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a b s t r a c t

It is hard to predict wind power with high-precision due to its non-stationary and stochastic nature. The
wind power has developed rapidly around the world as a promising renewable energy industry. The
uncertainty of wind power brings difficult challenges to the operation of the power system with the
integration of wind farms into power grid. Accurate wind power prediction is increasingly important for
the stable operation of wind farms and the power grid. This study is combined support vector machine
and improved dragonfly algorithm to forecast short-term wind power for a hybrid prediction model. The
adaptive learning factor and differential evolution strategy are introduced to improve the performance of
traditional dragonfly algorithm. The improved dragonfly algorithm is used to choose the optimal pa-
rameters of support vector machine. The effectiveness of the proposed model has been confirmed on the
real datasets derived from La Haute Borne wind farm in France. The proposed model has shown better
prediction performance compared with the other models such as back propagation neural network and
Gaussian process regression. The proposed model is suitable for short-term wind power prediction.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Energy shortage has become a serious issue, due to the expan-
sion of production scale and consumer demand (Bagal et al., 2018).
The wind power is regarded as one of the most promising industry
to solve the energy crisis and has attracted due to its abundant
source, little pollution and low cost (Jiao et al., 2018). In recent
decades, the wind power industry developed rapidly all over the
world, and the cumulative installed capacity of global wind power
has continuously increased (Chitsaz et al., 2015). However, the
fluctuation and intermittence of wind will cause non-stationary
and stochastic nature of wind power, which has an adverse
impact on the power system (Zhang et al., 2017). Especially, large-
scale integration of wind power inevitably brings detrimental ef-
fects on the dispatching arrangement of the power grid and then
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reduces the reliability of the power grid (Shen et al., 2018). The
wind power prediction is regarded an effective approach to solve
such problem. For the electric power sector and wind farms, ac-
curate wind power forecasting results are required to make
appropriate generation, distribution and maintenance strategies.
Therefore, accurate wind power prediction is essential for the
integration of wind power and stable operation of the power
system.

Based on the time range, the forecasting can be divided into four
categories: long-term and medium-term forecasting (several
weeks or months), short-term forecasting (several hours or several
days), and ultra-short term forecasting (several minutes or several
hours) (Yuan et al., 2015). The medium-term and long-term wind
power forecasting can provide guidance for the maintenance plan
and operation management of wind farms, while the short-term
forecasting is used for economic dispatch of power system, en-
ergy reserve planning and electricity market operations (Kim and
Hur, 2018). The ultra-short term forecasting is used for balancing
load and the optimal optimization of spinning reserve, which has
high requirements for prediction accuracy (Liu et al., 2018a). Short-
term forecasting plays an important role in the coordination of
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wind turbines and economic dispatch planning, and has become
the focus of current study.

Generally, the wind power prediction methods can be classified
into deterministic prediction and probabilistic prediction. At pre-
sent, most methods belong to the deterministic prediction, which
can provide the predicted values on specific time. Common eval-
uation indexes include mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE) and so on.
For deterministic prediction, the classical prediction models
including support vector machines (SVM) and artificial neural
network (ANN) have beenwidely used (Catalao et al., 2009). On the
other hand, the probabilistic prediction can provide the probability
distribution of wind power corresponding to the predicted time.
The expected value of the probability distribution or the power
value with the highest probability of occurrence is regarded as the
predicted result of the wind power. Bayesian method and quantile
regression are both commonly used probabilistic prediction
methods (Bracale and Falco, 2015; Haque et al., 2014). In addition,
the ensemble methods have also been used to make up for the
limitations of a single classifier (Ren et al., 2015). The ensemble
method, improving the versatility and robustness of a single esti-
mator by combining several base estimators, can be divided into
two categories: averaging method and boosting method. The main
difference between the two categories is the combination method
of base estimators. In the averaging method, each method is in a
side-by-side relationship, and the hybrid model takes into account
the impacts of each sub-method (Abedinia et al., 2019). The
boosting method can enhance the ability of the basic model by
combining different optimization methods.

To sum up, the SVM model is ideal for the prediction of short-
term wind power due to its excellent learning ability in process-
ing small sample data. Therefore, the SVM is chosen as the basic
model for wind power prediction in this study. The parameters
selection has a great impact on prediction performance of SVM.
Traditional methods, such as grid search method, usually compare
different parameter combinations to select the best performance.
However, this type of method belongs to the enumeration method,
which is incapable for large-scale calculation with high precision.
To deal with this, an improved dragonfly algorithm (IDA) is pro-
posed to optimize the parameters of SVM model. Based on the
original dragonfly algorithm (DA), an adaptive learning factor and
differential evolution strategy are introduced to improve the search
ability. Thus, a hybrid model (IDA-SVM) combining IDA and SVM is
established to predict short-termwind power. The model indicated
from the experimental results that the performance of proposed
model is superior to other models, including SVM optimized by DA
(DA-SVM), SVM optimized by genetic algorithm (GA-SVM), SVM
optimized by grid search method (Grid-SVM), back propagation
neural network (BPNN) and Gaussian process regression (GPR).
Therefore, the IDA-SVM model is believed to contribute to the ac-
curate prediction of short-term wind power.

