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A B S T R A C T

The stability of an integrated power system (IPS) with pulse load involves both the trend of change in the system
state during the whole period and the problem of whether to cause an unacceptable oscillation and an increase
or decrease in the system state variable during a pulse period, which will pose a great challenge to the IPS. This
paper considers the system stability in two aspects: the stability of system state variables in a periodic steady
state under the action of pulse load, which refers to the stability of the periodic orbit, and the problem mentioned
above, which cannot be described according to the stability of the equilibrium point and so needs further re-
search. The analysis of the first aspect can lay the foundation for a study of the second aspect. This paper presents
a mathematical model of the IPS with pulse load, uses the periodic-orbit method to analyze the system stability
and stable margin and drives a state space averaging model of the system. For a relatively small state variable
disturbance of the system under small signal disturbance, the state-space averaging method proves to be ap-
proximate to the periodic-orbit method. On this basis, the conventional state-space averaging method can be
used for the analysis of system stability. The simulation and calculation show that the proposed method is
feasible and effective.

1. Introduction

The pulse load means a periodic load with high power released in a
very short time. Its pulse period is a couple of seconds. The released
power ranges from several hundred kilowatts to several megawatts, as
is the case for radar, laser beam weapon, electromagnetic rail gun and
launcher [1,2]. The pulse load releases pulse energy intermittently,
with quite high energy density and power density and is usually pow-
ered by energy storage devices [3,4]. In a traditional mechanically-
propelled ship, most of its output of the power system is used to drive
the propulsion device by mechanical energy, and the remaining part
supplies electricity to the daily service loads through electrical energy.
Even if a mechanically-propelled ship is equipped with the energy
storage system, the operation of pulse load is difficult to guarantee.

The integrated power system (IPS) is a big leap in the field of
modern ship power systems, marking the future direction of develop-
ment. It combines the dynamic system and the power system which are
independent of each other and provides the loads with electrical en-
ergy, which is prerequisite for the application of pulse load and also an
only road to the development of a ship platform from mechanization to
electrification and informatization [5–7]. The intermittent impact of
the pulse load on the power system differs from the disturbance caused

by abrupt change of loads in the traditional power system, in that it is
characterized by high-energy density, high-power density and peri-
odicity, which brings a tremendous challenge to the power system in
terms of transient performance, stability and power quality [8,9].

The small-signal stability for IPS refers to whether the system will be
able to maintain synchronism when it has been subjected to small
disturbances due to abrupt load change, motor start-up, pulse load in
use and so on [10]. Because small disturbances are difficult to avoid,
the IPS cannot operate normally in practical conditions if the system is
unstable. For this reason, judging whether the IPS has small-signal
stability in its specified operation is a very important task in the ana-
lysis and design of IPS. As for the periodical charge-and-discharge
process of the pulse load, the IPS does not have a mere equilibrium
point, it includes a periodic alternating process of system variables. The
periodic orbit can be used to represent the steady-state operation of the
system. The dynamic response characteristics of IPS can be expressed
by differential equations. x0 is the initial value, the solution of the
differential equation will return to x0 after a period of time. Then the
solution during this time is called the periodic orbit of the equation. On
entering the periodic orbit the state variables will constantly stay on it.
Similar to Lyapunov stability definition for equilibrium point, the or-
bital asymptotic stability of the periodic orbit means that the solution of
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the differential equation starting from any point near the periodic orbit
is still nearby, and the difference between the solution and the periodic
orbit tends to zero as time approaches the infinity [11,12].

