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a b s t r a c t

With the rapid surge of renewable energy integrations into the electrical grid, the main questions
remain; how do we manage and operate optimally these surges of fluctuating resources? However, vast
optimization approaches in renewable energy applications have been widely used hitherto to aid
decision-makings in mitigating the limitations of computations. This paper comprehensively reviews the
generic steps of stochastic optimizations in renewable energy applications, from the modelling of the
uncertainties and sampling of relevant information, respectively. Furthermore, the benefits and draw-
backs of the stochastic optimization methods are highlighted. Moreover, notable optimization methods
pertaining to the steps of stochastic optimizations are highlighted. The aim of the paper is to introduce
the recent advancements and notable stochastic methods and trending of the methods going into the
future of renewable energy applications. Relevant future research areas are identified to support the
transition of stochastic optimizations from the traditional deterministic approaches. We concluded based
on the surveyed literatures that the stochastic optimization methods almost always outperform the
deterministic optimization methods in terms of social, technical, and economic aspects of renewable
energy systems. Thus, this review will catalyse the effort in advancing the research of stochastic opti-
mization methods within the scopes of renewable energy applications.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

Renewable energy sectors have seen tremendous growth in the
last decade throughout the world especially in Northern America,
Western Europe, and China accounting for almost half of the
expansion [1]. The recent rapid energy shift in these parts of the
world are mainly due to the reduction of production costs of the
renewable energy generators, the drive to reduce carbon emissions,
and attractive tariffs offered [2]. Wind energy and solar energy
accounts for the most rapid growth in renewable energy genera-
tions with an approximate 77% of new capacity, with hydropower
dominating the rest [3]. Despite being a clean and abundantly
available energy (in some parts of the world), renewable energy
resources still suffer from its lack of energy density and its inter-
mittency [4]. The latter presents the most challenge to researchers
in terms of successfully predicting and utilizing the usage and
control of renewable energy resources. In contrast to the conven-
tional generators (i.e. coal or steam turbine power plants), renew-
able energy generators can only generate energy, when there are
renewable resources available. Therefore, appropriate prediction,
control, and precise representation of renewable energy systems
play an important role to ensure stable and uninterrupted energy
supply. Optimization of renewable energy systems can be accu-
rately solved if uncertainties, probabilities, and fluctuating behav-
iours of renewable energy systems are being properly represented
[5].

The current wave of optimization approach in renewable energy
applications are shifting. The first wave was in the form of deter-
ministic approaches [6]. During this wave, mixed integer pro-
gramming has stood out from the earlier modelling approaches
namely; dynamic programming, priority list, Lagrangian Relaxa-
tion, etc. However, deterministic methods with an assumption of
perfect information produced idealistic results which contradicted
with the core value of renewable energy systems. With the fluc-
tuations of renewable resources, varying demands, and intermit-
tent economic parameters, deterministic approaches alone could
not fully capture the dynamics of the whole renewable energy
systems [7].

Studies are now moving towards stochastic optimization in
which the optimization considers uncertainties and probabilities as
inputs, then evaluate its influence on the output of the system [8]. A
stochastic optimization then utilizes these scenario uncertainties in
its objective function's formulations. Hitherto, vast amount of lit-
eratures has been found regarding the stochastic optimization
techniques [9]. Stochastic optimization provides a range of possible
solutions whichmodels closer to realeworld situations that would
benefit operators/consumers in assessing the risks involved in the
uncertainties of renewable energy generations. Therefore, the
characteristics of stochastic optimization methods are more suit-
able in handling renewable energy system's fluctuating and inter-
mittent nature. Stochastic optimization however, generally suffers
from huge computational expenses due to large number of sce-
narios that needs to be considered in its calculations [10].
Numerous techniques have been developed by many authors in
increasing the stochastic optimizations' efficacy to reduce compu-
tational expenses [11]. Nonetheless, it is still computationally
demanding and suffers from the ‘curse of dimensionality’ in cases
of assessing the problems over multivariate andmultiple periods of
time intervals. Despite the advantages of the stochastic optimiza-
tions, its implementations in renewable energy applications are
still relatively new. The problems in its transparencies, computa-
tional efficacies, and their full practical implementations are still
being addressed by system operators and other interested parties.

Based on vast relevant surveys conducted, the paper's motiva-
tion is to analyse recent and notable stochastic optimization
methods in the lights of renewable energy applications while
identifying its current and future research directions. We also
pointed out various advantages and disadvantages of highlighted
stochastic optimization methods. Given the vastness of stochastic
optimization methods that exist hitherto, the focus of the paper is
to provide a basic introduction to the highlighted methods while
directing interested readers towards notable works of other au-
thors mainly in the field of renewable energy applications.

2. Overview of stochastic optimization

The general stochastic optimization in renewable energy ap-
plications is broken down into several steps as summarized in Fig.1.
The paper highlights these steps and focuses on the notable sto-
chastic methods in recent renewable energy applications. As stated,
the idea of the paper is to provide new researchers as well as
advanced readers in the optimization field with insights on the
recent and notable stochastic optimization methods in renewable
energy applications. The paper is focused on the intuitive part of
the stochastic optimization methods rather than the mathematical
discourses of the field. Readers are also exposed to the recent
trending of the stochastic optimizations in renewable energy ap-
plications as well as future works and relevant research themes in
these areas. From these recent works, gaps and future works from
the literatures are analysed. The trending from the surveyed recent
literatures is highlighted and the efficacy of the stochastic optimi-
zation approaches is presented from the main results of the
literatures.

We consider only the most recent literatures in stochastic
optimization methods in the field of renewable energy applica-
tions. Key aspects pertaining to the stochastic optimizations are
featured such as its main results and contributions, its research
gaps, and its uncertainty parameters. The notable mentioned
methods are chosen based on its contributions in the field as well as
its future implementation prospects. Past authoritative works are
also highlighted for interested readers to research further. In this
paper, within the scope of renewable energy applications,
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uncertainty modelling/scenario generation approaches are initially
addressed, followed by notable sampling methods to capture
relevant scenarios in stochastic optimizations. Next, the stochastic
optimization approach is highlighted mainly in the lights of
approximate stochastic dynamic programming. The paper con-
cludes with main issues and challenges of stochastic optimization
approaches in renewable energy applications, followed by its crit-
ical remarks and future relevant themes in renewable energy
applications.
3. Uncertainty modelling in stochastic optimization approach

In stochastic optimizations, representing the correct un-
certainties are critical. Each uncertainty modelling technique
would yield a different representation of the systems. Therefore,
appropriate selection of uncertainty modelling methods is crucial.
Uncertainty modelling is a typical way to represent the stochas-
ticity of renewables' systems. Instead of assuming perfect knowl-
edge of the parameters (i.e. wind speed, solar irradiation and load
demand) as opposed to a deterministic approach, random distri-
butions are added as inputs to a stochastic optimization approach
to mimic the probabilistic characteristics of a renewable energy
system. In representing the uncertainties, it is critical that the
distribution dynamics of the scenarios arewell captured. One of the
ways to do that is by generating large number of scenarios, where
each scenario would capture the possible realization of the un-
derlying uncertainties. The idea is to find the close approximation
of the uncertainties' true distributions. In other words, the main
goal is to infer a probability distribution(s) of an output(s) based on
a given probability distribution function(s) (PDF) of an assumed
known input(s). PDF distributions of inputs varies from parameters
Fig. 2. Uncertainty mo
or variables involved. Fig. 2 shows an overview of the uncertainties’
modelling approaches. The scope of the paper is only limited to the
numerical method of the uncertainty modelling approaches,
mainly in the recent Monte Carlo Simulation (MCS) approach in
renewable energy applications. Interested readers are encouraged
to read the works made by Refs. [11e13] for further information
regarding other uncertainty modelling approaches.

3.1. Monte Carlo Simulation

MCS is one of the most used methods in the probabilistic un-
certainty modelling approach [15,16]. Historical probability distri-
bution function, forecasting errors, and market variability are the
parameters that can be utilized by the MCS method to learn and
populate the scenarios’ generations. The MCS method is favoured
due to its ability to systematically sample from random processes
[16]. Furthermore, a transfer function is not necessarily needed in
MCS. The problem can be treated as a black box system which can
yield related output with given samples of inputs. MCS is also
intuitive and relatively easy to implement. MCS can also be
implemented in non e differentiable as well as non e convex
problems. Apart from that, it supports all probabilistic distribution
function (PDF) types. Regardless, MCS has some deficiencies issue
such as expensive computation due to its iterative behaviour,
especially when the degrees of freedom and the space search ex-
pands [17]. The general MCS method in renewable energy appli-
cations can be described in Fig. 3.

3.1.1. Types of Monte Carlo Simulation
According to Ref. [18], MCS method is typically divided in three

different types. The first one is called the SequentialeMCSmethod.
delling overview.
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This method represents the uncertainties in chronological order
and is valued for its flexibility for assessing the reliability of the
system's posterior distribution. This method is suitable in the ap-
plications of time series of variable energy sources and variable
load. Nonetheless, it requires a significant amount of computational
effort as the dimensions of the uncertainties grow due to sequential
and iterative characteristics of this MCS. This method also may be
infeasible for some applications which are non e sequential. The
second type of theMCS is the Pseudoe Sequential MCS. It is named
due to its ability of non e sequential sampling of system states and
chronological simulation of only the sub e sequences tied with the
failed states. This method has a faster convergence rate than the
sequentialeMCSmethod. However, this method is still demanding
in terms of computational expenses as the degree of the problem
increases. The third and the last type is called the NoneSequential
MCS method. It is known for its high computational efficiency but
lacks the ability to simulate the chronological aspects of a renew-
able system operation. The summary of the three types of the MCS
method mentioned with respect to the literatures mentioned is
shown in Tables 1e3.

3.1.2. Recent MCS applications in renewable energy

3.1.2.1. Sequential MCS applications in renewable energy. The
sequential MCS method has been implemented as follows in
renewable energy applications [19]. implemented the MCS in sce-
nario generations of irradiation, wind speed, load, and temperature
as inputs to optimize for the control of PVewinde diesele battery
stand e alone systems. Authors suggested that a reduction in
search space is recommended to optimize the problem within
acceptable time frames. Genetic Algorithm (GA) has been used
initially to reduce the possible scenario generations’ space of the
MCS. A novel hybrid GA and MCS approach was proposed by
Ref. [20] to predict hourly energy consumption and generation by a
cluster of Net Zero Energy Buildings. The MCS aspect considers the
variability and the modelling aspects of the random energy con-
sumption in a building at a given specific hour. An analytical
convolution process combined with MCS in the works of [21] to
determine the optimal amount of power generation to be
committed by incorporating renewable power forecasting errors
and system reliability. A study by Ref. [22] proposed a sliding time
window optimization approach to find an optimal design and
dispatch scheduling strategy in a hybrid renewable energy system
consisting of biomass, wind, solar, gas e fired boiler, battery, and
thermal energy storage. Different scenarios were created to find out
which combinations of renewable generators would yield the op-
timum design and dispatch strategy. MCS was then tasked to
generate the cost of energy (COE) distribution as an output to
provide a risk indication of the chosen design. MCS has been uti-
lized by Ref. [23] to sample different system states from the self e
adapted evolutionary strategy (SAES) combined with Fischer-
Burmeister algorithm in optimizing the one e time investment
and the operational costs of hybrid wind e energy storage power
system. Lopes et al. (2015) have addressed the impact and system
reliability on the combination of wind generation and small hydro
power plants [24].

The uncertainties of power generations are modelled using the
MCS. A novel risk management method was investigated in the
work of [25] based onmanaged charging of pluge in hybrid electric
vehicle (PHEV) and vehicle e to e grid (V2G) using MCS. MCS
analysis of wind farm lightning surge transients aided by a light-
ning detection network data is implemented by Ref. [26] to produce
a statistical depiction of over e voltages distribution within the
wind farm electrical network. The statistic depiction can be used to
assist wind farm lightning risk management and surge protection
optimization. MCS has been implemented by Ref. [27] to consider
the uncertainties of load and irradiation in the economic optimi-
zation of energy supply at off e grid healthcare facilities. In the
work of [28], the authors have utilized MCS by performing Tem-
perature e Augmented Probabilistic Load Flow (TPLF) to charac-
terize the aspects of overe limit probabilities of events such as over
and undere loading of loads and voltages in a 39e bus test system.