The remainder of this study is structured as follows: Section 2
presents the related theoretical approach and literature review.
Section 3 introduces the classic SVM theory. In Section 4, a detailed
introduction to DA and IDA is given. Section 5 describes the IDA-
SVM prediction model, and the predicted results are discussed. In
Section 6, the work, conclusions, and future work are summarized.

2. Literature review

Many efforts have been devoted to the wind power forecasting
(Abdoos, 2016). In general, thewind power forecastingmethods are
summarized into three categories: physical methods, statistical
methods and hybrid methods based on computational intelligence
(Liu et al., 2018b). The numerical weather prediction is commonly
employed to predict future weather phenomena and atmospheric
conditions. The difference betweenphysical and statistical methods
is whether the numerical weather prediction is applied. Specif-
ically, physical methods rely on the data from numerical weather
prediction for further prediction. The power output of wind farm is
calculated by the physical information of the mathematical model
of wind turbine, after obtaining the information of wind farm
location (Chang et al., 2017). Different with the physical methods,
the statistical methods refer to predicting by the mapping rela-
tionship between the historical meteorological data and historical
power data (Zhao et al., 2018). As a traditional statistical method,
time series model has been widely applied in the economic,
meteorological and other fields (Sun et al., 2018). The typical time
series models include auto regressive (AR) models, auto regressive
moving average (ARMA) models and etc (Karakus et al., 2017; Eissa
et al., 2018). The time seriesmethod is more effective for ultra-short
term prediction since the wind power has strong autocorrelation in
a short time. However, the time series model lacks nonlinear fitting
ability, which limits its prediction ability. In addition, the conven-
tional statistical methods also include the quantile regression and
stochastic differential equation (Wan et al., 2017; Iversen et al.,
2017). These two methods are suitable for probabilistic prediction
of wind power and can provide uncertain information in power
prediction.

In addition to conventional statistical methods, the machine
learning models, such as artificial neural networks and Gaussian
process regression, support vector machine, extreme learning
machine (ELM) and Bayesian methods, are extensively applied in
wind power forecasting (Zjavka and Misak., 2018). Furthermore,
the combination of intelligent algorithms and statistical ap-
proaches has further developed the prediction technology. Fang
and Chiang (2017) put forward a model involving the Gaussian
process and new composite covariance function. By verifying the
competition data, the performance of hybrid model is proved to be
superior to other competitors. A novel perdition system with deep
neural network was adopted by Qureshi et al. (2017). The effec-
tiveness of the system was verified by three error indexes of sta-
tistical analysis. Ghadimi et al. (2018) proposed a forecast engine
based on the radial neural network (RNN) and Elman neural
network (ENN). In addition, a chaotic binary shark smell optimi-
zation algorithm was employed to optimize the parameters of the
engine. In the research from Osorio et al. (2015), a novel hybrid
method consists of four different algorithms was investigated to
promote the operation speed and predictive accuracy of the system.
It was proved that the methodology is accurate and effective in the
Portuguese system. Moreover, Yuan et al. (2017) put forward the
time series approach to handle thewind power data and extract the
linear component. Then the linear component and nonlinear
components were imported into the least squares support vector
machine. By combining the ARMA and boosting algorithm, Jiang
et al. (2017) employed a hybrid model to process the uncertainty
of wind. Considering the mean absolute error, normalized mean
absolute error and root mean squared error, the performance of
proposed hybrid method has outperformed other traditional
methods. Based on neural network and improved shark smell al-
gorithm, Mirzapour et al. (2019) presented an accurate forecast
method, which has been used to forecast short-termwind and solar
power effectively. Shao et al. (2018) explored the infinite feature
selection method to perform mapping operations on the classified
data sets and employed the recurrent neural network as wind
forecasting system after classifying the features of time series. And
the prediction accuracy of proposed method is higher than those
traditional approaches with the standard dataset.

As a promising model in statistical learning theory, SVM has
advantages in high-dimensional and nonlinear modeling. Based on
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the structural risk minimization principle, the complex problems
are transformed into convex quadratic programming problem.
Therefore, it can overcome the over or under learning problems
inherent in methods, such as neural networks. On the other hand, it
also has strong nonlinear classification ability. The SVM has been
applied in many fields, such as feature recognition, regression
analysis and prediction (Liu et al., 2018c). Based on SVM technology,
Soualhi et al. (2015) conducted the research about the degree of ball
bearing degradation to improve the reliability and safety of the
industrial motor. Chen et al. (2015) used support vector regression
model to predict daily tourist flow on holiday. The feasibility of
model is proved by the daily flow data of historical visitors in
Mount Huang. In order to improve the safety of investment forecast
for the power grid, Dai et al. (2018) adopted differential evolution
(DE) and grey wolf optimization to improve the prediction ability of
SVM. The model accurately predicted grid investment of China in
the next four years and provided guidance for investment plans of
the power grid. Cao and Wu (2016) employed SVM to forecast the
monthly power consumption and the predicted results proved the
feasibility of the SVM for electricity consumption forecasting. Yang
et al. (2018) proposed a typhoon rainfall prediction model based on
SVM and the experimental results illustrates its good performance
in rainfall prediction, especially for long lead time prediction. In
view of the advantages of SVM in dealing with small samples and
nonlinear data, the SVM is chosen as the basic model for wind
power prediction in this study.

