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Lq-Regularized Intensity and Gradient Prior
for Deblurring Text Images and Beyond

Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang

Abstract—We propose a simple yet effective Lg-regularized prior based on intensity and gradient for text image deblurring. The
proposed image prior is based on distinctive properties of text images, with which we develop an efficient optimization algorithm to
generate reliable intermediate results for kernel estimation. The proposed algorithm does not require any heuristic edge selection
methods which are critical to the state-of-the-art edge-based deblurring methods. We discuss the relationship with other edge-
based deblurring methods and present how to select salient edges more principally. For the final latent image restoration step, we
present an effective method to remove artifacts for better deblurred results. We show the proposed algorithm can be extended
to deblur natural images with complex scenes and low illumination, as well as non-uniform deblurring. Experimental results
demonstrate that the proposed algorithm performs favorably against the state-of-the-art image deblurring methods.

Index Terms—Image deblurring, Lo-regularized prior, text images, low-illumination images, natural images

1 INTRODUCTION

THE recent years have witnessed significant ad-
vances in single image deblurring. Much success
of the state-of-the-art algorithms [1], [2], [3], [4], [5],
[6], [7] can be attributed to the use of statistical priors
on natural images and selection of salient edges for
kernel estimation. Although numerous methods [1],
[2], [5], [6], [7] have been proposed for deblurring
generic images, these priors are less effective for cases
with rich text that do not follow the heavy-tailed
gradient statistics of natural images and can be better
modeled by two-tone distributions.

Text image deblurring has attracted considerable
attention due to its wide range of applications. In [9],
Chen et al. propose a content-aware prior based on
an intensity density function of documents and fore-
ground segmentation rather than the heavy-tailed gra-
dient prior of natural images. However, this method
is developed specifically for document images (i.e.,
binary text images) and is unlikely to perform well
for complex and cluttered images containing text. A
direct method that exploits sparse characteristics of
natural scenes is proposed for deblurring natural and
document images [10]. Nevertheless, the blur kernel
is not explicitly estimated from an input image and
the computational load for learning an over-complete
dictionary is significant. Li and Lii [11] propose an
optimization method to estimate a blur kernel until
the latent image is two-tone. However, this method is
only applied to two-tone images and is less effective
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(b) Cho et al. [8]
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Fig. 1. A challenging blurred text image.

for text images with complex backgrounds. In [8]
Cho et al. develop a method to incorporate text-
specific properties (i.e., sharp contrast between text
and background, uniform gradient within text, and
background gradients based on natural image statis-
tics) for deblurring. While this algorithm achieves
the state-of-the-art deblurring results, the kernel esti-
mation process is complicated and the performance
depends on whether the stroke width transform
(SWT) [12] separates an image into text and non-text
regions well or not. However, the SWT is unlikely
to perform well when the characters in a text image
are small or clustered. Figure 1 shows one example
where blurred characters are clustered due to large
camera motion and the deblurred result from the
algorithm [8].

In this paper, we propose an effective algorithm to

0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPAMI.2016.2551244, IEEE Transactions on Pattern Analysis and Machine Intelligence

deblur text images. The contributions of this paper are
summarized as follows:

1) We propose an Ly-regularized intensity and gra-
dient prior based on distinctive properties of text
images for text image deblurring.

2) We present an efficient optimization algorithm
based on the half-quadratic splitting technique.
This approach guarantees that each sub-problem
has a closed-form solution and ensures fast con-
vergence.

3) We discuss the relationship with other methods
in terms of salient edge selection, and show
that the proposed algorithm generates reliable
intermediate results for kernel estimation with-
out ad-hoc selection processes. Compared with
the state-of-the-art methods [8], [9], the pro-
posed algorithm is efficient and effective as it
requires no additional operations (e.g., adaptive
segmentation [9], smoothing intermediate latent
images [3], or SWT [8]).

4) For the latent image restoration step, we present
an effective method to deal with artifacts and
evaluate it against other alternatives.

5) We show that the proposed algorithm can effec-
tively process natural blurry images including
low-illumination inputs which are not well han-
dled by most state-of-the-art deblurring meth-
ods. In addition, the proposed algorithm can
be effectively applied to non-uniform image de-
blurring.

2 RELATED WORK

Image deblurring has been studied extensively and
numerous algorithms have been proposed, which can
be categorized in three main approaches based on
variational Bayesian inference, Maximum a Posteriori
(MAP) estimation, and edge prediction.

In [1] Fergus et al. present an algorithm using a
mixture of Gaussians to learn an image gradient prior
via variational Bayesian inference. Levin et al. [13] an-
alyze the method based on variational Bayesian infer-
ence [1] and show that it is able to avoid trivial solu-
tions while naive MAP based methods may not. Since
the optimization process of variational Bayesian in-
ference is computationally expensive, methods based
on MAP formulations have been developed with dif-
ferent likelihood functions and image priors [2], [6],
[71, [10], [14], [15], [16]. In addition, methods that
explicitly select sharp edges for kernel estimation been
proposed [3], [4], [17] with demonstrated success on
benchmark datasets [18]. However, the edge selection
step is often based on heuristics and the assumption
that there exist strong edges in the latent images may
not always hold. To better reconstruct sharp edges for
kernel estimation, exemplar based methods [19], [20],
[21] are recently presented to exploit information con-
tained both in an blurred input and example images
of an external dataset.

Blurred images acquired from moving cameras
(e.g., rotational and translational movements) can be
better modeled by non-uniform blur models. Shan et
al. [22] solve the in-plane rotation deblurring problem
based on transparency maps. Tai et al. [23] propose
a general projective motion model for non-uniform
image deblurring where a blurred image is considered
as an integration of a latent image under a sequence of
projective transformations that describe camera path.
Whyte et al. [24] simplify this model and propose a
variational Bayesian approach in a way similar to [1]
for non-uniform image deblurring. In [25], a similar
model is proposed in which motion density functions
are used to represent camera motion trajectories. To
make the non-uniform methods computationally effi-
cient, methods based on a locally uniform blur mod-
els [26], [27] are developed where the deconvolution
step can be computed by Fast Fourier Transforms
(FFTs). In addition to camera motion, blurred images
caused by different object motions are analyzed [28],
[29], [30]. The methods based on the depth variation
of scenes are also proposed by [31], [32]. We note
most of the aforementioned deblurring methods are
developed for generic scenes and few of them exploit
properties of text images.

