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Abstract: Accurate and prompt transient stability prediction is one of the effective ways to reduce the risk of blackout or
cascading failures. In an effort to achieve improvements in time efficiency and prediction accuracy, a new transient stability
prediction method combining trajectory fitting (TF) and extreme learning machine (ELM) based on two-stage process, named
hybrid method, is proposed here. ELM-based method is implemented in central station to ensure the time efficiency, while TF-
based method is adopted in local station to guarantee the accuracy. Furthermore, data corruption is taken into consideration to
assure the robustness of the proposed algorithm. The hybrid method is validated with the New England 39-bus test system and
the simulation results indicate its effectiveness and reliability.

1 Introduction
In modern power systems, the occurrence of disturbances is more
likely to enlarge and contribute to severe stability problems due to
expanding of grid structure and increasing diversity of generation
types such as wind and solar power. This challenge involved with
operation requires more efficient methodologies for stability
prediction [1]. Meanwhile, with the construction of smart grid, the
advanced measurement, communication, and computation
techniques are available for implementation of online stability
prediction [2].

Transient stability described by rotor angle stability with large
disturbance is focused in this paper [3]. Methodologies for
transient stability prediction include two categories: model-based
and model-free methods. Time simulation and transient energy
function (TEF) methods are representatives of model-based
methods, which are reviewed as follows:

i. Time domain simulation is accurate but time-consuming when
applied in a large-scale power system [4–6].

ii. TEF methods avoid cumbersome integrating steps and predict
transient stability status directly based on Lyapunov stability
principle [7–9]. The key to TEF methods lies in constructing
reasonable energy function and calculating critical energy level
for certain scenario. However, it is usually hard to calculate the
controlling unstable equilibrium point in a practical power
system. The time-consuming feature of time simulation and
event-driven feature of TEF methods limit their online
performance. For breaking these restrictions, data mining
model-based methodologies, which leave out power system
physical model, have been proposed as the model-free
methods. Curve fitting measures and machine learning
techniques are representative for these methodologies [10–25],
which are reviewed below.

iii. Curve fitting-based methods extract the stability characteristics
of a power system from off-line simulated prior data or post-
disturbance phasor measurement unit (PMU) data (usually 0.2–
0.4 s) and predict with real-time measurement. The fitting
model consisting of reasonable fitting functions is kernel of
this method. While in [11], fitting model is substituted with
pre-processed trajectory pattern database for improvements in
accuracy.

iv. Machine learning techniques are concerned in power system
due to advantages in obtaining non-linear mapping relationship

between the input and output data [13, 14]. Their applications
in power system transient security assessment and control have
demonstrated promising performance, e.g. artificial neural
network [15–17], decision tree [18–20], support vector
machine (SVM) [21, 22], core vector machine [23], and
extreme learning machine (ELM) [24, 25]. The two main
predict objects of these methods are transient stability degree
(e.g. critical clearing time) with regression function and
transient stability state with classification function. Prediction
reliability and practical implementation efficiency are
concerned in most studies. In [21], power system stability state
is predicted with credibility by SVM-based classifiers and a
hierarchical scheme with multiple response time is set up for
higher accuracy. In [17], feature reduction is taken to reduce
the training time cost and the classification accuracy is not
affected. In [24], ELM-based classifier for transient stability
analysis can be updated with online instance, which enables it
to follow the changes of power system operation in practical
use. For machine learning techniques-based methods, physical
behaviour of actual power system is ignored, which makes
these methods unreliable in certain cases.

Increased installation of wide-area measurements in power
system promotes implementation of these data mining-based
methods. Curve fitting-based methods need to compute post-
disturbance PMU measurement, which consumes a certain time
and therefore reduces available time for stability control. In
contrast, machine learning-based methods can figure out predict
outcomes more rapidly. Nevertheless, without support from high-
quality samples, machine learning-based methods will encounter
difficulty in extracting effective prior knowledge and their
prediction accuracy will be affected.