The performance of SVM model highly depends on internal
parameters, so it is important to adopt effective algorithm to choose
the optimal parameters (Amroune et al., 2018). As a novel swarm
intelligent algorithm, dragonfly algorithm has attracted the atten-
tion of scholars since proposed. Many improved methods have
been proposed to improve the ability of DA. Hariharan et al. (2018)
put forward a binary dragonfly optimization algorithm, which
adopts a new updating mechanism and elite strategy. In terms of
the concept of historical optimal position of individual and popu-
lation, Ranjini and Murugan, 2017 proposed a memory based
hybrid dragonfly algorithm. The differential evolution (DE) is an
adaptive global search algorithm, which has shown excellent per-
formance in the Congress on Evolutionary Computation (Storn and
Price. 1997). The differential evolution strategy plays an important
role in improving the global search ability and has been introduced
by many algorithms to improve performance. Zuo and Xiao (2014)
used an operator that hybrids DE and particle swarm optimization
(PSO) to solve the dynamic optimization problem. Wu et al. (2019)
max
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proposed a new method based on the improved grey wolf opti-
mization to find the optimal parameters of ELM. The application of
differential evolution strategy enhances the performance of origin
algorithm. Elaziz et al. (2019) introduced an intelligent method that
combines moth search algorithm and differential evolution algo-
rithm to solve cloud task scheduling. Therefore, this study proposes
an improved dragonfly algorithm (IDA) involving differential evo-
lution strategy and adaptive learning factor, which is used to choose
the parameters of SVM. Thus, an IDA-SVM prediction model is
established to predict the short-term wind power.

3. Support vector machine

The support vector machine adopts the structural risk minimi-
zation principle and has excellent generalization ability (Cortes and
Vapnik, 1995). Considering the capability of adaptive learning and
nonlinear approximation, the SVM has distinct advantages in
handling small samples and nonlinear data (Wang and Hu, 2015).
For a given dataset, the i-th input sample xi in a low-dimensional
space is mapped to a higher-dimensional vector space by a
nonlinear mapping function fðxÞ. The linear regression function
established in high dimensional space is simplified as:

f ðxÞ¼w,fðxÞ þ bx2Rd; b2R (1)

where u represents the weight, b is the parameter of bias, f ðxÞ
denotes the predicted values, x indicates the input vector in the
sample space, R stands for the real number field and d is the
dimension of sample space.

The support vector regression problem is replaced with a
mathematical optimization problem with constraints by applying
the structural risk minimization principle. The fitting error is taken
into account and two slack variables xi and xi

* are added. The
optimization function and constraints are as follows (Chang and
Lin, 2011):
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where i ¼ 1;2;…; n, n is the number of samples. C is the penalty
factor, ε is the loss function, yi ¼ f ðxiÞ.

The solution of the equation can be transformed into solving the
saddle point of the Lagrange equation by introducing the Lagrange
multiplier. After calculating the partial derivative of the equation
and applying the duality theorem, the final optimization problem is
presented as:
where ai, ai
* are the Lagrange multiplier and ai >0, ai

* >0,
Kðxi; xjÞ¼ 4ðxiÞ,4ðxjÞ represents kernel function, i; j ¼ 1;2;…;n

Furthermore, the nonlinear function is expressed as:

f ðxÞ¼
Xn
i¼1

ðai �ai
*ÞK�xi; xj�þ b (5)

The radial basis function is regard as an ideal classification
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function due to its wider convergence regions and higher resolu-
tion. In this study, the radial basis function is chosen as the kernel
function, which is defined as:

K
�
xi; xj

� ¼ exp
�
�kx� xik2

2d2

�
(6)

where, d is the width of the radial basis kernel function.
The application of radial basis function is helpful to show the

relationship between the original input and output space. In the
traditional SVM, the penalty factor C and the parameter d are
chosen empirically. In view of the diversity and complexity of the
input data, this approach will increase the randomness of the
prediction and lead to unreliable results. In order to solve such
problem, the improved dragonfly algorithm is used to choose
optimal parameters of SVM.
4. Dragonfly algorithm and improved dragonfly algorithm

The structure of the original dragonfly algorithm and improved
dragonfly algorithm are introduced detailed in this section. In
addition, the flow of improved algorithm is provided.
4.1. Dragonfly algorithm

The dragonfly algorithm is a novel metaheuristic algorithm
based on the behavior of dragonflies (Mirjalili, 2016). There are five
behaviors in the dragonfly population, namely separation, align-
ment, cohesion, the behavior of foraging and eluding enemies.

