives, not includ-
ing the pixel values, in the energy function. In addition, similar to
Yuan et al. [2007], our energy function includes a Tikhonov regu-
larization term, instead of the L1 norm of K used in [Shan et al.
2008]. In our experiments, we used the values given in [Shan et al.
2008] for ω∗ and set β to 5.

We can write Eq. (6) in a matrix form,

fk(k) = ‖Ak− b‖2 + β‖k‖2

= (Ak− b)T (Ak− b) + βkT k, (8)

where A is a matrix consisting of five P∗’s, k is a vector represent-
ing the motion blur kernel K, and b is a vector consisting of five
B∗’s. To minimize Eq. (8), we use a CG method. Then, the gradient
of fk, defined by

∂fk(k)

∂k
= 2AT Ak + 2βk− 2AT b, (9)

should be evaluated many times in the minimization process.

Computation of ∂fk(k)/∂k is time consuming due to the vast
size of A. When the sizes of L and K are n × n and m × m,
respectively, the size of A is 5n2×m2. Thus, direct computation of
Ak needs heavy computational and storage overhead. Although the
size of AT A is m2 ×m2, which is relatively small, precomputing
AT A is still time consuming. Each element of AT A requires the
computation of dot product for two shifted versions of five P∗’s.

However, since Ak corresponds to convolution between five P∗’s
and K, we can accelerate the computation by FFTs. Specifically,
computing Ak needs six FFTs: oneF(K) and fiveF−1[ω∗F(P∗)◦
F(K)]’s, whereF andF−1 denote the forward and inverse Fourier
transforms, respectively, and ◦ is a pixel-wise multiplication. Note
that we can precompute F(P∗) before starting the CG method.
Similarly, computing AT y can be accelerated by performing six
FFTs, where y = Ak. As a result, it costs a total of 12 FFTs to com-
pute the gradient ∂fk(k)/∂k at each iteration of the CG method. In
addition to F(P∗), AT b can be computed with FFTs in the prepro-
cessing step.

To further accelerate the computation by reducing the number
of FFTs, we concatenate evaluations of Ak and AT y to directly
compute AT Ak. Then, AT Ak can be computed by

F−1

[∑
P∗

ω∗F(P∗) ◦ F(P∗) ◦ F(K)

]
(10)

with appropriate cropping and flipping operations, where F(P∗) is
the complex conjugate of F(P∗). In Eq. (10),

∑
P∗
ω∗F(P∗) ◦

F(P∗) can be precomputed before CG iteration. Thus only two
FFTs are needed for computing the gradient, saving 10 FFTs.

This efficient computation benefits from using only image
derivatives but no pixel values in Eq. (6). If we include pixel values
in Eq. (6), the computation of Ak with FFTs will have boundary ar-
tifacts due to the periodicity property of Fourier transforms. Then,
we should handle the boundary artifacts before computing AT y.
This intervening boundary handling prohibits direct computation
of AT Ak using Eq. (10). In contrast, since our method uses only
image derivatives, we can avoid the boundary artifacts by simply
padding the boundaries of the derivative images P∗’s with zeros
before computing Ak. We set the width of a padded image as a
power of prime numbers, 2, 3, 5, and 7, which is greater than or
equal to (n + m − 1), where n and m are the widths of the input
image and the kernel, respectively. The height of a padded image
is determined similarly. FFTs can be computed quickly for such
image sizes.

Motion blur kernels are generally assumed normalized and con-
taining no negative components. After optimizing Eq. (6), we set
elements with values smaller than 1/20 of the biggest one to zero.
Then, the remaining non-zero values are normalized so that their
sum becomes one.
Convergence speed In numerical optimization, the number of
iterations for convergence, or convergence speed, is important. In-
terestingly, our method for kernel estimation shows faster conver-
gence than the method including pixel values. In Fig. 6, we used
the CG method to estimate the kernel for a synthetically blurred im-
age. The graphs in Fig. 6 show that the kernel estimation error of
our method drastically decreases only in a few iterations while the
error decreases slowly in the case of using pixel values.