The stability of IPS with pulse load refers to two aspects. The first
aspect is about the stability of system variables in periodic steady state
under the action of pulse load. The action of the pulse load on the
system is generally considered with the pulse duration as a unit, which
merely involves the changing trend of sampled state variables in the
pulse duration but not changes in state variables in one pulse period.
This can be investigated either by the system periodic-orbit stability
method, or by the state-space averaging method with which to trans-
form the periodic orbit stability into the equilibrium point stability after
simplification [13,14]. The second aspect is about whether there is an
unacceptable oscillation, increase or decrease in the state variable
during a pulse period. As the steady state of state variables is not the
equilibrium point at this time, this phenomenon cannot be described
according to the stability of equilibrium point. And its methods for the
definitions and analysis of stability need to be further studied. Con-
sidering the first aspect is prerequisite for the second aspect in the
analysis or study of stability, this paper first makes a study of the system
periodic-orbit stability so as to lay the foundation for researching the
second aspect of the system stability.

Related researches on the stability of the IPS with pulse load mainly
refer to specific disturbances, and the use of time-domain simulation
method [15] and Hamilton surface-forming method [16] for studying
the system stability. As for the time-domain simulation method, its
disturbance and observational variables have a great influence on the
result. Because of lack of credibility and too much time spent on the
time-domain calculation, the method is not suitable for the analysis of
stability in the stage of system design. Moreover, due to its unclear
physical concept, it is difficult to directly find out the cause of system
instability through the simulation results. Therefore, corresponding
measurements of improvement are needed. The stability analysis of
small-signal disturbance is based on Floquet theory of periodic orbit,
this method is only suitable for a time-variant linear system. However,
the system in Ref. [16] is not a strictly linear system because its state
Eq. (2) contains the item of P(t)/vC, so the method is an approximate
one. The use of Hamilton surface-forming method to establish energy
function for an ordinary system is difficult. Neither of these two
methods is applicable to distinguishing between the two aspects con-
cerning the system stability, so it is necessary to find a method for
analyzing the first aspect of system stability based on periodic orbit
stability. Ref. [17] did not refer to the stability analysis of small-signal
disturbance but to the algorithm of periodic steady-state performance
of the IPS with pulse load. The algorithm means solving for the periodic
orbit to assess the power quality of the system.

This paper includes the following sections. Section 2 describes the
state-space averaging method and the periodic-orbit method for system
stability. Section 3 refers to the relationship between these two
methods. Section 4 is about the simulation and verification of the
proposed methods. Section 5 gives a conclusion.

2. Stability analysis on IPS with pulse load

2.1. Periodic-orbit method

As the pulse load has high power in a short time, it makes strict
demands on the vessel power system. This paper deals with the op-
erational characteristics of the pulse load, as shown in Fig. 1. Fig. 1(a)
shows the rectangular-wave pulse load, whose charge-and-discharge
curves display discontinuous features [18]. As for its parameters, T
denotes the pulse period, D the duty cycle, P1 the low-value power and
P2 the high-value power. Fig. 1(b) shows the triangular-wave pulse
load, whose charge-and-discharge process curves display continuous
features [19]. T, P1 and P2 represent the pulse period, low-value power
and high-value power, respectively.

The dynamic response of IPS with the pulse load can be expressed
as:

=x f xd
dt

t( , ) (1)

where the state variable x is a m-dimension vector and f(x) is a function
of T, that is, f(x,t+ T) = f(x,t).

The system equation contains a function of T due to the application
of the pulse load. At this time, the system steady state is the periodic
orbit. There are two methods to calculate the periodic orbit, namely the
time-domain simulation method and the analytic method. The time-
domain simulation method deals with specific disturbances by use of
numerical calculation of the differential equation to get a complete
time-domain response of state variables. After a very long time in si-
mulation, the system enters a periodic steady state, which indicates the
periodic orbit is acquired. However, the method has some dis-
advantages, such as time-consuming calculation, unclear physical
concepts and difficulty in using the simulation results to quantitatively
evaluate the factors affecting the periodic orbit. The analytic method is
adopted to formulate equations which are used to calculate the periodic
orbit. The quick calculation characteristic of the method makes it
possible to evaluate the factors influencing the periodic orbit quanti-
tatively through the sensitivity analysis [17].