Therefore, the main objective of this paper is to propose a
hybrid online transient stability prediction method with high
efficiency and accuracy. With integrating of both local and central
computing resources, curving fitting and machine learning-based
methods are combined to maximise the benefits of model-free
methods. Furthermore, with high requirements of data
measurement and transmission in close to real-time stability
prediction, potential risk of data missing is also considered.

The remaining of this paper is organised as follows. In Section
2, implementation of curve fitting and machine learning-based
prediction method is introduced in detail. The newly proposed two-
stage method is presented in Section 3. The implementing structure
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and process of transient stability prediction is explained in this
section. Case studies and conclusion are presented in Sections 4
and 5, respectively.

2 Problem description and algorithm
preliminaries
For power system transient stability prediction, the accuracy and
the efficiency are usually in conflict. As studied in a recent work
[26], the increase in accuracy is usually at the cost of sacrificing
the efficiency. Therefore, how to achieve a balanced accuracy–
efficiency performance is a core problem.

This paper proposes a hybrid method combining curve fitting
and machine learning-based methods to improve both accuracy and
efficiency simultaneously. Besides, the proposed method also
considers data missing issues, and therefore can improve the
prediction robustness. The trajectory fitting (TF) method
introduced in [11] is adopted due to its significant advantage in
accuracy. In this study, ELM-based method is chosen for its
superiority in training speed and sample dependency characteristic
among various machine learning techniques [24, 27, 28].

2.1 Mathematical model of multi-machine power system
transient stability

Conventionally, power flow algebraic equations for transmission
network and differential equations of generators are concerned for
transient stability analysis of a multi-machine power system. For
the ith generator, rotator dynamics equation can be represented as
below:

dδi
dt = ωi (1)

dωi
dt = 1

Mi
⋅ (Pmi − Pei − Diωi) (2)

where δi is the rotor angle, ωi the rotor rotating speed, Mi the
generator's moment of inertia, Pmi the mechanical power, and Di
the system damping constant. Pei is the electromagnetic power and
can be determined with the equation below:

Pei = ∑
k ∈ Ni

BikUiUksin(δik) (3)

where Ni is the set of neighbouring buses of the ith generator, Bik
the transfer susceptance of buses i and j in the reduced admittance
matrix of the system, Ui and Uk are the voltage of buses i and k,
and δik is the rotor angle difference between buses i and k.

From rotor dynamic equations and electromagnetic power
calculating equation, it can be inferred that the rotor angle variation
is related to the rotor rotating speed, which is affected by the
moment of inertia, mechanical power, electromagnetic power, and
the damping constant. In most cases, mechanical power is regarded
as a constant considering the limited time-scale. Hence,
electromagnetic power is an important parameter affecting the rotor
dynamics. Moreover, the electromagnetic power varies with
transfer susceptance, the generator voltage level, and rotor
difference.

Apparently, the voltage variation, the rotor angle variation, rotor
rotating speed variation, and voltage variation are basic features for
transient stability assessment. The fault duration is also included to
take the influence of transfer susceptance into consideration.
Further, power flow is also concerned as a feature to consider the
influence of operation condition.

2.2 TF-based prediction method

TF-based prediction method assumes that parameter dynamics in
power system transient process always manifests similarities under
similar operation conditions. This method consists of generating
trajectory pattern database in offline and matching characteristic

trajectories with PMU measurement in online. This paper refers to
the perturbed trajectory standard pattern database generating
method and extends the implementation scenarios in [11]. For a
certain generator, trajectories in knowledge base are categorised
with hierarchical clustering algorithm and it can be represented by
the following optimisation model

J = min {M}
s . t . f i j(x) ≤ e (4)

where M is the number of pattern in the trajectory pattern database,
fij(x) the Euclidean distance between the jth trajectory and the
characteristic trajectory in the ith standard pattern represented by
(2), and e the error threshold value calculated through Euclidean
distance

f i j(x) = ∑
t = 1

Ts

(Xi jt − Mit)2 (5)

where Ts is the length of total simulation time, Xijt the value at time
t of the jth trajectory in the ith standard pattern, and Mit the value at
time t of the characteristic trajectory in the ith standard pattern.

