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ARTICLE INFO ABSTRACT

This study argues that the mainstream approaches to system dynamics (SD) modeling processes lack effective
impact-based performance management tools and, paradoxically, build upon a nonsystemic view of some social
dynamics that are key to sustainability transformations. A causal loop diagram of the mainstream approaches to
participatory SD modeling is developed to discuss the fragilities of the learning and decision-making systems that
result from such approaches. The analysis suggests that when common resources are at stake, ad hoc organi-
zational solutions are needed at the field level, in addition to the traditional facilitating action at the project/
group level, for SD modeling to succeed. Then, to address the fragilities of the existing approaches to partici-
patory SD modeling, this study integrates concepts and solutions from institutional theories, adaptive co-man-
agement, and the body of knowledge on the (new) commons. A second causal loop diagram is provided to show
how this new proposed approach could restructure the processes that link SD modeling inputs, activities, out-
puts, outcomes, and impacts due to a higher-level permanent organizational unit with specific roles and data
management capabilities labeled “smart commons organization”. This study suggests that the proposed smart
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commons approach could enhance the contribution of SD modeling to sustainability transformations.

1. Introduction

Systems thinking is often considered essential for addressing the
complexity of sustainability challenges (Nabavi et al., 2017). In fact,
systems thinking is particularly suited to understand the big picture
around a problem and forecast its long-term evolution rather than
concentrating on specific, short-term cause-effect relationships
(Meadows, 2009). Through system dynamics (SD), systems thinking
provides methods and techniques for viewing problems and human
action as interconnected wholes and for understanding the (often
lagged) feedback loops that may make complexity very difficult to
address through the traditional, linear modeling processes. SD enables
us to rigorously define sustainability challenges in terms of measurable
levels and flows of common resources (such as air quality or youth
employability) and to build mental models of the complex net of cause-
effect relationships that revolve around such common resources
(Dietz et al., 2003).

From a performance management perspective (Heinric, 2002), a
systemic approach to sustainability challenges should translate into
processes that link SD modeling inputs and activities to SD outputs (that
is, the quality of SD models), outcomes (that is, the consequences of
outputs, such as model-based decisions) and real-world impacts (that is,
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the levels of the relevant common resources, such as air quality). These
processes should be circular, that is, feedback loops should be present
across SD modeling inputs, activities, outputs, outcomes, and impacts,
to enable cycles of adaptive decision-making and learning for sustain-
ability. Unless such circular processes are effectively organized and
managed, the potential of SD modeling may remain largely un-
exploited.

Despite the relevance of this issue, it has thus far been only partially
addressed in the literature on SD modeling management.

The studies on stakeholder engagement in SD modeling
(Hernantes et al., 2013) provide valuable insights into the possible
circular relations between stakeholder involvement (as a key input),
facilitating action (as a key activity) and SD model accuracy and con-
sensus on the SD model (as key outputs). However, these studies tend to
consider the much-needed links between SD modeling outputs, out-
comes, and impacts as out of their scope.

The complementary streams on group model building (GMB), par-
ticipatory SD modeling for policymaking, and community-based SD
(Kiraly and Miskolczi, 2019) enable significant advancements in the
understanding of the links between SD modeling outputs and outcomes.
However, the activities-outputs-outcomes links described by these
mainstream approaches are linear rather than circular. In addition,
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these mainstream approaches do not address the outcomes-impacts
links and feedback loops.

Considering this gap in the body of knowledge on SD modeling
process management, it is perhaps not surprising that, even if many
sophisticated system dynamic models have been published in important
scientific journals (e.g., Bassi et al., 2012; Kwon, 2012; Musango et al.,
2014; Stern et al., 2015; Zhao et al., 2016), very few of them have
actually been used to durably support real-world processes of sustain-
ability transformations to date (Taylor et al., 2009). The link between
system dynamics modeling and real-world sustainability transforma-
tions is still weak.

It is more surprising, instead, that some SD experts and researchers
tend to place the blame of this weakness on phenomena that they
perceive as external to the SD modeling system, such as paradigm
conflicts, people's difficulties in understanding SD diagrams, or power
games between decision-makers (Lane, 2017). Many experts of SD
modeling management seem to think that their job is to complete
outputs (high-quality models) and, at best, achieve specific outcomes
(such as participants’ empowerment): the actual impact of SD outcomes
on common resources is often perceived as someone else's business,
which is paradoxical because blaming a system's failure on factors that
are external to the system is the one main mental mistake that system
thinkers are expeted to most strenuously combat (Meadows, 2009).

In other words, despite significant progress in the management of
the links between SD modeling inputs, activities and outputs, the links
between SD modeling outputs, outcomes and impacts still tend to be
thought of in a nonsystemic way.

Considering these problems, this article aims to

1 Propose an impact-based performance management framework that
is usable for all SD modeling processes;

2 Analyze the fragilities of the mainstream approaches to the man-
agement of SD modeling processes by building a causal loop dia-
gram representing the learning and decision-making system enabled
by these approaches;

3 Integrate the existing mainstream approaches with a new, com-
plementary approach that addresses the hitherto neglected links
between SD modeling outputs, outcomes, and impacts, and de-
monstrate the potential of this approach through a second causal
loop diagram;

4 Discuss the organizational implications of the novel proposed ap-
proach to SD modeling process management by critically comparing
the two diagrams (points 2 and 3 above).

Consistently, the contribution of this article is fourfold.

First, this study reviews the performance measures that are men-
tioned in the literature on participatory SD modeling and recognizes
that while there is convergence on SD modeling output and outcome
measures, a standard method for measuring SD modeling impact is still
missing. Therefore, this study proposes the (changes in the) levels of
relevant common resources as key indicators of SD modeling sustain-
ability impact.

