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This paper proposes a novel population-based optimization algorithm called Sine Cosine Algorithm (SCA)

for solving optimization problems. The SCA creates multiple initial random candidate solutions and re-

quires them to fluctuate outwards or towards the best solution using a mathematical model based on

sine and cosine functions. Several random and adaptive variables also are integrated to this algorithm to

emphasize exploration and exploitation of the search space in different milestones of optimization. The

performance of SCA is benchmarked in three test phases. Firstly, a set of well-known test cases includ-

ing unimodal, multi-modal, and composite functions are employed to test exploration, exploitation, local

optima avoidance, and convergence of SCA. Secondly, several performance metrics (search history, tra-

jectory, average fitness of solutions, and the best solution during optimization) are used to qualitatively

observe and confirm the performance of SCA on shifted two-dimensional test functions. Finally, the cross-

section of an aircraft’s wing is optimized by SCA as a real challenging case study to verify and demon-

strate the performance of this algorithm in practice. The results of test functions and performance met-

rics prove that the algorithm proposed is able to explore different regions of a search space, avoid local

optima, converge towards the global optimum, and exploit promising regions of a search space during

optimization effectively. The SCA algorithm obtains a smooth shape for the airfoil with a very low drag,

which demonstrates that this algorithm can highly be effective in solving real problems with constrained

and unknown search spaces. Note that the source codes of the SCA algorithm are publicly available at

http://www.alimirjalili.com/SCA.html.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Optimization refers to the process of finding optimal values for

he parameters of a given system from all the possible values to

aximize or minimize its output. Optimization problems can be

ound in all fields of study, which makes the development of op-

imization techniques essential and an interesting research direc-

ion for researchers. Due to the drawbacks of the conventional

ptimization paradigms, local optima stagnation, and the need to

erivate the search space [1], a growing interest has been ob-

erved in stochastic optimization approaches [2] over the last two

ecades [3–5].

Stochastic optimization algorithms consider optimization prob-

ems as black boxes [6]. This means that the derivation of the

athematical models is not required because such optimization

aradigms only change the inputs and monitor the outputs of the

ystem for maximizing or minimizing its outputs. Another advan-

age of considering problems as black boxes is the high flexibility,
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eaning that stochastic algorithms are readily applicable to prob-

ems in different fields. As the name of stochastic optimization

echniques imply, they optimize optimization problems randomly

7]. Therefore, they intrinsically benefit from higher local optima

voidance compared to the conventional optimization algorithms.

There are different classification for stochastic optimization al-

orithms in the literature. Two main classifications are based on

he inspiration of an algorithm (swarm intelligence-based [8], evo-

utionary [9], physics-based [10], etc.) and the number of random

olutions that an algorithm generates in each step of optimiza-

ion. The last classification divides the algorithms to two cate-

ories: individual-based and population-based algorithms. In the

ormer class, only one solution is generated randomly and im-

roved over the course of optimization. In the latter class, how-

ver, an optimization algorithm generates more than one random

olution (mostly many) and improves them during optimization.

Due to the above-mentioned advantages, stochastic optimiza-

ion techniques have become very popular in the literature. This

opularity is not only in the field of optimization but also other

elds of study. The application of stochastic algorithms can be

ound in different branches of science and industry. Since the focus
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Fig. 1. Different components of an optimization system.
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of this paper is on the theory, the applications are not discussed

further and interested readers are referred to [11,12].

The theoretical researches in the literature can be divided to

three main directions: improving the current techniques, hybridiz-

ing different algorithms, and proposing new algorithms. In the

first approach, researchers try to equip algorithms with different

mathematical or stochastic operators to improve the performance.

Popular methods in this class are: chaotic maps [13–17], evolu-

tionary operators [18–23], and local searches [24–27]. The sec-

ond popular research direction deals with hybridizing different al-

gorithms to improve the performance or solve specific problems

[28–35]. There is a significant number of hybrid meta-heuristics

in the literature such as: PSO-GA [36], PSO-ACO [37], ACO-GA

[38], GA-DE [39], PSO-DE [40], ACO-DE [41], KH-CS [42], and

KH-BBO [43].