For a certain trajectory pattern database, each characteristic
trajectory is labelled with operation information, including fault
type, fault location, fault duration, load level, and initial angle.
With this additional information, the substitution scheme can be
carried out when measurement failure is encountered.

When TF-based prediction method is implemented, the
similarity between PMU measurement and characteristic
trajectories in trajectory pattern database is calculated, and the
most similar characteristic trajectory in database is selected as the
predict outcome. The similarity can be calculated from the
equation below

Di = ∑
t = 1

Tm

(xt − Mit)2 (6)

where Di is the value of similarity calculation, Tm the measurement
sample length, xt the measurement value at time t, and Mit the value
at time t of the characteristic trajectory in the ith standard pattern.

2.3 ELM-based prediction method

ELM is an emerging fast single-hidden layer feedforward neural
network (SLF-NN) algorithm [27, 28]. Compared with other SLF-
NN algorithms, the strength of ELM is determining parameters of
hidden nodes with random value instead of time-consuming
iterative computations when the activation functions in the hidden
layer are infinitely differentiable. The output weight value can be
figured out directly after parameters and neuron number of hidden
layer are set. In such a way, its training speed can be thousands
times faster than conventional gradient-based learning algorithms.

Fig. 1 shows the structure of an SLF-NN. For power system
transient stability prediction, x1, x2,…, xn is selected power system
features in transient process and o is the prediction outcome of
transient stability status. 

Hence, for a power system, transient stability knowledge base
with N samples, SN = {(Xi,ti)|Xi ∈Rn,ti∈Rm}, where Xi = [xi1,xi2,
…,xin]T∈Rn and ti = [stable, unstable]T. The stable and unstable
symbols are known and quantified as 0 and 1, respectively, when
training.

The training process for this knowledge can be described as a
mathematical model. That is, determine βi, Wi, and bi, such that:

∑
i = 1

L
βiϑ(Wi ⋅ X j + bi) = oj, j = 1, 2, …, N

∑
j = 1

N
∥ oj − t j ∥ = 0

(7)
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where ϑ(x) is the activation function, βi the output weight value, Wi 
= [ωi1,ωi2,…,ωin] the input weight value, bi the bias of hidden node
i, and Wi·Xj represents the inner product of Wi and Xj.

Hence, the training process is to determine βi, Wi, and bi. For
ELM training algorithm, the parameter Wi and bi is fixed before
training with random values. βi is the only undetermined parameter.
If the number of hidden neurons is equal to the number of training
samples, βi can be calculated easily [27]. While the number of
hidden neurons is less than the number of training samples
generally, precise βi, Wi, and bi, may not be exist. The
mathematical model can be transformed to minimising the cost
function shown below, where βi, Wi, bi (optimal approximate
solution) is to be determined

E = ∑
j = 1

N

∑
i = 1

L
βiϑ(Wi ⋅ X j + bi) − t j

2

(8)

For fixed W i, b i, βi can also be figured out easily as the
approximate solution [27].

In this paper, the activation function is set as RBF kernel
considering its strength in extracting non-linear features. In training
process, the Wi and bi are fixed and βi is the only parameter to be
determined, which becomes a linear calculation problem [27].

The implementing framework of ELM-based prediction method
is offline training and online application. Before training, feature
selection of knowledge base is necessary for identifying significant
features as training inputs. The candidate features in this paper
include rotor speed variation of generators, voltage amplitude and
phase angle variation, injection power variation, line power flow
under steady state, rotor angle variation of generators, and fault
duration. In [24], a fast feature selection method based on Fisher
discrimination is put forward to evaluate the discrimination
capability of a single feature and shows great performance in
computing speed. This paper takes this feature selection method for

reference. However, other feature selection methods [29] can also
be used for the proposed method.

In this paper, ELM is trained with the selected features and
prior knowledge about power system transient stability. ELM-
based classifier is constructed with training and it is the kernel of
online stability prediction method based on ELM. ELM-based
classifier takes the global information as input and outputs future
power system transient stability status in a very short time delay.
The ELM-based classifier enables reconstruction online through
fast feature reselection and retraining when it comes to
measurement or communication failure.