Second, to the best of the authors’ knowledge, this is the first time
that SD tools, such as causal loop diagrams, are used to critically re-
present the fragilities of the learning and decision-making systems that
are based on SD modeling itself. The results of such a meta-modeling
effort allow for a clear and synthetic explanation of the main problems
hindering SD modeling from fully developing its potential contribution
to sustainability transformations. As shown in analysis of the diagram
in Fig. 1, these problems can be conceptualized as system problems
rather than mere consequences of external factors, and they can then be
addressed through system (re)design.

The third main contribution of this study builds upon previous ones.
To perform system (re)design and propose a new integrated approach
to SD modeling management, this study leverages the joint explanatory
and normative power of three literature streams that, although
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scientifically sound, viable and highly complementary, have not yet
been leveraged to improve the management of SD modeling processes.
These three streams are the literature on institutional logics
(Thornton et al., 2012), adaptive co-management (Berkes et al., 2003),
and the body of knowledge on the (new) commons (Dietz et al., 2003).

Cross-fertilization between the existing mainstream approaches to
participatory SD modeling and these three streams allows for the de-
velopment of a novel view of SD modeling as the engine of a wider
learning and decision-making system that is capable of (re)generating
and protecting the stocks of relevant common resources, as shown in
the analysis of the causal loop diagram in Fig. 2. According to the re-
sults of this cross-fertilization, (i) solutions borrowed from the institu-
tional logics approach can be usefully leveraged to control the tensions
that could exacerbate the accuracy-consensus trade-off in collaborative
SD modeling processes; (ii) solutions borrowed from the literature on
the commons and on adaptive co-management can be usefully lever-
aged to structure effective outcome-impact links, through the devel-
opment of system resilience; and (iii) the management of data as
common resources is key to enable effective feedback loops that cir-
cularize the processes, from SD impacts back to SD modeling inputs,
thus allowing for adaptive learning and institutional work.

The fourth key contribution of this article stems from the critical
comparison between the two proposed causal loop models (Figs. 1 and
2). The authors argue that the organizational solutions proposed by
mainstream SD modeling management, based on SD group facilitators,
can only manage the group-level circular processes linking SD inputs,
activities, outputs, and, at best, outcomes. Instead, to manage the
higher-level processes linking SD outputs, outcomes, and impact, a
further, higher-level, permanent organizational unit is needed. Based
on the cross-fertilization synthesized above, this study proposes that
this higher-level organizational unit should embody the key char-
acteristics of the hybrid organization envisaged by the institutional
logics literature and the bridging organization envisaged by the adap-
tive co-management literature, along with advanced capabilities to
manage data as common resources. As shown in the second causal loop
diagram in Fig. 2, this “smart commons organization” plays an irre-
placeable role in enabling system resilience, learning process circu-
larity, and long-term contribution to the common good in the re-
structured system proposed in this study. The smart commons
organization proposed by this study fills a critical gap, since no orga-
nizational unit is envisaged, in existing mainstream approaches to SD
modeling, which has a specific mandate to protect and (re)generate a
certain common resource and the relevant data around it, and which
integrates the contributions of different SD modeling groups throughout
time, the choices of decision-makers, and the relevant data manage-
ment activities for improved system resilience (Armenia et al., 2017).
This study concludes by arguing that universities may play a perhaps
irreplaceable role as generators of smart commons organizations in the
emerging age of data.

The following four sections are dedicated, respectively, to the four
aims listed above.

2. Sustainability-related impact, outcome, and output measures of
SD modeling processes

2.1. SD modeling is a process based on systems thinking that lacks a proper
performance management system

Systems thinking emerged as a new, powerful means for sense- and
decision-making in the second half of the twentieth century
(Forrester, 1989). A system is broadly defined as a set of interconnected
elements that are coherently organized in a way that achieves some-
thing (Meadows, 2009). A system, then, is characterized by its con-
stituting elements (e.g., people, stones, cells, molecules, beliefs), the
interconnections and rules organizing the relationships between its
elements (e.g., physical laws, chemical reactions, traditions, feelings,
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Fig. 1. A causal loop model of the participatory SD modeling process, according to the main approaches available in the literature. Source: Authors’ elaboration.
LEGEND Black lines: positive causal relations. Red dotted lines: negative causal relations. Black dashdotted lines: ambiguous causal relations. See Table 1 for the
types of performance indicators (gray boxes) and Section 3.2 for the description of the numbered relations.
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business strategies, social norms) and the system's purpose(s) or func-
tion(s) (e.g., survival, digestion, profit, victory, equilibrium). The
system displays behaviors and functions that are clearly distinguishable
from the behaviors of its individual elements: for example, the behavior

and function of a firm is not the mere sum of the behaviors and func-
tions of its constituting elements, such as employees and technological
infrastructures (Pretorius et al., 2015). For this reason, systems thinking
posits that the system's behavior is an emergent property of the system
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itself.

According to systems thinking, a system's behavior largely depends
on the system's structure, that is, the very nature of its elements and
interconnections (Wolstenholme, 2004). “The system may be buffeted,
constricted, triggered, or driven by outside forces. But the system's re-
sponse to these forces is characteristic of itself [...] The system, to a
large extent, causes its own behavior! An outside event may unleash
that behavior, but the same outside event applied to a different system
is likely to produce a different result” (Meadows, 2009, p. 11).

There is a large consensus that the so-called grand challenges (such
as hunger, poverty, climate change, energy shortage, pollution) are
system problems, that is, undesired behaviors of the larger social-eco-
logical system, rather than linear consequences of specific, isolated
causes (Nabavi et al., 2017). To quantitatively describe and analyze the
main aspects of a system's behavior, scholars and practitioners often use
the SD approach, which has been developed some decades ago
(Forrester et al., 1976) with the ambition to map, simulate and predict
the evolution of systems, when these systems become too complex for
the ordinary cognitive capabilities of human beings (Qudrat-
Ullah, 2012; Sverdrup et al., 2017). SD leverages some systems thinking
tools, particularly causal loop diagrams and stock and flow diagrams, to
operationalize the relations and feedback loops between variables, such
as balancing loops and reinforcing loops (including both vicious and
virtuous cycles) (Sterman, 2000). Many scholars claim that system
dynamics may significantly improve policy-making, on the one hand,
and performance management, on the other hand, by injecting feed-
back-based learning and adaptive change into these processes
(Armenia et al., 2014; Mureddu et al., 2014; Santos et al., 2018).

