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ABSTRACT Power system faults are significant problems in power transmission and distribution. Methods
based on relay protection actions and electrical component actions have been put forward in recent years.
However, they have deficiencies dealing with power system fault. In this paper, a method for data-based line
trip fault prediction in power systems using long short-term memory (LSTM) networks and support vector
machine (SVM) is proposed. The temporal features of multisourced data are captured with LSTM networks,
which perform well in extracting the features of time series for a long-time span. The strong learning and
mining ability of LSTM networks is suitable for a large quantity of time series in power transmission and
distribution. SVM, with a strong generalization ability and robustness, is introduced for classification to get
the final prediction results. Considering the overfitting problem in fault prediction, layer of dropout and batch
normalization are added into the network. The complete network architecture is shown in this paper in detail.
The parameters are adjusted to fit the specific situation of the actual power system. The data for experiments
are obtained from the Wanjiang substation in the China Southern Power Grid. The real experiments prove the
proposed method’s improvements compared with current data mining methods. Concrete analyses of results
are elaborated in this paper. A discussion of practical applications is presented to demonstrate the feasibility

in real scenarios.

INDEX TERMS Data mining, power system faults, recurrent neural networks, support vector machines.

I. INTRODUCTION
The primary goal is to ensure the reliability and stability of
the power system as power grids expand and loads increase.
High-accuracy fault prediction in power systems increases
the operational reliability and stability, and can help to pre-
vent huge losses resulting from power accidents. Fault pre-
diction is the process of analyzing and mining historical data
to predict whether or not there is a fault in the power system
so that measures are taken to prevent accidents and ensure
system recovery. This is a core technology and a maintenance
security approach, and more advanced than fault diagnosis,
in helping to make reasonable decisions to prevent faults and
reduce the adverse effects. Line trip faults are one of the
most common faults in a power system, and they have been
researched actively in recent years [1], [2]. If reclosing is
unsuccessful, it will result in large-scale power outages and
property losses. Consequently, line trip fault prediction is a
significant and valuable research subject.

In past studies of power system faults, various artifi-
cial intelligence methodologies were proposed including

expert systems [3], [4], Bayesian networks [5], [6], rough
sets [7], [8], Petri nets [9], [10], neural networks [11], [12],
etc. Moreover, researchers have focused on relay protection
actions and electrical component actions over the past few
decades [13], [14]. A new analytical model was developed
to take into account the possible malfunctions in protective
relays and circuit breakers based on the existing analyses.
It improved the accuracy of fault diagnosis results to a fur-
ther degree [13]. An analytical model was provided based
on the improved temporal constraint network [14]. System
fault event reasoning and diagnosis were formulated as an
optimization problem where the fault hypotheses were tested.
However, these processes have their deficiencies in dealing
with power system faults. The result is negatively affected if
there are malfunctions in the relay protection and electrical
components. Furthermore, the method based on protective
relays and circuit breakers approaches the problem after
the faults have happened. It cannot do much for predicting
whether there is a fault in the power transmission and distri-
bution. However, the electrical measurement data is first-hand

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 7675

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0693-6574

IEEE Access

S. Zhang et al.: Data-Based Line Trip Fault Prediction in Power Systems

information about faults. Analyzing the historical data can
help to predict if there will be faults in the power system
and help in making a corresponding decision to prevent
them. In general, making good use of the electrical measure-
ment data can improve the performance of fault prediction
and ensure the reliability and stability of a power system.
Research on data-based methodologies has just begun to
appear in recent years. It has become a valuable and urgent
subject at present.

