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A B S T R A C T

The significant integration of variable energy resources in power systems requires the consideration of greater
operational details in capacity expansion planning processes. In hydrothermal systems, this motivates a more
thorough assessment of the flexibility that hydroelectric reservoirs may provide to cope with variability. This
work proposes a stochastic programming model for capacity expansion planning that considers representative
days with hourly resolution and uncertainty in yearly water inflows. This allows capturing high resolution
operational details, such as load and renewable profile chronologies, ramping constraints, and optimal reservoir
management. In addition, long-term scenarios in the multi-year scale are included to obtain investment plans
that yield reliable operations under extreme conditions, such as water inflow reduction due to climate change.
The Progressive Hedging Algorithm is applied to decompose the problem on a long-term scenario basis.
Computational experiments on an actual power system show that the use of representative days significantly
outperforms traditional load blocks to assess the flexibility that reservoir hydroelectric plants provide to the
system, enabling an economic and reliable integration of variable resources. The results also illustrate the im-
pacts of considering extreme long-term scenarios in the obtained investment plans.

1. Introduction

The large scale integration of Variable Renewable Energy (VRE)
resources poses critical challenges on power system planning. In par-
ticular, the need to maintain supply and demand balanced at all times
requires developing flexible and reliable power grids. Power system
expansion has historically been supported by Expansion Planning (EP)
tools, which have been addressed through mathematical programming
for more than half a century [19]. Such optimization models need to be
adapted to the new paradigm of massive integration of variable re-
sources in power grids by re-thinking some often used assumptions and
simplifications.

One of such assumptions in planning is that system load varies in a
relatively predictable and slow manner, so that generation units’
ramping constraints, minimum up and down times, and startup times
and costs are negligible. Time is represented in these EP models through
load blocks, which are obtained from a discretized load curve previously
arranged on a decreasing order, called a load duration curve—typically
one for each month. Electric demand and generation are then simply
balanced for each load block, independently. This procedure ignores

the chronology of time series and cannot accommodate unit commit-
ment costs and constraints. Recent research and experience in systems
with high VRE penetration have shown that ignoring operational con-
straints usually results in suboptimal investment plans [27].

Several recent works have focused on better representation of op-
erations in EP. A novel approach is presented by Wogrin et al. [33],
who discretize time into system states rather than load blocks. Each
system state is defined by load and renewable generation level, and
operational constraints are enforced between system states with a
probabilistic method. A more widely used approach is the use of a re-
presentative year with hourly resolution for single-period investment
planning. This time structure has been applied to incorporate a Unit
Commitment formulation [24] and demand response [13] en-
dogenously into EP models. This method captures the chronology of
load and renewable resource profiles, and allows modeling inter-hour
constraints.

A more suitable method for multi-period investment planning is the
use of representative days with hourly resolution for each studied year,
as applied by Fripp [7] and Nelson et al. [22]. This technique allows
capturing hourly, seasonal, and yearly variations in load, resource
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availability, and prices, leading to a better assessment of the required
flexibility to accommodate high shares of VRE. Recent work by Poncelet
et al. [28] analyzes methodologies to select the representative days
from each year.

Another simplification still often applied in EP models that risks
yielding uneconomical or unreliable plans is to take a deterministic
approach and consider a single future scenario in each optimization.
The volatility of energy resources’ availability and cost, technological
developments, and uncertain load growth motivate the endogenous
inclusion of uncertainty in capacity expansion planning. Stochastic
Programming (SP) has been used in EP to minimize expected costs of
investment and operations in multiple scenarios. To account for op-
erational uncertainty, work such as that by Jin et al. [12] and Park and
Baldick [25] consider multiple load and wind profile scenarios with
discrete probabilities.

The use of discrete scenarios has also been extended to the invest-
ment scale. A statistical procedure for load growth and fuel price sce-
narios is presented by Feng and Ryan [6], and expert opinion is used by
Li et al. [17] to formulate climate change scenarios for multi-period EP.
Munoz et al. [21] and Hobbs et al. [11] show that SP leads not only to
economic plans under long-term uncertainty, but also to more reliable
and adaptable systems. However, this method requires assigning

discrete probabilities to each modeled scenario, which may prove a
complex challenge for long-term uncertainties. Additionally, these
works do not consider operational constraints that must be modeled in
a chronological time framework, so flexibility requirements from VRE
integration are not completely captured.

Water reservoirs in hydrothermal systems may be used to hedge
against this uncertainty in multiple scales. Nevertheless, the re-
presentation of reservoir management details in EP has not received
enough attention [10], due to the complexity of including constraints
that link reservoir water levels throughout the time horizon, and be-
cause of the inherent uncertainty in water inflows. In systems with high
VRE penetration, it becomes necessary to additionally include opera-
tional attributes of hydroelectric units, such as their high ramping ca-
pacity, to better asses the flexibility that these units may provide.