3.1.2.2. Pseudo e sequential MCS applications in renewable energy.
The MCS method handled the uncertainties which are; the solar
irradiance which is modelled using kernel density estimation, the
load demand using a Gaussian distribution, the wind speed using a
Weibull distribution. In the work of [29], the author coupled MCS
with quantile estimation techniques, and an efficient stochastic
optimizer, Adaptive Global Local Search (AGLS) in sizing hybrid
renewable energy systems while considering the renewables un-
certainty as inputs to MCS. Authors found that the approach has
enabled the control of the upside risk, consequently enhancing the
decision quality regarding the hybrid renewable energy systems.
Implementation of MCS in Ref. [30] has been represented to show
the possible distribution of thermal energy collected at a solar
thermal power plant. Applying a pseudo e MCS reduce the search
space of the non e convex stochastic optimizer which is the PSO, to
find an optimal design that leads to an improvement of yearly
thermal energy collected between 3.34% and 23.5%. MCS has been
applied in Ref. [31] to consider the intrinsic variability of electric
power consumption in the probabilistic assessment simulation of
DG penetration in medium voltage distribution networks. The
fluctuations and uncertainties of load demands and generations of
solar PVs are represented using MCS in the work of [32]. A multi e
linear MCS method is proposed by Ref. [17] to analyse the steady
state operating conditions of an active electrical distribution sys-
tem with Wind and PV generation plants. The uncertainties of
power load demand and power production from renewable gen-
erations are considered using the MCS combined with multi e

linearized power flow equations. In the work of [33] MCS is
implemented to model the uncertainties of energy demand, solar
energy availability, and electricity prices followed by a space search



Table 1
Sequential MCS in renewable energy applications.

References Method Objective function Type of MCS Uncertain input Parameters Main results/contributions Future work/Gaps

[19] MCS e GA Minimize investment and
operational costs

Sequential Solar irradiation,
Temperature, Wind speed,
Annual fuel price interest
rate, Average daily load

More information available
on expected performance
and costs of the system
with respect to the
deterministic optimization

Optimize MCS samples and
computational time

[20] GA e MCS Minimize instantaneous
and cumulative energy
balance

Sequential Buildings' energy
consumptions

Reduction in net energy
balance in buildings

Extending the method's
period to more than one
year

[21] MCS e Analytical
Convolutional Process

Optimize cost/benefit
relationship of RE
generations

Sequential Wind speed forecast error,
generation unit reliability

Considerable improvement
of computational efficiency
with reasonable cost/
benefit

Increment of MCS
computational efficiency

[22] Receding Horizon
Optimization e MCS

Minimize Cost of Energy,
minimize risks

Sequential Wind power, Solar power,
Battery storage, Biomass
combined Heat Power,
thermal energy storage, gas
producer

Lowest cost option may
have a higher risk of failing.
The model provides ranges
of possible microgrid
designs to determine major
risk factors

Comparison of short-term
performance with while
considering demand side
uncertainties

[23] SAES e ARM eMCS Minimize investment and
operational costs

Sequential Load demand, Wind speed Reduces iteration in a
complex search space;
Investigate discharge cycle
efficiency of different
energy storage on the
system

Investigate impact of
energy management on
planning decisions

[24] Risks based e MCS Minimize loss load
probability (LOLP), EPNS,
LOLD and LOLF

Sequential Wind speed, River inflows Precise estimation of
energy delivered at a given
time and reducing load
shedding risks

Integration of various
intermittent RESs

[25] LOEE e MCS Minimize loss of energy
expected and expected
energy not supplied

Sequential PHEV owner's behaviour,
Solar and Wind power

LOEE in novel charging
applications reduced by
75% in comparison to
unmanaged charging

N/A

[26] LINET - MCS Mitigation of lightning risks Sequential Lightning transients/
activity at wind turbines

Cost e effective
overvoltage protection
selection

N/A

[27] NPC e MCS Minimize net present cost
(NPC)

Sequential Load, Solar irradiation Realistic stochastic battery
lifetime prediction using
weighted Ah Schiffer
method

Analysing cost reduction
and fossil fuel consumption,
Improving supply reliability

[28] TPLF - MCS Minimize risk of system
over e voltage and risk of
system over e load

Sequential Load, Solar irradiation,
Solar PV output,
Temperature

Accurate uncertainty
modelling of Solar PV
output, load, and
temperature at multi e
time instants

Considering multi e time
spatial and temporal
correlations in power
generation dispatch
strategy

Table 2
Pseudo - Sequential MCS in renewable energy applications.

References Method Objective function Type of MCS Uncertain input
Parameters

Main results/
contributions

Future work/Gaps

[29] MCS e AGLS Minimize risk Pseudo - Sequential Possible sizing of HRES Sizing of HRES with
minimal risk

An efficient quantile
estimation method to solve
largeescale problems

[30] Ray Tracing MCS e PSO Maximize yearly
thermal energy
collection

Pseudo e Sequential Sun ray's position, days
of the year

Increment in yearly
thermal energy
collected

Integration of electrical
output in the system,
optimization of levelized
cost of energy

[33] Multi objective e Roulette
Wheel ee MCS

Minimize energy costs
and environmental
impacts

Pseudo e Sequential Supply side; Demand
Side, domestic hot
water, space heating
and cooling)

Models and proposed
methods provided
accurate optimization
results in identifying
the economic/
environmental pareto
fronts

N/A

[36] Cholesky Decomposition e

MCS
Minimize economic
risks and maximize
financial returns

Pseudo e Sequential water inflow, wind
speed, solar irradiance,
temperature of PV
panels, and average
generation capacity

Main characteristics of
the random variables
are accurately modelled
for energy applications

Test proposed method with
plant's installation site data
(real data); Adaptation of
the method in other
markets

[34] Various techniques e MCS Minimize LOLP,
Expected Unserved
Energy (EUE)

Pseudo - Sequential Load demands,
Conventional
generation resources,
Wind resources

Quantify the impacts of
integrated renewable
resources on reliability,
power economics, and
emissions

Integration of other
stochastic parameters such
as solar, demands, and
storages
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reduction technique (RouletteeWheelMechanism) to reduce the
computational expenses. Pinheiro et al. (2017) has implemented
MCS associated with Cholesky Decomposition as inputs to
generate synthetic time series of water inflow, wind speed, solar
irradiance, temperature of PV panels, and average generation
capacity [34]. TheMCS's goal is to perform risk analysis with 2000
scenarios that spans over a period of 300 months. Authors in
Ref. [34] deployed the MCS to systematically sample random
processes of intermittent renewable resources and simulated the
power system and transmission constrained day e ahead market
operations. MCS approach to investigate the economic risk anal-
ysis of decentralized renewable energy infrastructures has been
used in the work of [35]. The MCS method considers the net
present value (NPV) estimation and its ranges for each scenario
involved.
3.1.2.3. Non e sequential MCS applications in renewable energy.
Few recent works that have implemented the non e sequential
MCS in renewable energy applications are mentioned as follows.
The MCS approach to investigate the economic risk analysis of
decentralized renewable energy infrastructures has been imple-
mented in the work of [35]. The MCS method considers the NPV
estimation and its ranges for each scenario involved. Hanbury and
Vasquez, 2018 employed the usage of MCS in geothermal plant's
construction to stochastically capture the environmental impact
in terms of complete Life Cycle Analysis (LCA) relative to other
methods of energy production [37]. A systematic approach ofMCS
to address the system distribution reliability considering inten-
tional islanding was implemented in the work of [38].
3.1.2.4. Trending of MCS applications in renewable energy.
Trending of MCS applications in renewable energy applications is
hybridized with either a (meta) e heuristic method, strategic
sampling methods, or other optimization methods. The (meta) e
heuristic method typically acted as a space search reducer for the
MCS method in performing the stochastic optimization as shown
in Ref. [19], thus decreasing the overall computational expenses.
Other method such as sampling methods (Typically related to
Generator DNNs

Noise Input

Generated SamplesHistorical Samples

Discriminator
DNNs

Output PredictionReal Fake

Fig. 4. Example of GANs structure for wind scenario generation.
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Pseudo e Sequential MCS) has strengthened the weakness of MCS
method that requires large amount of sampling data to be accurate
[38,39]. With strategic sampling of the scenario generations only
the most important components are considered that contributes
the most to the objective function's stochastic optimization. Due to
the time dependent nature of renewable energy problems, most of
the applications of MCS methods in this field is either Sequential or
Pseudo e Sequential. Section 4 describes further methods involved
in stochastic optimization sampling processes.
3.2. Notable uncertainty modelling method: Generative Adversarial
Networks

It is important to note that as computational advancements
have been growing rapidly throughout the years, model e driven
uncertainty modelling or scenario generations' methods have been
becoming less viable, difficult to apply, and hard to scale [15,41].
These are caused by the complex dynamics of renewable energy
systems, time e varying nature of weather, and complex temporal
and spatial connections. Studies are now converging towards the
data e driven methods in generating new sets of unique and
distinctive scenarios in renewable energy application [41]. As one
Table 4
Characteristic and benefits of different types of GANs.

References Type of GANs Characteristic

[45] Wasserstein GANs Using the Earth e Mover
distance to evaluate the
distribution gap between rea
and generated data

[46] Loss e Sensitive GANs Limiting the modelling ability
of the discriminator to better
distinguish the real and
generated samples regardless
of their complexity

[47] Semi - GANs Adding labels of real data to t
training of discriminator

[48] Bidirectional GANs Mapping the real data to the
latent variable space in an
unsupervised learning
environment

[49] Info GANs Capturing mutual informatio
between a small subset of late
variables and observations

[50] Auxiliary e Classifier GANs Incorporating label informati
into the generator and
adjusting objective function f
the discriminator

[51] Sequence GANs Generating sequences of
discrete tokens

[52] Boundary e Equilibrium GANs Equilibrium enforcing metho
paired with a loss derived fro
the Wasserstein distance
day might not be the same as another due to erratic weather
changes and global warming, a new method can't only rely on
generating/projecting scenarios based on historical data but must
also correctly capture the rapid variations and strong diurnal cycles
of renewable resources in generating authentic new scenarios.
Numerous amounts of literatures exist in scenario generations of
renewable resources such as wind and solar as well as demands
[42]. However, most of them were model e driven and it is
cumbersome to pin point themost efficient usage of an exact model
to an exact situation. A recent study derived from Artificial Neural
Networks (ANNs), namely Generative Adversarial Networks (GANs)
by Ref. [43] has been gaining a lot of attention due to its ability to
synthesize artificial images from trainings of real ones. Only few
works have been identified in literatures that implemented data e

driven GANs in renewable energy applications. The method suc-
cessfully synthesizes renewable system's scenarios in Ref. [41] us-
ing Wasserstein GANs. The generated scenarios are successful in
synthesizing new and distinct scenarios by capturing the intrinsic
features of the historical data.

Fig. 4 depicts an overview of GANs system. The intuition behind
GANs is to exploit the capacity of Deep Neural Networks (DNNs) in
both classifying complex signals (Discriminator) and expressing
Main advantage(s) Future work(s)

l

� Stable training of GANs
� improves the learning

parameter and optimization
method of conventional
GANs

� Developing new algorithms
for calculating Wasserstein
distance between different
distributions

� Reduces over fitting of
generated samples

� improves the learning
parameter and optimization
method of conventional
GANs

� N/A

he � Generates a higher quality
sample than conventional
GANs

� Reduces training times for
the generator

� Weighting of discrimination
and classification

� Generating examples with
class labels

� No assumptions of
underlying structure of data
are needed

� Outperforms many
unsupervised feature
learning approaches

� Testing of the Bidirectional
GANs under other space of
architecture models

n
nt

� Learns interpretable and
disjointed representations
on challenging datasets
completely unsupervised

� Negligible increment in
computational expenses
compared to conventional
GANs and easy to train

� Applying mutual information
and induce representation to
other methods such as
variational autoencoder

on

or

� Generation and
discrimination capability of
GANs are enhanced

� Produces a more diversified
samples of data

� Improving the reliability of
the proposed GANs

� Improving visual
discriminability

� Excellent performance in
synthesizing speech, poem,
and music generation

� Monte Carlo tree search in
improving the action
decision making for large
scale data in cases of long e

term planning
d
m

� Balances the discriminator
and generator in training

� Provides trade e offs
between samples' diversity
and quality

� Determining the best latent
space size for a given dataset

� Determining when and how
noises should be added to
the input



Variance Reduction Techniques
(VRTs)

Antithetic
Variates

(AV)

Importance
Sampling

(IS)

Stratified
Sampling (SS)

Common
Random

Numbers (CRN)

Latin Hypercube
Sampling (LHS)

Control Variates
(CV)

Sequential Importance
Sampling (SIS)

Dagger
Sampling (DS)

Cross Entropy
(CE)

Adaptive Importance
Sampling (AIS)

Fig. 5. Overview of variance reduction techniques (VRTs).
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complex non e linear interactions (Generator). The idea behind
GANs is to set up a minimax game of two DNNs which are in an
adversarial relationship with each other. The Generator's DNNs
updates its weights during each training epochs to “trick” the
discriminator by generating “fake” samples of scenarios, while the
Discriminator's DNNs attempts to distinguish between true his-
torical scenarios and the “fake” ones. Theoretically, after reaching
equilibrium, the optimal solution of GANs will yield scenario dis-
tributions from Generators which are hardly distinguishable from
an authentic real historical data.