The process of system dynamics modeling is usually conducted by
experts (researchers and/or consultants) based on their modeling ex-
pertise and understanding of a certain system's dynamics. However, the
participation of system stakeholders is increasingly considered essential
for an effective SD modeling process. Stakeholders are considered car-
riers of valuable insights that the expert modeler could not access by
working in isolation. Therefore, SD modeling is increasingly considered
a participatory process (Kirdly and Miskolczi, 2019). Participatory SD
modeling poses specific organization and management challenges be-
cause people with diverse backgrounds, assumptions, perceived inter-
ests, preoccupations, social pressures are required to converge on a
shared mental model. As illustrated in Section 3, approaches and
techniques to manage participatory SD modeling groups and processes
have significantly progressed in recent years. However, many SD
models, although sometimes very refined from a mathematical per-
spective, and even despite stakeholder participation, remain on paper
only (Qudrat-Ullah, 2012; Taylor et al., 2009). Policy- and decision-
making rarely follow the results of SD modeling, and behavioral
changes are usually triggered by other social mechanisms than SD
model cocreation and dissemination. Thus, even if participatory SD
modeling is carefully designed and managed as a process, it usually
struggles to achieve an impact. This study argues that, to build a sound
basis for investigating the fragilities of the SD modeling process, a
consistent and generalizable performance management framework
(including impacts, outcomes, and outputs) is needed.

Table 1
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2.2. Measuring the sustainability-related impacts of SD modeling processes

The limited adoption of SD models in real-world choices has trig-
gered a debate concerning the expected impact of SD modeling as a
method for addressing problems. This debate has not yet resulted in a
convergent view. Some SD scholars and experts tend to measure the SD
impact in terms of decisions that have been taken or behavioral/cog-
nitive changes that have been implemented based on the SD model
(e.g., GroRler, 2007). However, from the sustainability standpoint,
decisions and behavioral/cognitive changes are outcomes rather than
impact measures. Other scholars concentrate on case-specific impact
measures, such as a certain marine area's biodiversity or a certain firm's
prosperity. However, these measures cannot be generalized to a per-
formance management framework that is usable for all SD modeling
processes.

Therefore, this study leverages the body of knowledge on the
commons (Ostrom et al., 1999, 1990, 2010) and proposes that the
sustainability-related impact of SD modeling, viewed as a process,
should be measured in terms of (changes in the) levels of relevant
common resources.

A common resource is a resource that is available for the collective
benefit of a certain community but is vulnerable to misbehaviors (e.g.,
overexploitation, sabotage, or neglect) by that very community. For
example, the fish stock of a certain marine area is available for the
benefit of the fishermen, but its desired levels are vulnerable to the
fishermen's overexploitation. The social inclusion of a certain neigh-
borhood benefits the whole local community, but its desired levels are
vulnerable to that community's neglect and disengagement. A balanced
composition of the atmosphere could protect us all from global
warming, but the desired levels of carbon dioxide and methane are
vulnerable to our inertia and climate change deniers’ sabotage.

The actual and predicted levels of common resources (and changes
in such levels) are considered excellent measures of the system's sus-
tainability (Dietz et al., 2003). Therefore, the sustainability-related
impact of SD processes can be usefully measured through the (changes
in the) levels of the relevant common resources (see Table 1). For ex-
ample, the expected impact of a process of SD modeling relating to
climate change mitigation can be measured in terms of (changes in the)
levels of climate security in a certain area.

In this light, a clear identification of the common resource(s) whose
levels can be influenced by the modeling process is a key step in the
process's performance management.

2.3. Measuring the outcomes of SD modeling processes

The outcome indicators of SD modeling processes should measure
the consequences of the SD modeling processes and/or products that
are potentially key in terms of impact, that is, the protection and (re)
generation of common resources.

The different streams of literature on SD modeling management
have identified different sets of key outcomes. The most classical,
model-centered approaches to SD modeling often mention system pre-
dictability as a key outcome of the SD modeling process. If the model is
accurate, the consequence of its creation is the possibility of improved

A general framework of sustainability-related impact, outcome and output measures of SD modeling processes. Source: Authors’ elaboration.

OUTPUT measures

Model accuracy (Qudrat-Ullah, 2012)

Consensus on the model by decision- (policy-)
makers participating in the modeling process
(Kiraly and Miskolczi, 2019)

Consensus on the model by the community(-ies)
participating in the modeling process (Kiraly and
Miskolczi, 2019)

SD MODELING
PROCESSES

2007)

OUTCOME measures

System predictability (Stave, 2002)

Number, relevance, and consistency of the decisions made based on
the SD model (Andersen et al., 2007; Stave, 2002)

IMPACT measures
(Change in the) Levels of
relevant common
resources

Participants’ social capital (Andersen et al., 2007; Hovmand, 2014;
Stave, 2002)Participants’ empowerment (Hovmand, 2014)
Stakeholder ownership and commitment to change (Andersen et al.,
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forecasting.

A second measurement outcome that is considered very important
by almost all the streams on SD modeling management is the number,
importance, and consistency of the decisions that are made based on the
SD model (including also policies).

The most recent research streams, which stress the importance of
participatory modeling, also mention stakeholder ownership and com-
mitment to change as a key expected outcome of SD modeling processes.
If the process of model development is inclusive, and the model is
properly shared and discussed, the knowledge conveyed by the model
and its normative implications are more likely to be accepted and
translated into practice.