Since the properties of text images are different
from natural images, Chen et al. [9] propose a prior
based on the image intensity rather than the heavy-
tailed gradient prior of natural scenes to characterize
text images. Cho et al. [8] consider image properties
specific to text images in a way similar to [9] and
present a deblurring method on detected regions.
However, the above method has limited application
domains as it entails text detection [12] and heuristic
filtering [3]. In contrast, the proposed algorithm does
not require additional filtering or text segmentation in
the deblurring process. Although the proposed prior
is based on text images, we show that it is able to
describe the convolution as well as blur process in
generic scenes and applicable to deblur natural and
low-illumination images.

3 L,-REGULARIZED IMAGE PRIOR

In this section, we present an L-regularized prior of
intensity and gradient for text image deblurring.

3.1

The proposed intensity and gradient prior is based
on the observation that text and background regions
usually have nearly uniform intensity values in clear
images without blurs. Figure 2(b) illustrates that the
pixel intensity distribution of a clear text image (Fig-
ure 2(a)) is peaked at two values (near 0 and 255). For
a blurred text image, the pixel intensity distribution
is significantly different from that of a clear image.
Figure 2(e) shows the histogram of pixel intensities
(from a blurred image in (d)) with fewer pixels of
value 0 and 255. The reason is that each pixel in a

Lo-Regularized Intensity and Gradient Prior

0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPAMI.2016.2551244, IEEE Transactions on Pattern Analysis and Machine Intelligence

o
0w EREC]

© ®

(d)

Fig. 2. Intensity and gradient properties of text images.
(a) A clear text image. (b) Pixel intensity distribution
from (a). (c) Distribution of horizontal gradient from (a).
(d) A blurred image. (e) Pixel intensity distribution from
(d). (f) Distribution of horizontal gradient from (d).

blurred image can be viewed as the weighted sum
of a few neighbors of a clear image. Thus, the in-
tensity distribution is squeezed from both ends of
the intensity range. As a result, there are fewer pure
black pixels (intensity value 0) in a blurred text image
than a clear one. This intensity property does hold for
generic images, and appears more obviously in text
images (e.g., document images). For an image z, we
describe the property with a regularization term in
the proposed model,

Bi(x) = [|z[lo, 1
where ||z|lo counts the number of nonzero-intensity
pixels in z. With this intensity property, clear and
blurred images can be differentiated. We note that, for
an image with more white pixels, we can also reverse
the pixel intensity by 1 — z — z (for both latent and
blurred images) and use the same blur model.

Gradient priors are widely used for image deblur-
ring as they have been shown to be effective in
suppressing artifacts [2], [3]. As the intensity values
of a clear text image are close to two-tone, the pixel
gradients are likely to have a few nonzero values.
Figure 2(c) and (f) show the horizontal gradient his-
tograms of a clear text image and the corresponding
blurred one. It is clear that the nonzero values of
blurred image gradients are denser than those of the
clear one. Thus we use a similar Ly-regularized prior,
P,(Vz), to model image gradients.

With the aforementioned regularized priors on in-
tensity and gradient, the prior for text image deblur-
ring is defined by

P(z) = oPy(x) + P(Va), 2

where ¢ is a weight to balance two priors. Although
P(z) is developed based on the assumption that
background regions of a text image are uniform, we
show this prior can also be applied to deblur complex
scenes effectively.

3.2 Text Image Deblurring via Proposed Prior

A blurred image y can be formulated as the result of a
convolution process with a spatially invariant kernel

or point spread function,

)
where z and e denote the latent image and noise; k is
a blur kernel; and * is the convolution operator. Given
a blurred image y, we estimate the latent image = and
blur kernel k& with a regularized formulation based on
the proposed prior P(z),

min ||z« k — y||3 +1|k]5 + AP(@),

y=zxk+e,

4)

where the first term is concerned with image data, and
the remaining two terms are constraints for the blur
kernel and the latent image, with respective weights,
~ as well as A. We note that we introduce the prior
for uniform deblurring first, and extend that to non-
uniform deblurring in Section 7.

4 DEBLURRING TEXT IMAGES

The deblurring process is modeled as the optimization
problem by alternatively solving the latent image x

min ||z * k — y3 + AP(z), )
and the blur kernel &,
min [z« k — g + 3. ©)

The details of the two sub-problems are described in
the following sections.

4.1 Estimating Latent Image =

Due to the Ly regularization term in (5), min-
imizing (5) is computationally intractable. Based
on the half-quadratic splitting Lo minimization ap-
proach [33], we propose an efficient alternating min-
imization method to solve this problem. We intro-
duce the auxiliary variables v with respect to = and
9 = (9n, gv) corresponding to image gradients in hor-
izontal and vertical directions. The objective function
can be rewritten as

min 2 ¢ k =yl + Bllz - ul3
T,u,g
+ 1V = gli3 + Alelullo + llglo)

where o is the weight defined in (2), § and p are
penalty parameters. When § and p are close to infinity,
the solution of (7) approaches that of (5) [34]. With
this formulation, (7) can be efficiently solved through
alternatively minimizing x, u, and g independently by
fixing the other variables.

The values of u and g are initialized to be zeros. In
each iteration, the solution of z is obtained by solving

®)

and the closed-form solution for this least squares
minimization problem is

( FRF(y) + BF(u) + pFe )
F(R)F (k) + B4 n(icnoy F (Vi) F(Vi)
©)
where F(-) and F~1() denote the Fourier transform
and its inverse transform, respectively; the F(-) is the

min ||z + k —y|3 + Bllz — ull3 + x| Ve — gl3,

—1

r=F

information.
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Fig. 3. Effectiveness of Algorithm 1. (a) Blurred image
and kernel. (b)-(c) Results by only P;(x) and P;(Vz).
(d)-(e) Results by posing the estimation of g in the outer
and inner loop. The smooth regions enclosed in the red
boxes in (b) and (d) are not preserved well, while some
characters in (c) are over smoothed.

complex conjugate operator; and Fo = F(Vy)F(g9r) +
F(Vy)F(gy) where V), and V,, denote the horizontal
and vertical differential operators.