The analytic method for calculating the periodic orbit is given
below. The period T is divided into n parts, with n taken as 100 gen-
erally; the discretized time step is h= T/n; the time points are
t t t, , , n0 1 respectively, among which ti = ih; the state variables are
x0,x1,….xn respectively. The use of the implicit trapezoidal integral
method leads to the formulation of equations for periodic orbit as fol-
lows:

+ + = =
=

x f x f x x
x x

t t i n[ ( , ) ( , )] 0 1, , (2 1)
0 (2 2)

i
h

i i i i i

n

1 2 1 1

0 (2)

where Eq. (2-1) is the implicit trapezoidal integral formula and Eq. (2-
2) represents the terms satisfying the periodic orbit.

The Newton-Raphson method is used to solve the above equations
for the system periodic obit and their initial value is obtained by the
state-space averaging method. And the Newton-Raphson method is a
solution to the non-linear equations of second-order convergence.
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(a) Rectangular-wave pulse load
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Fig. 1. Operational characteristics of pulse load.
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Because of rapid convergence, a few iterations are generally needed to
get the solutions x x x, , ,e e ne0 1 . If the scale of the system is quite large
and the pulse period is relatively long, the periodic-orbit method will
have to do much more computation than the time-domain simulation
method. Therefore, it is necessary to investigate a fast algorithm for the
periodic orbit. Using the time-domain simulation method as a re-
ference, this paper proposes a periodic-orbit method based on sensi-
tivity analysis. According to Eq. (2-1), given the initial variable x0, it
follows that the next variable is x1. Then the variable xn can be ob-
tained from successive recursion. That is a process of calculating the
state variables in one period by the time-domain simulation method. If
several periods are repeatedly calculated until the norm of difference
between x0 and xn is sufficiently small, the periodic orbit can be ob-
tained with the time-domain simulation method. The method needs
large computation because it passively waits for the system to enter a
periodic steady state. It is worthy of note that the Poincaré mapping of
the periodic orbit is defined in Eq. (2-1). To compute its Jacobian
matrix, the partial differential calculation of the previous state variable
xi-1 in accordance to xi in Eq. (2-1) can lead to:

= + =x
x

I A I Ah h i n
2 2

1, ,i

i
i i

1

1
1

(3)

where =A f
x x

i
t( , )i ie i

, I is the m-dimension unit matrix.

Jacobian matrix of Poincaré mapping, or the xn-x0 sensitivity matrix
at the periodic orbit x x x, , ,e e ne0 1 is:

= = +
=

M x
x

I A I Ah h
2 2

n

i

n

i i
0 1

1

1
(4)

If the matrix multiplication does not meet the commutative law, the
above equation needs to be calculated in turn.

Supposing the disturbance x0 is added to x0, the disturbance xn
will be added to xn accordingly. By the linear approximation, xn is
expressed as

=x M xn 0 (5)

To make the sum of x0 and x0 equal to that of xn and xn, the
disturbance x0 should be taken from the following equation:

=x I M x x( ) ( )n0
1

0 (6)

In the strict sense, the sum of x0 and x0 is not equal to that of xn
and xn due to an error in linearization. But with the error converging
to zero gradually and its norm becoming small enough, the periodic
orbit can be obtained.

To make the system operate stably, the spectral radius of Jacobian
matrix of Poincaré mapping of the periodic orbit (the maximum mod-
ulus of its eigenvalue) must be less than 1. With ρ(M) as the spectral
radius of M, the stable margin is expressed by the difference between 1
and ρ(M).

=S M1 ( )m (7)

According to the theory of periodic orbit stability of the nonlinear
dynamic system, if Sm > 0, the system is stable, and the larger its
value, the more stable the system; if Sm < 0, the system is unstable.