The standard to coordinate operations in hydrothermal systems,
such as Chile, Sweden, Brazil, and others, is to use the Stochastic Dual
Dynamic Programming (SDDP) methodology developed by Pereira and
Pinto [26] or derived formulations to consider large inflow scenario
trees and manage reservoirs over time. However, this method does not
lend itself nicely to modeling operations in EP, since its optimal solu-
tion depends on the topology of the grid and, thus, cannot be en-
dogenously incorporated. Some studies have used SDDP in expansion

Nomenclature

Sets and indices

Γh s, Set of inflow scenarios that follow the same trajectory as
inflow scenario s up to hour h

B Set of buses, indexed by b
C Set of connections in the water network, indexed by c

n
inC Set of connections directed into water node n
n
outC Set of connections directed out of water node n

D Set of representative days, indexed by d
G Set of all generators, indexed by g

HG Set of hydro generators
bG Set of generators located in bus b

H Set of hours, indexed by h
dH Set of hours in day d
pH Set of hours in period p

L Set of transmission lines, indexed by ℓ
b
inL Set of transmission lines directed into bus b
b
outL Set of transmission lines directed out of bus b

N Set of nodes in the water network, indexed by n
RN Set of water nodes that are reservoirs

P Set of investment periods, indexed by p
2P Set of investment periods, indexed by p

S Set of inflow scenarios, indexed by s

Parameters

η L
ℓ Transmission loss factor of line ℓ

ηg
H Hydraulic efficiency of hydro generator ∈g Gh

[MW/(m /h)]3

BG
g Investment cap per period for generator g [MW]

BL
ℓ Investment cap per period for line ℓ [MW]

CG
g Upper bound on capacity for generator g [MW]

CL
ℓ Upper bound on capacity for line ℓ [MW]

Vn h s, , Upper water volume storage limit for node n at hour h and
inflow scenario s [m3]

ϕg p
fuel
, Fuel cost of generator g on period p [US$/MWh]

ϕg p
Gfix
, Annual fixed Operations & Maintenance (O&M) costs of

generator g on period p [US$/MW/year]
ϕ p

Lfix
ℓ, Annual fixed O&M costs of transmission line ℓ on period p

[US$/MW/year]
ϕg

OM Variable O&M costs of generator g [US$/MWh]
πs Probability of inflow scenario s in any year
θh Scaling factor of hour h; i.e. the number of hours in a year

that are represented by hour h
V n h s, , Lower water volume storage limit for node n at hour h and

inflow scenario s [m3]
bg p

G
, Existing built capacity of generator g that will be opera-

tional in period p [MW]
b p

L
ℓ, Existing built capacity of transmission line ℓ that will be

operational in period p [MW]
cg h, Maximum generating capacity factor for generator g in

hour h as fraction of installed capacity
fp Factor to bring costs in period p to present value
lb h, Load in bus b and hour h [MW]
rg

up Upward ramp rate of generator g as fraction of installed
capacity

rg
dn Downward ramp rate of generator g as fraction of installed

capacity
Vn

i Initial stored water at each reservoir ∈n RN [m3]
wn h s, , Natural water inflow into node n at hour h and inflow

scenario s [m /h3 ]
yp Length of period p [years].

Variables

Bg p
G
, Capacity construction decision of generator g at period p

[MW]
B p

L
ℓ, Capacity construction decision of line ℓ at period p [MW]

Cg p
G
, Cumulative capacity of generator g on period p [MW]

C p
L
ℓ, Cumulative capacity of line ℓ on period p [MW]

Eb h s, , Energy curtailment in bus b at hour h under inflow sce-
nario s [MW]

F h sℓ, , Power flow through line ℓ at hour h under inflow scenario
s [MW]

Pg h s, , Dispatch level of generator g at hour h under inflow sce-
nario s [MW]

Vn h s, , Stored water volume in water node n at hour h under in-
flow scenario s [m3]

Wc h s, , Water flow through connection c at hour h under inflow
scenario s [m /h3 ].
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planning models through an iterative process [3,23,31]. Nevertheless, a
global optimum is not guaranteed to be reached and time resolution is
represented by load blocks, which do not capture inter-hourly con-
straints or load and renewable profile chronology. Additionally, the
iterative process implies long setup and computation times.

The large problem sizes that result from including inflow scenario
trees in EP models has led most work to adopt a deterministic approach.
However, some recent research includes multiple independent inflow
scenarios that span throughout the whole horizon for actual power
systems [4,15]. Greater detail has been captured by Gill et al. [9], who
consider a set of inflow scenarios that may unfold in any given year,
obtained via a scenario reduction methodology. This last approach is
suitable to represent reservoir energy management for EP in systems
with large storage capacity. However, as previous works, it cannot as-
sess the flexibility that reservoirs can provide in the hourly scale be-
cause of the use of discrete load blocks. Additionally, it considers that
water storage is not allowed between years, so the capability of re-
servoirs to hedge against inflow uncertainty is not considered.