Hence, the Discriminator can no longer differentiate the origin
of the data, whether it is from the generator or the real historical
training data distributions. It is easier to imagine the GANs as a
counterfeiter and a police game where the counterfeiter (Gener-
ator) keeps on improving its technique to deceive the police, while
the police (Discriminator) are also getting better at catching the
counterfeiter. The counterfeiter in the end would produce a “fake
product” that resembles the authentic product successfully, which
no longer can be identified by the police.

To summarize, the GANs method in scenario generation can
leverage the power of DNNs and vast sets of historical data in
performing the tasks for directly generating scenarios conforming
to the same distribution of historical data, without the need of
explicit modelling of the distribution [43]. However, it is important
to note that the architecture of DNNs is complex in nature and
requires high computational efficacy in solving GANs problems.
Yize et al. in his work [41] has suggested the usage of efficient
GPU(s) to accelerate the DNNs training procedures. Future works in
renewable energy systems using GANs would be in the decision e

making strategy for unit commitments with high penetration of
renewable energy generations and incorporation of the method in
probabilistic forecasting problems. Interested readers are directed
to thework of [44] for a comprehensive overview of GANs as well as
its future trending. Hitherto, several main variants of GANs have
been identified and are summarized in Table 4. Characteristics,
main advantages, and identified future works of the GANs' variants
are highlighted for the perusal of interested readers. It is to be noted
that the future works identified are mostly in the realms of
computational and mathematical sciences. However, implementa-
tions of these GANs’ variants in renewable energy systems are yet
to be tested.

4. Sampling methods in scenario generations

Increasing scenario generations would intuitively mean a closer
and more comprehensive representation of possible futures.
Nonetheless, increment of scenario generations (samples taken)
might only marginally increase the quality of the solution and the
objective function until a certain threshold [6]. One need to care-
fully evaluate the trade e offs between the accuracy and the rate of
convergence of a given algorithm. One popular technique to in-
crease the sampling precision is called Variance Reduction Tech-
niques (VRTs) [12]. VRTs can be broken down into several main sub
e categories as shown in Fig. 5. The estimates of scenario genera-
tions’ precision depend on standard deviation between the sam-
ples. The standard deviation can be expressed in equation (1)
below:

s ¼
ffiffiffiffiffiffiffiffiffiffi
VðzÞp
ffiffiffiffi
N

p (1)

where VðzÞthe unbiased sample variance and N is the sample
number.

According to equation (1), the precision of the estimates can be
intuitively increased by increasing the number of samples, N.
However, increasing the samples’ size would mean reducing the
efficacy of computation. In cases of sequential sampling process
throughout a year, with 8760 h steps, each hour containing its own
multivariate properties, a sample increase of 1 would mean a
repetition of 8760 h of sampling process. Therefore, another way to
keep the sample size small yet still maintaining a desired precision
is to reduce the variance between the samples. The main idea
behind VRTs is to decrease the amount of sampling needed to the
desired level of accuracy or increasing the accuracy of the expected
value for a given number of samples. There are various VRTs which
have been reported in literature in renewable energy applications,
as depicted in Fig. 5.

The authors in Ref. [53] used a range of randomvariables (RV) to
develop an improved stochastic model for power system sched-
uling in the presence of uncertain renewables. A work in Ref. [54]
focused on reliability evaluation through sequential Monte Carlo
simulation to address cascading failure in power systems operation.
The Weibull distribution together with antithetic variates (AV) is
implemented in order to reduce the large computational burden in
simulations. Kardooni et al. [55] conducted a survey on climate
change and renewable energy in Peninsular Malaysia based on
stratified sampling (SS). The authors in Ref. [56] identified the
factors shaping public opinion based on random stratified sampling
to examine willingness to pay for expansion of renewable energy
sources in the electricity mix. A novel modified Latin hypercube-
important (LHS) sampling method is suggested in Ref. [57] to
enhance the accuracy and speed of correlation processing under
low sampling times. A LHS method is proposed in Ref. [58] to
analyse the reliability of power systems considering the
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intermittent behaviour of renewable generations such as wind,
solar power and fluctuation of bus loads. Dahlblom [59] applied
control variates (CV) for Monte Carlo-pricing on three-asset spread
options with a view towards energy markets. A control variable
based dagger sampling (DS) technique is proposed in Ref. [60] to
decrease the computational effort in Monte-Carlo reliability eval-
uation for composite systems. Apart from the methods mentioned
above, Importance Sampling (IS) Method has become popular in
renewable energy applications. IS method and sub-division are
explained in the following section.
4.1. Importance Sampling (IS) method

Recent surveys from the literatures have shown that the IS
method boost the sampling efficiency [61]. Typically, in MCS, the
sampling representations would be excellent, if and only if samples
can be drawn from the target distributions. However, certain rare
cases in renewable energy applications such as extreme wind cy-
cles, sudden power outages, and rare occurrences of device failures
are difficult to account for. IS method focuses on sampling the
important region (usually named “proposal distribution”) in which
the important region have greater occurrence probabilities in
comparison to the original distribution. The intuition is to construct
a proposal distribution that “boosts” the sampling of important
regions. The method can bring enormous advantage, making an
otherwise seemingly impossible problem for typical MCS,
amenable. Nonetheless, applying IS method requires experience in
sampling due to its doublee edged characteristics. One could easily
go wrong by yielding an estimate with infinite variance, when a
simple sampling method could have yielded a finite one. Therefore,
a well e chosen proposal distribution is the key to maximize
computation efficiency.
Fig. 6. Framework of CE based dispatch model to handle u
4.1.1. Type of IS method
“Trainings” are encouraged with a trial distribution to capture

the appropriate estimate distributions using MCS. With repetitions
of MCS simulations, a better trial distribution can be drawn out
based on the weighted MCS samples. The process is repeated until
termination criteria are met. The “Trainings” and the trial distri-
bution procedure is called the Adaptive Importance Sampling (AIS)
method, as the proposal distribution is updated adaptively. Another
typical form of IS is called the Sequential Importance Sampling
(SIS). As the name suggests, SIS constructs the proposal distribution
sequentially and typically requires a decomposition procedure. SIS
is normally implemented in high e dimensional problems in
building up proposal distributions sequentially. Cross e Entropy
(CE) was proposed by Ref. [62] to enable the inclusion of very un-
likely events in computations. CE is a popular sub e category of IS
method in VRTs to account for the optimizations of rare events [63].
Based on repeated sampling, the method utilizes each iteration in
two steps; random data generation using a specific randommethod
and updating the specific method's parameters to yield an
improved sample in the next iteration. According to Ref. [64], IS
method is the hardest variance reduction method to use, therefore
expertise in the field is a necessity. Readers are advised to read the
works of [46] for the detailed mathematical representations and
implementations of IS methods. The following paragraph briefly
presents the recent literatures in IS, CE and SIS applications in
renewable energy systems. From our extensive literature searches,
only a few recent literatures existed in the implementation of IS in
renewable energy applications.

4.1.2. IS method implementations in renewable energy
IS in reducing the computational time of MCS has been imple-

mented by Ref. [65] in a probabilistic security management for
power system operations with large amounts of wind power.
ncertainties in PHEVs and renewable generation [66].



Fig. 7. Flowchart of SIS based hybrid probabilistic method for electricity market [71].
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Author has found out that the IS method significantly reduced the
computational time needed in sampling by two to three orders and
has shifted the original distribution to the desired proposal distri-
bution. In the work of [66], CE method is utilized in hybrid
renewable generation's optimal dispatch strategy of Plug e in
Hybrid Electric Vehicles (PHEVs) to improve the voltage profile and
the power flow with a 33 e nodes distribution systems. Authors
have found that the proposedmethod has managed to decrease the
power flows in heavy loaded lines and renewable generation fluc-
tuations. The objective function is developed using two parts. The
first part presents the expectation of population variance of
renewable generation outputs, while the second part denotes the
expected operation cost including battery degradation, PHEV
owner benefits and control of the fleet of the vehicles. The objective
function is formulated as follows:

Mina1E
�
DP
�
Pe;t
��þ a2E

"
CBDP

XT
t¼1

ð1þ u%ÞPdch;tDt
#

(2)

Where, E denotes the outputs of PV system/wind generator, CBDP
is

the per MWh cost of the battery degradation, Pdch;t is the average
power consumption of a single PHEV in time interval t, Pe;t is the
total charging/discharging power of PHEVs in time interval t, Dtis
the time interval, a1and a2 are the probability density function
(PDF) parameters.

The comprehensive framework is developed with the multiple
cases such as typical situations of seasonal renewable generation
and vehicle usage, as shown in Fig. 6. Different renewable market
share and peak generation or demand circumstances are also
discussed.

An efficient sampling method for MCS in Ref. [67] has been
investigated using CE and Copula theory to analyse generation
adequacy of multi e area power systems with high penetrations of
wind power. Results have shown that the sampling method
significantly reduced the number of samples required to estimate
reliability parameters of interest. A robust Multi e Objective CE
(MOCE) algorithm is proposed by Ref. [68] in integrated scheduling
approach to solve for microgrid supply and demand scheduling
problem under uncertainties. A multi-objective function is devel-
oped using fuel price, maintenance cost, buying and selling elec-
tricity price, depreciation cost of battery and penalty cost which can
be presented in the following equation,

F1 ¼
XjT j
t¼1

8<
:cfuelf mt

t þ
X
dg2A

cdgpdgt þ
�
zpgt cbuyt ppgt þ �1� zpgt

�

þ csellt pdgt
�
þ sbtpbtt þ

�
ses
		pest 		þ schs

			pchst

			�
9=
; (3)

where cfuelis the natural gas fuel price,f mt
t is waste heat by burning

natural gas, A is DG unit set, cdg presents the DG unit maintenance
cost, pdgt is DG power output, cbuyt and csellt denote the buying and
selling electricity price, respectively, ppgt is power grid power
output, sbt is depreciation cost of battery, ses and schs are the penalty
cost of shortage/excess electricity and cooling/heating respectively,
and pbtt is the battery power.

Another objective function F2 containing coal and natural gas
combustion emissions, can be expressed as follows

F2 ¼
XjT j
t¼1

�
ε
pgppgt þ ε

fuelf mt
t

�
(4)

where ε
pg and ε

fuel denote the conversion factor of carbon
emissions generated from electricity and natural gas, respectively.
Authors have shown that the proposed algorithm has managed

to simultaneously minimize operation costs and emissions under
the worst e case scenario of fluctuating renewable generations and
uncertain loads.

Leite and Castro [69] has presented a new probabilistic method
in evaluating spinning reserve margins using CE in renewable en-
ergy systems with transmission restrictions. CE is utilized in
treating the rare events and identifying necessity equipment for
operation in such events. Authors have shown that the CE method
was successful in managing higher penetration of renewable
sources and ensuring a reliable operation. Graf. et al. [70] has uti-
lized the Adaptive Stratified Importance Sampling (ASIS) method in
hybrid extrapolation and MCS method for estimating wind turbine
extreme loads. Authors have shown that the variance of the hybrid
method are reduced swiftly with the implementation of the ASIS.
The minimal variance importance distribution can be derived as
follows,

q*ðxÞ ¼ YðxÞf ðxÞ
Ef ½YðxÞ�

(5)

Ef ½YðxÞ� �
1

Mtot
PMtot

i
YðxiÞ

;with xi drawn form f (6)



Table 5
IS, CE and SIS implementations in recent renewable energy applications.