Given z, we compute « and g separately by

(10a)
(10b)

min §la - ul|3 + Ao||ullo,
m;nuHVl‘ —gll5 + Mgllo-

We note that (10) is a pixel-wise minimization prob-
lem. Thus, the solutions of v and g are obtained based

on [33], 2 < Ao
N (11)
0, otherwise,
and Ve, [Val*> 2
— b = /1'7 12
g { 0, otherwise. (12)

The main steps for solving (7) are summarized in Al-
gorithm 1. We pose the subproblem w in the outer loop
for the following reasons. If we pose the subproblem
for g (10b) in the outer loop, the algorithm in the inner
loop is equivalent to solve the minimization problem

min |z k —y3 + Aollzllo + pl| Ve —gl3,  (13)

by introducing auxiliary variable u. Similarly, posing
the sub-problem « (10a) in the outer loop indicates
solving

min |z + k —y|3 + Bllz — ull; + AVzlo,  (14)

by introducing auxiliary variable g in the inner loop.
As the intensity prior is based on independent pix-
els instead of disparities of neighboring pixels (i.e.,
gradients), it introduces significant noise and artifacts
in image restoration (See Figure 3(b)). In contrast, the
gradient prior is based on disparities of neighboring
pixels, which enforces smooth results with fewer ar-
tifacts in the recovered image (Figure 3(c)). As the
inner loop involves image restoration, we pose the
sub-problem u in the outer loop to reduce artifacts
generated by the intensity prior. Figure 3(e) demon-
strates the advantages of posing the sub-problem u in
the outer loop.

4.2 Estimating Blur Kernel &

Given z, (6) is a least squares minimization problem
in which a closed-form solution can be computed by
FFTs. As the estimation based on gradients has been
shown to be more accurate [3], [5], [7], we estimate
the blur kernel k by

Algorithm 1 Solving (7)

Input: Blurred image y and blur kernel %.
Ty, B+ 2)o.
repeat
solve for u using (11).
w2
repeat
solve for g using (12).
solve for z using (9).
W 20,
until g > ppax
B+ 20.
until 8 > Brax
Output: Intermediate latent image .

Algorithm 2 Blur kernel estimation algorithm

Input: Blurred image y.
initialize & with the results from the coarser level.
fori=1—5do

solve for x using Algorithm 1.

solve for k using (15).

A+ max{\/1.1,le *}.
end for
Output: Blur kernel k and intermediate latent image
Z.

(15)

and the solution can be efficiently computed by
FFTs [3]. After obtaining k, we set the negative el-
ements to 0, and normalize it so that the sum of
its elements is 1. Similar to the state-of-the-art meth-
ods, the proposed kernel estimation process is car-
ried out in a coarse-to-fine manner using an image
pyramid [3]. Algorithm 2 shows the main steps for
kernel estimation algorithm on one pyramid level.
The step in (12) performs similar to the edge selection
methods [3], [4]. As suggested by [3], [4], we decrease
A gradually to include more informative gradients for
kernel estimation.

4.3 Removing Artifacts

Although the latent images can be estimated from (5)
as shown in Figure 4(c), this formulation is less
effective for scenes with complex backgrounds or
fine texture details. We note that the non-blind de-
blurring method with a hyper-Laplacian prior [35]
has been shown to preserve fine details. However,
significant ringing artifacts caused by deconvolution
are likely to appear using this prior as shown in
Figure 4(b). In contrast, the method with the proposed
Lo-regularized prior generates fewer fine details and
ringing artifacts as shown in Figure 4(c).

Based on the properties of the results generated
by these two aforementioned priors, we propose a
non-blind deconvolution method that preserves fine
details. This method uses the residue of two recovered
images similar to the ringing suppression method [2].
First, we estimate the latent image I; (See Figure 4(b))

min |V« k — Vy[3 + ][ [13,
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Fig. 4. Non-blind deconvolution examples. (a) Blurred
images and the estimated kernels. (b) Results by [35]
with Laplacian prior. (c) Results by setting o = 0 in (5).
(d) Ringing suppression results by [2]. (e) Our results.

using the method with Laplacian prior [35]. Second,
we estimate the latent image Iy (See Figure 4(c)) using
the proposed algorithm via (5) with only the gradient
regularization P;(Vz) at this stage (i.e., setting o = 0).
Similar to [2], we compute a difference map between
these two estimated images and apply bilateral fil-
tering to it. The filtered residue can be viewed as the
artifacts that non-blind deconvolution methods do not
handle well. We then subtract the filtered difference
map from I; to remove these artifacts. The results in
Figure 4(e) show that this approach is effective for text
and natural images, and performs favorably against
the ringing suppression method [2].

5 ANALYSIS OF ALGORITHM

In this section, we analyze how the proposed algo-
rithm performs on text image deblurring. We also
demonstrate the importance of intensity prior for text
image deblurring and discuss its relationship with
other methods in terms of the edge selection. Further-
more, we show that the proposed algorithm can be
applied to deblur natural images.

5.1 Effectiveness of the Lj-Regularized Prior

The solution for u using (11) leads to results con-
taining segments with intensity value of 0. The ap-
pearance of those segments enhances the contrast of
u, and therefore drives the solution of z in (9) to
have salient edges around the segment boundaries
(See Figure 5(f)).

The text image deblurring method [8] involves a
hard-thresholding step ((7) in [8]) with values de-
termined by SWT [12] to segment texts. In addi-
tion, this text image deblurring algorithm uses the
sparse gradient minimization method [33] to remove
ringing artifacts from the intermediate latent images,
which increases the computational load significantly.
Figure 5 shows one example where the method [8]
does not perform well. The reason is that SWT is not
effective in detecting text when the blurred characters
are cluttered as illustrated in the intermediate results
of Figure 5(e).