Last but not least, the proposal of new algorithms is a pop-

ular research avenue for many researchers. Inspiration of a new

algorithm can be from evolutionary phenomena, collective behav-

ior of creatures (swarm intelligence techniques), physical rules, and

human-related concepts. Some of the recent and popular algo-

rithms in each of these subclasses are as follows:

• Evolutionary techniques: Genetic Algorithms (GA) [44], Differ-

ential Evolution (DE) [45–48], Biogeography-Based Optimization

algorithm (BBO) [49], and Evolution Strategy (ES) [50].

• Swarm intelligence techniques: Ant Colony Optimization [51]

(ACO), Particle Swarm Optimization (PSO) [52], and Artificial

Bee Colony (ABC) algorithm [53].

• Physics-based techniques: Gravitational Search Algorithm (GSA)

[54], Colliding Bodies Optimization (CBO) [55], and Black Hole

(BH) [56].

• Human-related techniques: League Championship Algorithm

(LCA) [57], Mine Blast Algorithm (MBA) [58], and Teaching-

Learning-Based Optimization (TLBO) [59].

Despite the significant number of recently proposed algorithms

in this field, there is a fundamental questions here as if and why

we need more optimization techniques. This question can be an-

swered referring to the so-called No Free Lunch (NFL) theorem

[60]. This theorem logically proves that no one can propose an

algorithm for solving all optimization problems. This means that

the success of an algorithm in solving a specific set of problems

does not guarantee solving all optimization problems with differ-

ent type and nature. In other words all the optimization techniques

perform equal in average when considering all optimization prob-

lems despite the superior performance on a subset of optimization

problems. The NFL theorem allows researchers to propose new op-

timization algorithms or improve/modify the current ones for solv-

ing subsets of problems in different fields.

This is also the motivation of this work, in which a simple

yet effective optimization algorithm is proposed to optimize real

problems with unknown search spaces. The paper also shows that

simple mathematical functions can be used to design optimization

algorithms in this field. The algorithm proposed utilizes the func-

tions sine and cosine to explore and exploit the space between two

solutions in the search space with the hope to find better solu-

tions. It is worth mentioning here that the author has proposed an

algorithm called Moth-Flame Algorithm (MFO) [61] recently. The

algorithm proposed in this work is completely different in terms

of inspiration, mathematical formulation, and real-world applica-

tion. The MFO algorithm mimics the navigation of moths in nature,

whereas the SCA algorithm is based on sine/cosine mathematical

functions to solve optimization problems. MFO has been utilized to

optimize the shape of a propeller, while SCA is employed to opti-

mize the shape a 2D airfoil in aircraft wings. The rest of the paper

is organized as follows:
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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Section 2 includes the preliminaries and essential definitions,

resents related works, and reviews the literature. Section 3

emonstrates the mathematical model and proposes the Sine Co-

ine Algorithm (SCA). The test beds employed and results obtained

re presented and discussed in Section 4. The shape of the cross-

ection of an aircraft’s wing is optimized by the SCA algorithm in

ection 5, which demonstrates the merits of this algorithm in solv-

ng real challenging problems with a large number of constraints

nd unknown search spaces. Eventually, Section 6 lists the achieve-

ent of the paper, concludes the work, and suggests several direc-

ions for future studies.

. Related works

This section first covers the preliminaries and definitions of op-

imization. The mechanisms and challenges of stochastic/heuristic

ptimization techniques are then discussed. Eventually, the moti-

ation of this work is provided.

.1. Preliminaries and definitions

Single-objective optimization deals with optimizing only one

bjective. This terms stands before multi-objective optimization

here there is more than one objective to be optimized. Han-

ling multiple objectives requires special considerations and mech-

nisms, so the interested readers are referred to the recent review

aper witter by Zhou et al. [5] since the focus of this work is on

ingle-objective optimization.

In addition to the objective, other elements involved in the

ingle-objective optimization process are parameters and con-

traints. Parameters are the variables (unknowns) of optimization

roblems (systems) that have to be optimized. As Fig. 1 shows,

ariables can be considered as primary inputs and constraints are

he limitations applied to the system. In fact, the constraints de-

ne the feasibility of the obtained objective value. Examples of

onstraints are stress constraints when designing aerodynamic sys-

ems or the range of variables.