The literature on community-based SD particularly insists on the
importance of participants’ empowerment as a key expected outcome of
participatory SD modeling. This approach insists that systems thinking
and SD modeling capabilities are especially important for marginalized
people and for communities that are usually excluded from decision-
making processes. Thanks to systems thinking, these subjects can be
empowered to achieve a better understanding of the dynamics influ-
encing their condition and to take action accordingly.

Finally, almost all the more recent research on participatory SD
modeling agree on participants’ social capital as a key expected outcome
of the modeling process. Table 1 synthesizes the key outcome measures
that emerge from the literature.

2.4. Measuring the outputs of SD modeling processes

The main deliverable of the SD modeling process is, of course, the
SD model itself. The literature on SD modeling converges in identifying
three key quality measures for such an output: model accuracy, con-
sensus by decision-makers who have participated in modeling, and
consensus by the relevant communities who have participated in
modeling.

Model accuracy measures the degree to which the behavior of the
system, as predicted by the model, mirrors the real-world system be-
havior. For descriptive SD models, model accuracy can be assessed by
leveraging real-world data, if available. For normative models, model
accuracy can instead only be assessed if the changes envisaged by the
model are actually implemented. In addition, many SD models re-
present chaotic systems (Rosser Jr, 2001), in which even very small
failures in the measurement of the initial condition disrupt the re-
searcher's capability to mathematically predict the final condition. In
other words, model validation is often an issue in SD, and this problem
must be taken into account when designing the performance manage-
ment system of an SD modeling process.

Participants’ consensus on the SD model can be considered an im-
portant process output if the SD modeling processes are participatory.
When (some categories of) stakeholders participate in modeling, the
quality of the model as a final deliverable can be measured by the de-
gree to which participants’ understandings and beliefs have converged
on the model's contents (Rouwette and Smeets, 2016). Of course, con-
sensus may be completely independent of accuracy (since it depends on
cognitive, social and cultural factors), but it is certainly important to
enabling process outcomes such as decisions that are consistent with
the SD model, stakeholders’ sense of ownership of the model's contents,
and stakeholders’ commitment to change (von Wirth et al., 2014).

The two most popular approaches to participatory SD modeling are
group model building and participatory SD modeling for policymaking.
Group model building (Vennix et al., 1999) focuses on participatory
modeling to address the problems of a specific client organization (for
example, supply chain optimization problems) (Andersen et al., 2007;
Rouwette, Korzilius, Vennix, and Jacobs, 2011). Participatory SD
modeling for policymaking, by contrast, focuses on participatory
modeling to support policy-makers (Stave, 2002). Although these two
approaches differ significantly in terms of the goals and techniques of
group work management, they both share the idea that the consensus on
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the SD model by participant decision- (or policy-) makers is a key output
measure.

Another emergent approach to participatory SD modeling, instead,
focuses on the consensus on the SD model by participant community (-ies):
it is the stream on community-based SD (Hovmand, 2014). According to
this approach, participatory SD modeling should prioritize the in-
volvement of marginalized communities to help them develop new
capabilities of understanding and changing their conditions.

Table 1 synthesizes the performance measures described in this
section.

3. A causal loop model of mainstream participatory SD modeling

3.1. Group facilitation as the key organizing principle in mainstream SD
modeling approaches

There is great consensus regarding the importance of involving
stakeholders in the modeling process when sustainability issues are at
stake (Nabavi et al., 2017). If an SD model is simply handed down from
above on the part of experts, the model's intended users are more likely
to be dissatisfied with it (because it does not include aspects that they
deem important, for example), and even understanding the model is
more difficult to them (Stave et al., 2019). Therefore, a participatory
approach to system dynamic modeling is increasingly viewed as es-
sential to include these models in real-world sense- and decision-
making cycles (von Wirth et al., 2014). In addition, a participatory
approach can boost insights into the system to be modeled and is an
invaluable mechanism to control possible misjudgments by modelers
(Nabavi et al., 2017).

In light of the stakeholder theory (Crilly et al., 2012; Friedman and
Miles, 2002; Jones et al., 2017), if decision-makers, interested com-
munities and/or cross-disciplinary experts are engaged in the system
modeling process, the model will synthesize a usefully wider range of
viewpoints; the stakeholders, whose interests are represented in the
modeling process, will cooperate in the data collection and model va-
lidation; and people will perceive the model as a reasonable compro-
mise they have contributed to achieving, rather than a controversial or
dangerous interpretation that someone from above is trying to impose.

Therefore, to achieve the expected levels of accuracy and consensus,
sustainability-related SD modeling is usually conducted by hetero-
geneous teams including modelers, multidisciplinary experts, and di-
verse stakeholders. These teams must be organized and managed to
maximize the modeling process performance (see Table 1)
(Hernantes et al., 2013). Consistently, the modeling process is in-
creasingly also considered an organization and management challenge.

Following the recent review by Kirdly and Miskolczi (2019), this
study identifies three main approaches to participatory SD modeling:
group model building, participatory SD modeling for policymaking, and
community-based SD. These three approaches significantly differ in
terms of the category of stakeholders to be involved, the facilitating
techniques, and the key expected outcomes.

The group model building approach (Andersen et al., 2007) involves
executives, entrepreneurs and/or professionals in a corporate context;
recommends facilitation techniques that do not overload the clients and
keep the model simple and understandable; and prioritizes model-
consistent decisions, participant ownership and commitment to change,
and social capital as key expected outcomes.

Participatory SD modeling for policymaking (Stave, 2002) involves
people from NGOs and/or government agencies; recommends facilita-
tion techniques that maximize participation in the initial phase of
problem setting and in the final phase of simulation testing, while the
simulation building process is left to expert modelers; and prioritizes
system predictability, model-consistent decisions, and social capital as
key expected outcomes.