Research studies on fault prediction based on artificial
neural networks (ANNs) have been proposed in recent years.
An improved prediction method for optimized ANN based on
multilevel genetic algorithms was proposed to improve the
fault forecasting model accuracy [15]. In [16], an artificial
neural network-based methodology was proposed for early
online prediction of any transient instability, which has a
great impact on the performance of wide area protection and
control systems. Another example is [17], which presented a
new methodology based on ANN to detect and predict faults
in a boilerars burner system in a power plant. However, there
are large quantities of temporal information during power
transmission and distribution, which contributes a great deal
to fault prediction but cannot be extracted by ANN. Recur-
rent neural networks (RNNs), a deep learning method, are
shown to have a strong ability to capture the hidden corre-
lations occurring in the big data in applications for image
captioning [18], [19], voice conversion [20], [21] and natural
language processing [22], [23]. They also show good perfor-
mance in dealing with faults [24], [25]. However, the original
RNN has the problem of a vanishing gradient because the
later nodes perception of the previous nodes decreases. Long
short-term memory (LSTM) networks [26], as an improved
network architecture, were proposed to solve the problem
mention above. Compared with conventional RNNs, LSTM
networks perform well in extracting the features of time
series for a longer time span. One example is [27], which
proposed an approach based on an LSTM network to get good
diagnosis and prediction performances in the cases of com-
plicated operations, hybrid faults and strong noise. In [28],
the use of the LSTM network was proposed to accomplish
timely detection and identification of faults based on the
commonly available measurement signals. The result showed
that the LSTM network was better suited for the railway
track circuit fault detection and identification tasks than the
convolutional network. Moreover, the prediction ability was
also proved in [29], which proposed a novel traffic forecast
model based on the LSTM network. The compared results
validated that the proposed LSTM network can achieve a
better performance. In general, the LSTM network is an
improved RNN, which deals better with longer time series.
However, the research on data-based fault prediction in power
systems using LSTM networks is still in the beginning stages.

During the fault prediction process, classification is an
essential part. Support vector machine (SVM) is a discrim-
inant classifier defined by a hyperplane. The applications
based on SVM were proved to be feasible in [30] and [31].
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Due to the good robustness and generalization performance
of SVM, it is used for classification of the features captured
by the LSTM networks in this paper.

In the previous research, methodologies for a stacked
autoencoder for power system fault diagnosis were
proposed [32], [33]. The results of simulations prove the
feasibility of fault prediction based on deep learning meth-
ods. In this paper, a method for data-based line trip fault
prediction in power systems using LSTM networks and SVM
is proposed to capture the temporal features of the data and
increase the performance compared to conventional methods.
When applied to each line in a power system, the proposed
methodology can detect which line is experiencing the fault.
Furthermore, the proposed methodology can be put into
practice in power grids for fault prediction to improve fault
prevention work and reduce the losses caused by power
accidents. The main contributions are outlined as follows.

1) The correlation with temporal information between line
trip faults and measurement data is mined for fault prediction
before faults happen through LSTM networks and SVM.

2) Measurements for each line including current, voltage,
and active power are chosen as the inputs to obtain more com-
prehensive information. The temporal information is fused
with the merging layer through three LSTM subnetworks.
The results validate the improved performance.

3) The features, captured through LSTM networks, are
put into the SVM classifier to estimate if there is a fault in
the power system, which improves the accuracy of the fault
prediction markedly.

4) The proposed methodology can work in practice and the
parameters can be learned offline and updated online to fit the
new operating status. It is an improved methodology for real-
time fault prediction.

The rest of the paper is organized as follows. The detailed
problem formulation is described in Section II. Section III
introduces the architectures and algorithms for RNNs, LSTM
networks and SVM. In Section IV, the improved model for
power system fault prediction based on LSTM networks and
SVM is proposed. Then, the simulation experiments are pre-
sented to prove the feasibility and advantages of the proposed
methodology in Section V. Finally, the conclusion is given in
Section VI.

Il. PROBLEM STATEMENT

Line trips are a common fault, which can lead to massive
blackouts. In recent years, relay protection actions and elec-
trical component actions have been used for fault diagnosis.
For applicability and stability, the fault relevance should be
considered. The most common reasons for line trip faults
include aging and damage of the distribution equipment, bad
insulation, weather changes, and so on. There is a gradual
process of distribution line resistance before the line trip
faults occur. The electrical measurements will change accord-
ing to some rules, which includes current, voltage, active
power, and the reactive power of users during the process. The
proposed approach aims to capture the features of this process
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FIGURE 1. A simple flow chart for the solution to fault prediction.

to detect faults. Therefore, the fault relevance has to be mined
between the fault records and the electrical measurements.
Assume that P is the result of fault prediction, where P = 1
representing that there is a fault and P = 0 representing
normal operations, which is the label for each sample in the
network training. A simple flow chart for the solution to the
problem in this paper is shown in Fig. 1. Feature mining
for big data in power systems is a significant and difficult
problem in the process. With respect to LSTM networks
and SVM, the key problem is in designing the parameters
and network architectures for high-accuracy fault prediction.
Specifically, a practical experiment was carried out in this
work with real-world data obtained from the power supply
administration division of the China Southern Power Grid.