The fast convergence of our method results from the well-
conditioned structure of the matrix AT A in Eq. (9). AT A can be
represented by

AT A =
∑
∗

ω∗AT
∗ A∗, (11)

where AT
∗ A∗ is defined by (AT

∗ A∗)(i,j) = (li∗)T (lj∗). li∗ is the
vector representation of ∂∗L after shifted by the amount depending

0.012

0.006

0.009

0

0.003

1 21 41 61 81

our method
kernel estimation including pixel values

Figure 6: Convergence speed of the numerical method in kernel estimation. Left:
original image and a blurred version used for experiment. Right: error of the interme-
diate kernel estimate (vertical) vs. number of iterations in a CG method. Our method
converges faster than the formulation including pixel values. The error of a kernel
estimate is measured by the sum of pixel-wise squared differences from the original
kernel.

ATA cond:7 052e+004 AT A cond:3 964e+005ATA cond:5 515e+007 AxAx cond:7.052e+004

200 100

AxxAxx cond:3.964e+005

200
100

AoAo cond:5.515e+007

200 1.25

x 105

400

600 0

50 400

600 50

0

50

400

600
1.15

1.2

200 400 600
600

200 400 600
600 -50

200 400 600
600

Figure 7: Visualization of matrix AT
∗ A∗. From left to right, AT

o Ao, AT
x Ax, and

AT
xxAxx computed with the example in Fig. 6.

on i. Image derivatives are usually close to zero except on edge
pixels. Hence, for a derivative image P∗, the values in AT

∗ A∗ are
large only around the diagonal and become small rapidly for off-
diagonal regions. In contrast, if we involve pixel values for kernel
estimation, AT

o Ao from the latent image L will be included in the
summation of Eq. (11). As pixel values are mostly non-zero over an
image, AT

o Ao have large values except for far off-diagonal regions.
Fig. 7 visualizes AT

o Ao, AT
x Ax, and AT

xxAxx computed with
the example image in Fig. 6. Condition numbers of the matrices
are 5.5155 × 107, 7.0516 × 104 and 3.9636 × 105, respectively.
Clearly, AT

x Ax, and AT
xxAxx have diagonally dominant structures

and smaller condition numbers than AT
o Ao. As a result, we can

reduce the number of iterations in the CG method used for kernel
estimation by excluding pixel values in the energy function.
Speed comparison For speed comparison, we consider a ker-
nel estimation method, whose energy function is the same as [Shan
et al. 2008], except that the L2 norm is used for a kernel prior. We
call the method Shan-L2. Note that the original version in [Shan
et al. 2008] needs more computation, since it uses the L1 norm for
a kernel prior. Also, according to the authors’ document on ad-
ditional programming details, which is available on their website,
their kernel estimation step directly assembles huge matrices, which
results in memory shortage and excessive computation. While our
method needs two FFTs per CG iteration, Shan-L2 needs 14 FFTs,
as it uses six images, one pixel value image plus five derivative im-
ages. Moreover, since it uses pixel values, it needs more iterations
than ours, as analyzed above. In our experiments, our method runs
five CG iterations, while Shan-L2 needs about 30 iterations to ob-
tain a similar accuracy. Other previous methods usually use only
pixel values for kernel estimation. In this case, convolutions cannot
be concatenated due to the boundary problem, so they need four
FFTs to compute a gradient of their energy function. They would
also need more iterations than ours. To sum up, our kernel estima-
tion is more than 40 times faster than Shan-L2 and more than 10
times faster than other methods using only pixel values.

Additionally, we found that the kernel estimation in [Shan et al.
2008] is more time-consuming than their latent image estimation.
Even if Shan-L2 is used instead of the original version, kernel es-
timation requires about 10 times more FFTs than latent image esti-
mation. Consequently, when we set [Shan et al. 2008] as a baseline,

1

9.00E-04

3.00E-04

6.00E-04

2
0.00E+00

(a) (b) (a) (b) (a) (b)

3

() () () () () ()

1 2 3

0 0 0001 0 0010 0.0001 0.001

Figure 8: Kernel estimation error. Left: test images with blur kernels. Right: errors of
the estimated kernels with (a) our method and (b) the method including pixel values.
Errors are measured by the sum of pixel-wise squared differences between the esti-
mated and original kernels. Different colors denote different amounts of added noise.
For all test cases, (a) and (b) show similar errors.