References Method Objective IS/CE distribution parameters Main Results Future work/Gaps

[70] Adaptive stratified e IS To estimate wind turbine
extreme loads

Extreme loads, wind speed The proposed method
outperforms sample e based IS
e MCS method

Root causes of extreme
response variation in wind
turbine loads

[65] Risk assessment e IS To estimate very low operating
risks in power systems

Load, Wind power Decrease in computational
expenses of two to three orders
of magnitude with respect to
crude MCS

Robustness tests with different
values of controllable active
power outputs and wind power
forecast distributions

[66] Normal Distribution
Parameterized e CE

To provide an optimal dispatch
strategy for PHEV

PHEV's driving behaviour, wind
speed, solar irradiance, system,
and load data

With introduction of Vehicle 2
Grid (V2G), PHEV could act as
storage devices and proposed
CE models solved for multiple
patterns of seasonal profiles for
PHEV dispatch cases

Consider future studies
intervals in seconds and
minutes relevant to power
markets like spinning reserves

[67] Copula Theory & CE To analyse generation adequacy
of multi e area power systems
with high penetrations of wind
power

Conventional generation, Load,
Wind power generation

Proposed method outperforms
crudeMCS in terms of efficiency
and accuracy by three to four
orders. Number of samples
required does not increase with
the decrease of probability
interests' level

N/A

[68] Multi e objective e CE To schedule energy supply and
demand in integrated
scheduling under uncertainty

Load profiles, Solar PV power Total cost and carbon emissions
are significantly reduced using
proposed method

Large scale integration of
distributive resource and
renewable energy in regional
integrated energy systems

[69] MCS e CE To assess probabilistic spinning
reserve considering renewable
resources and transmission
restrictions

Wind generation capacity,
Equipment failures, capacity
limits of transmission
equipment

Using risk assessments and
knowing the critical elements
of the system, planners can
better manage the high
penetration of renewable
sources, ensuring sustainable
and reliable operation

The configuration of the
Brazilian interconnected
system to demonstrate the
practicality of the proposed
approach

[63] MCS-SIS To assess the deviation of price,
possible occurrence of price
spike in electricity market

System load, renewable energy
output, generator bidding
strategy, and outage rate

Estimations for both expected
normal price and price spike
probability are accurate and fast
using less than 3% of the MC
simulation time.

The proposed is promising to be
implemented on online
applications.
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Then for any given load Yj, The estimation of ASIS can be
expressed as follows

P
�
Y <Yj

� ¼ Ef
�
I
�
Y <Yj

��
(7)

¼
ð
I
�
YðxÞ<Yj

�
f ðxÞdx (8)

¼
ð
I
�
YðxÞ<Yj

� f ðxÞ
gðxÞ gðxÞdx (9)

¼
ð
I
�
YðxÞ<Yj

� f ðxÞ
gðxÞ gðxÞdx;�

1
Mtot

X
i

I


YðxiÞ
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gðxiÞ

�
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¼ 1
Mtot

X
i

8>>>><
>>>>:
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if i< f

0 otherwise

(11)

¼ 1
Mtot

X
i< j

f ðxiÞ
gðxiÞ

(12)

where, q*ðxÞis the auxiliary importance variable, YðxÞis load, f ðxÞ is
the distribution of wind speed, Ef denotes expectation with regard
to f, Mtotis the total number of samples and gðxÞ is the arbitrary
distribution.
Huang et al. [71] established a hybrid probabilistic assessment

method based on SIS for electricity market risk management. The
proposed method has considered various uncertainties such as
system load, renewable energy output, generator bidding strategy,
and outage rate. The performance is checked under Australian
National Electricity Market consisting of 59 buses, with 38 con-
ventional generation units and one wind farm. The authors have
found that the method has resonance accuracy similar to MCS re-
sults and fast executionwith regard to normal price and price spike
probability. The implementation flow is illustrated in Fig. 7 where
system load is classified into “STATE”, and reported price of each
unit into “ACTION”.

Vast amount of recent literatures pertaining to recent IS adap-
tations and improvements have been found outside of the renew-
able energy applications which has proven to be efficient and
robust to implement, mainly in the fields of signal processing and
computational sciences. Recent adaptations of various IS methods
in the renewable energy applications are still scarce. Readers are
encouraged to read the work of [39] which provides a compre-
hensive overview of IS methods. In this work, the IS methods'
(mainly AIS) scopes are discoursed at great depths from the past,
the present, and on to the future. Future works in IS involves the
implementations of proposed IS methods with different and wide
ranges of distribution parameters in high dimensional problems in
which the characteristics of the problems are very similar to the
renewable energy applications. IS method's promising new appli-
cations involves utilization of the method in the deep learning field
for computing the weights of hidden layers.
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Summary of the references mentioned above is specified in
Table 5.

4.2. Notable sampling method: Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) is a popular and rapidly
growing sampling method which combines the properties of
Markov Chain andMCS [72]. The intuition behind theMarkov Chain
is to generate random samples through a special sequential pro-
cess. The next generated random sample depends only on its pre-
vious random sample and not affected by any samples prior to the
previous ones, thus creating a chain of random generated samples
until the end of iterations. This is the well e known “Markov”
property. MCMC proved to be advantageous especially in Bayesian
inference due to the difficulty of predicting the posterior distribu-
tions via analytic methods. MCMC grants the user the ability to
approximate the posterior distribution, with minimal number of
samples [73].

4.2.1. Overview of MCMC
A simple yet concise introduction to MCMC was written by

Ref. [72]. The goal of the authors was to demystify MCMC sampling
method and provide a comprehensive example to encourage new
researchers/users in adopting the MCMC method for their own
research purposes. Interested readers are directed to the work of
[74] for in depth analysis and advanced coverage of MCMC. A more
technical approach of MCMC method can be found in the work of
[75].

In recent renewable energy applications, the MCMCmethod has
been implemented as follows. MCMC simulation model has been
utilized by Ref. [76] to consider the uncertainties of renewable
energy generation outputs and plug-in electric vehicle (PEVs)
charging demand in a combined resource allocation framework in
distributed energy storage systems (DESS). The objective function is
expressed as follows:

min
U1;U1
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Where, CEV , CREand CESdenote the capital and operating costs for
PEV chargers, renewable energy resource units and DESS, respec-
tively, PREis the active power provided by renewable energy re-
sources in kW,RRE is the return of selling energy, PESis the active
power consumed by the DESS, EES denotes capacity of DESS in KWh,
Clossand Cconsrepresent the costs of energy losses and energy
consumed by PEVs, normal load, and DESS, respectively, rkWh

Gridði;h;d;sÞ
is the selling price of renewable energy resources, PGridði;h;d;sÞis the
energy cost distributed from the grid in $/kWh, Ndays

AðdÞ is the number
of actual day, PGrid is the generated active power from grid, LV is the
levelized cost factor,CCHis the capital cost of PEV chargers, and cEV
is number of charging stations installed at bus i .

A work in Ref. [77] presented a review of the measurement
uncertainty in energy monitoring, where the MCMC method's
contributions in this area are elucidated. The authors in Ref. [78]
used MCMC method in simulating the wind speed data and
implemented an embedded Markov Chain to incorporate the long
term effects in modelling the turbulent wind flow, as depicted in
Fig. 8. Authors have discovered that the proposed embedded
Markov chain outperform the conventional MCMC method.

A slice sampling in MCMC simulation in a case study of proba-
bility assessment for power system voltage stability margin with
renewable energy source has been presented in Ref. [79]. The slice
sampling method performs better than Gibbs sampling method
with respect to smaller simulation size, and the calculation effi-
ciency. Besides, the proposed slice sampling method is more effi-
cient and simpler to implement in the power system probabilistic
case study. The execution process of the proposed algorithm for
power system voltage stability margin using slice sampling in
MCMC is illustrated in Fig. 9.
4.2.2. MCMC sampling procedures
Typically, the MCMC sampling is broken down in three main

sampling procedures namely; the basic Metropolis e Hastings al-
gorithm, Gibbs sampling algorithm, and Differential Evolution [72].
Each has its own advantages and complexity as well as types of
applications. The basic Metropolis e Hastings algorithm is known
arkov
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Step 1: Weibull PDF 
and the beta PDF are 
constructed by 
collecting the historical 
data from photovoltaic 
power plant(s) and the 
wind farm(s) locations 
for a period of one 
year.

Step 2: The slice 
sampling algorithm is 
utilized to obtain the 
wind speed and 
illumination intensity 
samples from their 
PDFs.

Step 3: The extended 
continuation power 
flow (CPF) with the 
sampling matrix is 
executed to obtain the 
voltage stability.

Step 4: The power flow 
equation in critical 
point is linearized to 
achieve the eigenvector 
related to zero 
eigenvalue and evaluate 
distribution of the load 
margin variable.

Step 5: The sensitivity 
matrix is calculated 
corresponding to 
stability margin of wind 
speed and illumination 
intensity

Step 6: The distribution 
of voltage stability 
margin is achieved by 
using statistical method

Fig. 9. The voltage stability margin estimation process for power system with renewable energy source using slice sampling.

Table 6
Main advantages vs disadvantages of main MCMC variants.

References Type of MCMC Advantages Disadvantages

[80] Metropolis Hastings � Knowing the posterior distribution without knowing all the
mathematical properties through random sampling despite
only knowing the density for different samples

� Particularly useful in representing posterior distributions that
are hard to determine using analytical means

� Simple implementations for highly correlated distributions

� The values calculated must be proportional to the posterior
likelihood

� Only applicable to very strongly correlated parameters
� Requires a suitable step size to avoid too many rejections

from the next sampling sequence or resulting in a poor
exploration

� Struggles in multi e modal distributions
[80] Gibbs Sampling � Produces posterior distribution with good accuracy

� Easy to evaluate the conditional distributions
� Conditional distributions will be in lower dimensions and

rejection sampling or importance sampling can be applied
to these dimensions

� Suffers from Computational efficiency in a long run
� Suffers from manoeuvrability in cases of strong variables'

dependencies

[81] Differential Evolution � Faster convergence rate in a higher dimension sampling
problem

� Reduction in rejection rate of proposal distributions due to
multiple chains of sampling learning from each other

� Requires simple tuning parameters

� Cross e over and exchange between parallel chains of
sampling needs to be addressed for better convergence

[82] Slice Sampling � Does not require much tweakable parameters such as
proposal distributions

� No rejections of samples
� Suitable when little is known about the sampling distribution

� Suffers from curse of dimensionality
� Sampling is done for each variable in turn using one

dimensional sampling in a multi e dimensional distribution

[83] Annealing Methods � Suitable for sample transitioning from high probability region
to another high probability region

� Does not suffer greatly from curse of dimensionality
� A heuristic method that is easy to implement

� May be developed by trial and error
� Moving in small steps from one iteration to the next
� Requires knowledge in tuning its parameters

Stochastic Optimization
methods

(Approximate)
Stochastic Dynamic

Programming

Stochastic
Programming

Robust Optimization

Value Function
Approximation

Policy Iteration /
Model Predictive

Control

State – Space
Approximation

Fig. 10. General overview of stochastic optimization [85].

A. Zakaria et al. / Renewable Energy 145 (2020) 1543e1571 1555



A. Zakaria et al. / Renewable Energy 145 (2020) 1543e15711556
for its simplicity but lacks the ability to converge properly in
problems where parameters are highly correlated. Therefore, a
more complex approach would be suitable in a multivariate envi-
ronment. The Gibbs sampling method by Ref. [80] separates the
multivariate problem and treats them independently by sampling
from conditional distributions of parameters. The Gibbs method is
known for its accuracy but suffers in computational efficiency in a
long run. The Differential Evolution sampling procedure is a heu-
ristic method that generates random chained samples that “learn”
from each other. Instead of relying on a single random sample and
creating a chain from that random sample, multiple random sam-
ples with multiple chains are generated using this method. By
learning from other chains of samples, the parameter's correlations
between the samples are respected. Hence, it causes the chains of
sampling to be formed within the parameter's correlations limits,
leading to a greater efficiency of sampling within the true under-
lying distribution. However, the Differential Evolution algorithm
requires a certain “tuning” parameter to sample efficiently. More
information regarding the DE sampling procedure in MCMC can be
found in Ref. [81]. Many other main variants of MCMC exist hitherto
and is summarized in Table 6. The table highlights the main MCMC
sampling variants' advantages and disadvantages.