IIl. ARCHITECTURES AND ALGORITHMS

In this section, the architecture and algorithms for the
proposed methodology are introduced in detail. The LSTM
network is an improved network based on RNNs, which intro-
duces a core unit called a cell. The improvement helps to solve
the vanishing gradient problem of RNNs. Moreover, SVM
performs well and has a certain robustness in classification.

A. RECURRENT NEURAL NETWORK

A recurrent neural network is an improved class of artificial
neural network using the temporal information of the input
data, where connections between units form a directed cycle
within the same layer. In contrast, a conventional neural
network only has connections between the layers. The units
in a layer have no connection. The network does not transmit
the temporal information so the performance in dealing with
time series may be poor.
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FIGURE 2. A simple RNN structure, where X is the input unit, H is the
hidden unit, Y is the output unit, and W is the weight matrix.

A simple structure for an RNN is shown in Fig. 2. The
process of forward propagation can be concluded from Fig. 2,
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given by egs. (1)-(3).

I H
dy = 3 winxf + 3 winsy! M
i=1 =1
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H
a, = thos;l 3)
h=1

The notation w is the weight; a is the sum calculated
through weights; f is the activation function; s is the value
after calculation by the activation function; ¢ represents the
current time of the network; i is the number of input vectors;
h is the number of hidden vectors in ¢ time; /4’ is the number
of hidden vectors in ¢ — 1 time; and o is the number of output
vectors.

The hidden layer units receive not only the data input, but
also the output of the hidden layer from the last time. There-
fore, the network can remember the previous information and
apply it to the calculation of the current output. The RNN
structure creates an internal state of the network to exhibit
dynamic temporal behavior and has a better approach in
dealing with time series analysis. Correspondingly, the RNN
needs to be trained by back propagation through time.

Unfortunately, the original RNN is affected by the vanish-
ing gradient problem because the later nodesar perception
of the nodes from the previous time step decreases. The
performance declines when the network structure becomes
deep and complex.

B. LONG SHORT-TERM MEMORY
To solve the vanishing gradient problem, a long short-term
memory block is introduced into the RNN to remember
the values for the case of either long or short durations of
time. Specifically, the hidden units of the RNN are replaced
by LSTM blocks containing three gates, which are used to
control the flow of information into or out of their memory.
A peephole LSTM block with cell, input, output, and forget
gates is shown in Fig. 3.

The theoretical deduction process for an LSTM block is
given by eqs. (4) through (12).

i H c

a; =) wixj + Z wrish L+ Z weml ™+ b (4)
i=1 h=1 =1

s = f(a}) ©)
I H c

a, = wikx; + whks;l_l + chkmé_l +b; (6)
i=1 h=1 =1

s, = f(ay) @)
I H

al =Y wiex! + ) whesl '+ be ®)
i=1 h=1

dl = spm.”" + sig(al) ©)
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FIGURE 3. A peephole LSTM block with cell input, output, and forget
gates, where all edges have fixed unit weight. The dashed line represents
the peephole connection between the current and the last time step.

1 H C
ay = "wixl + > wusy '+ waml+b; (10)
i=1 h=1 c=1
s = f(a}) (11)
sy, = sip(d)) (12)

The symbols in eqgs. (4)-(12) are illustrated as follows. The
notation m is the input from cell to input gate, j is the number
of the input gate vector, k is the number of the forget gate
vector, ¢ is the number of the cell vector, / is the number of
the output gate vector, d is the value of the cell, and f, g and
¢ are the activation functions.

As shown from the structure, LSTM networks can learn
when to let errors into or out of the block. When the weights
of the input gate take a zero value, no values can get into
the block. Moreover, the value cannot get out when the
output gate takes zero value. When both gates are closed,
the value is trapped in the cell so that the value will not
grow or shrink or have an effect on the output of the cur-
rent time steps. Therefore, in the back propagation process,
the gradient can be propagated back across many time steps
without exploding and vanishing. Due to the long short-term
memory block, LSTM networks have a strong ability to learn
the long-range dependencies of time series and performs
better in practice compared to the original RNNs.