The success of recent deblurring methods hinges
on latent image estimation explicitly [3], [4] or implic-
itly [1], [2], [6]. The proposed method is distinguished
from existing methods as it does not involve ad-hoc
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Fig. 5. An example presented in [8]. (a) Blurred image
and kernel; (b) Results of [8]; (c) Our results without us-
ing P;(z) in the kernel estimation; (d) Our final results;
(e) Intermediate results of [8]; (f) Our intermediate
results (including = and w); (g) Intermediate salient
edges of [7]; (h) Intermediate salient edges using only
P,(Vx); (i) Intermediate results using only P;(z); (j) Our
intermediate salient edges, i.e., g in (12).

edge selection (e.g., spatial filtering [8], [3], [4], or
edge re-weighting [2], [6]) for kernel estimation. In-
stead of finding one good threshold to remove subtle
image structures such as filter-based edge selection
methods [3], [4], the proposed algorithm computes
intermediate latent images iteratively by solving the
optimization problems in a way similar to [7]. By
using (11) and (12) of the proposed algorithm, pixels
with small intensity values or tiny structures can be
removed while salient edges are retained. Further-
more, our method exploits the gradient prior with
P, (Vz). If 0 of (7) is set to 0, then the proposed
algorithm is reduced to the recent methods based
on Lo gradient priors [7], [36] which achieve the
state-of-the-art results for deblurring natural images.
On the other hand, these Lj-based methods [7], [36]
(LODeblur for short) do not perform well for text
images. Figure 5(g) shows intermediate salient edges
extracted by [7]. As no sharp edges are extracted, the
blur kernel is not estimated well by this method.

We note that image deblurring using only intensity
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prior is less effective (See Figure 5(i)) as P;(z) is based
on independent pixels without considering image gra-
dients. On the other hand, image deblurring with only
gradient prior P,(Vz) is not effective (See Figure 5(h))
as no salient edges are extracted.

5.2 Convergence of the Proposed Algorithm

The proposed kernel estimation algorithm is mainly
based on the alternating minimization method which
ensures that each sub-problem has a closed-form so-
lution. Thus, the proposed algorithm has fast conver-
gence property.

We evaluate the convergence rate of the proposed
method using 96 blurred text images from the pro-
posed dataset. The average energy of the objective
function (5) decreases with respect to the number of
iterations as shown in Figure 6(a). The results demon-
strate that the proposed algorithm (Algorithm 1) ex-
hibits good convergence. We also measure the quality
of the recovered images in terms of PSNR. Figure 6(b)
demonstrates fast convergence of Algorithm 1 in
terms of PSNR. Furthermore, we analyze how the
proposed method converges by posing g estimation as
the outer loop and the inner loop in Algorithm 1. The
plots in Figure 6(a) and (b) show that the approach
with estimating ¢ in the inner loop converges to better
solutions with lower energy values and higher PSNR
values of the recovered images. On the other hand,
the approach with estimating g in the outer loop does
not perform well. The difference between these two
approaches is in line with our analysis in Section 4.1.

We evaluate the convergence and performance of
Algorithm 2 with respect to the domain of the data
term. The proposed kernel estimation is carried out by
alternatively solving (5) and (6), where the first term
can be based on either image intensity or gradient.
The plots in Figure 6(c)! show that similar conver-
gence is achieved for both approaches. However, the
combination of using image intensity for the first term
of (5) and image gradient for that of (6) performs
better than the others as shown in Figure 6(d).

5.3 Deblurring Saturated Images

Estimating blur kernels from blurred images with
saturated regions is a known difficult problem. Al-
though a few non-blind deblurring methods [37], [38],
[39] have been proposed to deal with such images,
it remains challenging to develop effective blind de-
blurring algorithms. Saturated regions usually appear
sparsely in clear images and these areas are much
larger (e.g., blobs or streaks) after blurring. Figure 7(b)
shows two examples of saturated blurred images from
Figure 7(a). We use the binary images to display
the saturated regions in Figure 7(c) and (d), where
there are more non-zero elements in the binary im-
ages of the blurred images than those of the clear
binary images. As the Ly-norm in P,(xz) minimizes

1. We use the image intensity to compute the energy of (4), if the
data terms of (5) and (6) are in different domains.
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Fig. 6. Convergence properties of Algorithms 1 and 2.
(a)-(b) show the convergence of Algorithm 1. (c)-(d)
show the convergence of Algorithm 2 and the cor-
responding energies and kernel similarity values are
computed from the finest level of Algorithm 2. The
legend Intensity in (5) & Gradient in (6) in (c) and (d)
indicates that the first terms in (5) and (6) use image
intensity and image gradient, respectively.
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(a) (b) (c) (d)
Fig. 7. Saturated images. (a) Clear images with sat-
urated regions and ground-truth kernel. (b) Blurred
images with saturated regions. (c) Binary images of (a).

(d) Binary images of (b). (c) and (d) are obtained from
(a) and (b) with the same threshold value.

the number of non-zero coefficients, the proposed
deblurring algorithm favors solutions with few blobs
or streaks in the clear images, which leads to non-
trivial solutions. We present results from challenging
images in Section 8.2.

6 DEBLURRING NATURAL IMAGES

We analyze how the proposed algorithm performs on
text images in complex backgrounds and present a
method to deal with generic blurred images.