5. Stochastic optimization methods

As opposed to the deterministic optimization method which
assumes a perfect knowledge of a system, the stochastic algorithm
models include uncertainties either in predictions, in the decisione

making processes, or both. In optimizing the problem formulations
under uncertainties in stochastic models, the main approaches are
divided in three categories, namely; stochastic programming,
robust optimization, and (approximate) stochastic dynamic pro-
gramming (ASDP) as shown in Fig. 6. The paper's scope is focused
on the renewable energy applications which are in the field of
ASDP. Brief information on the stochastic programming methods
which are still prevalent in renewable energy applications are
shown in the next section. Robust optimization approach is not
considered in the paper's scope. The robust optimization approach
generally produced over e conservative results, needed expertise
as well as rationale in uncertainty set construction, and difficult to
implement in dynamic uncertainty cases [84]. Nonetheless, inter-
ested readers are directed to the recent notable works of stochastic
robust optimization in renewable energy applications as
mentioned in the works of following authors [85e87] (See. Fig. 10).

5.1. Stochastic programming

In dealing with power generation problems, stochastic unit
commitment in the form of stochastic programming has been
implemented as a promising tool [88]. The utilization of scenario e

based/tree uncertainty's representation and probabilities in the
optimization is the main idea of the stochastic programming. The
stochastic programming models are divided into two e stage
models as well as multistage models. The methods were mainly
used as stochastic mixed integer programming (SMIP, linear or non
e linear SMIP are denoted as SMILP or SMINLP) problems formu-
lations in renewable energy applications.

5.1.1. Two e stage models
The former two e stage models separate the optimizations in

day e ahead (1st stage) versus real e time (2nd stage) decisions.
Typically, in the 1st stage (day e ahead), decisions for conventional
generators such as coal power plants and nuclear generators are
made beforehand as the start e up and shutdown times for these
generators are not immediate. The commitment decision in
operating these conventional generators depends on up/down time
requirements of the generators and the various starts up and
shutdown costs. Therefore, the uncertainties and quality in fore-
casting plays a major role in stochastic optimization as it effects the
prior decision that must be made.

In the second stage which is the real time operations (i.e. the
expected real time operations' costs), the input variables’ PDF must
be known beforehand to generate large number of relevant sce-
narios relating to the output PDFs. The 2nd stage normally involves
the strategy in dispatching renewable resources and reserves (e.g.
Pump e hydro storage) over multiple periods of time while
considering uncertainties involved. Despite the huge number of
scenarios generated in the 2nd stage, the scenarios are not inter-
twined with each other, implicating that each scenarios outcome is
independent of each other. Once the decision has beenmade for the
1st stage problems, decomposition method is generally used in two
e stage models to treat the 2nd stage scenarios independently,
resulting in a cluster of much lesser scenarios needed to be opti-
mized. Common decomposition methods used in two e stage
programming models are the Benders Decomposition (BD) method
[75,76], Lagrangian Relaxation (LR) method [77,78], Bundle
methods [92], and Sample Average Approximation (SAA) method
[88]. A stochastic two-level model is offered in Ref. [93] to maxi-
mize the profit of the EV aggregator in the upper level and mini-
mize the cost paid by the EV owners in the lower level in the
competitive electricity markets. The upper level problem relates to
the revenue obtained from selling energy to the EV owners and
from reducing load based on negative imbalance prices. The upper
level problem can be modelled as follows:
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Where Echt;w is EV demand provided by the aggregator, lcht;w is the
aggregator selling price EDAt;w day ahead (DA) EV demand, lDAt;w is the
DA price at time t, Eþ;B

t;w ; E�;B
t;w are the positive/negative energy bal-

ance, zis the rival aggregator scenario index, Uis the number of
scenarios with regard to price and demand, ais confidence level of
conditional value at risk (CVaR), bis the risk factor and pðwÞis the
probability of occurrence with respect to demand and price and
lðwÞdenotes the auxiliary variable to control CVaR.

The lower-level problem narrates the decision-making of EV
owners and their reaction to the prices which can be expressed as
below:
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Where Xs0 is the EV demand percentage delivered by the aggre-
gator, E

_D

t is the total EV demand, ls;t;z is the electricity selling prices
offered by each rival aggregator, Ks;s

0
is the cost relates to the

reluctance of EV owners for shifting between the aggregators ZS;S
0 ðzÞ

is the EVs percentage that are shifted between the aggregators.
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Fig. 11. Implementation framework of stochastic model to solve the optimal scheduling problem in autonomous microgrids [94].
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A risk-constrained two-stage stochastic programming is sug-
gested in Ref. [94] to maximize the expected profit during micro-
grid operator considering uncertainties such as renewable
resources, demand load and electricity price. A three-stage efficient
flow diagram is developed to represent the underlying the optimal
scheduling problem, as shown in Fig. 11. In the first phase, the
customers electrical devices and equipment demand are assessed.
In the second phase, the scenario generation and reduction process
are executed for stochastic parameters. In the third phase, the
optimization problem is solved by employing a risk-constraint
stochastic programming approach.
The authors in Ref. [95] developed a stochastic model of AC
security-constrained unit commitment (AC-SCUC) problem related
with demand response (DR) considering uncertainties of wind, PV
units and demand-side participation for the day-ahead energy and
reserve scheduling in an islanded residential microgrid. In addition
to that, an economic model of responsive loads is established based
on real-time pricing (RTP) scheme in view of the price elasticity of
demand and customers' utility function. The objective function of
the proposed model is designed with two terms including the
profits associated with here-and-now (H&N) and wait-and-see
(W&S) decisions. The objective function includes the purchasing
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energy cost from renewable, dispatchable units and buying reserve
from DG.
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In the above equations, the profit of microgrid operator, PH&N is
assessed using sum of 5 terms. The first one denotes the electricity
consumption revenue from customers. The second term denotes
the cost associated with distributed generations (DGs) and their
start-up/shut-down. The third and the fourth term represents the
scheduled reserve cost of generating units and loads, respectively.
Finally, the last term represents the energy cost delivered by wind
and PV units. Similarly, expected profit of microgrid, PH&N is eval-
uated based on the total of 5 terms. The first one denotes the unit
commitment (UC) cost. The second and the third terms represent
the deploying reserves cost from DG units and loads, respectively.
The fourth term stands for the power cost delivered fromwind and
PV units in real-time and the day-ahead energy forecasted. Finally,
the last term corresponds to the expected energy cost which is not
served (EENS). The detail parameter description of the in equations
(22)-(23) can be found in Ref. [95].

A work in Ref. [96], proposed a risk constrained two-stage sto-
chastic programming model to determine the optimal scheduling
to maximize the expected profit of operator. The flow diagram of
the propose framework is operated in two stages, as illustrated in
Fig. 12. As it can be observed that, the input data is categorized into
two groups, deterministic data and stochastic data. After, a set of
scenarios is generated using MG uncertainties. Then, an appro-
priate scenario-reduction algorithm is employed to reduce the
generated scenarios into an optimal subset. In the next stage, the
stochastic security and risk-constrained scheduling problems are
addressed. The optimal scheduling of the generating units is per-
formed based on unit commitment (UC) algorithm and AC/DC
optimal power flow (OPF) procedure by taking into account of
objective function and constraints.

Readers are encouraged to read the works specified for each
decomposition algorithm, which highlights the past notable
implementations of the two-stage methods in power generations
and renewable energy applications. Table 7 presents the recent
works of two-stage stochastic programming in renewable energy
applications.
5.1.2. Multi e stage models
In multi e stage stochastic programming models, uncertainties

are captured dynamically as possible events branched out of a
scenario tree. Each uncertainty in events at a later time tþ1,
depends on its previous states at time, t. Decision e making pro-
cesses are adjusted and updated hourly (or multi e hourly or sub e

hourly). Therefore, the multi e stage models represent a more ac-
curate and realistic interactions between decision e makings and
unfolding uncertainties as time goes by. Each scenario generated
takes a unique path starting from its root node, x1 to corresponding
end nodes (i.e., x6, x8, and x15), where each node along the path
represents the time at which decisions were made. For each cor-
responding scenario, n (i.e. n1 taking the node from x1/ x2/ x3
/ x5), the problem is treated as an individual deterministic
problem. The difficulty of the multi e stage models rises from the
non e anticipative constraints, which means that only one set of
decision variables are permissible at each node. The advantages of
themultie stagemodels comewith a huge computational expense.
The number of scenarios grows exponentially as shown in Fig. 13.
Hence, multi e stage models are harder to solve than the two e

stage models. Advanced decomposition models/algorithms are
typically introduced in these cases. Often, the techniques used are
nested or multi e layered decompositions and are further divided
into scenario e based decomposition and unit e based decompo-
sition targets [6]. Common advanced decomposition algorithms in
multi e stage stochastic programming and its past notable works
are shown as follows; Augmented LR [105], Dantzig e Wolfe
decomposition (Column Generation (CG)) [106], Progressive
Hedging [107], Nested CG [108], Stabilized LR or CG [109].

The algorithms summarized in Table 9 are used in the past
notable works of multi e stage e stochastic programming. In
Table 9, readers are also enlightened with the qualitative advan-
tages and disadvantages of the highlighted algorithms in multi e
stage stochastic programming, while Table 8 presents the recent
works of multi e stage stochastic programming in renewable en-
ergy applications. Quantitative comparisons of the two e stage and
multi e stage models can be found in the past works of [110,111].
Qualitative advantages and disadvantages of these methods are
summarized in Table 9.

From the literatures surveyed based on Table 7 & Table 8 in
renewable energy applications, it is apparent that the two e stage
stochastic models are preferably implemented due to its simplicity
in implementations and a guaranteed convergence in obtaining the
solution. However, the multi e stage stochastic models are
becoming more reliable as it better represents the complexity of
renewable systems with significant increase in renewable re-
sources and storages. Various advanced decomposition in two e

stage and multi e stage models have proven to yield better results
than the deterministic as well as perfect foresight cases (i.e.
[101,114]). The literatures in two e stage stochastic models pro-
vided a rather conservative solution with respect to multi e stage
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stochastic models that may lead to inefficiencies in generating the
best solutions. With advancements of computational efficacies,
multi e stage stochastic models are becoming more viable in
solving stochastic renewable energy problems. Applicability of
multi e stage stochastic models (short e term and long e term)
especially in big e scaled renewable economic dispatch are yet to
be fully explored. Demand side uncertainty and considering de-
mand side response has been gaining a lot of attentions in formu-
lating the stochastic renewable systems' problems. Many recent
literatures on stochastic programming (i.e. [82,83,88,89]) have
started to consider the demand side uncertainty and managing the
demand side in optimizing the renewable's system. Main advan-
tages of a responsive demand side management are the reduction
in costs and minimization of energy wastage. It is to be noted that
literatures combining the stochastic programming methods with
metaeheuristic algorithms were not being considered in this sec-
tion and only SMIP method variations were highlighted.



Table 7
Two e stage stochastic programming methods in renewable energy applications.