C. CLASSIFICATION

Classification is the key step in fault prediction. The funda-
mental steps of the logistic regression classifier and support
vector machine are elaborated in detail in this subsection.
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1) LOGISTIC REGRESSION CLASSIFIER
The aim of the logistic regression classifier is to learn a
0/1 classification model from the training data features using
a logistic function. Suppose that there is a fixed training set
(G YD), @y, 0,y ™)), and e {0, 1),
where m is the number of samples. The hypothesis function
is given by

1
where 6 is the weight of the logistic regression classifier to
be obtained. The result of the hypothesis function represents
the probability P of y = 1, so it can be concluded that

P(y = llx; 0) = ho(x) (14)
P(y =0lx;0) =1 — hy(x) 15)

ho(x) = (13)

The cost function can be derived by a maximum likelihood
estimate, shown in eq. (16).

JO)=—-13° ¥loghy ) (1~ yO)log(1 ~hy V)]
n i=1
(16)

Therefore, a gradient descent method can be used to minimize
the cost function.

2) SUPPORT VECTOR MACHINE

SVM is a supervised learning model for classification and

regression analysis. The basic rule looks for an optimal hyper-

plane which is the farthest from the nearest training samples.
For the linear separation in a two-dimensional plane,

the classification function can be

f)=wlx+b (17)

where w, b determines a straight line for classification.
According to the relation of geometrical margin 7 and func-
tional margin y given by

A

=L (18)
ol
The problem can be inferred as eq. (19) when the y = 1.
1
maxﬂ,s.t.,yi(wai+b) >1,i=1,....,n (19
1)

where y; = 1 or —1 is the label of samples, and 7 is the
number of samples. To extend SVM to cases in which the
data is not linearly separable, the hinge loss function is given
by

max(0, 1 — y;(w! x + b)) (20)

Then the loss function can be concluded as eq. (21).

N
miny,. p Z max(0, 1 — y;w'x + b)) + Allw* (1)

i=1
For linear inseparability, SVM can use a kernel trick and
nonlinear mapping algorithm to transform samples from the
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low-dimensional input space into high-dimensional feature
space so that they are linearly separable.

In general, SVM is a novel learning method with solid
theoretical foundation, which has good robustness with fewer
samples and generalization performance in nonlinear prob-
lems compared to logistic regression classifiers. The reason
is that the optimization goal of SVM is structural risk mini-
mization instead of empirical risk minimization. It not only
ensures the classification accuracy of the samples but also
reduces the dimension of the learning model, corresponding
to the two terms of eq. (21). In short, it helps to prevent
problems of overfitting. Moreover, the computational com-
plexity depends on the number of support vectors instead
of the dimension of the sample space, which in some sense
avoids the dimension disaster. Therefore, SVM has low com-
putational complexity and good robustness.

IV. METHODOLOGY OF FAULT PREDICTION BASED ON
LSTM NETWORKS AND SVM

In this section, we elaborate on the methodology for the
line trip fault prediction in power systems based on LSTM
networks and SVM. First, the character and source of the data
are described in detail. Then the solution to the overfitting
problem is discussed. The line trip fault prediction modeling
is shown in the last subsection.

A. DATA DESCRIPTION

The real-world historical data was derived from electrical
measurements, the equipment ledger, the equipment health,
weather, and topology. They were obtained from the power
supply administration in the China Southern Power Grid for
the years 2012-2014. The electrical measurements including
current, voltage, active power, and reactive power of the users
are closely related to the faults because of the gradual process
of the distribution line resistance. This paper focuses on the
correlation between the faults and the electrical measure-
ments. Current, voltage, and active power are selected for the
input in the network. They contain all the measurement infor-
mation so that the phase angle is involved and the reactive
power is redundant. During the training process, 500 points
of current, voltage, and active power are recorded for samples
before the line trip faults or during normal operation. The
sampling period is 15 minutes. A normal sample and fault
sample for the current are shown in Fig. 4. The difference
between them cannot be determined simply from the figures.
This is similar for the voltage and active power so the hidden
features should be mined though LSTM networks for fault
prediction. The samples are time series with temporal infor-
mation, which are converted into different dimensions for the
LSTM networks input. This will be discussed in part of the
simulation experiment.