3 Hybrid transient stability prediction method
TF-based prediction method determines transient stability status
through rotor angle trajectory tendency of each generator. ELM-
based prediction method infers transient stability status directly
from PMU measurement. In Table 1, information source of both
methods are summarised. 

It can be inferred that ELM-based method is suitable for central
computing considering its large-scale data processing. While TF-
based method can be implemented in local with area computing
resources.

Furthermore, reducing misclassification risk of ELM-based
prediction method can be realised by examining problematic output
[24]. TF-based prediction method is the appropriate tool to
examine and modify predict outcomes of ELM-based prediction
method on account of its superior performance in prediction
accuracy [11].

3.1 Hybrid model for transient stability prediction

Given the complementary advantages of TF and ELM methods,
this paper proposes a hybrid model which consists of a two-stage
transient stability prediction process, and the structure of the
proposed model is shown in Fig. 2. It aims to predict post-
disturbance transient stability status in a very short time delay. The
essence of the two-stage prediction process is the coordination
between ELM-based and TF-based prediction method, and central
computing resource and local computing resources. 

In the central stage, the central stations are responsible for
collecting global measurement and provide inputs for ELM-based
prediction method. At the local stage, TF-based prediction method
implements with local rotor angle measurement.

Fig. 2 shows the implementation frame of two-stage
coordination-based transient stability prediction method. The
proposed prediction method is capable of improving the accuracy
of ELM-based method in central station with results verification
process implemented by local stations. Moreover, in order to
guarantee the online implementation effect, measurement failure
scenario, which leads to inadequacy inputs for prediction method,
is also discussed below.

3.1.1 Normal scenario: In normal scenario, central station
capture global measurements for ELM-based method inputs and
local stations takes local rotor angle measurement as TF-based
methods inputs. These methods calculate and figure out future
transient stability status concurrently. For each predict calculation,
the output of ELM-based method is compared with a fixed
threshold value which is determined by (6) and then suspect region
is set up

CE = min {AMis, ACor} + ACor − AMis ⋅ δ (9)

Fig. 1  Structure of an SLF-NN
 

Table 1 Information source of TF-based and ELM-based
prediction method
Method type Data scale Resource
TF-based prediction method single local
ELM-based prediction method vast global
 

Fig. 2  Implementing structure of hybrid prediction method
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where CE is the threshold value, AMis and ACor are the average
value of ELM-based method outputs in misclassification and
correct classification cases after constantly tests, and δ the
discrimination weight value. For a determined CE, if AMis is not
larger than ACor, the suspect region can be 0, CE ; otherwise, it can
be CE, + ∞ .

If the output value of ELM-based method belongs to the suspect
region, the examining process is activated which means predict
outcome of central station is proofread with local prediction
outcomes. The summarised local predict outcomes are used to
judge power system transient stability status for final predict result
decision.

3.1.2 Measurement failure scenario: Considering the condition
that online transient stability prediction requires high standards of
real-time PMU measure, it is rare but possible that central or local
stations fail to obtain PMU measurement data timely. In local
stage, advanced communication techniques enable local stations to
exchange information to support each other in this scenario. While
ELM-based method in central station can reconstruct a classifier
with obtained PMU measurement data to fit this measurement
failure scenario.

Response strategies of local and central stage for measurement
failure scenario are summarised below.

i. If any local station fails to obtain rotor angle measurement, the
operation information inferred from nearby (in electrical
distance) generator's prediction result is shared and the shared
operation information is used as search label to carry out TF-
based method where measurement failure happens. The
operation information includes fault type, fault location, fault
duration, load level, and initial angle data.

In operation information-based search scheme,
characteristic trajectories in trajectory pattern database whose
fault type and location match the actual operation information
are chosen to constitute primary set. The predict trajectory is
picked up from the primary set which shares the most similar

operation condition with actual operation information in
aspects of fault duration, load level, and initial angle data.

ii. If central station fails to obtain global measurement, the
transient stability prediction result is judged by predict
outcomes from local stage. Meanwhile, a new ELM-based
classifier suitable for practical scenario is constructed with
available PMU measurement data.