Every mentioned EP model in industry and literature is formulated
through either the perspective of a central planner that seeks to supply
future demand at minimum social cost, or with a competitive frame-
work involving markets and multiple decision makers that seek to
maximize their profits [14]. Even though the generation segment is a
competitive activity in most modern power markets, tools that render
centralized expansion plans are still often used by agencies and reg-
ulators to study emerging system dynamics and to formulate policies. A
centralized investment plan could be considered to be a proxy for ex-
pansion under perfect competition in the power market, thus providing
valuable insights to decision makers [8].

The main contribution of this paper in respect to the referenced
existing literature is to propose a model for EP in hydrothermal systems
that captures greater operational detail and that considers uncertainty
both in yearly inflows and in investment costs and inflow trends in the
long-term. In contrast with previous works in hydrothermal EP, the
model captures chronology of load and renewable profiles, generator
ramps, and detailed reservoir management through the use of re-
presentative days with hourly resolution. A detailed modeling of hy-
droelectric operations is carried out, including inflow uncertainty in the
yearly scale, inter-annual water storage in reservoirs, and cascading
between successive generators in hydraulic basins.

Another innovative aspect of the model is the consideration of a
nominal long-term scenario, which is the most likely to happen, and
extreme long-term scenarios that may have severe impacts, such as in-
flow reduction trends and changing investment costs. The model will
produce investment plans that are optimal for the nominal long-term
scenario while enforcing that the system must also be reliable, though
not necessarily economic, under the extreme long-term scenarios. So,
the probability of the considered extreme events does not need to be
quantified. The model is solved through the Progressive Hedging
Algorithm (PHA) scenario decomposition technique. Each subproblem
is formulated as a Linear Program, which can be efficiently solved by
commercial solvers.

The remainder of the paper is organized as follows. The structure
and mathematical formulation of the model are presented in Section 2.
Section 3 displays the solution methodology. Computational experi-
ments are reported in Section 4 and conclusions are finally drawn in
Section 5.

2. Model formulation

Generation and transmission investment decisions are taken in
every period. Each period consists of multiple years in which opera-
tional decisions, such as power dispatch, transmission flows, among
others, are obtained for a number of representative days with hourly
resolution. Uncertainty in the operational scale is captured in water
inflow scenarios. A single expected load and renewable production

profile is considered for each inflow scenario, so the capability of water
reservoirs to hedge against water inflow uncertainty may be better
evaluated. Uncertainty in the investment scale is captured in long-term
scenarios, which are divided into one nominal scenario, for which the
system will be economically optimized, and several extreme scenarios,
which will only be taken into account to ensure reliability. Fig. 1 il-
lustrates this decision structure.

The proposed model is first described for only one long-term sce-
nario in Section 2.1, where the notation and mathematical formulation
are outlined. The model is then extended to accommodate multiple
long-term scenarios in Section 2.2 through a compact notation.

2.1. Optimization model under one long-term scenario

Under each long-term scenario, the proposed optimization model is
described by (1)–(14).

2.1.1. Objective function

∑ ∑ ∑

∑ ∑ ∑

⎧
⎨
⎩

⎡

⎣
⎢ + + +

⎤

⎦
⎥

+
⎡

⎣
⎢ +

⎤

⎦
⎥

⎫
⎬
⎭

∈ ∈ ∈
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f C ϕ ϕ C ϕ ϕ y

θ π P ϕ ϕ

min ( ) ( )

( )

p
p

g
g p
G

g p
Gfix

g p
Ginv

p
L

p
Lfix

p
Linv

p

h s
h s

g
g h s g

OM
g p
fuel

, , ,
ℓ

ℓ, ℓ, ℓ,

, , ,
p

P G L

H S G (1)

The objective calculated in (1) is to minimize total investment and
expected operational costs over all inflow scenarios. Annualized in-
vestment and fixed O&M costs are considered for generation and
transmission capacity, which are multiplied by the number of years in
each period. Variable O&M and fuel costs are calculated for power
generation in each representative hour and inflow scenario, and are
scaled up to the period and multiplied by its probability to calculate the
expected costs. A discount factor is used to bring costs to present value
and the amounts are summed up for all periods.