B. DATA PREPROCESSING

Data preprocessing is a fundamental work of data mining.
Different types of data have different dimensions. In order
to reduce the impact of different magnitudes and dimensions,

VOLUME 6, 2018

4.5
< 4
<
o
5
3 3.5
3
25 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
Sampling Points(Sampling Period: 15 minutes)
b
, (®)
25
< 2f ‘
<
e
8 1.5
1
05 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500
Sampling Points(Sampling Period: 15 minutes)

FIGURE 4. (a) Normal sample and (b) fault sample of the current
variations.

and increase the convergence rate, the data for users from the
power supply administration needs to be preprocessed with
0-1 standardization by

yp = 200 (¢ i) + Yimin 22)

Xmax — Xmin

where x is the raw data; y, is the processed result; ymax and
Ymin are the maximum and minimum settings of the processed
result; and xmax and xpi, are the maximum and minimum
of the unprocessed data. In the simulation experiment for
this paper, ymax and ypmin are set by 1 and O so that the
processed data can be constrained in the [0,1] interval, which
is a nonnegative number. After preprocessing, the data is
transformed into the same level without changing the inner
variations.

C. OVERFITTING PROBLEM

Overfitting is the key problem in fault prediction because
of the characteristics of the sample. During the stable oper-
ation of a power system, faults rarely happen. The number
of fault samples is small. Therefore, the training can easily
fall into an overfitting problem. During the network training
process, when the number of iterations increases, the network
may have a good fit for the training set and small loss in
the training set, but the fitting to the validation set is poor.
Dropout and batch normalization are the effective solutions
for such an overfitting problem. The theories are discussed in
this subsection.

1) DROPOUT
The basic dropout method is that during the forward
propagation of networks, the neurons stop working with

7679



IEEE Access

S. Zhang et al.: Data-Based Line Trip Fault Prediction in Power Systems

2999~

Dropout

FIGURE 5. The schematic diagram of one layer dropout, where P is the
probability of presenting neurons.

probability P. The schematic diagram is shown in Fig. 5.
Random neurons do not work, so the situation of a better per-
formance in some fixed combination is avoided. The network
can learn some common knowledge for better generalization
performance. Moreover, training the network with dropout
can be considered as training multiple subnetworks. The
output is the average of all the subnetworks. The subnetworks
from each iteration are basically not repeated. Therefore,
it can avoid a scenario where the trained network is exces-
sively fitted to the training set and accelerates the conver-
gence rate. In the end, the accuracy of the fault detection is
improved.

2) BATCH NORMALIZATION

The essence of batch normalization is that data normaliza-
tion is done at the intermediate layer during the training
of each batch. The mean and standard deviation of output
in the normalization layers are O and 1. The nature of the
learning process is to study the distribution features of the
data. Once the distribution of the training set is different
from that of the test set, the generalization ability of the
network is greatly reduced. Moreover, if the distribution of
each batch of training data is different, the network must learn
to adapt to different distributions for each iteration, which will
reduce the speed of training the network and the performance
of the network. Therefore, using batch normalization can
improve the generalization performance and accelerate the
convergence rate.

D. MODELING OF FAULT PREDICTION

For line trip fault prediction, the major task is detecting
whether there is a fault or not during the operation of a
power system. The overall structure of the model is shown
in Fig. 6. The samples are labeled as normal or fault according
to the fault records. Five hundred points of current, voltage,
and active power are recorded for samples before line trip
faults or during normal operation. Then, the S00-dimensional
vector is translated into multiple input vectors with time
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TABLE 1. Samples from the simulation experiment for case 1.

Samples
Label Normal  Fault
Number of 2050 2050
Training Samples
Number of 510 510

Testing Samples

steps for LSTM networks. The temporal features are cap-
tured through three LSTM networks. The last moment of
the LSTM output units are obtained for merging in a fusion
layer. In order to retain information about each measurement,
the form of the fusion is set as concatenating. Layers of
dropout and batch normalization are added after the three
LSTM networks to deal with the overfitting problem in data-
based fault prediction. Then the trained, merged temporal
features are put into the SVM classifier for fault predic-
tion results, as it has better performance in classification.
The structure and parameters of the model are designed and
adjusted according to multiple tests with samples for satis-
factory results, which are shown in the next section. This
is the key problem in data-based fault prediction in power
systems. Moreover, if there are other types of associated
data about faults recorded in the power system, the pro-
posed network can be extended with the LSTM subnet-
works to exploit more information for fault prediction. The
improved performances in a practical experiment are shown
in Section V.