Community-based SD (Hovmand, 2014) involves whole commu-
nities, especially marginalized ones; recommends facilitation
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techniques that are based on social therapy; and prioritizes participants’
social capital and empowerment as key expected outcomes.

Despite the differences synthesized above, these three approaches
agree on the centrality of facilitation as the key organizing principle in
participatory SD modeling, as well as on model accuracy and partici-
pants’ consensus as key output measures. Therefore, it is possible to
build an integrated causal loop diagram of the mainstream approaches
to participatory SD modeling. The results of this modeling effort, re-
presented in Fig. 1, will be synthesized in the next section.

3.2. Modeling the modeling process: the trade-off between accuracy and
consensus and the nonsystemic nature of SD modeling's performance
management in mainstream approaches

Based on the literature on stakeholder engagement in SD modeling
(particularly the streams on group model building, participatory SD
modeling for policymaking, and community-based SD), it is possible to
draw a causal loop diagram representing how the two key expected
outputs of the modeling process (that is, SD model accuracy and par-
ticipants’ consensus on the SD model) emerge from the interaction
between expert modelers and stakeholders (Fig. 1).

Despite the differences between the approaches to participatory
modeling that have been considered in this study, all of these ap-
proaches consider facilitation as the organizational principle at the core
of the modeling process. Therefore, even if the required facilitators’
capabilities differ depending on the facilitation techniques, they can be
considered the engine of the process.

Facilitators’ capabilities enhance the diversity of the views con-
sidered for modeling both directly, by encouraging the expression of
different standpoints and insights (causal link 1 in Fig. 1), and in-
directly, by including a higher number of stakeholders (causal links 2
and 4). Stakeholder inclusion and diversity of views both increase the
knowledge base heterogeneity (3 and 5). Knowledge base hetero-
geneity, in turn, is an essential factor to increase a key output measure
of the SD modeling process, that is, model accuracy (6). By contrast,
facilitators’ capabilities increase stakeholder collaboration, both di-
rectly (7) and by striving to enhance the perceived compatibility of
stakeholders’ views (8, 9). In fact, unless the different views of parti-
cipants are sufficiently reconciled, polarization may become in-
tractable: some participants may lose interest in participation because
they think their ideas are not going to be adequately represented, while
other participants may conceive participation as a power game to get
their views to prevail, rather than a collaborative sense-making activity
(Weick and Sutcliffe, 2005).

Stakeholder collaboration is an important leverage to enhance
model accuracy (10) since collective learning and constructive discus-
sion are the most powerful means to gain insights and correct mis-
judgments. SD models are created and tested through recursive cycles
of discussion and revision; in these cycles, progressively increasing SD
model accuracy provides participants with credible boundary objects
(Andersen et al., 2007; Nabavi et al., 2017), which in turn help facil-
itation (11, 12). Therefore, a reinforcing loop exists, according to
mainstream approaches, between modeling and facilitating work (R1 in
Fig. 1).

Despite having a positive effect on knowledge base heterogeneity,
the diversity of views considered for the modeling process has a ne-
gative effect on the perceived compatibility of stakeholders’ views (13),
thus negatively affecting the second output measure of the process, that
is, the participants’ consensus on the SD model (14). Conversely, the
first output measure, that is, model accuracy, is, of course, vulnerable to
a lack of validity in stakeholders’ and experts’ insights (15).

All the mainstream approaches to participatory SD modeling agree
that the participants’ social capital is a key expected outcome of SD
modeling and, in particular, of the collaboration process (16). Social
capital, in turn, enhances another key expected outcome, that is, sta-
keholder ownership and commitment to change (17). The latter is also
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influenced by the participants’ consensus on the SD model (18), which,
in turn, is the key leverage through which SD modeling can enhance the
likelihood that decisions will be made consistently with the model (19,
20). The literature remarks that factors that are external to the mod-
eling process, that is, the power and legitimacy of the subjects endor-
sing the model, are key to both consensus (as an output) and decisions
(as an outcome) (21, 22). For the remaining key expected outcomes (see
Table 1), the literature suggests that participant empowerment mainly
depends on stakeholder collaboration, both directly (23) and through
social capital (24). System predictability depends on model accuracy
(25).

The causal loop diagram in Fig. 1 shows that the mainstream ap-
proaches to participatory SD modeling result in a trade-off between
model accuracy and participants’ consensus. This trade-off is due to the
balancing loop B1, which counteracts the effects of the reinforcing
loops R1, R2, and R3. In fact, the diversity of views is important to
increase accuracy through the knowledge base heterogeneity (5, 6), but
it decreases consensus through the perceived compatibility of views (8,
14). Therefore, facilitators have to manage a structural tension in their
job and must face that it is impossible to achieve, contemporaneously,
the highest levels of both accuracy and consensus.

Therefore, the causal loop diagram of Fig. 1 provides a sound, sys-
temic explanation of a paradox that many SD experts experience and
complain about: the more accurate the model (that is, the more capable
of predicting the system's behavior), the less likely is such a model to be
adopted for concrete decision-making and real-world change.

This paradox has serious consequences for SD modeling perfor-
mance because only models that enable both high system predictability
and concrete decisions and changes can positively impact the common
resources. In fact, if inaccurate models are adopted for decision and
change, an unexpected negative impact on common resources may
occur; conversely, if accurate models remain on paper only because
they do not translate into decision and change, their impact is zero. In
this light, it is not surprising that the causal links between outcomes
and impact are ambiguous, if not completely overlooked, in mainstream
approaches to SD modeling (see Fig. 1).

A systemic view of outcome and impact management would be
needed to address this problem. Thus far, the mainstream approaches to
participatory SD modeling have considered the management of the
outcome-impact links as beyond their scope. In fact, Fig. 1 shows that
no organizational solution has been envisaged to manage the tensions
between output and outcome, to manage the external factors that in-
fluence outcomes (see especially links 21 and 22) and to structure
functional loops between and across SD modeling inputs, outputs,
outcomes, and impacts. Thus, the mainstream approaches to partici-
patory SD modeling display a surprisingly nonsystemic view of what
occurs after the key outputs (or, at best, outcomes) have been achieved.