These behaviors are represented by the following mathematical
models using Eqs. (7)-(11).

(1) The behaviors of avoiding collisions:

Si ¼ �
XN
j¼1

X � Xj (7)

where j ¼ 1;2;…;N, i ¼ 1;2;…;Np,N is the number of neighbouring
individuals, and Np is the number of population. X denotes the
position of the current individual, Xj is the position of the j-th
neighbouring individual.

(2) The behavior of maintaining the coordinated flight with the
dragonfly group:

Ai ¼
PN

j¼1Vj

N
(8)

where Vj represents the velocity of the j-th neighbouring
individual.

(3) The behavior of moving closer to each other for every
individual:

Ci ¼
PN

j¼1Xj

N
� X (9)
(4) The behavior of foraging:

Fi ¼Xþ � X (10)

where Xþ represents the position of the current individual with
optimal fitness value.
(5) The behavior of eluding enemies:

Ei ¼X þ X� (11)

where X� represents the position of the current individual with
worst fitness value.

In order to update the location of dragonflies and simulate flight
behavior in the search space, two vectors: step size (DX) and po-
sition (X) are introduced. The step vector is computed as follows:

DXtþ1 ¼wDXt þ ðsSi þ aAi þ cCi þ fFi þ eEiÞ (12)

where s, a, c, f , e indicate the weights of five behaviors, u is the
inertia weight, t is the current iteration.

The position vector is updated as follows:

Xtþ1 ¼Xt þ DXtþ1 (13)

When there are no adjacent individuals, a randomwalk strategy
is introduced to enhance the randomness of the search. In this case,
the equation of position vector is shown in Eq. (14):

Xtþ1 ¼ LevyðdÞ � Xt þ Xt (14)

where d represents the dimension of the dragonfly individual.
The Levy flight strategy is described as in Eqs. (15)-(16):
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where r1, r2 are two stochastic numbers in [0,1], b is a constant,
which is taken as 1.5, GðxÞ ¼ ðx � 1Þ!.
4.2. Improved dragonfly algorithm

This sub-section discusses the (1) adaptive learning factor; (2)
differential evolution strategy; and (3) flow of improved algorithm.
4.2.1. Adaptive learning factor
The positions of dragonflies in the search space are randomly

distributed. When there are no nearby particles around the current
particle, the particle performs randomwalk strategy. This situation
will slow down the convergence trend and reduce the convergence
accuracy under the limited number of iterations. An adaptive
learning factor is introduced to solve this issue. And the relative
change rate of the fitness value of the dragonfly is defined:

v ¼
��f �Xt

i
�� f

�
Xt
best
���

f
�
Xt
best
�þ h

(17)

where i ¼ 1;2; …; Np, Xt
i represents the i-th individual of the

dragonfly at the t-th iteration. f ðXt
i Þ is the fitness value of the i-th

individual at the t-th iteration, f ðXt
bestÞ is the optimal fitness value

of dragonfly in the t-th iteration, h is the smallest constant in the
computer to avoid zero-division-error.

The adaptive learning factor of the i-th dragonfly in the t-th
iteration is expressed as follows:
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cti ¼
1

1þ e�v
(18)

When there are adjacent individuals around, the position vector
of the i-th dragonfly at the t-th iteration is described as follows:

Xtþ1
i ¼ cti X

t
i þ DXtþ1

i (19)

Otherwise, the equation of position vector is calculated as
follows:

Xtþ1
i ¼ cti X

t
i þ LevyðdÞ � Xt

i (20)
4.2.2. Differential evolution strategy
When the algorithm falls into the local optimal solution, the

search process will be stagnated. In order to avoid premature
convergence, the differential evolution strategy is introduced to
maintain the diversity of population. In addition, the DE/best/1
mutation strategy and dynamic scaling factor are adopted. The
specific equation is as follows (Xiang et al., 2015):
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best þ Fti,
�
Xt
p1 �Xt

p2

�
(21)

where Ht
i is the mutant vector, i ¼ 1;2; …; Np.

p1; p22f1; 2; …; Npg are random integers and p1s p2. F
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scaling factor and can be calculated below:
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where Finital and Ffinal are two constants f ðXt
worstÞ is the worst fitness

value among the population in the t-th iteration.
After obtaining the mutant vector, the crossover operation is

performed to produce a trial vector Vt
ij¼ðVt

i1; Vt
i2; /; Vt

idÞ using
Eq. (23):

Vt
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Xt
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where j ¼ 1;2; …; d,j02f1;2;…;dg is a random dimension, pCR
represents cross probability within the range of [0,1].

Finally, the population is updated by comparing the fitness
value. The selection strategy is shown as follows:

Xtþ1
i ¼
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:Vt
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�
Vt
i
�
< f
�
Xt
i
�

Xt
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(24)
4.2.3. The flow of improved dragonfly algorithm
The specific steps of IDA are depicted as follows:

(1) Parameters setting. Set the maximum number of iteration,
particle dimension, population size, upper and lower
boundaries of particles.