The classifier reconstruction process contains three steps. (i)
The knowledge base is modified with collected measurements. (ii)
Feature selection process is implemented to determine features for
training inputs. (iii) The initial training process is activated to
reconstruct ELM-based classifier. The reconstructed ELM-based
classifier is applied for prediction until measurement failure is
recovered.

3.2 Implementation process of hybrid method

The implementation process of hybrid rotor angle stability
prediction method is shown in Fig. 3 and detail steps are as
follows:

Step 1: Start predict program after disturbance is detected.
Step 2: Judge whether the global measurement is enough for ELM-
based prediction method inputs. If measurement is not enough,
actions are taken to refresh knowledge base, reselect features, and
retrain ELM-based classifier.
Step 3: Judge whether examination and amendment is necessary
according to ELM output value. If examination and amendment
process is taken, go to step 4, else go to step 6.
Step 4: TF-based prediction method is implemented at the same
time with step 2. If rotor angle measurement is absent, the shared
operation information is used as substitution input, else rotor angle
measurement is the input.
Step 5: The prediction result of TF-based method is recognised as
final predict result, if the outcome of TF-based and ELM-based
prediction method is conflict.
Step 6: The prediction result of ELM-based prediction method is
recognised as final prediction result.
Step 7: Prediction program ends and go to next round.

4 Case study
The proposed hybrid transient stability prediction method is tested
in New England 39-bus test system. For TF-based method, it
assumes that PMU measurement continues for 200 ms on 20 ms
cycle and 10 sets of data are acquired for prediction. As mentioned
in Section 2.1, initial features for ELM-based method are listed in
Table 2, which consists of 269 sets. 

Notation: These features are numbered from 1 to 269 with
sequence of δi, ωi, Vi, θi, PIi, QIi, PLi, QLi, and t.

It assumes that power system is not stable in transient process if
rotor angle difference between one generator and reference
generator beyond 180°, and vice versa. Fig. 4 illustrates the stable
state and unstable state of power system transient process. 

4.1 Sample generation method

Samples are created by Monte Carlo sampling method based on
Matlab PSTv3.0 software. Critical operation parameters are

Fig. 3  Implementation process of hybrid transient stability prediction
method

 

Table 2 Initial information requirements
Notation Description
δi rotor angle variation of generator i
ωi rotor speed variation of generator i
Vi, θi voltage amplitude and phase angle variation of bus i
PIi, QIi active and reactive power injection variation of bus i
PLi, QLi active and reactive power flow of line i
t fault duration
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assumed to follow a certain probability distribution. The load level
of each bus ranges from 80 to 110% of base load. The injection
power of bus is subject to normal distribution whose expectation is
the base injection power and the standard deviation is ±3% of the
base injection power. Five types of fault are applied including
three-phase short-circuit fault, single-phase ground fault, double-
phase ground fault, phase fault, and load loss. Fault happens on
lines spread over the whole system following hypodispersion. Fault
duration is assumed to follow normal distribution, of which the
expectation is 0.1 and standard deviation is 0.01.

The simulation is carried out by a computer with Inter® Core
i5-5200U and 4G cache. It consumes ∼8 s per simulation. In order
to provide enough training samples for ELM and lessen calculative
burden, 10,000 sets of samples are created which costs ∼23 h in
total. Ninety per cent of them are used to construct rotor angle
trajectory pattern database and train ELM-based classifier. The rest
are applied for testing.

4.2 Verification for TF-based prediction method

For TF-based prediction method, the undetermined parameter is
error threshold value which has a connection with prediction
accuracy. The performances in prediction accuracy with different
error threshold value configuration are summarised and shown in
Table 3. 

Notation: A represents the number of stable samples being
misjudged as unstable, B represents the number of unstable
samples being misjudged as stable. The total number of unstable
samples for testing is 168.

Few misclassification happens when error threshold value is set
as 50 and 5. Further, performances in measurement failure scenario
are carried out based on both values and they are compared to
configure actual error threshold value.