2.1.2. Power system operational constraints

∑ ∑ ∑+ + = + ∀ ∈ ∈ ∈
∈ ∈ ∈

l F E P η F b h s, ,b h h s b h s
g b

g h s
L

h s,
ℓ

ℓ, , , , , ,
ℓ

ℓ ℓ, , B H S

Lb
out G Lb

in

(2)

The power balance constraint is expressed in (2). Load at each bus and
hour must be satisfied by local generators and power imports from
other buses for every inflow scenario. Excess renewable power is al-
lowed to be curtailed and no load shedding is permitted. Transmission
is represented by a transport model. Losses are represented by a

Fig. 1. Scenario structure with one nominal long-term scenario and two extreme
long-term scenarios.
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constant loss factor that penalizes bus imports.

⩽ ⩽ ∀ ∈ ∈ ∈ ∈F C h s p0 ℓ , , ,h s p
L

pℓ, , ℓ, L H S P (3)

⩽ ⩽ ∀ ∈ ∈ ∈ ∈P C c g h s p0 , , ,g h s g p
G

g h p, , , , G H S P (4)

Eqs. (3) and (4) constrain transmission flow and generator dispatch
levels according to installed capacity. For variable generators, cg h, re-
presents the capacity factor resulting from the amount of renewable
resource present in each hour. Only one deterministic profile of re-
newable generation is considered for every year. For other generators,
this parameter represents a derating factor to account for average
availability.

− ⩽ ∀ ∈ ∈ ∈ ∈+P P r C g h d s, , ,g h s g h s g
up

g p
G

d, 1, , , , G H D S (5a)

− ⩽ ∀ ∈ ∈ ∈ ∈+P P r C g h d s, , ,g h s g h s g
dn

g p
G

d, , , 1, , G H D S (5b)

The use of representative days with hourly resolution allows the
implementation of ramping constraints (5a) and (5b). Ramp rates are
regarded as fractions of the current installed capacity for each project.
The hours of each day are considered in a circular manner, so that
dispatch in the last hour ramps to the first of the same day.

2.1.3. Power system construction constraints

∑= + ∀ ∈ ∈ −
=

−

C b B g p, {1}g p
G

g i
G

i

p

g i
G

, ,
1

1

, G P
(6)

∑= + ∀ ∈ ∈ −
=

−

C b B t p, {1}p
L

i
L

i

p

i
L

ℓ, ℓ,
1

1

ℓ, L P
(7)

Eqs. (6) and (7) show how cumulative installed capacity considers
existing infrastructure plus new additions. Expansions that are decided
on one period are considered to be available for operations from the
next period onwards.

⩽ ⩽ ∀ ∈ ∈B B g p0 ,g p
G G

g, G P (8a)

⩽ ⩽ ∀ ∈ ∈C C g p0 ,g p
G G

g, G P (8b)

⩽ ⩽ ∀ ∈ ∈B B p0 ℓ ,p
L L
ℓ, ℓ L P (9a)

⩽ ⩽ ∀ ∈ ∈C C p0 ℓ ,p
L L
ℓ, ℓ L P (9b)

Investment in each period is limited in (8a) and (9a) to reflect labor,
resource or capital mobilization bounds. Additionally, cumulative ca-
pacities are capped in (8b) and (9b) to reflect resource and terrain
availability, or other factors.

2.1.4. Hydraulic system constraints

∑ ∑+ + = +

∀ ∈ ∈ ∈

∈
+

∈
w θ V W θ V W θ

n h s, ,

n h s h n h s
c

c h s h n h s
c

c h s h, , , , , , , 1, , ,

N H S

C Cn
in

n
out

(10)

The water network is composed of nodes, which receive natural inflows
and can store water, and connections, which transport water down-
stream between them. Conservation of mass at each node, hour and
inflow scenario is enforced by (10). Water flows in each representative
day are scaled up to the number of days represented.

⩽ ⩽ ∀ ∈ ∈ ∈V V V n h s, ,n h s n h s n h s, , , , , , N H S (11)

Water volume storage at each node is constrained by (11) to reflect
design sizing, terrain limits, and regulatory requirements that vary
between locations and seasons. Non-reservoir nodes have no storage
capacity and act merely as junctions.

= ∀ ∈ ∈ ∈V V n p s, ,n
i

n first s
R

, ( ),p N P SH (12a)

⩽ ∀ ∈ ∈ ∈V V n p s, ,n
i

n last s
R

, ( ),p N P SH (12b)

Using water from reservoirs in hydroelectric plants implies no im-
mediate cost for the system, so a boundary condition must be set in
order to prevent their excessive depletion. Previous works on hydro-
thermal EP force reservoirs to end each year with at least the same
volume as in the beginning (e.g. see [18,30,4,15,9]). Constraints (12a)
and (12b) extend that capacity to a multi-year horizon. The water vo-
lume of reservoirs at the first hour of each period — first ( )pH —is given,
and in the last hour of each period—last ( )pH —the volume must reach
at least the initial value.