(2) Initialize the position vector and step vector.
(3) Start iteration. Update the weight coefficient and evaluate

the fitness values of population. Then update the position of
the food and enemy.

(4) Update the value of S, A, C, F, E using Eqs. (7)-(11) and update
the step vector using Eq. (12). When there is no neighbouring
solution around the current individual, update the position
using Eq. (20). Otherwise, update the location using Eq. (19).

(5) Perform the differential evolution strategy on each individ-
ual using Eqs. (21)-(24).

(6) Judge whether the termination condition is satisfied. If so,
stop the iteration and export the final result. Otherwise, re-
turn step 3.

The flow chart of IDA is shown in Fig. 1.
A set of classical functions are selected for testing the optimi-

zation ability of IDA. The first group contains two unimodal func-
tions and the second group contains three multimodal functions.
Specific description of dimension, the optimal value and domain is
shown in Table 1.

To validate the performance of IDA, the DA, whale optimization
algorithm (WOA), ant lion optimization (ALO) algorithm and PSO
were introduced for comparison. The entire experiment was per-
formed on Microsoft Windows 7 operating system and MATLAB
R2017a software. The computer configuration is specifically
described as: Core i5, 3.2 GHz, 8 GB RAM. Five functions ran 30
times independently, and the average value and standard deviation
are chosen as the evaluation indexes. The detailed parameters are
shown in Table 2. The ub and lb are the upper and lower boundaries
of search. The parameters of ALO and WOA are taken from the
default values (Mirjalili, 2015; Mirjalili and Lewis, 2016). The sta-
tistical results are presented in Table 3.

Table 3 indicates that the IDA outperforms other algorithms
from the perspective of convergence accuracy. In addition, the
standard deviation of the solution calculated by IDA is much
smaller than other algorithms, which proves strong stability of
proposed algorithm. From the results, the convergence accuracy
and stability of IDA are better than the other four algorithms
significantly.

5. Experimental results and discussion

This section presents the IDA-SVM prediction model and
simulation. It contains: (1) the source and type of the data set; (2)
the method of data processing; (3) objective function and evalua-
tion indexes; (4) flow chart of the IDA-SVM prediction model; and
(5) experimental results and discussions.

5.1. Data collection

The La Haute Borne wind farm is an open data windfarm,
located in Grand Est of northeastern France. In this study, the
dataset of La Haute Borne wind farm is collected and used (Engie,
2018). There are four wind turbines in wind farm and the infor-
mation is provided as follows: Rated power: 2050 KW, Hub height:
80m, Altitude: 411m, Rotor diameter: 82m. This study selects the
operating data of the first wind turbines with a total of 8778 data
points in 2017 and the sampling time period is 1 h. The operation
data in the winter and autumn are selected as the validation data to
evaluate the proposed method comprehensively. In addition to
wind power, the data set includes other variables, such as wind
speed, wind direction and temperature. Since the wind is consid-
ered as the main factor that affects wind power, the historical data
of wind speed andwind direction are chosen as input variables. 144
samples in 6 consecutive days are selected as training samples to
predict wind power in the next 48 h. And the ratio of training
samples to test samples is 3:1.

5.2. Data processing

(1) Normalization of the wind speed and wind power
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Fig. 1. The flow chart of IDA.
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The large fluctuation of sample data will affect the prediction
accuracy and lead to uncertainty of solution. The normalization of
data can reduce the impact of sample fluctuations and enhance the
prediction performance. In this process, the linear transformation
equation is used to normalizewind speed. The normalized equation
is shown as follow:
Vnor; i ¼
Vi � Vmin

Vmax � Vmin
(25)

where Vnor;i is the wind speed value after normalization, Vi is the
actual wind speed, Vmin and Vmax are the minimum and maximum
values in actual wind speed.
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The description of test function.
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i¼1½xi2 � 10 cosð2pxiÞþ 10� 10 [-5.12,5.12] 0

f4ðxÞ ¼ � 20 exp

0
@ � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
xi

2
r

� exp

"
1
n

Xn

i¼1
cosð2pxiÞ

#
þ 20 þ e

10 [-32,32] 0

f5ðxÞ ¼
1

4000

Xn

i¼1
xi

2 � Qn
i¼1cos

�
xiffiffi
i

p
�
þ 1

10 [-600,600] 0

Table 2
Parameter settings of different algorithms.

Algorithm number of max iterations size of population

500 40

IDA levy flight constant inertial weights pCR scaling factor,
1.5 [0.9,0.4] 0.6 [0.1,0.9]

DA levy flight constant inertial weights
1.5 [0.9,0.4]

PSO C1 C2 vmax

1.49445 1.49445 0.4*(ub-lb)

Table 3
The statistical results of IDA and other algorithms.