2.2. State-Space averaging method

Because of the periodicity of function f(x,t), on the right side of Eq.
(1) is a time-varying variable. For this reason, the period T is divided
into n parts, where n is big enough to make the right side of Eq. (1)
approximate to a constant. Then the piecewise equation is:

= =x f xd
dt

t t t t i n( , ) [ , ] 1, ,i i1 (8)

where there are n segments and the duty cycle of each segment is 1/n.
The averaging of the state space in T leads to:

= =x g x
f x

T
d
dt

t dt
( )

( , )T
0

(9)

Here, g(x) is the average function of state-space of f(x), and uses the
average value instead of the characteristic of pulse load so as to elim-
inate the periodicity of system differential equation and transform the
stability of periodic orbit into that of equilibrium point.

The equilibrium point xe and its characteristic matrix Ae are re-
spectively expressed as:

=

=

g x

A

( ) 0
g
x x

e

e
e (10)

If all the eigenvalues of Ae contain the negative real parts, the
system is stable. If the eigenvalues of Ae contain the positive real parts,
the system is unstable.

The state-space averaging method aims at turning the stability of
periodic orbit into that of equilibrium point. Although it can be used for
stability analysis approximately, the method is characterized by simpler
modeling, less calculation and clearer physical concepts.

In Ref. [13], the state-space averaging method was applied to the
linear system, proving that the time-domain solution of its state vari-
ables in one pulse period is linearly approximate to its exact solution in
the modulation period, that is, the difference between the two only
includes the quadratic term and the maximum term in the modulation
period. For the non-linear system, the linearizing method can be
adopted to make it approximate to the linear system. As the modulation
period is very short when the traditional state-space averaging method
is used, the method is approximately reasonable. The derivation process
from (8) to (9) differs from that by the traditional state-space averaging
method because T counted generally as several seconds is relatively
large and the system equation is non-linear. The traditional linear
equation or non-linear equation derivation method is no longer ap-
plicable, which indicates that (8) and (9) are merely regarded as ex-
trapolations of the state-space averaging method, whose applicability
needs to be studied.

3. Relationship between two stability analysis methods

From above analysis, it is known that the periodic-orbit method is a
strict approach to analyzing the stability of the system with pulse load,
and that the state-space averaging method is an approximate one and
its approximate conditions cannot satisfy the stability analysis, so it is
made extrapolative. The applicability of state-space averaging method
needs to be studied. This section describes the applicability of the state-
space averaging method based on the periodic-orbit method.

When h is sufficiently small, the equations obtained according to
matrix multiplication are as following:

=

= =

= =
A I A I A A

I

h h h h

i n

2 2 2 2

1, ,

j
i

j
i i

j
i

j

0 0

(11)

The combination of (4) with (11) leads to:

= +
= =

M A I Ah h
2 2i

n

j
i

j

i
1 0

1
(12)

For the small-signal stability of the system, the disturbance of the
state variable is relatively small, and the system with pulse load needs
to meet the corresponding standards of its voltage and frequency, for
example, the voltage variation must be less than 2% of the rated value
when the pulse load is applied [3]. On this basis, the state variable
slightly fluctuating near the rated value can be extrapolated when the
pulse load is applied. The equation is assumed to be

= = =A A A i j n, 1, ,i j e (13)
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When the state matrixes Ai and Aj can be exchanged, the state-space
averaging method is of higher accuracy [13]. Because Ai and Aj in this
paper do not involve the switching of the system topology but fluc-
tuations in the state variables caused by a fluctuation in pulse load, they
are considered approximately equal. This assumption is reasonable and
will be further verified by the following numerical examples.

According to the above assumption and the matrix exponential
function defined as = =e A A

j j0 !
j

, the expansion of each factor in
(12) into a cubic term leads to:

= +
=

M Oe h( ( ) )A

i

n
h

1

3e

(14)

where O(h3) is the infinitesimal of h3 in the same order.
O(h3) contains n terms in addition to = e A

i
n h

1
e , so the following

expression is:

= +M Oe h( )A T 2e (15)

where e A Te is a satisfactory approximation of M in the sense of small-
signal stability.