⩽ ∀ ∈ ∈ ∈P η W g h s/ , ,g h s g
H

c h s
H

, , , , G H S (13)

Eq. (13) links the power system and the water network at hydroelectric
generators. A constant hydraulic efficiency is assumed, in order to avoid
non-linearities in the problem. Spilled water is cascaded downstream
and can be used by other units.

= ∀ ∈ ′ ∈ ∈ ∈′V V n s h s, Γ , ,n h s n h s h s, , , , ,N H S (14)

Dispatch decisions in hydrothermal systems must account for all
possible scenarios that could follow, which is termed non-anticipativity.
For example, a system operator would consider storing water in a year
with high inflow availability in order to hedge the risk of future low
inflow availability. Eq. (14) enforces such non-anticipativity by making
water storage decisions in every hour to be the same in all inflow
scenarios that are indistinguishable up to that moment. Since opera-
tional uncertainty is represented by water inflow scenarios and all other
parameters are considered deterministic, constraining water levels is
enough to ensure non-anticipativity.

2.2. Extension to multiple long-term scenarios

The linear program outlined in (1)–(14)can be written in the fol-
lowing compact manner:

∑ ∑⎡

⎣
⎢ + ⎤

⎦
⎥

∈

⊤

∈

c π Q p sx xmin ( , , )
p

p p
s

s p
x

P S (15a)

⩾D exs. t. (15b)

= ⊤Q p s dx ywhere ( , , ) minp p p sy ,
p s, (16a)

⩾ −W u Ty xs. t. p s p p, (16b)

Here, (15a) summarizes (1) by representing capacity decisions—-
variables C C B B, , ,L G L G—in period p by the vector xp, their investment
costs by cp and their constraints (6)–(9b) by (15b). Operational costs in
each inflow scenario and period are represented by the function Q,
which reflects the total cost of dispatch decisions —P F D W V, , , , —,
represented by the vector yp s, . In turn, (16b) condenses constraints
(2)–(5b) and (10)–(14). The problem can then be generalized to ac-
commodate multiple long-term scenarios as follows.

∑ ∑ ∑⎧
⎨
⎩

⎡

⎣
⎢ + ⎤

⎦
⎥

⎫
⎬
⎭∈ ∈

⊤

∈

γ c π Q p s ωx xmin ( , , , )
ω

ω
p

p
ω

p
ω

s
s p

ω
x Ω P S (17a)

∈x ys. t. ( , ) Δp
ω

p s
ω

p
ω

, (17b)

= ∀ ′ ∈ ∈ ∈′ ω p ωx x Ψ , , Ωp
ω

p
ω

p
ω P (17c)

Let the set of all long-term scenarios be Ω, indexed by ω, and their
probabilities be γω. The objective function of the multiple scenario ex-
tension can then be expressed as in (17a). If Δp is the space of all
combinations of xp and yp s, that satisfy constraints (15b) and (16b) in a
given period p, then Δp

ω is the space of feasible combinations of x p
ω and

y p s
ω

, for long-term scenario ω, enforced in (17b). Different parameters
and cost coefficients may be specified in each long-term scenario. Non-
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anticipativity in investments is enforced in (17c), where construction
decisions in each period are forced to be equal for all long-term sce-
narios that are indistinguishable up to that moment, gathered in the set
Ψ p

ω.
As discussed in Section 1, multiple works on EP formulate long-term

scenario trees and assign probabilities according to different methods so
that obtained investment plans have the least expected cost. However,
assigning discrete probabilities to scenarios that span several decades,
when unfolding phenomena are not completely understood, may be-
come an insurmountable challenge.

This work captures long-term uncertainty by minimizing investment
and operations costs for the most likely to happen scenario, termed
nominal long-term scenario and highlighted in Fig. 1. In addition, ex-
treme long-term scenarios that represent high-impact phenomena are
considered. The probabilities of the latter are considered to be near-
zero, so the optimization problem (17a)–(17c)ignores their costs.
Hence, these extreme scenarios only add constraints that prepare the
system to meet the required load in a reliable manner in such cases.
However, only considering feasibility in those extreme long-term sce-
narios could result in investment plans which imply unacceptably high
operational costs. A cap on total costs—ϕω

cap—is then implemented for
each extreme long-term in the additional constraint (17d), so that the
decision maker can set the maximum cost it is willing to accept.