Other inputs of a system that may affect its output are op-

rating/environmental conditions. Such inputs are considered as

econdary inputs that are defined when a system is operating in

he simulated/final environment. Examples of such conditions are:

emperature/thickness of fluid when a propeller is rotating or the

ngle of attack when an aircraft is flying. These types of inputs

re not optimized by the optimizers but definitely have to be

onsidered during optimization since they may have significant im-

acts on the outputs.
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 2. Example of a search space with two variables and several constraints.
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Fig. 3. Stochastic population-based optimizers consider the system as black box.

a

d

2

p

s

G

c

o

c

t

G

s

t

a

n

T

t

a

i

u

a

T

s

p

i

c

p

t

o

G

b

f

s

s

r

p

b

t

d

i

Without the loss of generality, a single-objective optimization

an be formulated as a minimization problem as follows:

inimize : f (x1, x2, x3, . . . , xn−1, xn) (2.1)

ub ject to : gi(x1, x2, x3, . . . , xn−1, xn) ≥ 0, i = 1, 2, . . . , m

(2.2)

i(x1, x2, x3, . . . , xn−1, xn) = 0, i = 1, 2, . . . , p (2.3)

bi ≤ xi ≤ ubi i = 1, 2, . . . , n (2.4)

here n is number of variables, m indicates the number of inequal-

ty constraints, p shows the number of equality constraints, lbi is

he lower bound of the i-th variable, and ubi is the upper bound of

he i-th variable.

As can be seen in Eqs. (2.2) and (2.3), there are two types

f constraints: inequality and equality. The set of variables, con-

traints, and objective constructs a search space for a given prob-

em. Unfortunately, it is usually impossible to draw the search

pace due to the high-dimensionality of the variables. However, an

xample of a search space constructed by two variables and several

onstraints are shown in Fig. 2.

It may be observed in Fig. 2 that the search space can have

ultiple local optima, but one of them is the global optimum (or

ore than one in case of a flat landscape). The constraints create

aps in the search space and occasionally split it to various sepa-

ated regions. In the literature, infeasible regions refer to the areas

f the search space that violate constraints.

The search space of a real problem can be super challenging.

ome of the difficulties of the real search spaces are discontinuity,

arge number of local optima, large number of constrains, global

ptimum located on the boundaries of constraints, deceptive

alleys towards local optima, and isolation of the global optimum.

n optimization algorithm should be equipped with suitable

perators for handling all these difficulties to find the global

ptimum.

With formulating a problem, an optimizer would be able to

une its variables based on the outputs and constraints. As men-

ioned in Section 1, one of the advantages of stochastic algorithms

s that they consider a system as a black box. Fig. 3 shows that

he optimizer only provides the system with variables and ob-

erves the outputs. The optimizer then iteratively and stochasti-

ally changes the inputs of the system based on the feedbacks

output) obtained so far until the satisfaction of an end criterion.

he process of changing the variables based on the history of out-

uts is defined by the mechanism of an algorithm. For instance,

SO saves the best solutions obtained so far and encourages new

olutions to relocate around them.
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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The literature of stochastic/heuristic optimization techniques

nd challenges for designing them are reviewed and discussed in

etail in the following subsection.

.2. Literature review

In the field of optimization, in 1977, a revolutionary idea was

roposed by Holland where evolutionary concepts in nature was

imulated in computer for solving optimization problems [44]. The

A algorithm came to existence and opened a new way of tackling

hallenging problems in different fields of study. The general idea

f the GA algorithm was very simple. It mimicked selection, re-

ombination, and mutation of genes in nature. In fact, the Darwin’s

heory of evolution was the main inspiration of this algorithm. In

A, the optimization process is started by creating a set of random

olutions as candidate solutions (individuals) for a given optimiza-

ion problem. Each variable of the problem is considered as a gene

nd the set of variables is analogous to chromosomes. Similarly to

ature, a cost function defines the fitness of each chromosome.

he whole set of solutions is considered as a population. When

he fitness of chromosomes are calculated, the best chromosomes

re randomly selected for creating the next population. They main

nspiration of the GA algorithm is here, in which the fittest individ-

als have higher probability to be selected and participated in cre-

ting the next population similarly to what is happening in nature.

he next step is the combination of the individuals selected. In this

tep the genes from pairs of individuals are randomly merged to

roduce new individuals. Eventually, some of the individuals’ genes

n the population are changed randomly to mimic mutation.