An organizational solution for managing the outcome-impact links,
and the feedback loops between outcome-impact and SD modeling in-
puts, are missing. The next section will demonstrate how some recent,
complementary developments in the organization and management
literature could provide valuable hints for restructuring the dysfunc-
tional system depicted in Fig. 1.

4. Restructuring the system that (re)generates the SD modeling
impact: the role of the smart commons organization

4.1. Parallel logic-specific submodeling

Even if institutional theories, per se, are neutral concerning the
system-level consequences of institutional dynamics, institutional logics
are emerging as key forces for sustainability transformations
(Etzion et al., 2017). An institutional logic (Thornton et al., 2012) is a
socially recognized system of rules, values, expectations, and beliefs
that are catalyzed by and around societal institutions, such markets,
universities or social movements (Sauermann and Stephan, 2013;
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Wooten and Hoffman, 2008). Institutional logics shape behaviors and
make cooperation and reciprocal understanding possible. For instance,
the family institutional logic is a societal-level system of laws, roles,
expectations, beliefs, and assumptions that prioritize the nurturing and
generative capabilities of the family, along with its safety and wellbeing
(Fairclough and Micelotta 2013).

According to the most recent developments of institutional studies,
organizations are immersed in organizational fields (Greenwood et al.,
2010), that is, relational spaces governed by rules, values and cognitive
assumptions rather than mere market forces and abstract rational
choices. Therefore, in light of this literature stream, institutional logics
are the key forces shaping organizational fields.

The concept of institutional logic is wider than those of the para-
digm or world view (Bakken, 2019), which have already been used by
SD scholars to explain the tension and difficulties of participatory
modeling. In fact, the paradigm concept describes a worldview, a way
of understanding things, a set of beliefs. These aspects are also present
in the concept of organizational logic; however, in addition to these
aspects, an organizational logic also includes the corresponding system
of laws, rules, roles, social expectations, and social pressures that di-
rectly influence behaviors, and not only through the subject's beliefs
and knowledge. Thus, subjects will show strong resistance to an SD
model that contradicts their logics, not only due to cognitive dissonance
but also, and perhaps even more importantly, because they do not want
to make choices and to adopt behaviors that they perceive as socially
punishable in their respective contexts. The sociocognitive concept of
institutional logic, then, explains why efforts to convince people (then
changing merely their beliefs about the system) are often insufficient in
participatory settings: people's social embeddedness is often a stronger
driver than their cognitive situation alone.

Institutional logics coevolve dynamically through technological and
scientific innovations, activism, political action, institutional en-
trepreneurship and bottom-up practice-driven changes (Ansari et al.,
2013; Beckert, 2010; Dalpiaz et al., 2016; Greenwood et al., 2014;
Markard et al., 2012; Tracey et al., 2011; Zietsma and Lawrence, 2010).
Thus, not only governance bodies and social movements but also en-
trepreneurs and managers can influence the evolution of a certain or-
ganizational field's relationships and logics, and these intertwining in-
fluences are key to making this evolution sustainability-oriented (or
not) (Cantino et al., 2017). For example, family logics may contribute to
shaping the organizational field of a wine district (along with business
logics, sustainability logics, etc.) through the influence of family firms
(Reay et al., 2015).

In terms of SD modeling, we can acquire at least as many different
views of the system under study as the number of different institutional
logics shaping the relevant organizational field. The different logics
populating a field may be reciprocally reinforcing but also conflicting.
In this situation, not only are actors sometimes influenced by interests
that can be rationally identified as conflicting, but in most cases they
also face conflicting social pressures and display different knowledge
bases, which may hinder successful collaboration at least as much as the
so-called rational conflicts of interest (Negoita, 2018). Consequently,
the views and expectations of the actors participating in collaborative
modeling may diverge dramatically.

Even a single stakeholder group may include people with very dif-
ferent views, due to the presence of several institutional logics. For
example, professors, as stakeholders of the university system, do not
share a one and only view of the system. Each professor may be in-
fluenced to different degrees by a dissemination logic of research, an
entrepreneurial logic of research, an inclusive logic of teaching, among
others. Not only does each of these logics have its own paradigms, but
also its own systems of social incentives and punishments. Even the
experts who perform SD modeling are not just “neutral” technicians,
but introduce different logics in the modeling process. For example,
some modelers may prioritize environmental logics, while others may
prioritize regional development logics. In light of the institutional logics
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theory, modeling does not stem from a dialogue between “rational”
experts and homogeneous groups of stakeholders, but from a hybrid,
chaotic relational space populated by intertwining and ever-evolving
social expectations that cut across groups of stakeholders and experts.

Discussion around SD modeling forces people with different logics
to disclose their terminal values. For example, experts prioritizing an
environmental logic will consider the natural ecosystem equilibrium as
a key common resource, while experts prioritizing a regional develop-
ment logic will consider the population's employability as a key
common resource. Studies show that disclosure about terminal values
results in polarization and tightening (Rossignoli et al., 2018), which
often hinders constructive dialogue. In fact, since it is often impossible
to represent all logics equally in the model because the coexistence of
conflicting logics may make the model contradictory, actors whose lo-
gics are being excluded from the model are likely to engage in the
development of rival or alternative models and decisions.

Then, the approach proposed by this study borrows the method for
hybrid field management from the literature on institutional logics
(Mair and Reischauer, 2017; Sauermann and Stephan, 2013;
Wooten and Hoffman, 2008). Specific techniques can be developed to
manage the different conflicting logics in hybrid organizational fields,
and decoupling is the main one (Furnari, 2016).