The success of the state-of-the-art generic image
deblurring methods stems mainly from restoration
of intermediate images with salient edges for ker-
nel estimation. The restored intermediate images do
not necessarily resemble the sharp natural images in
terms of rich textures and contain structures of large
gradients [3], [4], [7] or matte maps [40]. In [40],
[41], Jia shows that the matte map of an image helps
estimate the blur kernel for natural image deblurring.
In image matting, the matte map segments an image
into background, foreground, and ambiguous regions.
The values are zeros for background pixels, ones for
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foreground pixels, and float numbers between zero
and one for ambiguous pixels [42]. In the deblurring
process, the intermediate result u can be viewed as
the matte map of multiple layers (where an object is
represented by one layer). The modeled blur process
generates ambiguous regions around the boundaries
between different objects due to the mixture of pix-
els belonging to different objects. If the intermediate
result contains sharp edges or strong contrast around
the object boundaries, it helps the kernel estimation as
the intermediate result approximates the latent image
in terms of clear boundaries. In the proposed method,
the solution of u in (11) is determined by thresholding
x with the value of %" This process results in many
zero-intensity pixels in u and enforces higher contrast
in the generated result. Similarly, the sub-problem
of the gradient prior in (10) maintains only large
gradient values, but removes small gradients. Thus,
the effect of the Ly-regularized gradient prior is able
to retain salient edges in the optimization process.
With two components in (8), the intermediate result
x is likely to maintain the properties of v and g,
which leads to sharper object boundaries and im-
proves kernel estimation. In contrast, the intermediate
latent image estimation step from [7] relies only on g,
which does not help preserve sharp object boundaries
in text image deblurring (See Figure 5(g)). This is the
main reason that our method performs better than the
method that uses only the image gradient prior.

As discussed above, the sub-problem on the Ly-
regularized intensity prior enforces the intermediate
image x to contain many pixels of zero values. This
step is based on the varying parameter 2¢ and its
initial value is critical for the success of the method.
To handle text or natural images with numerous zero-
intensity values, the initial value can be easily deter-
mined as there exist pixels of low intensity values that
are close to zero in the blurred image as well as in
the clear image. We note that the document image
is nearly two-tone and the value 0.5 usually separates
the intensity histogram into two components (text and
background) [43]. Since the initial value of  is set
to be 2\o in Algorithm 1, the initial value of 22 is
0.5. However this approach does not work well for
natural images as they contain more complex intensity
histograms than those of text images. To address this
issue, we propose to find a threshold to segment the
intensity histogram of the natural images into two
parts (i.e., foreground and background). We deter-
mine the initial value of 27 according to the intensity
histogram of a blurred image with the threshold
selection method by Otsu [44] where it determines
the optimal value for two modes of image pixels for
separation. We denote the value determined by Otsu
algorithm as o, and then set the initial value of 3 to
be 2% in Algorithm 1.

Figure 8 shows an example where the proposed
algorithm with adaptive initial threshold value is able

(8
Fig. 8. Intermediate results with different priors in
natural image deblurring. (a) Blurred image. (b) In-
termediate result with P,(Vz). (c) Deblurred result
using [43] with fixed initial threshold 0.5 for %". (d)
Deblurred result using the proposed algorithm with the
adaptive initial threshold for 22, estimated by Otsu
algorithm [44]. (e) Intermediate results with P,(Vz). (f)
Intermediate results [43]. (g) Our intermediate results.

to generate reliable intermediate results for kernel es-
timation, while the algorithm [43] with a pre-defined
value fails in this natural image (See Figure 8(c) and
(f)). This is mainly because that the initial value of 22
in [43] is 0.5, which keeps the pixels whose intensity
values are larger than 0.5 in the computation of u
(See (11)). According to the aforementioned analysis,
this will improperly segment = (See the white areas
in Figure 8(f)), which accordingly alters the structures
of intermediate results. Compared to the method [7],
our intermediate latent image restoration step with
the intensity prior maintains salient structure of the
object boundaries. The proposed prior with adaptive
threshold value helps enhance the contrast and pre-
serve more salient edges in the intermediate latent
image (See the comparisons in Figure 8(e) and (g)).
We further consider a modification of the proposed
algorithm as there may exist multiple peaks in the
intensity histogram of a natural image. As the height
of the highest peak in an intensity histogram of a
natural or text image is reduced after the blur process,
we modify the intensity prior to reflect this property,

Pe(z) = ollx = cllo + [|Vlo, (16)

where c is the intensity value corresponding to the
highest peak of an intensity histogram. The modifi-
cation, x — ¢, assumes that the solution x contains
more pixels whose intensity values are c in the sharp
image rather than the blurred one due to the shift of c.
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(@) (b) (© (d)

Fig. 9. Effect of different priors used in intermediate
latent image restoration. (a) Ground-truth clear image
and the blur kernel. (b) Blurred image. (c)-(d) Non-blind
deconvolution results with prior P.(x) and P(x). The
red boxes in (c) enclose some artificial structures.

Intuitively, the solution using this prior P.(x) favors
a clear image. However, this process does not nec-
essarily facilitate the kernel estimation process. The
term ||z — ¢|lop used in the intermediate latent image
estimation enforces the pixel values approximate to c
and thus reduces the contrast in the restored result.
Furthermore, it is likely to result in segmentation
effects, i.e., generating segments with constant values
(See Figure 9(c)). In comparison, the term ||z||o used
in the proposed prior P(z) of (2)) and its solution
enforces the pixels of small intensities to be dark
pixels of intensity value 0. Although the use of the
prior P(x) may generate unnatural results, it is able to
enhance the contrast and preserve sharp edges in the
restored result, which is critical in image deblurring.
This is the main reason that we use (2) rather than (16)
in kernel estimation.

7 NON-UNIFORM DEBLURRING

Camera shake during the exposure time often leads to
spatially varying blurring effect on the image. Based
on the geometric model of camera motion [23], [24],
we represent a blurred image as the weighted sum of
a clear image under transformations,

t
y= Z wK(0)x + e,
1=1

where a blurred image y, a latent image x, noise e are
in vector forms, w; is the weight corresponding to the
camera pose 0; that satisfies w; >0, Y, w; =1, and ¢
is the number of sampled camera poses. In (17), K(6;)
is a matrix derived from the homography matrix
H(6;) that warps the latent image x. As in [24], the
homography matrix H(f;) is defined by

H(0,) = TR(6;) T,

(17)

(18)

where T is the intrinsic matrix of the camera and
R(6;) is the rotation matrix describing the motion of
the camera.