Blurry input Deblurring result Blurry input Deblurring result

Figure 9: Deblurring of synthetic examples. The first and third images show blurred
images with applied motion blur kernels. The second and fourth images show our de-
blurring results with estimated kernels. The kernel sizes of the left and right examples
are 29× 25 and 21× 21, respectively.

kernel estimation contributes more to acceleration than latent image
estimation in our method.

Accuracy To test the accuracy of our kernel estimation method,
we experimented with synthetic examples, where we added Gaus-
sian noise with different variances. For the examples, we estimated
the kernels using our method and the other method including pixel
values. Fig. 8 shows the errors of estimated kernels. Although our
method does not use pixel values, it exhibits similar accuracy to
the case of including pixel values. Furthermore, our method gives
better accuracy for some cases due to the well-conditioned system
obtained by excluding pixel values.

Application to other methods Our acceleration technique for
optimizing Eq. (6) can be used for other energy functions of kernel
estimation. If the gradient of an energy function can be represented
by a similar form to Eq. (9), the optimization process can be accel-
erated by our technique. For example, in the kernel estimation of
[Yuan et al. 2007], we can use the gradient maps of a noisy image
for Eq. (6), instead of {Px, Py}, and accelerate kernel estimation
with our technique. Similarly, our acceleration technique can be
used for kernel estimation of [Jia 2007; Shan et al. 2008].

6 Results
In our experiments, the kernel size was specified by the user and
did not have much influence on the accuracy of kernel estimation if
the size was large enough to contain the estimated kernel. Although
our method contains several parameters, we mainly controlled the
kernel size, the range sigma σr of bilateral filtering for prediction,
and the parameters of the final deconvolution operation which are
adopted from [Shan et al. 2008].

To demonstrate the quality of the estimated motion blur kernels,
we first show deblurring results with synthetic examples. In Fig. 9,
the estimated motion blur kernels have almost the same shapes as
the original. The deblurring results show that the fine details of the
original latent images have been accurately recovered.

Figs. 1 and 10 show deblurring results of real photographs. The
photographs contain complex structures and different camera mo-
tions. In the deblurring results, sharp edges have been significantly
enhanced, revealing the object shapes and structures more clearly.

(a) (b) (c) (d) (e)() () () () ()

Figure 10: Deblurring results of real photographs. Top row: input blurred images. Bottom row: deblurring results with estimated kernels.

(a) blurry input (b) [Yuan et al. 2007](a) blurry input (b) [Yuan et al. 2007]

(c) [Shan et al. 2008] (d) our method

Figure 11: Comparison with previous deblurring methods.

The estimated motion blur kernels show reasonable shapes. Addi-
tional results can be found in the supplementary material.

Table 1 shows the processing times for the deblurring examples
in Fig. 10. We implemented our method with GPU acceleration
using BSGP [Hou et al. 2008]. For FFT, we used a FFT library pro-
vided with CUDA. Since BSGP is similar to C-language and easy to
use, GPU implementation was almost straightforward. Our testing
environment was a PC running MS Windows XP 32bit version with
Intel Core2 Quad CPU 2.66GHz, 3.25GB RAM, and an NVIDIA
GeForce GTX 280 graphics card. Even for kernels of large sizes,
our method can remove blurs from input images of moderate sizes
within a few seconds. Actually, for the photographs in Figs. 10(c),
10(d), and 10(e), it took less than one second.

Fig. 11 compares our deblurring results with previous methods.
A pair of blurred and noisy images is needed in [Yuan et al. 2007]
while a given single image can be deblurred in [Shan et al. 2008].
Although our method uses a single image and the computation is
much faster than the previous methods, the quality of the results

Image Size Processing time (sec.)
Image Kernel A B C

a 972× 966 65× 93 2.188 3.546 5.766
b 1024× 768 49× 47 1.062 1.047 2.125
c 483× 791 35× 39 0.343 0.235 0.578
d 858× 558 61× 43 0.406 0.297 0.703
e 846× 802 35× 49 0.516 0.406 0.922

Table 1: Processing times of the deblurring examples in Fig. 10. A: kernel estimation.
B: final deconvolution. C: total processing time.