According to the matrix theory, if all the eigenvalues of Ae contain
negative real parts, the spectral radius of M matrix is less than 1; if all
the eigenvalues of Ae contain positive real parts, the spectral radius of
M is greater than 1. Therefore, the state-space averaging method is
equivalent to the periodic-orbit method for the stability analysis of the
system with pulse load. Thus, the traditional state-space averaging
method can be used for that purpose.

4. Simulation of system stability

The case shown in Fig. 2 is taken for example, which is similar to the
system shown in Fig. 2 of Ref. [16]. The study is focused on the stability
of the system with periodic pulse load. The case is relatively simple, but
it can concisely display the effectiveness of the periodic-orbit method
and the state-space averaging method with which to deal with the
problem of system stability. The parameters are listed in Table 1. The
voltage of the bus bar is DC1KV, the total daily service loads are
R= 2 Ω, and the combination of propulsion load P0 with the pulse load
is represented by the constant power load P. T is the pulse period, P1

and P2 are respectively the low- and high-value power, D is the duty
cycle (only suitable for the rectangular-wave pulse load). The data in
Table 1 is known as reference data.

The system differential equations are as follows:

= +

=

i u

i u

i R
L

R
L

V
L

u
C CR

P
Cu

d
dt L c

d
dt L c

1 1

L

c
c

1 1

(16)

where iL, uc and P denote the inductance current, capacitance voltage
and load power, respectively.

During the period of 40 s, the total load is R= 2 Ω, the propulsion
load is P0 = 1.6 MW, P1 and P2 are respectively the low- and high-value
power of the pulse load, and P1 = 0, P2 = 0.4 MW. At this time, the
system is stable and goes into a steady state at 40 s, at which the high-
value power P2 of the pulse load suddenly rises from 0.4 MW to
0.55 MW and 0.62 MW, respectively, whose time-domain response

curves of state variables are shown in Figs. 3 and 4 respectively. In the
calculation n is taken as 400, the lower portion of each figure (marked
with *) shows a changing tendency in the case of taking the value of
state variable only at the beginning of each period. Under the condition
of rectangular-wave pulse or triangular-wave pulse, the periodic orbit is
stable when P2 increases to 0.55 MW, and it is unstable when P2 rises to
0.62 MW. In each pulse period, the state variable oscillates attenua-
tively due to low-value power pulse and incrementally due to high-
value power pulse. Figs. 3 and 4 indicate that the critical stable high-
value power of pulse load is between 0.55 MW and 0.62 MW.

The state-space averaging model of the system is expressed as:

= +

=

i u

i u

¯ ¯
¯ ¯

i R
L

R
L

V
L

u
C CR

P
Cu

d
dt L c

d
dt L c

¯

¯
¯

1 1 e
c

L

c

1 1

(17)

where īL and ūc represent the average value of state space in a pulse
period, and Pe = P0+(P1 + P2)/2 is the equivalent average power of P.
As there is not much change in capacitor voltage uc, here is the as-
sumption: = + +dtP

u
P P P

Cu
T

¯0
( ) / 2

c c
0 1 2 。

Considering R1 is relatively small, the periodic-orbit method and the
state-space averaging method are used to calculate the critical stable
high-value power of the pulse load; as shown in Table 2, the system
equilibrium point approaches that value and thus is expressed as:

= = +u V R
R

R P
V

i V
R

P
V

¯ ¯1c
e

L
e

0
1 1

2 0 (18)

The critical value of equivalent average power is approximate to

=
+ +

P V R R
R R R C L

(1 2 / )
2 1/(1/ / )ec

2
1

1 1 (19)

Then, the approximate critical value of equivalent power is

=P P P P2( )c ec2 0 1 (20)

P2 of the pulse load is continuously increased until the spectral radius of
Jacobian matrix of Poincaré mapping of the periodic orbit is up to 1,
then the critical stable P2 is obtained by the periodic-orbit method. The
calculation of P2 by the state-space averaging method is shown in (19)
and (20), as well as in Table 2. Obviously the result obtained from
calculation by the state-space averaging method is very close to that by
the periodic-orbit method, which is in agreement with the critical stable
high-value power of the pulse load that is between 0.55 MW and
0.62 MW, shown in Figs. 3 and 4. When the change of n in adopting the
periodic-orbit method has no influence on the critical stability.