Consistently, an effective way of preventing polarization and in-
tractable conflicts in SD modeling could consist of organizing separate
submodeling groups as relational spaces where each institutional logic
can express itself through independent discussion. In this way, each
institutional logic can develop its own ideas about the system's (ex-
pected) impact, structure, and behavior, as depicted in Fig. 2 (top).
Only subsequently, and at a higher organizational level, can these
proposals be compared for possible synergies and orchestration. Thus,
the novel proposed approach addresses the accuracy-consensus trade-
off highlighted in Fig. 1 by clearly prioritizing the local consensus at the
submodeling level and by shifting the responsibility to develop stronger
forecasting capabilities at a higher organizational level, serving as a
hybrid organization bridging different logics, as explained in the fol-
lowing sections.

4.2. Priority focus on commons-related critical thresholds

The second principle of the new proposed approach to SD modeling
(after logic-specific submodeling, which has been described in the
previous section) is the priority focus on commons-related critical
thresholds.

A commons (Dietz et al., 2003; Hess, 2008; Elinor Ostrom, 1990) is
defined here as a system that can (re)generate a common resource (that
is, as defined above, a resource that is available for collective benefit
but is vulnerable to beneficiaries’ behaviors). For example, a marine
area is a commons that can regenerate fish as a common resource.
Wikipedia is a commons that can regenerate the contents of the online
encyclopedia as a common resource.

A commons is usually a complex eco-socio-technical system. For
example, the system that can regenerate fish often includes not only the
marine ecosystem but also the fishermen with their practices and
technologies, the tourists with their boats and habits, the activists with
their social networks and digital tools, as well as others.

For SD modeling to make an impact, that is, to positively influence
the levels of the relevant common resources, it must target not only the
flows and resources that are the specific objective of the modeling
project (for example, profits) but also the relevant common resources
that can be influenced by model-based choices and decisions (for ex-
ample, the marine area's biodiversity).

In fact, the commons’ capacity to (re)generate common resources is,
in most cases, fragile. The commons’ regenerating capacity can be da-
maged, even irreversibly, if the system undergoes some critical
thresholds that may be invisible to common sense.

In addition, most commons are eco-socio-technical systems in which
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the social component is important; therefore, they are level-two chaotic
systems (Love, 2018) that react to predictions (including the predic-
tions provided by systems dynamics modeling) in many and often un-
intended ways (De Gooyert et al., 2016). In this light, proper system
predictability is simply unattainable because of the mere fact that
making a prediction likely changes the behavior of the system (for
example, by generating political struggle around that prediction).

Thus, to contribute to sustainability transformations, the links be-
tween SD modeling outputs, outcomes and impacts cannot be merely
linear: they must be circular to allow for the continuous self-correction
of forecasting.

Inside each logic-specific modeling group (like in Fig. 2), the par-
ticipatory processes can be carried on as in Fig. 1 to achieve the ex-
pected outcomes. However, all participants should be invited to think in
terms of commons from the beginning: What are the key common re-
sources that (may) influence and/or be influenced by the processes that
we want to model? What are the key elements of the eco-socio-technical
system that can (re)generate such common resources? What are the
critical thresholds of the commons, to the best of our understanding?

In this way, each logic-specific modeling group will develop their
own ideas about the key common resources and relevant critical
thresholds. For example, let us consider a marine area as a commons:
according to traditional extractive logic, what matters is the commons’
capacity to regenerate fish, while according to a tourism development
logic, what matters is the commons’ capacity to regenerate the attrac-
tiveness of the seaside. By unleashing each institutional logic's mod-
eling potential through parallel submodeling processes, multifaceted
hypotheses about the commons’ critical thresholds emerge. The out-
comes of logic-specific group modeling, as represented in Fig. 2 (in
gray), can then be leveraged as inputs of a higher-level, integrated
learning process, as explained in the next section.

4.3. Threshold-guarding experiments, commons resilience, and data as
common resources

In this section, three further guiding principles of the new proposed
approach to SD modeling impacting management are proposed:
threshold-guarding experiments, commons resilience, and data as
common resources.

In the presence of multiple, logic-specific modeling outputs, as re-
presented in Fig. 2, multiple possible decisions and changes may take
place that are directly or indirectly influenced by the logic-specific
models emerging from the different groups. This situation mirrors the
distributed experimentation environment envisaged by the robust ac-
tion approach (Ferraro et al., 2015). According to the robust action
approach, the best strategy to unleash sustainability-oriented innova-
tion throughout a network of actors is to place these actors under the
condition to obtain local experimental solutions to their problems and
to exchange knowledge in a participatory organizational architecture.

However, when fragile common resources are at stake, the strategy
of distributed experimentation, unless coupled to effective network
steering strategies, makes the system vulnerable to (possibly unaware)
actors passing critical thresholds (Etzion et al., 2017). For this reason,
this study argues that the multiple logic-specific modeling processes
envisaged in Fig. 2 should result in mental models that enable
threshold-guarding distributed experimentation (see link 26 in Fig. 2).
In other words, the different “threshold warnings” arising from the
different logic-specific modeling processes should be taken into con-
sideration when using SD models to trigger distributed experimenta-
tion.

In the proposed model, the system changes activated as threshold-
guarding experiments also stem from two other key expected outcomes
of SD modeling, that is, SD-based decisions and commitment to change
(27, 28).

The ability to guard the commons’ critical thresholds and to
leverage changes as natural experiments depends, both directly and
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indirectly (29, 30, 31), on a higher-level organizational unit, labeled
smart commons organization, the role of which will be further dis-
cussed in Section 5.

If system changes are leveraged as natural experiments
(Sengers et al., 2019), their direct impact on sustainability in terms of
common resources can be both positive and negative, because, of
course, some experiments do not result in the expected consequences
(32). However, over the middle and long-term, distributed experi-
mentation (provided that the critical thresholds are guarded and lessons
from experiments are learned) enhances the resilience of the commons
(33) and then, indirectly, the levels of common resources (34).