When error threshold value is set as 5, the performance of TF-
based method in measurement failure scenario is still reliable and
no more misclassification case appears. While in condition of error
threshold value 50, misclassification cases increase sharply to 26,
which misjudges unstable cases as stable cases. In order to
guarantee the prediction reliability in measurement failure
scenario, the error threshold value is determined to be 5 for further
implementation.

Moreover, the computing time in measurement failure scenario
increases to 0.7562 s. It can be explained that only if one local
station output predict trajectory with operation information, the
station with measurement failure can starts to compute.

4.3 Verification for ELM-based prediction method

4.3.1 Feature selection: With modified Fisher discriminant
method, the relevance between each feature and transient process
condition is evaluated quantitatively, shown in Fig. 5. 

It is obvious in Fig. 5 that features with high effect factor value
concentrate on voltage variation features and rotor angle variation
features come next. The rest features show similar effect factor in
numerical magnitude, which indicates that their contribution for
correctly classification is limited.

According to effect factor, 100 significant features are selected
as inputs for classifier. The rest features are reserved for
substitution in measurement failure scenario, named backup
features.

4.3.2 Hidden neuron nodes determination: Hidden neurons
number is an important undetermined network parameter for ELM-
based classifier. Ten-fold cross-validation is used to test the
performance of ELM-based prediction method. Variation trend of
prediction accuracy with the number of hidden neurons is
presented in Fig. 6. 

Fig. 6 shows that the prediction accuracy climbs up at first and
then decline, i.e. there exists an optimal number of hidden neurons
making best performance in prediction accuracy.

Hence, the optimal hidden neurons number is set as 500 in this
case for classifier construction and the prediction accuracy can
reach 96.67%. The training time and computing time are 1.2813
and 0.0391 s separately.

4.3.3 Performance in measurement failure scenario: The
inputs of ELM-based classifier can be divided into six parts,
including rotor angle variation, rotor speed variation, voltage
amplitude and phase angle variation, injection power variation,
power flow variation, and fault duration. The effect of each feature
sets on classification accuracy in measurement failure scenario is
tested and summarised in Table 4. 

Fig. 4  Rotor angle trajectories under stable and unstable condition for
power system transient process

 

Table 3 Performance with different error threshold value
Error
threshold
value

Pattern
numbers in
database

Computing
time, s

Misclassification [A,
B]

120 79 0.0474 [48, 0]
50 140 0.0402 [1, 0]
5 2968 0.3502 [0, 0]
 

Fig. 5  Comparison in effect factor value of each feature
 

Fig. 6  Variation trend of prediction accuracy with hidden neurons number
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It can be inferred from Table 4 that the loss of voltage
amplitude and phase angle variation causes the largest accuracy
rate drop, which is correspond to the effect factor value distribution
in Fig. 5. The rotor angle and speed variation show relatively
important effect on classification accuracy. Hence, it can include
that measurement failure happening in feature sets of voltage
amplitude and phase angle variation will make serious negative
effect.

4.3.4 Accuracy analysis: Misclassification instances of ELM-
based prediction method are investigated for hybrid method
implementation. All instances in multiple tests are shown in Fig. 7
in which the ELM output values are presented. 

In misclassified instances, ELM output value is bent on region
from 0 to 0.8 and most of them are in region from 0 to 0.5, which
provides a screening measure to determine instance with doubtful
prediction outcome.

4.4 Verification for hybrid prediction method

About 1000 sets of samples are tested on TF-based, ELM-based,
and hybrid method, respectively. Moreover, prediction method
based on SVM with quadratic kernel is implemented for
comparison. Results are recorded in Table 5. 

From Table 5, ELM-based method shows better performance in
computing time cost and prediction accuracy compared with SVM-
based method. The hybrid prediction method combines the
advantages of TF-based and ELM-based prediction method and its
prediction achieves 100% with suspect region [0–0.8]. The
expected computing time is reduced compared with TF-based
prediction method and the prediction accuracy increases
observably compared with ELM-based prediction method due to
the effect of examination and amendment process. When the
suspect region is set to [0–0.8], the examination process is
activated 355 times. While the suspect region is set as [0–0.5], the
activation times reduce to 169.