With n taken as 4000 and P2 increased continuously, the spectral
radius of Jacobian matrix M changes, as shown in Table 3 and Fig. 5.
The solid lines represent the results of the triangular-wave pulse load,
while the dotted lines represent the results of the rectangular-wave
pulse load. By comparison, the rectangular-wave pulse load easily loses
stability because it experiences power step twice in one pulse period.
However, the triangular-wave pulse load experiences power step only
once in a pulse period. The values of power step of both the pulse loads
are equal in comparison.

In the use of reference data and variation data, the later is only uti-
lized to adjust the high-value power of the pulse load to critical value. By
taking n as 1000, the periodic orbit is calculated, as shown in Fig. 6,
where the dotted line and the solid line correspond to the reference data
and the variation data, respectively; the operating points in the use of the

V

L

C R
uc

+

- i=P/uc

R1
iL

Fig. 2. The system with pulse load.

Table 1
Parameters of ips.

V L R1 C R

1000 V 2mH 0.01 Ω 0.3F 2 Ω
P0 T P1 P2 D
1.6 MW 4 s 0 MW 0.4 MW 50%
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Fig. 3. Response curves of state variable with P2 increasing to 0.55 MW.
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Fig. 4. Response curves of state variable with P2 increasing to 0.62 MW.
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state-space averaging method are [2300 A, 977 V] and [2400 A, 976 V],
respectively. It is obvious that the periodic orbit oscillates near the op-
erating point without much difference. There is a bigger fluctuation in
the periodic orbit of rectangular-wave pulse than in the periodic orbit of
triangular-wave pulse under the same load. With an increase in the load,
the periodic orbit fluctuates more greatly. Fig. 6(a) shows the periodic
orbit of the system in the use of reference data and variation data, and
the system is stable or critical stable, respectively. The difference in
magnitude increases with time because the oscillation in magnitude of
the system in the use of variation data is bigger than the oscillation in
magnitude of the system in the use of reference data.

The Jacobian matrix M is calculated by use of Eq. (4), and Ai is
expressed as:

=
+

A
R
L L

C CR
P

Cu
i

1

1 1 i

ci

1

2 (21)

where Pi and uci denote the load power and the periodic-orbit capaci-
tance voltage at the ith moment, respectively.

According to Eq. (10), Matrix e A Te is calculated with the state-space
averaging method, Ae is expressed as:

=
+

A
R
L L

C CR
P

Cu
e

¯

1

1 1 e

c

1

0
2 (22)

With M as a criterion, the relative error in the norm between M and
e A Te is compared. As shown in Table 4, the error is small. The Com-
parison of the rectangular-wave pulse with the triangular-wave pulse
under the same load indicate that there is a bigger error in the norm
between the two matrixes. Furthermore, the error increases with the
load, and it becomes small as n increases.

With M as the standard, the relative error in spectral radius between
M and e A Te is found to be small through comparison, as shown in
Table 5. The comparison of the rectangular-wave pulse with the tri-
angular-wave pulse under the same load shows that the error between
the two matrixes is bigger. With an increase in the load, the error be-
comes large, and it becomes small as n increases. A comparatively big
error appearing in the variation data is due to a large fluctuation in
voltage at this time.

Table 2
Critical stable high-value power of pulse load.

Method Pulse load n= 400 n= 1000 n= 2000 n= 4000

The periodic-orbit method Triangular-wave 0.60 MW 0.60 MW 0.60 MW 0.60 MW
Rectangular-wave 0.59 MW 0.59 MW 0.59 MW 0.58 MW

The state-space averaging method Both 0.61 MW

Table 3
Critical stable high-value power of the pulse load.