Functions Statistical indicator IDA DA ALO PSO WOA

f1ðxÞ Average 9.10e-106 4.80 4.36e-09 2.56 3.57e-76
Std 4.81e-105 10.61 1.90e-09 1.37 1.95e-75

f2ðxÞ Average 3.18e-53 1.51 0.48 0.44 1.70e-52
Std 1.40e-60 1.24 1.02 0.13 8.06e-52

f3ðxÞ Average 0 28.35 19.73 8.50 0
Std 0 12.77 7.76 2.29 0

f4ðxÞ Average 4.32e-15 2.30 0.20 2.05 4.44e-15
Std 6.48e-16 1.11 0.48 0.60 2.64e-15

f5ðxÞ Average 0.012 0.44 0.19 0.88 0.021
Std 0.031 0.26 0.10 0.12 0.05
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The normalization process of wind power also adopts the linear
transformation, which is same as the wind speed. Thus, the oper-
ation is not repeated.

(2) Normalization of the wind direction

The value of the wind direction ranges from between 0 and 360.
When normalizing wind direction data, the wind direction angle is
firstly converted into the radians. Then the corresponding sine and
cosine values are taken as input data. Therefore, the normalization
results include two sets of data: the sine and cosine values of wind
direction data.

5.3. Objective function and evaluation indexes

The mean squared error (MSE) has a widely application in the
statistic field, which can reflect the prediction accuracy effectively.
Therefore, the MSE is chosen as the objective function for evalu-
ating the performance of the proposed model. The smaller fitness
value represents better prediction accuracy. The objective function
is described as follow:

Fitness ¼ 1
n

Xn
i¼1

ðPi � YiÞ2 (26)
where Pi is the actual value of the wind power, and Yi is the pre-
dicted value, n is the number of training samples.

It is difficult to make a comprehensive evaluation using the
single error index. The RMSE is usually used to express the degree
of dispersion of the results. The MAE and MAPE can indicate the
deviation of the prediction. In addition, the coefficient of deter-
mination (R2) is adopted to measure the linear correlation between
the actual value and predicted value. In view of the large amplitude
of the original data, the normalized evaluation indexes are uni-
formly adopted. These indexes are shown below (Gao et al., 2019;
Mladenovic et al., 2016).

ENRMSE ¼
1
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðPi � YiÞ2
vuut � 100% (27)

EMAPE ¼
1
N

XN
i¼1

����Pi � Yi
Pi

����� 100% (28)

ENMAE ¼
1
N

XN
i¼1

����Pi � Yi
P

����� 100% (29)

R2 ¼

 PN
i¼1

ðPi�Pi

!
,

 
Yi � Yi

!!2

PN
i¼1

ðPi�Pi

!
,
PN
i¼1

�
Yi � Yi

� (30)

where Pi represents the i-th actual wind power value, Yi represents
i-th predicted value of wind power, N is the total number of test
samples, P represents the rated power of wind turbine, Pi and Yi are
average value corresponding to the true and predicted values.
5.4. The IDA-SVM forecasting model

The prediction process of the IDA-SVM prediction model is



Beginning

Set training samples 
and test samples

Data preprocessing

Initialize parameters of IDA and 
SVM

Initialize the position vector and 
step vector 

Start iteration

Update the weights and position vector, step vector
and optimal value of dragonfly

Y

N

Input the optimal 
parameters and test 
samples into SVM

Train IDA-SVM 
model

Make prediction with 
IDA-SVM model

Denormalize the 
predicted results

End

Evaluate fitness function of each dragonfly and 
obtain the locations of food and enemy

Gen<maxgen

Obtain the optimal parameters of 
the IDA-SVM model

Get the predicted
values

Y

Fig. 2. Flow chart of the IDA-SVM model for wind power prediction.
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depicted as follows:

� Step 1: Set the input and output variables. In Section 5.1, the
training set and test set are determined.

� Step 2: Data processing. The wind power, wind speed and wind
direction are normalized to achieve accurate prediction. The
specific process is shown in Section 5.2.

� Step 3: Initialize the parameters of IDA and SVM.
Table 4
Parameter settings of different models.

Parameters The maximum number of iterations Number of population

100 20

IDA-SVM levy flight constant inertial weights
1.5 [0.9, 0.4]

DA-SVM levy flight constant inertial weights
1.5 [0.9, 0.4]

GA-SVM crossover probability mutation probability
0.6 0.01

Grid-SVM C_step d_step
10 1

BPNN Maximum number of training steps Learning rate
100 0.1
� Step 4: Initialize the position vector and step vector.
� Step 5: Start iteration. Calculate the fitness value of each particle
by the fitness function and update the weight coefficient, par-
ticle positions, and step vector.

� Step 6: Judge whether the termination condition is reached. If
so, stop the iteration and record the optimal parameter. Other-
wise, return step 5.
Dimension Penalty parameter Kernel parameter

2 [0.1, 1200] [0.01, 100]

pCR scaling factor
0.6 [0.2,0.8]

gap
0.9

Convergence error Number of hidden layers
0.00004 8



Table 5
The evaluation indexes of predicted results in winter dataset.