Image Size Processing time (sec.)
Image Kernel A B C

Picasso 800× 532 27× 19 360 20 0.609
statue 903× 910 25× 25 762 33 0.984
night 836× 804 27× 21 762 28 0.937

red tree 454× 588 27× 27 309 11 0.438

Table 2: Processing time comparison. A: [Shan et al. 2008]. B: our method with C++
implementation. C: our method with GPU acceleration.

is comparable due to our accurate kernel estimation. Quantitative
comparison of our method with previous deblurring methods using
the data set of [Levin et al. 2009] can be found in the supplementary
material.

Table 2 compares the processing times of our method and [Shan
et al. 2008]. For comparison, we also implemented our method us-
ing C++ without GPU acceleration. To measure the computation
time of [Shan et al. 2008], we used the executable provided by the
authors on the internet1. We used the four images included in the in-
ternet distribution with the parameters provided by the authors. The
processing times of our method include the time for the final decon-
volution, which is performed by our C++ or GPU implementation
of the method in [Shan et al. 2008]. To exclude additional decon-
volution time from the comparison, we did not use the additional
ringing suppression method of [Shan et al. 2008] for both their and
our results. Table 2 shows that with a C++ implementation, our
deblurring method is about 20 times faster than the executable of
[Shan et al. 2008], which is a C-language implementation.

7 Discussion
In this paper, we proposed a fast blind deconvolution method, which
provides enough speed for consumers to use deblurring in practice.

1http://www.cse.cuhk.edu.hk/˜leojia/projects/motion_
deblurring/index.html

Our method is based on the intuition that blurred strong edges can
provide reliable information for the faithful estimation of a motion
blur kernel. With the intuition, we could specify the required prop-
erties of an estimated latent image used for kernel estimation in
an iterative deblurring process. By explicitly achieving the proper-
ties with simple image filters in a multi-scale approach, we could
avoid using computationally expensive priors for handling complex
and large blurs. We hope that this intuition would help in solving
more difficult deblurring problems, such as spatially-varying mo-
tion blurs.
Limitations Our deblurring method consists of simpler steps than
previous methods. This simplicity may incur degradation of the de-
blurring quality, although the comparisons in Fig. 11 and the sup-
plementary material show comparable quality to previous sophisti-
cated methods. Our prediction depends on local features rather than
global structures of the image. If an image has strong local features
inconsistent with other image regions, our method may fail to find a
globally optimal solution. For example, such inconsistent features
can be caused by saturated pixels, as shown in the supplementary
material. Our kernel estimation uses the Tikhonov regularization
term, which is simpler than a sparsity prior used in [Fergus et al.
2006]. Although less accurate kernels could be obtained with this
simple term, the experiments with synthetic examples in Fig. 9 and
the supplementary material demonstrate that the accuracy of our
kernel estimation is reasonable.

We observed that our deblurring results are relatively sensitive to
parameters, and improving the robustness to the parameters is our
future work. Nevertheless, we could obtain desirable results usually
within a few trials, where even several trials need much less time
than a single run of previous methods.

We assume the latent image contains enough sharp edges that
can be used for kernel estimation. While most photographs include
people, buildings, and natural scenery, which usually have sharp
edges, this assumption may not always hold, e.g., with a photo-
graph of furry objects. In this case, kernel estimation would be less
accurate and the deblurring result could be over-sharpened.

Our method shares common limitations with other uniform mo-
tion deblurring methods. Due to the limitation of the blur model
based on convolution, saturated pixels from strong lights, severe
noise, and a spatially varying blur would not be properly handled.
Extending our deblurring method to resolve this limitation will be
interesting future work.

Acknowledgements We thank Flickr users, tanakawho (Fig. 4)
and AndWat (Fig. 10(b)), and Nae-Jin Kong (Fig. 9 right) for shar-
ing their images. This work was supported by the IT R&D program
of MKE/MCST/KEIT (2008-F-031-01, Development of Computa-
tional Photography Technologies for Image and Video Contents)
and the ERC Program of MEST/NRF (R11-2008-007-01002-3).