∑ ∑⎡

⎣
⎢ + ⎤

⎦
⎥ ⩽ ∀ ∈

∈

⊤

∈

c π Q p s ω ϕ ωx x( , , , ) Ω
p

p
ω

p
ω

s
s p

ω
ω
cap

P S (17d)

3. Solution method

The complete problem structure defined in (17a)–(17d)consists on
several long-term scenarios linked by investment decisions. The pro-
blem is decomposed and solved using the Progressive Hedging Algo-
rithm (PHA) proposed by Rockafellar and Wets [29]. This method has
received significant interest recently, because it can take advantage of
modern parallel and distributed computing to reduce solution times for
large problems. It has been successfully applied to power system pro-
blems, such as for stochastic EP with uncertainty of load and renewable
output profiles by Muñoz and Watson [20], and for reservoir manage-
ment in operations coordination by Dos Santos et al. [5].

Algorithm 1 gives an overview on the PHA, where f x( ) represents
the objective function in (15a). It is an augmented Lagrangian method
that decomposes the problem on a long-term scenario basis by relaxing
the non-anticipativity constraint (17c). The objective function of each
long-term scenario subproblem is then augmented with penalizing
factors that steer each solution toward a non-anticipative optimum.

Algorithm 1. Progressive Hedging.

1: ←i 0, ← ∞gap
2: ← ∀ ∈ωw 0 Ωi

ω

3: ← fx xargmin [ ( )]i
ω

i
ω

x
s.t. [(15b)–(16b)]

4: while ⩾ ∊ dogap
5: ← ∑ ∈ γx xi ω

ω
i
ω

Ω

6: ← +i i 1
7: ← + − ∀ ∈−

⊤
− −ρ ωw w x x( ) Ωi

ω
i
ω

i
ω

i1 1 1

8: ← + + ∥ − ∥⊤ ⊤ρfx x w x x xargmin [ ( ) ) ]i
ω

x i
ω

i
ω

i
ω

i
ω

i
1
2

2

s.t. [(15b)–(16b)]
9: ← ∑ ∥ − ∥∈ x xgap ω i

ω
iΩ

2

The proposed model includes extreme long-term scenarios with
near-zero probabilities and a nominal long-term scenario with a near-
one probability. This raises a problem for the application of the PHA.

Having scenarios with widely different probabilities increases solving
time significantly, because the weighted averaged value of each vari-
able, calculated as in Line 5 in each iteration, will result in a value
excessively close to that of the scenario with high probability. In con-
sequence, penalization factors for the nominal long-term scenario cal-
culated on Line 7 will be light. Thus, the solution of that scenario will
only slightly vary in each iteration, increasing the number of iterations
needed for convergence.

An alternative formulation drawn from [2] is implemented, which is
also proven to achieve convergence and optimality for convex pro-
blems. Instead of calculating a probability-weighted average, Line 5 can
be replaced by a simple arithmetic average as in (18). The penalty
factor ρ for all variables must be multiplied by the inverse of the
probability of their scenario, so convergence to the optimum is main-
tained. Line 7 in the original algorithm is then replaced by (19).

←
∑ ∈x

x
Ωi

ω i
ω

Ω

(18)

← + − ∀ ∈−
⊤

− −ρ
γ

ωw w x x1 ( ) Ωi
ω

i
ω

ω i
ω

i1 1 1
(19)

4. Implementation and computational experiments

The proposed model was implemented by developing new modules
in the open source SWITCH platform [7], which is a planning tool based
in Python/Pyomo and publicly available.1 Linear subproblems are
solved using Gurobi 7.0 with a 0.01% duality gap on an Intel Xeon E5-
2620 24-core machine with 32 GB of memory.

All case studies comprise ten two-year investment periods spanning
from 2020 to 2039 on the future interconnected power system of Chile.
As of 2016, it consisted of two separate systems serving an aggregate
demand of 71.68 TWh/year with nearly 20 GW of installed capacity.
Future load was projected using estimated load growth rates.
Renewable generation profiles were based on historical data. Existing
and proposed generators and transmission lines were reduced to a total
of 68 aggregated generators and 23 lines that connect 20 buses. The
technologies associated with each generation project are described in
Table 1. Three types of hydroelectric plants are modeled: those located
at a dam (Reservoir), those located downstream from a dam (Series),
and run-of-river (RoR).

In order to represent inflow uncertainty, one inflow scenario tree
was used in all two-year periods, which was constructed from historical
yearly records. The 56 current historical records (1960–2015) were
clustered into 3 representative years using hierarchical clustering and
Dynamic Time Warping as a distance metric [18]. Aravena and Gil [1]
show that hydrological timeseries in Chile present negligible annual
autocorrelation; thus, each year’s hydrology can be assumed in-
dependent of previous years. In consequence, the 3 representative years
can be combined into 9 different trajectories for each two-year period.
An additional trajectory with null probability is added to each scenario
tree to enforce feasibility under a drought scenario, so that a capacity
margin is considered in the EP process.