V. SIMULATION RESULTS

The simulation condition and results from the practical exper-
iment are discussed in this section, which proves that the
proposed method has improved performance.

A. EXPERIMENTAL CONDITION AND

EVALUATION METHOD

The experiments were done with data from the Wanjiang
substation in the China Southern Power Grid, shown in Fig. 7.
There are 36 feeders connecting to the load side in the Wan-
jiang substation, called Feeder 1. Feeder 2, ... , Feeder 36. The
current, voltage, and active power of the users are recorded
under these lines.

In evaluating the performance of the trained network,
testing is a significant step. A K-fold cross validation
(K-CV) is a classical approach to evaluate the trained net-
work. In K-fold cross-validation, the original samples are
randomly and averagely partitioned into K subsamples. Each
subsample is a testing set, and the rest of the K -1 subsamples
are the training set. The experiments are repeated K times
with these subsamples. The average performance of the K
models is considered the final performance. The advantage of
this method is that all observations are used for both training
and testing so that overfitting and lack of learning are avoided
to enable persuasive results.

Generally, K is 5. In this simulation, the number of
training samples and test samples is shown in Table 1.
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FIGURE 6. Proposed model for the data-based line trip fault prediction, where detailed layer connections are indicated.
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FIGURE 7. Primary electrical system in Wanjiang above 110 kv, including electric power plants, transmission buses, converting stations,

and user loads.

The performance of the fault diagnosis can be observed
through the accuracy rate which is the ratio of proper diag-
nosis samples and all test samples. The training is stopped
if the accuracy does not improve in multiple epoches. Then
the best accuracy of the epoches is considered the result in an
experiment. The average accuracy of repeated experiments is
recorded as the final result.
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B. FAULT PREDICTION BASED ON THE LSTM NETWORKS

The experiment for fault prediction based on LSTM networks
is discussed in this subsection, the model of which is shown
in Fig. 6 with SVM removed. The parameters of LSTM
networks are set as in Table 2 for better performance through
multiple experiments, which should be adjusted in practical
circumstances. The number of epoches is set as 40 because
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TABLE 2. Parameters in the experiment.

Parameters Value
Input Time steps 25
Input Dimension 50

Output Units 1

Batch Size 32

Epoch 40
Optimizer RMSprop
Learning Rate 0.001
Decay 0.9
Dropout rate 0.5

100%

95%

Accuracy
T T

—+— Model 1 of 5-CV
—6— Model 2 of 5-CV
Model 3 of 5-CV

—¥— Model 4 of 5-CV
—&9— Model 5 of 5-CV

90% -

85% b

80% [ b

75% [ b

70% . . . . . . . . . . T
1 2 3 4 5 6 7 8 9 10

FIGURE 8. Results of fault prediction based on the LSTM fusion network
based on 5-CV, where the experiment of each model repeats 10 times.

the accuracy is stable according to repeated experiments. The
"RMSprop’ optimizer is chosen for its better performance
in recurrent neural networks. The results of fault prediction
based on the LSTM fusion network based on 5-CV are shown
in Fig. 8. The final result is the average accuracy of five
trained models: 87.44%. The accuracy of the fault prediction
and loss during a training period are shown in Fig. 9 and
Fig. 10. The accuracy increases with training while the loss
decreases. Repeated experiments ensure the stability of the
network. The results prove that the correlation with temporal
information between line trip faults and measurement data
can be mined for fault prediction. The fault can be detected
with high probability but still needs to be improved.