The detail predict result of hybrid method is summarised in
Table 6. It shows that misclassification samples increase to 9 when
the suspect region is set to [0–0.5], which is worse than the
condition when the suspect region is [0–0.8]. 

In measurement failure condition, the local measurement is lost
and only one generator's rotor angle data can be captured in power
system. For central station, 50% of selected significant features are
assumed to be lost and substituted with candidate features. The
performance of the hybrid prediction method is recorded in
Tables 7 and 8. 

It can be inferred from Table 6 that the performance of two-
stage prediction method becomes a little worse both in computing
time and prediction accuracy due to the effect of measurement
failure.

According to detailed analysis in Table 8, when the suspect
region comes to [0–0.8], the predict outcomes of ELM-based
method are examined by TF-based method for 393 times and 53 of
them is corrected. It shows that there are four misclassifications in
test samples.

Meanwhile, when the suspect region comes to [0–0.5], the
examination and amendment process carried by TF-based method
reaches 200 times and 52 times, respectively. The misclassification
samples increase to 11 which is worse than the condition when the
suspect region is [0–0.8].

4.5 Online implementation process analysis

In this section, it aims to illustrate online implementation process
of the proposed two-stage prediction method. Take three unstable
cases for example, case 1 is predicted through ELM-based method
with output value 1.0251. Cases 2 and 3 are amended with TF-
based method after processed by ELM-based method. The
difference of cases 2 and 3 is that predict result of ELM-based
method is modified by TF-based method in case 3.

From Fig. 8, it indicates that the proposed two-stage prediction
method enables to foresee the unstable condition of transient
process. Generally, the most serious measurement failure scenario

Table 4 Effect of feature sets on prediction accuracy
Ignored feature sets Classification accuracy,

%
none 96.67
rotor angle variation 93.43
rotor speed variation 93.54
voltage amplitude and phase angle
variation

85.89

injection power variation 94.82
power flow variation 94.52
fault duration 93.68
 

Fig. 7  ELM output value of all investigated instances
 

Table 5 Comparison of different prediction methods in
performance

Method type Expected computing
time, s

Prediction
accuracy, %

SVM 0.195 92.5
trajectory fitting 0.843 100

ELM 0.0413 94.1
hybrid method [0–0.8] 0.342 100

[0–0.5] 0.184 99.1
Notation: [0–0.8] and [0–0.5] represent suspect region of ELM output value. The
expected computing time are calculated by multiple simulation.
 

Table 6 Predict result analysis
Actual result Suspect region [0–0.8] suspect region [0–0.5]

Prediction result Prediction result
Stable Unstable Stable Unstable

stable 832 0 831 1
unstable 0 168 8 160

 

Table 7 Performance of hybrid prediction method with
measurement failure
Suspect region Expected computing

time, s
Prediction accuracy,

%
[0–0.8] 0.374 99.6
[0–0.5] 0.210 98.9

Notation: [0–0.8] and [0–0.5] represent suspect region of ELM output value. The
expected computing time are calculated by multiple simulation.

 

Table 8 Predict result analysis
Actual result Suspect region [0–0.8] Suspect region [0–0.5]

Prediction result Prediction result
Steady Unsteady Steady Unsteady

steady 831 1 830 2
unsteady 3 165 9 159
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is that measurement failure happens in local station, it will cost
∼0.4–0.6 s for computing considering middle-scale pattern
database. The time consuming can also be reduced by other high
performance computing techniques in practical use. 

5 Conclusion
In this paper, a hybrid transient stability prediction model
consisting of a two-stage process is developed. It achieves
coordination between TF-based and ELM-based prediction method
in predict outcome determination and computing resources
configuration. In implementation, TF-based and ELM-based
prediction methods are allocated with local and central computing
resources, respectively. When the output value of ELM is in a
suspect region, the final predict outcome is judged by examination
and amendment process. The measurement failure is also
considered and response schemes are made for it. The hybrid
method is examined on New England test system. The performance
of the hybrid prediction method is compared with TF-only based
and ELM-only based prediction method. Obtained results confirm
the manifest improvement of two-stage prediction method in time
efficiency, prediction accuracy, and implementing reliability.
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