P2(MW) 0.40 0.50 0.54 0.56 0.58

Triangular-wave Pulse 0.4759 0.6887 0.7986 0.8599 0.9259
Rectangular-wave Pulse 0.4811 0.7100 0.8341 0.9050 0.9826
P2(MW) 0.59 0.60 0.61 0.62
Triangular-wave Pulse 0.9608 0.9970 1.035 1.073
Rectangular-wave Pulse 1.024 1.068 1.113 1.160
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Fig. 5. Relationship between ρ(M) and P2 in using periodic-orbit method.
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Fig. 6. The periodic orbit of the system.

Table 4
The relative error in the norm between matrixes M and e Ae T .

Data n 1-norm 2-norm infinite-norm

Reference data 400 410%/406% 462%/456% 412%/407%
1000 10.7%/12.5% 8.81%/10.4% 10.5%/12.3%
4000 1.75%/3.73% 1.61%/3.58% 1.68%/3.59%
8000 0.989%/2.97% 0.955%/2.93% 0.947%/2.85%
10,000 0.895%/2.88% 0.875%/2.85% 0.857%/2.79%
20,000 0.769%/2.74% 0.769%/2.74% 0.744%/2.65%
40,000 0.738%/2.71% 0.742%/2.71% 0.723%/2.62%
80,000 0.730%/2.70% 0.736%/2.70% 0.718%/2.61%

Variation data 400 358%/337% 395%/372% 358%/340%
1000 8.29%/13.7% 6.73%/11.7% 8.31%/13.7%
4000 3.13%/10.5% 2.97%/10.3% 3.06%/10.2%
8000 2.59%/10.1% 2.55%/10.0% 2.53%/9.82%
10,000 2.52%/10.0% 2.50%/10.0% 2.47%/9.77%
20,000 2.44%/9.95% 2.43%/9.96% 2.38%/9.70%
40,000 2.41%/9.93% 2.42%/9.95% 2.36%/9.68%
80,000 2.41%/9.92% 2.41%/9.94% 2.36%/9.68%
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5. Conclusion

The stability of the IPS with pulse load involves two aspects. The
first aspect is about the periodic steady state of the state variables of the
system under the action of the pulse load. The problem refers to the
stability of the periodic orbit. The second is about whether there is an
unacceptable oscillation, increase or decrease in the system state vari-
able during a pulse period. The problem cannot be explained in terms of
the stability of the equilibrium point, so it needs to be further studied.
The study on the first aspect will lay the foundation for the study on the
second aspect. This paper presents a mathematical model of the IPS
with pulse load, deals with the periodic orbit and its Jacobian matrix of
Poincaré mapping according to the sensitivity of the state variable at
the final moment to that at the initial moment so as to calculate the
system stable margin. Also, a state-space averaging model of the system
is derived. The state-space averaging method is considered to be ap-
proximate to the periodic-orbit method in use in view of a small dis-
turbance in the state variable under the condition of small-signal dis-
turbance. Therefore, the state-space averaging method can be used to
analyze the stability of the IPS with pluse load.
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Table 5
The relative error in spectral radius between matrixes M and e Ae T

n Reference data Variation data

Triangular-
wave pulse

Rectangular-
wave pulse

Triangular-
wave pulse

Rectangular-
wave pulse

400 3.48% 5.07% 400 3.48%
1000 1.33% 2.43% 1000 1.33%
4000 1.10% 2.17% 4000 1.10%
8000 1.09% 2.16% 8000 1.09%
10,000 1.09% 2.16% 10,000 1.09%
20,000 1.09% 2.15% 20,000 1.09%
40,000 1.09% 2.15% 40,000 1.09%
80,000 1.09% 2.15% 80,000 1.09%
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