The GA algorithm proved that the nature-inspired paradigms

an be very simple yet powerful in optimizing problems. After the

roposal of the GA algorithm, the field of stochastic optimization

echniques received much attention. The PSO algorithm [52] is the

utcome of this popularity several years after the invention of the

A algorithm. The PSO algorithm mimics the social and individual

ehavior of herd of animals, schools of fishes, or flocks of birds in

oraging. Similarly to the GA algorithm, the optimization process

tarts with a set of randomly created solutions. In addition to the

et of solutions, there is another set called velocity set which is

esponsible for storing and defining the amount of movement of

articles. During optimization, the velocity of a particle is updated

ased on the best solution that it has obtained so far as well as

he best solution that the swarm has found. There are three ran-

om components in defining the tendency towards previous veloc-

ty, effect of the personal best, and the impact of the global best.
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 4. Individual-based versus population-based stochastic optimization algorithms.
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Since the best solutions are saved in the PSO algorithm, there is

always high possibility of finding better solutions when searching

around them. This is the key reason about the success of the PSO

algorithm.

After the development of GA and PSO algorithms, several

algorithms were developed and proposed as well. As men-

tioned in the introduction, they can be divided to two main

classes: individual-based versus population-based algorithms. The

individual-based algorithm creates only a single solutions and

evolves/improves it over the course of iterations. However, a

population-based algorithm initializes the optimization process by

more than one solutions. The solutions in this set are then en-

hanced over the course of iterations. The way that these two fami-

lies perform optimization are illustrated in Fig. 4. The advantage of

individual-based algorithms is the need for a low number of func-

tion evaluation because a single solution only needs one function

evaluation. Therefore, such optimization techniques require 1 × T

number of function evaluations where T is the maximum number

of iterations. However, high probability of local optima stagnation

and lack of information sharing are the main drawbacks of these

algorithms, which is due to the low number of solutions. Fig. 4(a)

shows that the single candidate solution entraps in the local op-

tima which is very close the global optimum.

In contrary, population-based algorithms benefit from high

local optima avoidance since they employ multiple solutions.

Fig. 4(b) illustrates how the collection of candidate solutions re-

sults in finding the global optimum. Multiple solutions also assist

a population-based algorithm to collect information from differ-

ent regions of the search space easily. This is done by informa-

tion exchange between the search agents during the optimization

process. Therefore, search agents are able to better and faster ex-

plore and exploit search spaces. However, the main drawbacks of

these methods is the large number of function evaluation. Such

optimization techniques require n × T number of function evalu-

ations where n is the number of solutions (search agents) and T is

the maximum number of iterations.

2.3. Motivation of this work

Despite the need for more function evaluations, the literature

shows that population-based algorithms are highly suitable for

solving real challenging problems since they are able avoid local

optima, explore the search space, and exploit the global optimum

more reliably compared to individual-based algorithms. In addi-
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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ion, the NFL theorem says that all algorithms perform equal on

ll optimization problems. Therefore, there are still problems that

ave not yet been solved, or they can be solved better by new al-

orithms. These two reasons are the main motivations of this work,

n which a novel population-based optimization algorithm is pro-

osed and compared to the current well-known algorithms in the

iterature.

. Sine Cosine Algorithm (SCA)

Generally speaking, population-based optimization techniques

tart the optimization process with a set of random solutions. This

andom set is evaluated repeatedly by an objective function and

mproved by a set of rules that is the core of an optimization tech-

ique. Since population-based optimization techniques look for the

ptima of optimization problems stochastically, there is no guaran-

ee of finding a solution in a single run. However, with enough

umber of random solutions and optimization steps (iterations),

he probability of finding the global optimum increases.