Similar to [24], we use the bilinear interpolation
when applying K(6;) to a latent image x. Thus, (17)
can be rewritten as

y=Ax+e=Bw+e, (19)
where A = >, w; K(6;), B = [K(6,)x, K(62)x, ---,
K(6;)x], and w = [wy,ws, ---,w] . Based on (19),
the non-uniform deblurring process is carried out by
alternatively minimizing

min||Ax — y§ + AP(x). (20)

and

min [Bw —y |5 +[lw]3. (21)

Similar to the optimization process of (5), we in-
troduce the same auxiliary variables and rewrite the
objective function as

min [[Ax — yH% + Blx — uH%
x,u,g
+ 1l Vx — g3 + A(e|lullo + [|gllo).

where u and g are vector forms of u and g defined
in (5), B and p are the same to those in (5). We note
that || - ||o is defined on each pixel. Thus, the solution
of minimization problems with respect to u and g can
be still obtained by (11) and (12).

The minimization problem,

min [|Ax —y[3 + Bllx — ulf + x[[Vx — g3, (23)

cannot be solved directly using FFTs. Since the blur
kernels at a small region are similar, we use the locally
uniform blur model to approximate the non-uniform
blur as the fast approximation method [26]. It divides
the image into ) patches and the matrix A can be
represented by

Q

A= diag(M,)A,, (24)

r=1
where diag(v) is a diagonal matrix with the element
of vector v on the main diagonal, M, is a window
function that are zero-padded near the border which
helps blend overlaid patches, and A, is the matrix
corresponding to the blur kernel a, for the r-th patch.
To compute A using FFTs, A can be expressed as

Q
A=Z,' > C N (F ' (diag(F(Zaa,)))F(C, diag(M.,))),

25
where Z, and Z, are the zero-padding matrix t(ha’)c
prepends zeros to a vector such that its size matches
the size of the vector resulting from the summation,
C, () is a matrix that chops r-th patch from a vector,
and C; !(-) is a matrix that paste the r-th patch to the
original vector.

By using the approximation (25) of A, the solution
of (23) can be obtained by

g 1 1 (A
X W;q (]—' (m))’
where W is a weight to suppress visual arti-
facts caused by the window functions [26], Ay =
F(Zya)F(Zoa,) + B + puF(C.(V)F(Cr(V)), and
An = F(Zaar)F(C,(diag(M,)y)) + SF(C(u)) +
M(‘F(C7(Vv))]:(c7(gv))+]:(Cr(vh))]:(07(gh)))
The algorithm for solving (22) is the same in
Algorithm 1, where we only need to replace (9)
with (26). For the optimization of the kernel esti-
mation model (21), we use the same optimization

(26)

0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPAMI.2016.2551244, IEEE Transactions on Pattern Analysis and Machine Intelligence

process proposed by [7]. The proposed non-uniform
deblurring method is achieved by alternatively mini-
mizing (22) and (21). We use the same settings as the
uniform deblurring presented in Algorithm 2.

8 EXPERIMENTAL RESULTS

We present experimental evaluations of the proposed
algorithm against the state-of-the-art deblurring meth-
ods for text and generic images. All the experiments
are carried out on a desktop computer with an Intel
Core i7-4790 processor and 24 GB RAM. The execution
time for a 255 x 255 image is 15 seconds on MATLAB
without code optimization. In all the experiments, we
set A =0.004, v = 2, and o0 = 1, respectively. We em-
pirically set Bmax = 8 and fimax = 10° in Algorithm 1.
In the final stage, the method presented in Section 4.3
is employed to estimate the latent image, and the non-
blind deconvolution method [38] is used to recover
a saturated image. More experimental results can
be found at http://faculty.ucmerced.edu/mhyang/
project/text-deblur/, and the MATLAB code as well
as datasets will be released.

8.1 Text Images

Synthetic text images: We first use the example
from [8] (See Figure 5) for comparisons. Table 1
shows the structural similarity (SSIM) [45] and kernel
similarity [46] values of the recovered images and
estimated kernels by the state-of-the-art deblurring
methods for text images [8] and generic images [3],
[4], [5], [7], [47]. We also compare the proposed de-
blurring method for text images in Section 4 (referred
as LORIG) and the deblurring method for natural
images in Section 6 (referred as ILORIG). Overall, the
proposed algorithm performs well in terms of both
metrics as well as visual quality.

In addition, we construct a dataset containing
15 ground truth document images and 8 kernels
from [13] (See the project web page for images). For
each sharp image, we compute the average PSNR
on the blurred images generated by different blur
kernel estimation methods [2], [3], [4]l, [6], [5], [7],
[47] as shown in Figure 10. Although the ILORIG
method does not perform well for some examples in
this text image dataset (e.g., im11), it performs better
than existing methods for text or natural images as
shown in the last column of Figure 10. We also note
that the ILORIG method usually generates sharper text
images than the LORIG approach despite the fact that
they perform similarly in terms of PSNR values (more
results can be found on the project web page).

Real text images: We evaluate the proposed algorithm
and other methods using real text images. For fair
comparisons with [8], we use an example from [8] and
show the deblurred results in Figure 11. The natural
image deblurring methods do not perform well on
text images. The deblurred result of [9] contains ring-
ing artifacts and some strokes are not recovered well.
Although the state-of-the-art method by Cho et al. [8]

performs well, the motion blur is not fully removed
as shown in the red box in Figure 11(h). In addition,
the deblurred result contains unnatural colors due to
the SWT process. Compared with [8], the proposed
algorithm generates sharper and visually pleasing de-
blurred results. We note that the LODeblur method [7]
does not estimate the blur kernel or deblur the image
well which also demonstrates the importance of P;(x)
in the proposed prior P(x). Both LORIG and ILORIG
methods perform well on this text image.

Images containing text and complex background: We
present an example in Figure 12 where the image con-
tains rich text and cluttered background regions. The
state-of-the-art natural image deblurring methods [3],
[4], [6], [7] are not effective in handling this text
image with complex background. Although the text
image deblurring method [8] handles this example
well (as shown in Figure 12(f)), the estimated kernel
retains certain amount of noise and the deblurred
result contains some unnatural colors as a result of
the SWT process. In contrast, the proposed algorithm
generates the deblurred image (clear text, sharp edges,
and natural color) and blur kernel well. Figure 12(g)
and (h) show the results using the proposed algorithm
with only P;(Vz) or P;(z). The results in (g) and (h)
show that sharp images cannot be obtained by using
only the gradient or intensity prior, which indicates
that the proposed prior P(z) plays a critical role in
text image deblurring.