Models ENRMSE ENMAE EMAPE R2

IDA-SVM 3.25% 2.75% 10.58% 0.9791
DA-SVM 4.42% 3.68% 13.06% 0.9607
GA-SVM 4.20% 3.48% 12.54% 0.9610
Grid-SVM 3.80% 3.09% 10.84% 0.9770
BPNN 8.70% 5.52% 13.46% 0.8994
GPR 10.89% 8.23% 19.92% 0.9765

Fig. 3. Wind power forecasting results of six models in winter dataset.

Fig. 4. The relative error curves of six models in winter dataset.

Table 6
Accuracy estimation of predicted point for winter dataset.

Model <3% <5%

number percentage number percenta

IDA-SVM 13 0.27 16 33.33
DA-SVM 10 0.208 15 31.25
GA-SVM 9 0.1875 14 29.17
Grid-SVM 9 18.75 16 33.33
BPNN 5 10.42 11 22.97
GPR 3 6.25 4 8.33
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� Step 7: Input the optimal parameters into the SVM model and
predict the test samples.

� Step 8: Perform anti-normalization operation on the predicted
result and save the final results.

Fig. 2 presents the flow chart of the IDA-SVM model for wind
power prediction.

5.5. Experimental results and discussions

In order to verify the performance of IDA-SVM model, the DA-
SVM model, GA-SVM model, Grid-SVM model, BPNN and GPR are
used to predict the wind power of the same sample points. The true
wind power is compared with the predicted results of the six
models respectively. The detailed parameters of each model are
shown in Table 4. Table 5 provides the comparison results of
different models in January.

Table 5 shows the proposed model is more accurate than other
models and the three error indicators of the IDA-SVM are the
smallest among all the methods. The prediction error is reduced by
26.4%, 25.27% and 23.44% compared to the DA-SVM model, which
demonstrates the effectiveness of improvement strategy. Thus, IDA
has shown the higher prediction precision compared with the
traditional grid search method and other algorithms. In addition,
the prediction performance of the SVM-based models is better than
BPNN and GPR, which shows the advantage of SVM in small sample
prediction. It can be found that the IDA-SVMmodel has the highest
performance among six prediction models. Fig. 3 presents the
predicted results of six models in January and the relative error
curves of 48 predicted points are shown in Fig. 4.

Fig. 3 indicates the wind power varies greatly within 48 h and
shows higher volatility. The power curve predicted by IDA-SVM is
closer to the actual value. Fig. 4 shows the relative error of the IDA-
SVM is the smallest among all the models. Compared with BPNN
and GPR, the SVM-based model has more accurate predicted value.
In addition, the relative absolute error of predicted value is counted.
The statistical results under different relative absolute error are
presented in Table 6. The sample points with relative absolute error
that is lower than 3%, 5%, 15%, 25% are recorded. From the statistical
results, the proposed model shows better prediction accuracy.
Approximately the absolute error of 93.75% sample points are less
than 25%, while the absolute error of 27% sample points are less
than 3%. So, the proposed model has shown excellent prediction
ability compared with other methods. In addition to winter data
set, thewind power data from September in autumn is also adopted
for validation to eliminate the prediction contingency. The pre-
dicted results of different models in September are listed in Table 7.

Table 7 presents three error indexes of the proposed model are
better than other models. The three error indicators of the IDA-SVM
model are 5.24%, 4.04% and 8.64%, which shows excellent predic-
tion performance. Compared with other models such as BPNN and
GPR, three error indicators of the IDA-SVM are significantly
reduced. In addition, when compared with the other three
<15% <25%

ge number percentage number percentage

38 79.17 45 93.75
38 79.17 41 85.42
37 77.08 41 85.42
38 79.17 45 93.75
32 66.67 42 87.5
18 37.5 29 60.42



Table 7
The evaluation indexes of predicted results in autumn dataset.

Models ENRMSE ENMAE EMAPE R2

IDA-SVM 5.24% 4.04% 8.64% 0.9544
DA-SVM 6.17% 5.15% 13.41% 0.9282
GA-SVM 6.52% 5.43% 14.31% 0.9200
Grid-SVM 5.87% 4.56% 10.27% 0.9311
BPNN 9.95% 7.90% 17.58% 0.8739
GPR 8.60% 6.37% 12.19% 0.8968

Fig. 5. Wind power forecasting results of six models in autumn dataset.
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prediction models using SVM, the prediction accuracy mainly de-
pends on the performance of the algorithm. From the predicted
Fig. 6. The relative error curves of
results, the IDA is superior to the other algorithm. Especially, the
MAPE of proposed model is significantly reduced. In addition, the
R2 of the proposed model is 0.9544, which indicates that the pre-
dicted trend of the proposed model is more accurate than other
models.