C. INFLUENCE FACTORS FOR IMPROVED PERFORMANCE
IN FAULT PREDICTION

The input time step and dimension are important influencing
factors because LSTM networks extract temporal features.
The experiment results of several representative input time
steps and dimensions are shown in Fig. 11. When the input
time step reaches above 50, the convergence rate is too slow
so it is meaningless for showing results. It can be concluded
that the input dimension of (25, 20) is better. The reason
is as follows. If the time step is long, it is inevitable that
the learned features are lost through the long process. Then,
the convergence rate is slow. On the other hand, if the time
step is short and the dimension of the input vector is high,
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FIGURE 9. The loss in fault prediction through 40 epoches of training.
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FIGURE 10. The accuracy of the fault prediction through 40 epoches of
training.
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FIGURE 11. Comparative results of different input time steps and
dimensions, where T in (T,D) is the time step and D in (T,D) is the
dimension of the input vector.

the temporal information is lost. Therefore, the input time
step and dimension are set as (25, 20), which is suitable in
this case.

Overfitting is a difficult problem in data-based fault pre-
diction. Layers of dropout and batch normalization are
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FIGURE 12. Improved results using the dropout and batch normalization
in a training process.
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FIGURE 13. Comparison results of multi-sourced information and single
inputs in a training process.

introduced into the network to avoid overfitting. With the
parameters set as in Table 2, the experiment is carried out to
prove the remission of overfitting. The improved results using
dropout and batch normalization are shown in Fig. 12. The
performance is improved markedly with layers of dropout
and batch normalization. The convergence rate is low and
unstable at the beginning of the training because the network
has more layers and parameters to train. However, the accu-
racy increases in the latter part. In general, the network with
dropout and batch normalization performs better and has a
faster convergence rate.

There is a considerable amount of measurement data in
the operation of a power system. The temporal features
are captured from the usersar data for current, voltage, and
active power. The comparison experiments are performed for
multi-sourced inputs and single inputs. The results are shown
in Fig. 13, where the improvement can be clearly concluded
from the two curves. It can be explained as follows. When a
fault is about to happen, the gradual state transformation of
the power equipment is reflected in all of the measurement
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TABLE 3. The accuracy for LSTM networks with improved influence
factors in 10 repeated experiments.

Number 1 2 3 4 5
Accuracy 86.8% 88.5% 87.5% 81.7% 88.1%
Number 6 7 8 9 10
Accuracy 86.3% 85.1% 883% 86.7% 89.7%
True Fault
Predictive Negative
Rate Rate

©

99%

1% 9% | 1%

True Class

®

3%

97% 97%| | 3%

@ @

Predictive Class
FIGURE 14. Confusion matrix for the results based on the proposed

method.

TABLE 4. The accuracy for the proposed method in 10 repeated
experiments.

Number 1 2 3 4 5
Accuracy 97.8% 97.5% 97.7% 97.6% 97.8%
Number 6 7 8 9 10
Accuracy 97.7% 97.5% 97.6% 97.7% 97.7%

data including current, voltage, and active power. The clearer
features are mined with more adequate information. There-
fore, multi-LSTM networks show better performance.

The improvement is proven to be effective in similar
experiments in data-based fault prediction using the LSTM
networks and SVM. The features are better captured with
better performance of LSTM networks, which are then more
conducive to classification with the SVM classifier.

The results of repeated experiments based on LSTM net-
works with improved influence factors are shown in Table 3.
The average for the accuracy is 87.5%. It is acceptable but
still needs to be improved.

D. RESULTS OF PROPOSED METHOD FOR

FAULT PREDICTION

The data-based line trip fault prediction method using LSTM
networks with SVM is proposed for increasing the accuracy
in fault prediction. The trained merged temporal features
are put into the SVM classifier for fault prediction results,
shown in Fig. 6. The results from repeated experiments and
one of the confusion matrixes are shown in Table 4 and
Fig. 14. The average for accuracy is 97.7%, which increases
by about 10% compared to the method based on just LSTM
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FIGURE 15. Comparison results for the proposed method and data-based mining approaches in the case of
data-based line trip fault prediction, which includes back propagation neural networks (BPNNs), stacked

autoencoders (SAEs), RNNs and SVM.

TABLE 5. Comparison results for the proposed method and the
data-based mining approaches.

TABLE 6. The results for the proposed method from the first half of the
year 2014.