Representative days were chosen by clustering hourly net load (total
load – wind and solar generation) curves of every day of 2015. The 10%
of days with the most abrupt evening ramps were clustered together
and the remaining 90% were clustered into 3 groups by using hier-
archical clustering with the Dynamic Time Warping distance metric.
The representative day from each cluster was chosen based on a
minimum variance criterion. The use of 4 representative days yields a
total of 96 h per year.

Sections 4.1 and 4.2 exhibit two case studies that consider only one

1 The on-line public repository where SWITCH is published can be found at: https://
github.com/switch-model/switch.
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long-term scenario using the model in (1)–(14). Long-term uncertainty
is considered in Section 4.3.

4.1. Case study 1—Representative days versus load blocks

The effect of time resolution is examined by comparing the outputs
of a model that considers representative days with hourly re-
solution—the RD model—with those of an equivalent model that con-
siders monthly load blocks—the LB model. The RD model is completely
described by (1)–(14). The LB model is analogous, but hours are re-
placed by load blocks, ramping constraints (5a)–(5b) are ignored, and
water storage balancing is performed on a monthly basis instead of
hourly in (10). Inflows, renewable resource availability and load pro-
files are discretized into 8 blocks per month in the LB model, for a total
of 96 blocks per year.

In order to compare the LB and RD models for different levels of
flexibility in the system, each model is run with different portfolios of
new must-build reservoir hydro power plants equivalent to 3.75 GW,
2.5 GW, and 0 GW of additional capacity. Investment plans for the
2.5 GW case can be observed in Fig. 2. The wall-clock run times in this
case were 627 s for the LB model and 1102 s for the RD model. It can be
observed that the LB model delivers a construction plan with more
investment on PV and RoR projects than the RD model, which in turn
builds more combined cycle units.

The operational performance of the investment plans obtained by
the LB and RD models are assessed using an economic dispatch model
with ramping constraints, spanning all the hours of the 2022–2039
horizon and all inflow scenarios in each period. To avoid infeasibility,
load shedding is allowed at a cost of 500 US$/MWh. Cost differences
and operational metrics related to efficiency and reliability are reported
in Table 2 for these simulations.

The investment plan produced by the RD model yields between
1.88% and 3.38% smaller total costs (investment and operation) than
the LB plan depending on the amount of must-build hydro power.
Moreover, curtailed energy throughout the operational horizon can
reach up to 1.96% of total generation with the LB plan, whereas it is
4–17 times smaller in the RD plan. Similarly, load shed when operating
the RD investment plan is practically null, whereas the LB plan con-
templates shedding around 0.7% of the load in all cases. These results
show that representative days offer a better representation of opera-
tional conditions than load blocks, given their ability to capture intra-
day flexibility requirements. This becomes clearer in cases with less
reservoir hydro capacity—and therefore less flexible resources—in
which the differences between the two approaches are more apparent.

4.2. Case study 2—The role of inter-annual water storage

As discussed in Section 2, most existing hydrothermal EP models do
not allow inter-annual water storage in reservoirs and, thus,

Table 1
Characteristics of generator technologies.

Technology Plants Investment
Cost

[US$/kW]

Average
Fuel Cost
in 2020

[US$/MWh]

Average
Hourly

Ramp Rate
[fraction of
capacity]

RoR 8 3100 – 1.0
Series 5 3400 – 1.0
Reservoir 12 3100 – 1.0
Wind 11 2100 – 1.0
Solar PV 9 1950 – 1.0
Diesel Gas Turbine 6 946 200 0.5
Combined Cycle Gas

Turbine
5 1100 89 0.3

Diesel Motor Facility 5 910 166 1.0
Coal Steam Turbine 7 3000 41 0.0

Fig. 2. Generation investment plans yielded by the LB and RD models for
2.5 GW of must-build reservoir hydro.

Table 2
Total Cost and Operational metrics of LB and RD investment plans.

Must-
build
Hydro
(GW)

Total Cost (Billion 2015US$) Load Shed (%) Curtailed
Energy (%)

LB RD Δ% LB RD LB RD

0 35.63 34.98 1.88 0.72 0.02 1.96 0.12
2.5 32.25 31.20 3.38 0.73 0.01 1.45 0.20
3.75 30.75 29.86 2.98 0.68 0.00 1.32 0.32

Table 3
Total investment costs (Billion 2015US$).