Regardless of the differences between algorithms in the field of

tochastic population-based optimization, the common is the di-

ision of optimization process to two phases: exploration versus

xploitation [62]. In the former phase, an optimization algorithm

ombines the random solutions in the set of solutions abruptly

ith a high rate of randomness to find the promising regions of

he search space. In the exploitation phase, however, there are

radual changes in the random solutions, and random variations

re considerably less than those in the exploration phase.

In this work, the following position updating equations are pro-

osed for both phases:

t+1
i

= Xt
i + r1 × sin (r2) ×

∣∣r3Pt
i − Xt

i

∣∣ (3.1)

t+1
i

= Xt
i + r1 × cos(r2) ×

∣∣r3Pt
i − Xt

i i

∣∣ (3.2)

here Xt
i

is the position of the current solution in i-th dimension

t t-th iteration, r1/r2/r3 are random numbers, Pi is position of the

estination point in i-th dimension, and || indicates the absolute

alue.

These two equations are combined to be used as follows:

t+1
i

=
{

Xt
i

+ r1 × sin (r2) ×
∣∣r3Pt

i
− Xt

i

∣∣, r4 < 0.5

Xt
i

+ r1 × cos(r2) ×
∣∣r3Pt

i
− Xt

i i

∣∣, r4 ≥ 0.5
(3.3)

here r4 is a random number in [0,1]
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 5. Effects of Sine and Cosine inn Eqs. (3.1) and (3.2) on the next position.

Fig. 6. Sine and cosine with range of [−2,2].

S

r

b

r

t

d

p

F

c

r

C

s

t

e

d

a

a

fi

s

c

i

t

u

q

b

s

[

r

p

e

p

t

r

w

a

c

f

s

[

t

F

m

s

t

w

p

i

w

b

t

u

i

d

As the above equations show, there are four main parameters in

CA: r1, r2, r3, and r4. The parameter r1 dictates the next position’s

egion (or movement direction) which could be either in the space

etween the solution and destination or outside it. The parameter

2 defines how far the movement should be towards or outwards

he destination. The parameter r3 brings a random weight for the

estination in order to stochastically emphasize (r3 > 1) or deem-

hasize (r3 < 1) the effect of destination in defining the distance.

inally, the parameter r4 equally switches between the sine and

osine components in Eq. (3.3).

Due to the use of sine and cosine in this formulation, this algo-

ithm is name Sine Cosine Algorithm (SCA). The effects of Sine and

osine on Eqs. (3.1) and (3.2) are illustrated in Fig. 5. This figure

hows that how the proposed equations define a space between

wo solutions in the search space. It should be noted that this

quation can be extended to higher dimensions although a two-

imensional model is illustrated in Fig. 5. The cyclic pattern of sine

nd cosine function allows a solution to be re-positioned around

nother solution. This can guarantee exploitation of the space de-

ned between two solutions. For exploring the search space, the

olutions should be able to search outside the space between their

orresponding destinations as well. This can be achieved by chang-

ng the range of the sine and cosine functions as shown in Fig. 6.

A conceptual model of the effects of the sine and cosine func-

ions with the range in [−2, 2] is illustrated in the Fig. 7. This fig-

re shows how changing the range of sine and cosine functions re-

uires a solution to update its position outside or inside the space

etween itself and another solution. The random location either in-
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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ide or outside is achieved by defining a random number for r2 in

0, 2π ] in Eq. (3.3). Therefore, this mechanism guarantees explo-

ation and exploitation of the search space respectively.

An algorithm should be able to balance exploration and ex-

loitation to find the promising regions of the search space and

ventually converge to the global optimum. In order to balance ex-

loration and exploitation, the range of sine and cosine in Eqs. (3.1)

o (3.3) is changed adaptively using the following equation:

1 = a − t
a

T
(3.4)

here t is the current iteration, T is the maximum number of iter-

tions, and a is a constant.

Fig. 8 shows how this equation decreases the range of sine and

osine functions over the course of iterations. It may be inferred

rom Figs. 7 and 8 that the SCA algorithm explores the search

pace when the ranges of sine and cosine functions are in (1,2] and

−2, −1). However, this algorithm exploits the search space when

he ranges are in the interval of [−1,1].