SAE+ RNN+
SVM SVM
783%  82.5% 86.5%  93.8%

Proposed
Method
97.7%

Methods BPNN  SAE RNN
Accuracy  68.2%

networks. Moreover, the results show the true high predic-
tion rate both in normal samples and fault samples derived
from the confusion matrix. The improvement relies on SVM,
which has good robustness with samples and in generalization
performance for nonlinear problems. SVM basically does
not involve the probability measure and law of large num-
bers. Moreover, the optimization goal of SVM is structural
risk minimization, which alleviates the overfitting problem.
It can ensure the classification accuracy of samples and
reduce the dimension of the learning model. These advan-
tages make it suitable for data-based fault prediction in power
systems.

The experiment was done with the same samples from
Table 1 based on current data mining approaches. The com-
parison results for the proposed method and the data-based
mining approaches are shown in Fig. 15, where the accuracy
of the normal and fault test set is involved. It shows that the
improvement is marked in both normal and fault situations.
The final results are shown in Table 5.

It can be concluded that the proposed method performs
much better than other approaches such as back propaga-
tion neural networks (BPNNs), stacked autoencoders (SAEs),
RNNs and SVM. LSTM networks can extract the temporal
information from data depending on the connected hidden
layer units but the BPNN and SAE do not have this ability.
Compared to RNNs, the LSTM can solve the problem of the
vanishing gradient using the LSTM block.

In general, it relies on the stronger learning ability of
LSTM networks for time series, and the good robustness and
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Month Jan Feb Mar Apr May Jun
Accuracy  96.5% 97.0% 97.3% 97.8% 954%  96.6%

generalization performance of SVM. The fault features are
mined from multiple sources of measurement data for fault
prediction at high accuracy. Compared to the methods based
on relay protection actions and electrical component actions,
the proposed data-based method can predict if there will be
faults in a power system based on first-hand information.
Therefore, the proposed methodology, that of data-based line
trip fault prediction in power systems using LSTM networks
with SVM, is a noteworthy improvement for ensuring the
reliability and stability of a power system.

E. EXPERIMENT AND APPLICATION IN

PRACTICAL SITUATIONS

The proposed methodology was proven effective in a repeated
data experiment in the last subsection. When the proposed
network is built in accordance with a practical situation and
trained with historical data, it can work in online fault pre-
diction. The parameters are constantly updated to fit the new
operating status on line. In a practical application situation,
LSTM networks were trained on historical data for the years
2011-2013 and tested with the real fault records from the first
half of the year for 2014 from the Wanjiang substation in
Guangdong, China. The results are shown in Table 6. The
accuracy of each month is stable above 95%. The results have
great significance in practical fault prediction.

The training and testing time for the experiment was at the
minute level with a Tesla M40 GPU. For practical application,
the related research was done at the State Grid Electricity
Research Institute in Shandong, China. Higher configuration
computers and clusters are available at the State Grid for
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dealing with big power data. The hardware requirements for
online training and prediction were easy to fulfill using the
State Grid facilities. In general, practical fault prediction can
be achieved with the proposed method.

VI. CONCLUSION

To increase operational reliability and stability in power sys-
tems, a data-based method for line trip fault prediction using
LSTM networks with SVM is proposed in this paper. First,
500 sampling points of current, voltage, and active power
were recorded for samples before line trip faults or during
normal operations. The samples were reshaped into dimen-
sions of (25,20) as the input for LSTM networks. Meanwhile,
the samples were processed with 0-1 standardization to the
same level. Then, the multi-sourced data was put into LSTM
networks for training and fusion. The temporal features were
mined through three LSTM networks. To solve the overfit-
ting problem of fault prediction in power systems, layers of
dropout and batch normalization were added into the net-
work. Afterwards, the fusion features were put into the SVM
classifier for more accurate prediction results. Moreover,
the proposed network can be extended with LSTM subnet-
works to obtain more information for fault prediction if there
is other available data related to faults from the power system.
The experiments were done with real data from the Wanjiang
substation in the China Southern Power Grid. Specifically,
the corresponding experiment results prove the increase in
accuracy using fusion of multiple sources, and layers of
dropout and batch normalization. In summary, the improve-
ment of the proposed method compared to the current data
mining approaches is noteworthy. The accuracy of the line
trip fault prediction can reach about 97%. It is of great signif-
icance for operational reliability and the stability of a power
system. Moreover, the proposed method is demonstrated in
practice in the last part of the paper. The hardware require-
ments can be met with the equipment in a power system. The
proposed method for accurate fault prediction is valuable in
practical application.
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