References
BEN-EZRA, M., AND NAYAR, S. K. 2004. Motion-based motion

deblurring. IEEE Trans. Pattern Analysis Machine Intelligence
26, 6, 689–698.

CHAN, T. F., AND WONG, C.-K. 1998. Total variation blind
deconvolution. IEEE Trans. Image Processing 7, 3, 370–375.

CHEN, W.-G., NANDHAKUMAR, N., AND MARTIN, W. N. 1996.
Image motion estimation from motion smear - a new computa-
tional model. IEEE Trans. Pattern Analysis Machine Intelligence
18, 4, 412–425.

CHO, S., MATSUSHITA, Y., AND LEE, S. 2007. Removing non-
uniform motion blur from images. In Proc. ICCV 2007, 1–8.

DAI, S., AND WU, Y. 2008. Motion from blur. In Proc. CVPR
2008, 1–8.

FERGUS, R., SINGH, B., HERTZMANN, A., ROWEIS, S. T., AND
FREEMAN, W. 2006. Removing camera shake from a single
photograph. ACM Trans. Graphics 25, 3, 787–794.

HOU, Q., ZHOU, K., AND GUO, B. 2008. BSGP: bulk-
synchronous GPU programming. ACM Trans. Graphics 27, 3,
article no. 19.

JI, H., AND LIU, C. 2008. Motion blur identification from image
gradients. In Proc. CVPR 2008, 1–8.

JIA, J. 2007. Single image motion deblurring using transparency.
In Proc. CVPR 2007, 1–8.

JOSHI, N., SZELISKI, R., AND KREIGMAN, D. 2008. PSF esti-
mation using sharp edge prediction. In Proc. CVPR 2008, 1–8.

JOSHI, N. 2008. Enhancing photographs using content-specific
image priors. PhD thesis, UCSD.

LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T.
2007. Image and depth from a conventional camera with a coded
aperture. ACM Trans. Graphics 26, 3, article no. 70.

LEVIN, A., SAND, P., CHO, T. S., DURAND, F., AND FREEMAN,
W. T. 2008. Motion-invariant photography. ACM Trans. Graph-
ics 27, 3, article no. 71.

LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. 2009.
Understanding and evaluating blind deconvolution algorithms.
In Proc. CVPR 2009, 1–8.

LUCY, L. 1974. An iterative technique for the rectification of ob-
served distributions. Astronomical Journal 79, 6, 745–754.

MONEY, J. H., AND KANG, S. H. 2008. Total variation minimiz-
ing blind deconvolution with shock filter reference. Image and
Vision Computing 26, 2, 302–314.

OSHER, S., AND RUDIN, L. I. 1990. Feature-oriented image
enhancement using shock filters. SIAM Journal on Numerical
Analysis 27, 4, 919–940.

RAV-ACHA, A., AND PELEG, S. 2005. Two motion-blurred im-
ages are better than one. Pattern Recognition Letters 26, 311–
317.

SHAN, Q., JIA, J., AND AGARWALA, A. 2008. High-quality
motion deblurring from a single image. ACM Trans. Graphics
27, 3, article no. 73.

TAI, Y.-W., DU, H., BROWN, M. S., AND LIN, S. 2008. Im-
age/video deblurring using a hybrid camera. In Proc. CVPR
2008, 1–8.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Proc. ICCV 1998, 839–846.

WIENER, N. 1964. Extrapolation, Interpolation, and Smoothing
of Stationary Time Series. MIT Press.

YITZHAKY, Y., MOR, I., LANTZMAN, A., AND KOPEIKA, N. S.
1998. Direct method for restoration of motion-blurred images.
Journal of Opt. Soc. Am. A. 15, 6, 1512–1519.

YUAN, L., SUN, J., QUAN, L., AND SHUM, H.-Y. 2007. Image
deblurring with blurred/noisy image pairs. ACM Trans. Graphics
26, 3, article no. 1.

YUAN, L., SUN, J., QUAN, L., AND SHUM, H.-Y. 2008. Progres-
sive inter-scale and intra-scale non-blind image deconvolution.
ACM Trans. Graphics 27, 3, article no. 74.