8.2 Low-lllumination Images

Most state-of-the-art deblurring methods are less ef-
fective in processing blurred images with saturated
regions [37] which often appear in low-illumination
scenes. As discussed in Section 5.3, the proposed
algorithm can be used to deblur such images.

Figure 13 shows a real captured image which con-
tains several saturated regions (red boxes in (a)). We
compare the proposed algorithm with the state-of-the-
art methods [3], [4], [6], [5], [7], [47]. Since the priors of
the state-of-the-art methods are developed to exploit
salient edges for motion deblurring, these algorithms
do not perform well for images containing numerous
saturated regions. As the recent method [47] is devel-
oped to handle large Gaussian noise, it is less effective
for saturated images. Although the saturated areas
(e.g., highlighted blobs, streaks, and the characters in
Figure 13(a)) are large due to motion blur, the Lo-
regularized prior P(z) favors a clear image with few
blobs and streaks as a solution of the optimization
of (4) in Section 3.2. The recovered image shown
in Figure 13(h) is sharper and clearer. We note that
while our method is able to estimate the blur kernel
well, there still exist some ringing artifacts due to
the limitation of the final latent image estimation
process as shown in Figure 13(h). To generate better
deblurred results, we use the non-blind deconvolu-
tion method [38]. The deblurred results shown in
Figure 13(i) contains clearer text information and finer
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TABLE 1
Quantitative comparison using the example shown in Figure 5(a).
| [ BI [ @ [ Bl | 41 [ @7 [ [8] [ Using P(Va) | Using Pi(z) | LORIG | ILORIG |
SSIM of images | 0.6457 | 0.6269 | 0.5611 | 0.4867 | 0.6190 | 0.5526 0.5963 0.6718 0.8916 | 0.8819
Kernel similarity | 0.5200 | 0.5200 | 04170 | 0.6407 | 0.4938 | 0.6456 0.5849 0.6285 0.8699 | 09298

M Blurred image M Choandlee ™ Xuandlia MKrishnanetal. ®levinetal. ®Xuetal. ®™Zhongetal. MLORIG MILORIG
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Fig. 10. Quantitative comparison on the proposed text image dataset. The z-axis denotes the image index and
the average PSNR values of all the images are shown on the rightmost column.

(a) Blurred image (b) Cho and Lee [3] (c) Xu and Jia [4] (d) Krishnan et al. [6] (e) LODeblur [7]
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(f) Zhong et al. [47]  (g) Chen et al. [9] (h) Cho et al. [8] (i) LORIG () ILORIG
Fig. 11. A real blurred image from [8]. The part in the red box in (h) contains blurry and unnatural results.
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(a) Blurred image (b) Cho and Lee [3] (c) Xu and ]1a [4] (d) Krishnan et al. [6] (e) LODeblur [71

(f) Cho et al [8] (g)?]smg only Pt(Va:)(h) Using only Pi(z) (i) LORIG G) ILORIG

Fig. 12. A blurred image with text and complex background. Our method performs well in the kernel estimation
and deblurred image.

textures which demonstrates the effectiveness of the We note that one recent work [48] is developed
proposed algorithm for kernel estimation. Both the for detecting light streaks in low-illumination im-
LORIG and ILORIG methods are able to deblur this ages for kernel estimation and deblurring. Different
low-illumination image well. from [48], the proposed method does not require any
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(a) Blurred image

(b) Cho and Lee [3]

(f) LODeblur [7] (g) Zhong et al. [47]

(c) Xu and Jia [4]

(h) LORIG results

(d) Krishnan et al. [6] (e) Levin et al. [5]

(i) LORIG with [38] (j) ILORIG with [38]

Fig. 13. Real captured blurred image with numerous saturated regions. The red boxes in (a) enclose some
saturated pixels (e.g., the highlighted blobs, streaks, and the characters).

(f) LODeblur [7] (g) ong et al. [47]

(h) Hu et al. [48]

< art

(i) LORIG (j) ILORIG

Fig. 14. Real captured blurred image with a lot of saturated areas.

pre-processing and performs well when light streaks
cannot be detected in low-illumination images. Fig-
ure 14 shows one example with numerous saturated
regions and deblurred results from the state-of-the-art
methods [3], [4], [6], [5], [7], [47], [48]. As the saturated
areas are large and light streaks cannot be detected in
this image, the method [48] does not perform well in
this case. For fair comparisons, we use the non-blind
deconvolution method [38] to generate the final latent
images in all the evaluated algorithms. The results
show that the state-of-the-art deblurring methods are
less effective for estimating blur kernels from satu-
rated images, whereas the proposed algorithm is able
to estimate motion blur kernels well for reconstructing
deblurred results.

To further analyze the deblurring performance for
low-illumination images, we create a dataset contain-
ing 6 ground truth low-illumination images and 8
kernels from [13]. Similar to [48], [37], we stretch the
intensity histogram range of each image into [0, 2.2]
and then apply 8 different blur kernels to generate
blurred images where the pixel intensities are clipped
into the range of [0, 1]. For fair comparisons, we
use the same non-blind deconvolution method [48] to
generate the final results and use PSNR to evaluate the
quality of the restored images. Figure 15(a) shows that
the proposed algorithm performs favorably against
the state-of-the-art deblurring methods and generates
clear images (See the project web page for images).

8.3 Natural Images

We show that the proposed algorithm can be ap-
plied to deblur natural images. We first evaluate
our method on the benchmark image dataset [13]
on uniform image deblurring, and compare with the
state-of-the-art methods [1], [2], [3], [4], [5], [6], [7],
[43], [47]. For fair comparisons, all the final deblurred
results are generated by the same non-blind deconvo-
lution method [5], and the error ratio metric [13] is
used for evaluation.