References Methods Structures Objective(s) System's uncertainty Main Result(s) Future work(s)

[97] SMILP Two e stage Minimize daily operational
costs

Wind power and Energy
storage

The proposed stochastic
methods reduced the total
daily costs and load
shedding

N/A

[98] Multi e objective SMILP Two e stage Minimize operational cost
and pollution

Demand side, supply side
(renewable), and energy
storage

Applying portable
renewable energy
resources have decreased
the cost and increased
profits

N/A

[99] Novel decomposition e

SMILP
Two e stage Minimize NPV of total

expected costs
Solar irradiance, wind, and
load

The proposed method
demonstrated the
effectiveness in finding the
optimal battery energy
storage system (BESS)
power and energy sizes

Envisaged to be used in MG
planners, Govt. and private
agencies

[100] BD e SMIP Two e stage Minimize day ahead
purchase cost and expected
resource cost

Demand side, supply side
(RE), electricity prices

Day e ahead power
procurement and the
formulation as a two e

stage SMIP problem is
proposed

Demandeside procurement
by twoestage stochastic am

[101] BD e SMINLP Two e stage Minimize expected total
operation costs including
generation, day e ahead
market, and battery wear
for the next 24 h

Demand, EV availability and
storage capacity, renewable
energy resources

Using the energy from EV
reduces the total operation
cost of the microgrid. The
results yielded better cost
savings than a
deterministic model

N/A

[102] BD e SMILP Two e stage Minimize environmental
and social impacts

Wind speed, solar
irradiation, and demand

Including demand response
as a flexible load reduces
load curtailment and
reduces energy generation
needed

N/A

[103] ε e Constraint multi e
objective SMILP

Two e stage Maximize DG owners'
profits and minimize
Distribution Company's
(DisCo) costs

Wind speed, load,
electricity price

Solving the reconfiguration
of the network and
allocation of DG
simultaneously produced a
more desired scheduling
between the stakeholders.
The stochastic optimization
is compared to a
deterministic optimization
with an improved profit on
behalf of the DG owners

N/A

[104] Scenario e based SMINLP Two e stage Minimize active and
reactive power purchasing
costs

Load demand, wind power Reduction of expected costs
of energy and reactive
power as well as emission
costs

N/A
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5.2. Approximate stochastic dynamic programming

Stochastic dynamic programming is an optimization method in
solving discrete multi e stage decision e making processes with
underlying uncertainties or probabilities. Decisions made to lower
the objective function's costs at a current stage might
x2

x3 x4

x7x6x5

t

t + 1

t + 2

t + 3

Fig. 13. Scenario tree with multiple stages
unintentionally increase the total costs throughout the whole
period of optimizations. One need to evaluate decisions made at all
stages carefully to obtain the most cost e efficient objective func-
tion. Stochastic dynamic programming method can capture the
trade e off between decisions made in the present and the future
stages. Due to these properties, it is instinctive that stochastic
x1

x9

x10 x11

x8 x12 x13 x14 x15

(4 stages, 8 scenarios, and 15 nodes).



Table 9
Qualitative advantages and disadvantages of the two e stage and multi e stage stochastic programming algorithms.

Stochastic Optimization
Method

Type References and Algorithms Advantages Disadvantages

Stochastic Programming Two e stage [80,81] Lagrangian
Relaxation (LR) [88] Sample
Average Approximation
(SAA) [78,79] Benders
Decomposition
[92]Bundle Methods

� Simple Implementations and
easier to understand

� Convergence and good
performances are guaranteed as
various decomposition methods
have been tested

� Robustness issues can be
addressed using risk
measurements

� Value of stochastic solution and
expected value of perfect
information can be provided

� Probabilities of scenario
generated need to be known

� Computationally expensive for
large number of scenarios
generated

� Complexity in dealing with
integer variables during the 2nd
stage (i.e. unit rescheduling in
real e time)

� Assumption of static
uncertainties

Multi e stage [105] Augmented LR
[106] Column Generation
(CG) [107] Progressive
Hedging
[109] Stabilized LR or CG

� Considering over multiple time
intervals of uncertainties in
decision e making processes

� Uncertainties and decisions can
be adjusted dynamically as
scenarios unfold

� Advantageous for systems that
needs quick rescheduling

� Providing value of perfect
information and value of
stochastic solution

� Size of problems grows
exponentially with increasing
time intervals and scenarios

� Requires explicit scenario tree
representations

� Difficulties increase with integer
variables present in all stages

Table 8
Multi e stage stochastic programming methods in renewable energy applications.

References Methods Structures Objective(s) System's uncertainty Main Result(s) Future work(s)

[112] Dynamic Response e

SMILP
Multi e stage Maximize net social benefit Demand side and Energy

Storage
A responsive demand side
provided a more flexible
and smarter power systems

Enhancing planning
methodologies using k e

means and system states
[113] Decision dependent e

SMILP
Multi e stage Maximize total profit Wind capacity penetrations

and demand
The proposed method
provided effective
optimization information
on investment and long e

term expansion planning

Developing new models
with uncertainties
constraints

[114] Two e period multi e
stage SMILP

Multi - stage Minimize NPV related to
losses, emission,
maintenance, operation,
and unserved energy

Generation sources,
electricity demand,
emission prices, demand
growth

The proposed method
produced significantly
better results in terms of
objectives and yielded
robust decision - makings
in comparison to
deterministic methods

N/A

[115] Piecewise multi e stage
linear stochastic
optimization

Multi - stage Minimize operational costs
and computational time of
long e term generation
scheduling of hydropower

Load and Water inflow Inclusion of piecewise
linear approximation
boosted the computational
efficacy and minimized the
operational costs in
operating large storage
capacity hydro power
plants

N/A
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dynamic programming is suitable in the applications of renewable
energy optimizations.

The usage of dynamic programming can be dated back to late
1970s [90] in solving deterministic problem. The solving approach
was based on Bellman's Principle of Optimality [91] which uses the
backward induction method. The past works of dynamic pro-
gramming suffer from heavy computational expenses due to the
curse of dimensionality. As the number of scenarios and states in-
creases as stages unfolds, the time needed in yielding a solution
grows exponentially. Hitherto, various methods and broad class of
algorithms have been tested to overcome the computational
expenses.

Approximate stochastic dynamic programming (ASDP) has
proven to lighten the burden of dimensionality's curse of dynamic
programming and is well suited for models with uncertainties and
stochasticity [116]. Generally, the ASDP method can be divided in
three categories as shown in Fig. 6. The scope of the paper is within
the policy function approximation in the form of stochastic Model
Predictive Control (MPC) in renewable energy applications. Readers
are directed to the recent renewable energy applications
mentioned which highlights the usage of value function approxi-
mation [117e119] and state e space approximation [93,94]
methods. A comparison of approximate dynamic programming
techniques was carried out by Ref. [122]. Authors have compared
various policy iteration and value function approximation tech-
niques. Authors have argued that new theory and methodology are
needed for these techniques in order to solve real e world prob-
lems, which are becoming more difficult.

5.2.1. Model predictive control (MPC)
MPC, also known as receding control horizon approximates

policies by iteratively solving a finite horizon optimal control



Fig. 14. Framework of the MPC optimization-based heating, ventilation, and air conditioning (HVAC) systems. The boxes highlighted with blue denote the factors that have impact
to the optimization problem directly; the boxes highlighted with green indicate the optimization problems results [123].
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problem. The horizon recedes once the optimal control for a current
stage, t has been found moving on to another finite horizon at a
later stage, t þ 1. The process is repeated until the optimal control
has been found for all stages; t (initial stage) until tmax (final stage).
Serale et al. [123] have suggested several parameters which have a
direct impact to the MPC optimization problems namely; Objective
function, receding horizon, control model, constraints, and distur-
bances, where the optimization problems of MPC can be further
divided into Linear and Non e Linear problem formulations. The
framework of the proposed method is illustrated in Fig. 14.

Many works in the scope of MPC have been found in literatures
and are highlighted in the next paragraph. Recent literatures in
stochastic MPC are mentioned in the later paragraphs of this sec-
tion and summarized in Table 10, Table 11, and Table 12.

5.2.2. Notable overview of MPC
Several recent reviews in MPC have been published in the lights

of power generations, building and environments, and renewable
energy applications. Interested readers are encouraged to read the
works of following authors where theoretical modelling and ap-
plications of MPC are further discoursed. The state e of e the e art
development of MPC has been reviewed by Ref. [124] for renewable
energy applications. The authors have presented a systematic re-
view of MPC applications in the field of solar PV and wind energy
renewable systems. The authors aimed to help researchers in
further exploring the flexibility of MPC for design, implementation,
and analysis in renewable energy applications. In Ref. [125], hier-
archical energy management strategy based on model predictive
control is proposed for microgrid management operation consid-
ering different endogenous and exogenous sources of uncertainties.
In Ref. [123], MPC in the themes of enhancing building and HVAC
system energy efficiency have been systematically reviewed. The
potential benefits and future of MPC are discoursed at a great depth
in authors’work. ANNs based MPC has been reviewed by Ref. [126]
in a case study of a residential HVAC system. The authors have
utilized new ANNs algorithm to design a supervisory MPC which
successfully reduced operating costs of equipment while con-
straints are not violated with a cost reduction percentage range of
6%e73% depending on the season. A similar review was made by
the main author in his past work [127] with regards to theory and
applications of HVAC control systems using MPC and was regarded
as the most remarkable review on MPC due to clear classifications
and comprehensive scheme of MPC implementations.

5.2.3. Stochastic MPC implementations in renewable energy
Stochasticity of MPC in recent renewable energy applications

are typically represented as probability e constrained scenarios or
forecasts, uncertainty modelling of scenario generations, and
random disturbances. Stochastic MPC can be further derived into
three main categories which are tree e based, chance e con-
strained, and multi e scenario MPC. The summary of recent liter-
atures pertaining to these categories is mentioned in the next
sections.

5.2.3.1. Tree e based MPC implementations in renewable energy.
Tree e based MPC works with an assumption of time dependant
events can be synthesized from a rooted tree, where the most
relevant possible disturbances can be captured. The concept of tree
e based MPC is quite similar to the multi e stage stochastic pro-
gramming approach (refer Fig. 7). Each root to different nodes’
paths represents a possible disturbance scenario, where the
branching of the paths symbolizes the different forecast possibil-
ities and uncertainties along a given prediction horizon. Each node
at a given point in time, t corresponds to a control action that can be
taken at that time. One must note that the control action taken
must not be allowed to diverge before the bifurcation points. The
tree e based MPC utilizes the ensembles of forecasts and solves it
by considering the sequences contained in the tree. Different paths/
branches of the tree nodes are treated as individual deterministic
problems. The path with the least costs or the most efficient in
terms of given objective functions are implemented at current time,
t as a control action. The process is repeated until the control op-
timizations over the entire horizons have been obtained.

A hybrid robust and stochastic accelerated MPC have been
implemented in the work of [128] with 24 h horizonwindow for EV
integrated microgrid energy management considering demand
response. The authors have utilized the hybrid MPC with forecasts
coupled with Benders decomposition (BD) method to



Table 10
Tree e based stochastic MPC in renewable energy applications.

References Method Objective MPC Type Control horizon Sampling
resolution

System's uncertainty Main Results Future Work

[128] Stochastic
accelerated MPC

Minimize total daily
operational costs

Tree e based 16 h ½ hour EV charging demand, load,
real e time electricity price,
renewable energy output

The stochastic MPC
outperforms the
deterministic MPC by lower
total daily operational cost
in all cases

Extending the proposed
method with available EV
charging load prediction
models

[129] Risk e averse
stochastic MPC

Maximize profit and
minimize risks (CVaR)

Tree e based 24 h 1 h Wind power forecasts, price
of energy

The proposed method
outperforms all mentioned
methods and marginally
expected profit compared
to perfect solution

Application of the proposed
method to real e world
cases and other renewable
applications

[130] CVaR fault tolerant
stochastic MPC

Optimize CVaR Tree e based 4 steps ahead 1 s Wind power forecasts The proposed method has
achieved a control
performance of 40% higher
than the common Min e

Max performance index

Solving the proposed
stochastic MPC in one step
to yield a higher practical
value

Table 11
Chance - constrained stochastic MPC in renewable energy applications.