The concept of commons resilience included in the proposed model
is borrowed from the literature on social-ecological systems resilience
and adaptive co-management (Folke, 2006; Plummer and
Armitage, 2007). Commons resilience includes not only the system's
ability to leverage difficulties and crises to innovate and become
stronger (as in the concept of robust action described above) but also its
ability to guard the points of no return, i.e., to prevent choices and
behaviors that could result in an irreversible loss of resource (re)gen-
eration options (Berkes et al., 2003).

All system changes, if observed as experiments, produce data on the
commons (35) that summarize the data derived directly from common-
resource stocks and flows (36). Creating and managing system-level
data can be unsustainable for an individual subject, but it can become
sustainable if all subjects are placed under conditions to contribute, in
exchange for the possibility to access the whole stock of the commons’
data and data management capabilities. Therefore, if the smart com-
mons organization nurtures (and is nurtured by) the system's capability
to generate, protect and use the data as common resources (37, 38), this
virtuous cycle (R4) enables further reinforcing loops: R5, and R6 (39,
40).

The system's data management capabilities, in turn, contribute to
commons resilience (41) together with the “social outcomes” of SD
modeling: commons-centered social capital (42) and empowerment
(43) of the participants of modeling teams, and stakeholder ownership
and commitment to change (44).

Last but not least, the ability to manage data as common resources is
key to the model's full circularity (R7), since it reinforces the smart
commons organization's capabilities to develop or facilitate the in-
vestigation of gaps in the many existing logic-specific models (45) and
to contribute to institutional work through the creation of new, hybrid
institutional logics (46) that, in turn, trigger further cycles of group-
level, logic specific modeling (47).

This systemic restructuration of the system enabling SD modeling
performance management, shaped by four reinforcing cycles, could be
able to cope with the main external forces threatening SD modeling
impact: antisocial behaviors at the societal level, such as opportunism,
hate speech or antisocial punishment (48), intercommons conflicts, that
is, situations in which a commons’ resilience can only be increased at
the expense of another commons’ resilience (49), and extrinsic limits to
data management capabilities (50), due to, for example, privacy laws.

5. The SD modeling process as a two-level organizational
challenge

In the previous section, five principles were presented that char-
acterize the new proposed approach to SD modeling performance
management: (1) logic-specific group modeling; (2) when modeling, a
prioritized focus on commons-related critical thresholds; (3) threshold-
guarding-distributed experimentation; (4) commons resilience; and (5)
commons-related data to be managed as common resources.

This study argues that these five principles can only be translated
into practice if a further, overarching principle is implemented: the SD
modeling process must be addressed as a two-level organizational
challenge. In the proposed approach, the SD model production process
is performed by participatory group work coordinated by facilitators, as
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in mainstream approaches; in contrast, the integrated, commons-or-
iented learning enabled by the outcomes of multiple modeling pro-
cesses is coordinated by a higher-level organizational unit (the smart
commons organization in Fig. 2) that has the responsibility to enable
the overall circularity of the process, from SD modeling inputs to ac-
tivities, outputs, outcomes and impacts, and vice versa.

The new organizational unit envisaged by this study embodies the
responsibility to govern the tensions across organizational logics and
contribute to building new, hybrid logics, in a similar way to the hybrid
organizations described in the literature on institutional logics; the re-
sponsibility to unleash and facilitate distributed experimentation, in a
similar way to the focal organization described in the literature on
robust action; the responsibility to guard the commons’ critical
thresholds and translate the results of distributed experimentation into
sound, evidence-based knowledge that is available for the entire net-
work, in a similar way to the bridging organization described in the
literature on adaptive co-management; and finally, the responsibility of
enabling the system to manage commons-related data as common re-
sources.

Therefore, we labeled this new type of organizational unit “the
smart commons organization”. A smart commons organization is a
permanent organizational unit that integrates the performance of dif-
ferent modeling groups working around a certain (group of) commons
throughout time.

The proposed smart commons approach is fully compatible and
complementary with the mainstream approach to participatory SD
modeling.

According to the smart commons approach, the outcomes of group-
level SD modeling (gray boxes in Fig. 2) become the inputs for the
action of the smart commons organization. The smart commons orga-
nization has its own expected outcomes (the green boxes in Fig. 2),
which are clearly distinguished from the outcomes of group modeling.

In such a system structure, the key function of the smart commons
organization would be the data-driven integrated learning on the state
of the commons and evidence-based orchestration of commons-oriented
actions (Lavertu, 2016; Mergel et al., 2016).

Notably, the data generated by system behavior are also considered
common resources in this mental representation and enable the key
activities of the commons organization. For this reason, we argue that
this approach to SD modeling is consistent with the emerging big data
age (Lavertu, 2016).

6. Conclusions

This study has leveraged some complementary bodies of knowledge
from social and management science to address a need that is clearly
perceived in the SD literature: develop a more effective approach for
improving the contribution of SD modeling to sustainability transfor-
mations (De Cian et al., 2018). Our proposal paves the way to empirical
studies on the effectiveness of the organizational principles that char-
acterize the smart commons approach to impact management. Fur-
thermore, the smart commons approach poses an important question:
what subjects, in today's scenario, could play the pivotal role of the
smart commons organization, as it has been depicted in this article?

We argue that universities are well-positioned to serve as generators
of smart commons organizations for integrating learning and action on
specific commons in the emerging age of data. The smart commons
approach, in fact, requires a permanent organizational unit as a focal
actor that enables highly distributed systems thinking with scarce
possibilities of being rewarded by traditional market mechanisms. This
idea has interesting implications for research and practice that, we
hope, could contribute to fully exploit the potential contribution of
systems thinking and system dynamics to sustainability transforma-
tions.
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