Overall, the LORIG algorithm performs well on
natural scenes although it is designed to deblur
text images. However, the LORIG method alters the
structures of intermediate results due to the complex
intensity histograms of natural images according to
the analysis in Section 6. Thus, the results are not
comparable to those by the state-of-the-art approaches
designed for generic scenes [4], [7]. As the ILORIG al-
gorithm extends the LORIG method by exploiting the
properties of input images to recover reliable salient
edges for kernel estimation, the results in Figure 15(b)
show that it is able to deblur natural images well.

We evaluate the proposed algorithm on the bench-
mark dataset and protocol [19] for fair comparisons.
As shown in Figure 15(c), the proposed algorithm per-
forms favorably against the state-of-the-art methods,
and the curves for the LORIG and ILORIG methods
demonstrate the effectiveness of the proposed prior.

We also evaluate our method on the benchmark
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(a) Results on LI dataset
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(c) Results on [19] (d) Results on [18]

Quantitative evaluation on the proposed low-illumination image dataset and the benchmark

datasets [13], [19], [18]. The z-axis in (b) and (c) denotes the error ratio values.

(a) Blurred image (b) Cho and Lee [3]

(c) LODeblur [7]

(d) LORIG (e) ILORIG

Fig. 16. Deblurring real natural images. The proposed methods generate visually comparable results compared

to the state-of-the-art methods.

(a) Blurred image

sy o ) -

> .
(e) Whyte et al. [24] (f) LODeblur [7]

dataset for blind deconvolution [18], which contains
4 images with 12 blur kernels including several chal-
lenging cases. The average PSNR values are shown
in Figure 15(d). Overall, the proposed LORIG and
ILORIG methods perform well on this dataset against
the state-of-the-art algorithms.

In Figure 16, we show deblurring results using real
natural images [7]. As the LORIG and ILORIG methods
with the proposed prior are able to preserve the
salient edges, the deblurred results are sharper with
fewer ringing artifacts. More results and quantitative
evaluations are presented on the project web page.

8.4 Non-Uniform Image Deblurring
In this section, we compare the proposed algo-
rithms with the state-of-the-art non-uniform deblur-

(h) ILORIG

(g) LORIG
Fig. 17. Non-uniform image deblurring [25]. The images shown in (b)-(f) are obtained from the reported results.

ring methods [7], [24], [25], [26], [49]. Figure 17
shows an example from [25] which has been used
for evaluation on non-uniform image deblurring. Fig-
ure 17 shows the recovered letters of (b)-(f) containing
some ringing artifacts. Compared to the reported non-
uniform deblurring results, the proposed LORIG and
ILORIG methods generate comparable results with
clear textures. Figure 18 shows another example of
non-uniform image deblurring. Compared with other
methods, the proposed LORIG and ILORIG methods
generate results with few ringing artifacts and fine
textures. More experimental results can be found on
the project web page.
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(a) Blurred image (b) Gupta et al. [25] (c) Whyte et al. [24]
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(d) LODeblur [7] (e) LORIG (f) ILORIG

Fig. 18. Non-uniform image deblurring. The images shown in (b)-(d) are obtained directly from the reported

results or generated by the original codes.

8.5 Sensitivity Analysis

The proposed model involves three main parameters,
A, 0, and ~. In this section, we show how they affect
the image deblurring performance.

To analyze the effects of these parameters on image
deblurring method for the ILORIG method, we col-
lect 16 blurred images for tests. For each parameter,
we carry out experiments with different parameter
settings by varying one and fixing the others with
the kernel similarity metric to measure the accuracy
of estimated kernels. For parameter A, we set its
values from 1075 to 0.01 with the step size of 0.001.
Figure 19(a) demonstrates that blur kernels can be
well estimated by a wide range of ), ie., within
[0.001, 0.01]. Similarly, we set the values of v from 0.02
to 5 with the increment of 0.2, and the values of o from
0 to 2 with the increase of 0.1. Figure 19(b) and (c)
show that the proposed ILORIG algorithm performs
well with a wise range of parameter settings.

9 CONCLUDING REMARKS

In this paper, we propose a simple yet effective prior
for text image deblurring. We discuss how the pro-
posed prior facilitates preserving salient edges in im-
age deblurring, and extend it to deal with natural im-
ages. With this prior, we present an effective optimiza-
tion algorithm based on the half-quadratic splitting
approach, which ensures that each sub-problem has a
closed-form solution. Experimental results show that
the proposed algorithms perform favorably against
the state-of-the-art methods for deblurring text images
without additional pre-processing steps (e.g., filtering,
adaptive segmentation and SWT). In addition, we de-
velop a latent image restoration method which helps
reduce artifacts effectively. The proposed algorithm
is also extended to deblur natural images and low-
illumination scenes, as well as non-uniform cases.
Limitations: We note that the prior ||z|/o counts the
number of nonzero-intensity pixels of an image x.
If x does not contain zero-intensity pixels, we have
lz]lo = C, where C is the total number of pixels in «
and it is a constant for an image x. Mathematically, the
minimization problem (4) would reduce to the model
used in [7]. Furthermore, we would have ||z]lo0 = ||y]lo
as the blurred image y would also not contain zero-
intensity pixels according to the properties of convo-
lution. This further demonstrates that the prior ||z||o
does not help the kernel estimation.
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Fig. 19. Sensitivity analysis of A, v, and o for the

Fig. 20. A failure example. (a) Blurred image. (b)
Intermediate result. (c) Deblurring result and kernel.

The proposed methods are likely to fail when a
blurred image contains a large amount of noise (e.g.,
Gaussian and non-Gaussian noise) as the data term
used in the proposed model (4) is based on Ly norm
which is less robust to noise. In addition, the pro-
posed intensity prior counts the number of pixels with
nonzero-intensity values. As the pixels are treated
independently, the proposed algorithm is sensitive to
large image noise and exacerbates its effect in the
intermediate results (See Figure 20(b)). Our future
work will focus on simultaneously denoising and
deblurring for text as well natural images.
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