References Method Objective Type of MPC Control
horizon

Sampling
resolution

System's uncertainty Main Results Future Work

[131] Multi e time scale
stochastic e heuristic
MPC

Minimize weekly
operational costs

Chance e constraint 12 h 5min/1 h PV power forecast, plug in
EV, deferrable and non e

deferrable appliances in
smart home

Shifting the hourescale and dayescale
appliances to the optimal hours and
week of the day can substantially
reduce the weekly operational costs

Applying the proposed method in
multi e scale microgrids

[132] Stochastic two e stage
MPC

Minimize cost of energy
and emissions of
greenhouse gases

Chance e constraint 6 h 1 h Renewable energy
resources, demand

Experimental results have proven the
feasibility and implementation ability
of proposed stochastic MPC that
outperforms the deterministic MPC

Analysing the scalability of
proposed framework and
investigating distributed methods

[133] Stochastic warping
function MPC

Minimize wind power
tracking error

Chance e constraint 1e12 h 5min Wind power forecasts The proposed stochastic MPC
outperforms the deterministic MPC in
power tracking errors

The proposed control system can be
integrated into currently existing
system

[134] Stochastic e EMPC Minimize microgrids'
operating costs

Chance e constraint 72 h 1 h Renewable supply, Load
demand

The proposed method achieved a better
trade e off between performance and
computational efficacies in comparison
to centralized scheme

Incorporating the topology of
distribution network, energy
exchange between MG and
fluctuating prices of energy

[135] Stochastic MPC Minimize operational costs Chance e constraint 24 h ½ hour RE generations, load,
demands, EV, and
electricity prices

The stochastic MPC framework
outperforms the traditional day e

ahead programming strategy in terms
of minimizing the operational costs

Applying the stochastic MPC in a
multi scale microgrid systems
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simultaneously reduce total operational cost in energy manage-
ment as well as improve computational efficiency. Simulation re-
sults showed that the proposed method outperforms the standard
deterministic MPC method with regard to total operational cost by
a margin of around 10%. The algorithm of stochastic BD applied to
MPC is shown below.
Algorithm: Stochastic BD
At each time step t do
Initialize 1, Upper Bound (UB) ,Lower Bound (LB) , 0
For 1 to Nk
Set 0,do
     Solve master problem in Equation (24) and determine a trail solution

, ,g t k tX

     Update the value of LB
     Solve all sub-problems in Equation (25) with trail solution 

, ,g t k tX

     Update the value for UB
if then /LB UB
     Add the new optimally cut associated with iteration to the master problem 

     Set , and repeat the solution procedures1
else
     an optimal solution is obtained, and implement the control signals at time step t
end for
Zm ¼ min
XN
k¼0

h
lf Gg;tþkjtXg;tþkjt þ F

�
Xg;tþk�1jt ;Xg;tþkjt

�
þ qk

i

qm �
XUp

p
pp;tþkjt

XUw

w
pw;tþkjt

h
Qm;p;w;tþkjt � εm;p;wGg;tþkjt

�
Xm;g;tþkjt � Xm;g;tþkjt

�i
(24)

Qm;p;w;tþkjt ¼ min
�
lpex;tþkjtE

p;r
ex;tþkjt þ lf G

p;r
l;tþkjt

�
(25)

Where lf is fuel price, Gg;t is the gas input of combined heat and
power (CHP) units, FðXg;tþk�1jt ;Xg;tþkjtÞ is penalty function used to
control the frequency changes during the on/off operating state,
qmis Benders cut at iteration m, Qm;p;w;tþkjtdenote the sub-problems
value at iteration m under pth and wth scenario, Xm;g;tþkjt is the
Algorithm: SMPC algorithm of CVaR objective func
1. Prepare the controller Ci

     1.1 Generate m nereffidotgnidroccaseertoiranecs

     1.2. Calculate corresponding Controllers Ci

2. Estimate VaR
     set 90%
     Solve SMPC problem in Equation (26)
     The VaR is given by Equations (27) and (28)
3. Estimate SMPC of CVaR

For i=1:3

d1 2. . 1, * , ,..., ,%sCS f ones s nu

          Calculate other parameters;
end for

     set T; %simulation time
for k=1:T

          measure x k

          solve CVaR SMPC problem in Equation (29) a

          apply 1u k u

end for
trial solution at iteration m, εm;p;w represents the sensitivity for the
corresponding Qm;p;w;tþkjt , andEex;t indicates the energy purchased
from the external gird.

A risk e averse stochastic MPC based on real e time operation
has been developed by Ref. [129] for a wind energy generation
system combined with a pumped hydro storage unit to maximize
profit and minimize risks in day e ahead bidding strategies. Au-
thors have compared the results of stochastic MPC method with
several other methods such as deterministic MPC, bid e following
heuristic and open e loop algorithms. The stochastic MPC method
outperforms all other methods and reached an expected profit
close to the perfect information solution with a margin of around
2%. Fault tolerant control problem of wind energy conversion sys-
tems have been addressed by Ref. [130] using stochastic MPC based
on CVaR. Authors have implemented the Markov jump linear
model to model randomness of the wind energy conversion sys-
tems. A scenario e tree is created within the prediction horizon to
transform the stochastic MPC problem to a deterministic MPC. The
method produced a better fault tolerant control performance in
comparison to the Min e Max performance index. The objective
function formulation of CVaR using SMPC algorithm is shown
below.
tion

edontoort 1, 2,...,w k i i w k m

sthgiewsrotcevnoisice

nd obtain 1u



min
u

X
i2T jT1∪S

pðxi � xrÞTQðxi � xrÞ þ
X
i2T jS

piu
T
i Rui

s:t

8>><
>>:

x1 ¼ xðkÞ
xi ¼ AðwðkÞÞxpreðiÞ þ BðwðkÞÞupreðiÞ þ DðwðkÞÞ þ D1ðwðkÞÞeðkÞ þ Iw*yrðkÞ; i2T jfT1g

GxxðkÞ þ GuuðkÞ � g; k ¼ 0; :::;N;cwðkÞ2W

(26)
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Gxj;Gvj;Gdj;Gd1j;Gd3j (27)

abðuÞ ¼ minfa2ℝ : jðu;aÞ � bg (28)
min
u;fvjgs

j¼1

½p1p2:::ps�m

s:t m � GxxðkÞ þ GxUðkÞ þ GdIw1þ Gd1ðIw1*eðkÞÞ þ Gd3*ðIw3*yrðkÞÞ � Lðr þ aÞ
m � GxxðkÞ � GvUðkÞ � GdIw1þ Gd1ðIw1*eðkÞÞ � Gd3*ðIw3*yrðkÞÞ þ Lðr þ aÞ
m � o; j ¼ 1; :::; s
UðkÞ � u
UðkÞ � u

(29)
Where the xk is the present state, pirepresents the realization
probability of scenario i, Q and R denote weight matrixes, Gx2
Rnxþnuand Gu2Rnxþnustand for coefficient matrixes used in state
and input constraints, f ðu;wÞis the estimation error, b is the prob-
ability factor. By using the probability density of error,a can be
found as a¼ b� VaR . The jumping information in Markov jump
linear model is denoted by Gxj;Gvj;Gdj;Gd1j;Gd3j .
5.2.3.2. Chance e constrained MPC implementations in renewable
energy. Chance e constrained MPC relies on the formulation of
output constraints with a given type ymin � y � ymax as chance
constraints as shown below:

Prðymin � y � ymaxÞ � l (30a)

where PrðxÞ is the probability of an event X occurring, y is the
Table 12
Multi e scenario stochastic MPC optimizations in renewable energy applications.

References Method Objective MPC Type Cont
hori

[136] Adaptive constrained
stochastic MPC

Minimize operation
costs

Multi - scenario 1e2

[137] Various stochastic MPC Compare multiple
types of MPC

All types 5 ste
output of a given process within the constraints of ymin & ymax, and
l is the confidence level of such constraints that can be satisfied.

According to equation (2), the basic idea of a chance e con-
strained MPC is to solve the optimization problem in each horizon
while guarantying the satisfaction of the constraints with a certain
probability. It is to be noted that the chance e constrained MPC
involves the careful selection of future output predictions and its
uncertainties. Since exact future output predictions can't possibly
be captured, uncertainties are represented in either of these two
ways; which is either the uncertainty in future disturbances or
uncertainty of the process outputs due to manipulated variables.
Within this realm of solving probabilities and uncertainties in
chance e constrained MPC, several recent publications have been
identified and listed below.

A multi e time scale stochastic MPC combined with genetic
algorithm (GA) is proposed in Ref. [131] in order to perform
scheduling deferrable appliances and energy resources of a smart
home (SH) system. The stochastic parameters namely; solar irra-
diances and its prediction uncertainties are forecasted using neural
network toolbox in MATLAB. The uncertainties of the appliances’
usage as well as the economic and technical constraints of other
energy sources such as diesel generators, batteries, and PV panels
are also modelled by the author. The objective function is devel-
oped for SH with a goal to minimize the value of the stochastic
forward-looking objective function subject to various constraints. A
rol
zon

Sampling
resolution

System's uncertainty Main Results Future
Work

4 h 0.01e1 s Renewable energy
sources, electrical loads

The method produced a
less conservative
solution compared to
the robust MPC
approach

N/A

ps ahead 30 s Renewable resources,
Load, hydrogen e

based PEM electrolyser
and fuel cells, lead acid
batteries' state of
charge

Chance e constrained
MPC outperforms other
MPC types resulting in a
lower cost and less
energy exchange in a
hydrogen based
microgrid

N/A
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total of 6 cost terms are taken into consideration to develop the
objective function including fuel costCF:DG

d;t , carbon esmsmions cost
CE:DG
d;t , start up cost CSTU:DGshut down cost CSHD:DG of DG, switching

price of PEV battery CSW :PEVand cost or income due to the power
distribution with the grid PGridd;t � p0DISCO

d;t

minFFLd;t ¼min
X
PV

Pd;t

FFLd;t � UPV
d;t ; d2D; t2ft1; t2g;ct12T1;ct22T2

(30b)
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þ
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i
þ
h
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i
þ
h
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d;t

i

9>>>>>>>>=
>>>>>>>>;
d2D; t2

ft1; t2g;ct12T1;ct22T (31)

The multi e time scale MPC divided the control optimization in
scale of minutes and hours in a weekly operation, where usage of
certain appliances is dominant in their respective time scale. The
author has shown that the proposed MPC method has managed to
notably decrease the weekly operational cost of the smart home
system.

An experimental case study was conducted by Ref. [132] in the
operation management of microgrids using stochastic MPC to
optimize the economic and environmental parameters. Un-
certainties due to renewable energy resources and demand were
considered and the stochastic optimization was solved by using
mixed e integer linear programming toolbox via commercial
solvers. Experimental results have proven the feasibility and
implementation ability of stochastic MPC that outperforms the
deterministic MPC. Kou et al. [133] proposed a stochastic MPC for
wind farm energy dispatch strategy with BESS using probabilistic
wind power forecasts. The method considers the non e gaussian
wind power forecast uncertainties using chance e constraints
warping function. The authors have shown that the proposed
method outperforms the deterministic MPC method in terms of
power tracking errors while maintaining the state of charge (SOC)
of the battery within operational limits. The chance constraint
optimization problem is developed to enhance the wind power
dispatchability and lessen its oscillation, as shown in equation (32).
In addition, SOC constraints and charge discharge power con-
straints are assigned in order to protect the battery from being
overcharged and over discharged, as expressed in equation (33) and
equation (34) respectively.

min
uðkþhjkÞ;eðkþhjkÞ

J¼b
XH
k¼1

eðkþ hjkÞ2

þ ð1� bÞ
XH�1

h¼0

uðkþ hjkÞ2; Subject to (32)

Pr
h			yðt þ kjtÞ � yref ðt þ kÞjt

			� � eðt þ kjtÞ
i
�a; h ¼ 1;2; :::;H

SOCmin � x2ðkþ hjkÞ � SOCmax;h ¼ 1;2; :::;H (33)

�PB;max � uðkþ hjkÞ � PB;max;h ¼ 1;2; :::;H (34)

Where eðkþ hjkÞis the set of auxiliary variables, yðt þ kjtÞ is the
stochastic variables, yrefdenotes the reference, Pr is the probability,
aand b denote the confidence and trade-off parameter respectively.
A new distributed chancee constraints stochastic EMPC scheme

has been presented in Ref. [134] for coordinated stochastic multiple
microgrids energy management. The supply and demand side un-
certainties were handled using the probabilistic forecasts of
renewable generations and load of each microgrid that is in a
cooperation scheme with each other. The proposed method suc-
cessfully reduced the system operating costs and achieved the
supply and demand balance in each microgrid within the control
horizons through the development of distributed network operator
(DNO) controller. DNO acts as an intermediary betweenmicrogrids,
thus the energy selling between any two microgrids is performed
indirectly through DNO. The mathematical expression of cost
function is presented in the following equation,

min
E
pur;DðkþhjkÞ
E
sel;mðkþhjkÞ
E
sel;DðkþhjkÞ

E
pur;mðkþhjkÞ

JD¼
XHD�1

h¼0

0
BBBB@
Epur;DðkþhjkÞhpur;Dþ

XM
m¼1

Esel;mðkþhjkÞhsel;m

�Esel;DðkþhjkÞhsel;D�
XM
m¼1

Epur;mðkþhjkÞhpur;m

1
CCCCA

(35)

Where,Epur;Dand Epur;m denote the energy purchased from the grid
and DNO respectively, Esel;Dand Esel;m represent the energy sold
back to the main grid and DNO respectively. hpur;Dand hpur;mstand
for energy price purchasing from the grid and DNO respectively
while hsel;Dand hsel;m signify the energy price selling to the main
grid and DNO respectively.