Fig. 5 depicts the prediction curves of different models in
September dataset. The IDA-SVM prediction curve is closer to
actual curve. Fig. 6 shows the relative error curves in autumn data
set and the fluctuation trend of each curve is different, and the
prediction error at different points also varies greatly. The relative
error curve of the proposed model is more stable, as there is no
point with large deviation compared with other models. Table 8
provides the distribution of relative absolute error of the pre-
dicted points. In Table 8, the absolute error of all sample points
predicted by the IDA-SVM model are less than 25%, while the
optimal accuracy of other models is only 89.58%. Besides, the pro-
posed model has also achieved the high level of performances
within the other error ranges. So, the prediction performance of the
IDA-SVM model is superior to other models. The IDA-SVM model
has shown higher prediction accuracy and stability in different
season of the year.

6. Concluding remarks

Accurate wind power forecasting promotes the utilization of
wind energy and stability of grid operation. It is difficult to achieve
accurate prediction using single prediction method due to the
intermittent and random nature of wind power. In this study, a
short-term wind power prediction model namely IDA-SVM is
proposed to improve the prediction accuracy of wind power. The
simulation results show that the proposed model has higher pre-
diction accuracy than other prediction models and is suitable for
short-term wind power prediction. Specifically, the findings of this
study are as follows:
six models in autumn dataset.



Table 8
Accuracy estimation of predicted point for autumn dataset.

Model <3% <5% <15% <25%

number percentage number percentage number percentage number percentage

IDA-SVM 10 20.82 14 29.17 41 85.42 48 100
DA-SVM 8 16.67 14 29.17 30 62.50 43 89.58
GA-SVM 8 16.67 11 22.92 29 60.42 40 83.33
Grid-SVM 6 12.50 14 29.17 35 72.92 46 85.83
BPNN 3 6.25 8 16.67 23 47.92 37 77.08
GPR 6 12.50 11 22.92 33 68.75 43 89.58

L.-L. Li et al. / Journal of Cleaner Production 242 (2020) 118447 11
(1) Adaptive learning factor and differential evolution strategy
are taken to boost optimization ability of DA. The perfor-
mance of IDA has been validated by a set of unimodal and
multimodal test functions.

(2) The proposed IDA is used to choose the optimal parameters
considering the parameter influence on the performance of
SVM. The hybrid IDA-SVMmodel is established to predict the
short-term wind power.

(3) The winter and autumn data set from La Haute Borne wind
farm is used as testing set to validate the prediction ability of
proposed model. The proposed model can effectively
improve the accuracy of wind power prediction compared
with the DA-SVM, GA-SVM, Grid-SVM, BPNN and GPR
models.

(4) Five evaluation indexes are used to evaluate the performance
of model. The three prediction errors, trend and accuracy of
the proposed model are superior to other models, especially
for BPNN and GPR models.

The contributions of this study are presented as follows. (1) An
IDA-SVM prediction model combining IDA and SVM is proposed,
which extends the short-termwind power forecasting method; (2)
The proposed model is compared to other machine learning
models. The prediction difference between different models is
provided by experimental results; (3) The performance of the
proposed model is analyzed synthetically with the datasets in
different seasons, and the prediction accuracy of the proposed
model is proved to be superior to other models; and (4) The pro-
posed method is beneficial to reduce the impact of the wind power
grid-connection on power system and provide reference for the
dispatching plan of the power system.

This study still need further research. Since the proposed model
chooses SVM as the basic model, the prediction accuracy of pro-
posed model depends on the regression ability of the SVM itself.
When dealing with large sample, the accuracy of model may
decrease. The future study should introduce more models such as
Least squares support vector machine, grey model and other
models, which can provide more choices in the prediction field. In
addition, the hybrid model combing different methods should be
investigated. Therefore, further study will concentrate on several
directions: (1) Applying the proposed model to other fields, such as
photovoltaic power generation forecast; and (2) Adopting more
advanced methods to enhance the prediction accuracy.

Acknowledgment

This work was supported by the Natural Science Foundation of
Hebei Province of China [Project No. E2018202282] and the key
project of Tianjin Natural Science Foundation [Project No.
19JCZDJC32100].

Nomenclature

ALO Ant lion optimization
GPR Gaussian process regression
ANN Artificial neural network
IDA Improved dragonfly algorithm
AR Auto regressive
IDA-SVM Support vector machine optimized by improved

dragonfly algorithm
ARMA Auto regressive moving average
MAE Mean absolute error
BPNN Back propagation neural network
MAPE Mean absolute percentage error
DA Dragonfly algorithm
MSE Mean squared error
DA-SVM Support vector machine optimized by dragonfly

algorithm
NMAE Normalized mean absolute error
DE Differential evolution
NRMSE Normalized root mean squared error
ELM Extreme learning machine
PSO Particle swarm optimization
ENN Elman neural network
RMSE Root mean squared error
GA Genetic algorithm
RNN Radial neural network
GA-SVM Support vector machine optimized by genetic algorithm
SVM Support vector machine
Grid-SVM Support vector machine optimized by grid search

method
WOA Whale optimization algorithm
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