Discount rate NA IA PF

0% 37.63 38.27 +1.69% 37.61 −0.07%
2% 46.25 46.92 +1.46% 46.24 −0.01%
4% 37.67 38.25 +1.56% 37.69 +0.06%
7% 28.06 28.50 +1.56% 28.05 −0.04%
10% 21.07 21.47 +1.87% 21.07 −0.02%
12% 17.56 17.91 +2.00% 17.55 −0.01%
14% 14.70 14.99 +2.03% 14.69 −0.03%

Fig. 3. Total cost in the nominal long-term scenario with and without con-
sidering extreme scenarios for multiple cost caps.
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underestimate the ability of the system to hedge against inflow un-
certainty by storing water throughout successive years. To explore the
impact of allowing this feature in a capacity planning model under
uncertainty, three variations of the model described in Section 2.1 are
studied. The first formulation (IA) only allows intra-annual storage, as
existing models in literature. The second formulation, called perfect
foresight (PF), allows inter-annual storage, but ignores the non-antici-
pativity constraint (14). Finally, the complete model (NA) allows inter-
annual storage and includes the non-anticipativity constraints. In order
to also study the timing of investment decisions, these problems are
solved using multiple discount rates (reflected in parameter fp). Total
investment costs are presented in Table 3.

The IA model incurs in 1.56% higher investment costs than the NA
formulation when the discount rate is set at its nominal value of 7%, but
as the value of this parameter increases, cost differences increase to up
to 2.03%. Results show that this is caused by the timing of construc-
tions, since capacity addition decisions are similar, but slightly shifted
in time. The IA model yields a plan with earlier investments given the
need for more capacity in dry years, whereas the other models can
compensate this need by storing water during years of high inflows.
However, capturing the inflow uncertainty hedging capability of re-
servoirs causes model run time to increase from 120 s for the IA model,
to 297 s for the PF model due to constraints linking different scenarios
throughout a period. Additionally, results indicate that enforcing non-
anticipativity under this dataset does not produce significantly different
investment plans, since cost difference did not surpass 0.1% for any
discount rate.

4.3. Case study 3—Robustness of the expansion plan

The PHA described in Section 3 is implemented by modifying the
PySP Pyomo module. The values of ρ are set according to the cost
proportional strategy proposed by Watson and Woodruff [32]. Near-zero
probabilities for extremes scenarios are set to = −γ 10 4 and penalty
factors (ρ) associated with their variables are amplified by a factor of
104.

Five extreme long-term scenarios are considered to represent high-
impact low-probability phenomena. These scenarios include a 25%
increase in fuel and investment costs of combustion technologies, as
well as a 50% reduction in all water inflows. The PHA is set to stop at a
maximum of 12 iterations or when the convergence metric

= ∑ ∑ −∈ ∈x x xc
ω i I i

ω
iΩ satisfies ⩽x 1200 MWc , where 1200MW re-

presents less than 1% of the total capacity installed in all long-term
scenarios.

Eq. (17d) in Section 2.2 establishes caps for the total costs under
each extreme long-term scenario. A minimum and a maximum cost cap
(ϕω

min and ϕω
max) are determined for each long-term scenario. The

minimum caps ϕω
min are obtained by calculating the optimal planning

and operations for each scenario ω deterministically. The maximum
caps ϕω

max are obtained by calculating the total operational cost in each
scenario ω using the investment plan obtained in the nominal long-term
scenario. Multiple caps are experimented with, calculated as a linear
combinations of their minimum and maximum values through different
values of λ, as follows: = + −ϕ λϕ λ ϕ(1 )ω ω ω

cap min max. Fig. 3 reports the total
cost incurred in the nominal long-term scenario for various values of λ.

It can first be noted that the PHA provides a solution with 2.5%
higher cost than the deterministic form when the value of λ is 1—which
is the equivalent of ignoring the extreme long-term scenarios. This re-
flects the optimality gap remaining when the iteration limit or the
convergence criterion are met in PHA.

A key insight is that most of the additional costs associated with
extreme long-term scenarios can be avoided with marginal additional
investments. In particular, Fig. 3 shows that by accepting an approxi-
mately 1.2% cost increase under the nominal long-term scenario, the
system can reduce 70% of the additional costs incurred in all the ex-
treme long-term scenarios.

5. Conclusions

This work presents an expansion planning model that can handle
large scale integration of VRE sources in hydrothermal systems.
Operations are represented with an hourly resolution using selected
representative days, the water network is explicitly modeled, and yearly
inflow uncertainty is endogenously accounted for. In addition, un-
certainty in the investment scale is considered through extreme sce-
narios.

Numerical experiments on the Chilean power system show that the
use of representative days for hourly operations yield a more flexible
plan than with the use of load blocks. The system performs better both
in terms of economic and reliability metrics, such as load shed and
curtailed energy. In addition, the proposed model highlights the role of
reservoir hydro-power in providing intra-day flexibility.

The results also illustrate the capability of reservoirs for hedging the
system against inflow uncertainty by storing water throughout succes-
sive years. In the long-term, computational experiments indicate that
small changes in the nominal investment plan might help mitigate most
of the risk associated with extreme scenarios. The PHA is successfully
applied with near-zero probability scenarios for an actual system, al-
lowing a more efficient use of available computational resources.
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