The optimal operation of a smart residential microgrid based on
stochastic MPC has been conducted in the work of [135]. The res-
idential microgrid comprised of renewable energy resources,
distributed energy generators, energy storage, electrical vehicle,
and smart loads. The uncertainties are modelled in a short e term
forecasts of renewable energy generations, load demand, and
electricity prices. The proposed method aimed to reduce the total
daily operational costs of the microgrid. The simulation results by
the authors have shown the economic advantages of the method in
comparison to the traditional day e ahead programming approach.
5.2.3.3. Multi - scenario MPC implementations in renewable energy.
Multi e scenario MPC utilizes multiple scenario generations within
a given optimization horizon to implement a control action at
present time, t. Similar to uncertainty modelling (Refer to Section
3), the independent multiple scenarios generated are synthesized
from random input variables of PDFs to produce PDFs of output
variables in representing the uncertainties. Ranges of solutions
exist, each with its own probability as represented in the output
PDFs. The most cost e effective scenario in terms of objective
functions are chosen to be the control action within the optimiza-
tion horizon.

An adaptively constrained stochastic MPC has been proposed in
Ref. [136] for optimal dispatch of microgrid. The objective function
is formulated to minimize the total operation cost including cost of
running generator and cost of purchasing electricity form DG, as
expressed in the following equation.

min
XT
i¼1

fcconPconðt þ ijtÞg þ cGridðt þ ijtÞPGridðt þ ijtÞ (36)

Where T represents the length of time horizon, i denotes the time
step index, Pconðt þ ijtÞ stands for power discharge from the
controllable generator in i-step ahead, cGridðt þ ijtÞ denotes the



A. Zakaria et al. / Renewable Energy 145 (2020) 1543e1571 1567
electricity price for energy exchange in i-step ahead, PGridðt þ ijtÞ is
power exchange between MG and DG in i-step ahead.

The method adaptively/dynamically changed the rate of
constraint violation in the microgrid operation to improve the
performance of the energy dispatch. In comparison to the robust
MPCmethod, the authors have shown that themethod can improve
the dispatch performance (less conservative) in cases of uncertain
renewable generations and loads. Furthermore, with increment of
prediction horizon, computational efficacies were not significantly
affected.

Stochastic MPC control strategies in a case of hydrogen e based
microgrid have been compared in the work of [137]. The three
categories of stochastic MPC mentioned in the previous paragraphs
were compared in thework of the authors in an experimental setup
including a PEM electrolyser, leade acid batteries, and a PEM fuele
cell as the main equipment. For each category of the stochastic MPC
effectiveness, performances, advantages, and disadvantages were
discoursed. Authors have discussed extensively the valid criteria
needed when selecting the appropriate stochastic MPC method.

5.2.4. MPC's comparison and future trending
5.2.4.1. MPC's comparison. It is apparent from the trending of
recent stochastic MPC in renewable energy applications that the
tree e based and chance e constrained MPC were the most used
methods in recent studies. The multi e scenario MPC yielded a
robust but overe conservative solutions. Therefore, this category of
MPC is not preferred due to the need of an accurate representation
of the system, in which the tree e based and chance e constrained
MPC could provide better.

Furthermore, in cases of stochastic MPC applications, the pre-
diction/control window is typically within 24 h. Despite the heavy
computational expenses of the tree e based compared to multi e
scenario MPC, the calculation time within the mentioned window
is still relatively inexpensive. The multi e scenario MPC is more
suitable in cases of huge numbers of scenarios needed to be
considered (i.e. Optimization within 8760 h in a year, 1 e hour time
step, and multivariate properties). The multi e scenario MPC could
provide a certain robustness of system's representation to the po-
tential disturbances and provide a trade e off between the best
solution and the computational expenses.

The chance e constrained MPC offers the lowest computational
expenses compared to the other two. It formulates the optimization
problem by considering the probabilities of the uncertainties
without adding the variables' size. In the work of [137], the chance
e constrained MPC outperforms the other MPC methods by offer-
ing a reduced computational time, lower operational costs, and
minimal energy exchanges with the networks. These advantages of
chance e constrained MPC are one of the reasons of frequent usage
of this MPCmethod as shown in recent literatures stated in Table 11.
However, the chance e constrained MPC requires an explicit sta-
tistical characterization of the systems’ disturbances. For the se-
lection of the suitable MPC method, priority factors such as
operational costs and computational expenses must be taken into
considerations [137]. provided a general guideline in choosing the
best stochastic MPC for a given priority factors. Nonetheless, in
general categories of stochastic dynamic programming, an efficient
method lies often on the specific problems at hand as stated by
Ref. [6].

The prediction/control window played an important role in
determining the accuracy of the solution as well as computational
time. A long prediction/control window would mean a more ac-
curate representation of unfolding events, thus yielding a greater
accuracy in finding the best solution. However, the computational
expenses increase as the window increases. Trade e offs between
prediction/control window and computational expenses must be
determined in order to produce the needed solution.

5.2.4.2. Future MPC's trending. The future trends in stochastic MPC
are converging towards a multi e scale and multi e time based
optimizations as stated in the works of [125,126,129]. In a renew-
able energy system, where multiple sources of energy generations
are present, a realistic representation must consider these sources
in order to provide an insight closer to real e world applications.
Managing surges of dynamic demands and supplies from plug in EV
(V2G), varying behaviours of energy consumers, smart appliances,
demand response, and intermittent multiple renewable energy
resources are the challenges that must be addressed together in
future smart grid e systems. In addition, these challenges are all
time e dependant variables in which, each of them possesses traits
with dominance in certain time e steps. Addressing the challenges
in a multi e time scale approach could capture the undisclosed
dynamic behaviour of the system.

In such systems where the dynamics are complex, multivariate,
and time dependent, exact solutions are difficult to obtain. There-
fore, approximate solutions to such cases are more feasible in the
forms of ASDP. The works of [19,138] combines the stochastic
method with a (meta)heuristic methods. The stochastic method is
hybridized with genetic algorithm to produce ranges of relaxed
solutions. Trending in hybridization of stochastic and meta-
heuristic methods are relatively new but promising in the field of
stochastic optimizations to improve the ASDP algorithms. Inter-
ested readers are encouraged to read the works of [2,139e141] for
recent reviews of (meta)heuristic methods and intelligent searches
in the field of renewable energy applications.

6. Conclusions

Stochastic optimizations in renewable energy applications have
shown its successful implementations in recent surveys that are
presented in the paper. Almost always, based on the works of many
authors, the stochastic optimization techniques exhibit enhanced
performances and can deliver accurate representations in capturing
the uncertainties of renewable systems. Despite its advantages, due
to numerous amounts of samplings and unfolding events, which
are discussed in the works of many authors to improve or develop
novel algorithms in increasing the efficiency of stochastic optimi-
zation techniques. Within these contexts, the relevant research
themes going into the future based on stochastic optimization al-
gorithms are concluded as follows:

i. Novel scenario generations and uncertainty modelling ap-
proaches; These are necessary in renewable systems in-
tegrations where trending in the future involves stochastic
multi e scale modelling. With rapid increment of data and
size of renewables' problem, perhaps model e driven ap-
proaches alone could not fully address and cope with the
underlying complexity in vast multivariate and expanding
renewable systems. Data e driven scenario generations
could provide a pivotal role as highlighted in the works of
[41,142].

ii. Unfolding dynamic uncertainties in multi e stage problems;
Addressing dynamic probability issues as scenarios/new
forecasts unfolds have been addressed by several authors
[103,104] in the paper. Better weather and power forecasts
which provide information with dynamic uncertainties as
events unfold would incorporate a more robust real e time
decision e making strategy for generation companies in
handling stochastic renewable generations.

iii. Implementing new recent notable algorithms in the field of
renewable energy optimizations; Recent work by Ref. [143]
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in the form of proximal policy optimization (PPO) has shown
great promise in updating multiple epochs per data sample.
The method boasts the ability of simple implementations
and great stability as well as better overall performance in
comparison to its predecessor, trust region policy optimiza-
tion (TRPO). The PPO algorithm has attracted many authors
especially in the field of computational sciences. No works of
PPO have been published in renewable energy applications.

iv. Improvements of existing sampling and decomposition
methods; Parameters such as number of scenarios needed,
scenario reduction techniques, quality of scenarios gener-
ated, and relevant scenarios generated are still under
extensive study as highlighted by the literatures in these
sections. Acceleration techniques and efficient cuts have
been developed by several authors in the decomposition
methods approaches to speed up calculations (see Table 7).
Where some sampling and decomposition methods proved
to be advantageous, further testing of the methods to other
renewable applications are still required.

v. Hybridizing existing methods with intelligent search (meta
e heuristic method); Especially in problems with higher di-
mensions (Non e Linear), accurate representation of
renewable systems is difficult. Intelligent searches find a
relaxed approximation to a solution and can reduce
computational expenses while increase accuracy as high-
lighted in the works of [19,138,144]. The works of meta
heuristic method in renewable energy applications are
mainly in the field of deterministic optimization problems
[139].

While algorithms are important in solving the stochastic
renewable energy problems, future research areas in this field have
also been identified from the surveys conducted. The trending
themes moving forward can be broken down in three main
categories:

i. Plug in EVs integration to microgrid; The surge of plug in EVs
are expected in the nearest future as these vehicles are more
efficient and produces relatively less greenhouse gases [145].
These EVs will lead to unique future challenges as well as
opportunities in future MG systems. The plug in EVs are
mostly stochastic problems as charging demand profiles vary
from one user to another. Main themes regarding the inte-
gration of Plug in EVs in microgrids are identified namely;
Charging and scheduling of Plug in EVs [146e148], renew-
able energy integration via vehicle to grid operation [149],
and willingness of participation towards the usage of Plug in
EVs [150]. Interested readers are encouraged to read the
recent notable works mentioned pertaining to these high-
lighted themes and its solution methodologies.

ii. Demand side management (DSM); Multiple authors have
started to consider load demand as an active entity as sur-
veyed. Results have shown reduction in peak demands, lower
costs, and reduction of generation capacities. However, the
success of DSM highly depends on the policies involved and
active participation of consumers. Recent review by
Ref. [151] identified the consumers as one of the three main
aspects of smart grid management. Authors have also high-
lighted that the acceptance of DSM varies from one con-
sumer to another. It is critical that the focus of future
researches is consumer e centred to improve acceptance in
DSM for a better management of the electrical grid. The main
future research directions identified regarding DSM and its
related recent works are; Consumer engagement methods
[152], accurate modelling of consumer's behaviour [142],
security and privacy and scalability [155].

iii. Multie scale andmulti e timee scale distributed renewable
energy systems; vast amount of literatures have supported
the claim that having hybrid or combination of renewable
systems would allow for a higher fraction of renewable
generation in a distributed renewable energy system. How-
ever, increasing the scale of distributed generation from
housing, to district, and finally to national scale would mean
addressing new challenges such as ensuring the grid and
market stability in a growing complex socio e techno e

economic system with underlying dynamic uncertainties
and probabilities. Furthermore, each renewable component,
consumer's appliances, and electricity market all have
different time e scales in which they are dominant.
Addressing both multi e scale and multi e time e scale
problems with high penetration of intermittent renewable
resources in distributed generation are the future research
areas in the field.

The paper highlighted the recent and notable stochastic opti-
mization approaches in renewable energy applications. The ad-
vantages and challenges of stochastic optimization methods are
carefully evaluated, and its recent trending and future works are
summarized in this paper. An intuitive approach was presented to
enlighten new researchers in venturing into the stochastic opti-
mization methods within the domain of renewable energy
applications.
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