After all, the pseudo code of the SCA algorithm is presented in

ig. 9. This figure shows that the SCA algorithm starts the opti-

ization process by a set of random solutions. The algorithm then

aves the best solutions obtained so far, assigns it as the destina-

ion point, and updates other solutions with respect to it. Mean-

hile, the ranges of sine and cosine functions are updated to em-

hasize exploitation of the search space as the iteration counter

ncreases. The SCA algorithm terminates the optimization process

hen the iteration counter goes higher than the maximum num-

er of iterations by default. However, any other termination condi-

ion can be considered such as maximum number of function eval-

ation or the accuracy of the global optimum obtained.

With the above operators, the proposed algorithm theoretically

s able to determine the global optimum of optimization problems

ue to the following reasons:

• SCA creates and improves a set of random solutions for a

given problem, so it intrinsically benefits from high exploration

and local optima avoidance compared to individual-based

algorithms.

• Different regions of the search space are explored when the

sine and cosine functions return a value greater than 1 or less

than −1.

• Promising regions of the search space is exploited when sine

and cosine return value between −1 and 1.
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 7. Sine and cosine with the range in [−2,2] allow a solution to go around (inside the space between them) or beyond (outside the space between them) the destination.

Fig. 8. Decreasing pattern for range of sine and cosine (a = 3).

Fig. 9. General steps of the SCA Algorithm.
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• The SCA algorithm smoothly transits from exploration to

exploitation using adaptive range in the sine and cosine

functions.

• The best approximation of the global optimum is stored in a

variable as the destination point and never get lost during op-

timization.

• Since the solutions always update their positions around the

best solution obtained so far, there is a tendency towards the

best regions of the search spaces during optimization.

• Since the proposed algorithm considers optimization problem

as black boxes, it is readily incorporable to problems in differ-

ent fields subject to proper problem formulation.

The next sections employ a wide range of test problems and

one real case study to investigate, analyse, and confirm the effec-

tiveness of the SCA algorithm.
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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. Results and discussion

In the field of optimization using meta-heuristics and evolu-

ionary algorithms, several test cases should be employed to con-

rm the performance of an algorithm. This is due to the stochastic

ature of these algorithms, in which a proper and sufficient set

f test functions and case studies should be employed to confi-

ently make sure that the superior results are not happened by

hance. However, there is no clear definition of suitability for a set

f benchmark cases studies. Therefore, researchers try to test their

lgorithms on as many test cases as possible. This paper also em-

loys several test functions with different characteristics. Later, a

eal challenging Computational Fluid Dynamics (CFD) problem is

olved by the SCA algorithm as well.

The set of cases studies employed includes three families

f test functions: unimodal, multi-modal, and composite test
solving optimization problems, Knowledge-Based Systems (2016),
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Table 1

Results on benchmark functions.

F SCA PSO GA BA FPA FA GSA

ave std ave std ave std ave std ave std ave std ave

F1 0.0000 0.0000 0.0003 0.0011 0.8078 0.4393 1.0000 1.0000 0.2111 0.0717 0.0004 0.0002 0.0000

F2 0.0000 0.0001 0.0693 0.2164 0.5406 0.2363 1.0000 1.0000 0.9190 0.7804 0.0177 0.0179 0.0100

F3 0.0371 0.1372 0.0157 0.0158 0.5323 0.2423 1.0000 1.0000 0.2016 0.1225 0.0000 0.0004 0.0016

F4 0.0965 0.5823 0.0936 0.4282 0.8837 0.7528 1.0000 1.0000 0.8160 0.5618 0.0000 0.0107 0.1177

F5 0.0005 0.0017 0.0000 0.0000 0.6677 0.4334 1.0000 1.0000 0.0813 0.0426 0.0000 0.0000 0.0000

F6 0.0002 0.0001 0.0004 0.0033 0.7618 0.7443 1.0000 1.0000 0.2168 0.1742 0.0004 0.0002 0.0000

F7 0.0000 0.0014 0.0398 0.0634 0.5080 0.1125 1.0000 1.0000 0.3587 0.2104 0.0009 0.0022 0.0021

F8 1.0000 0.0036 1.0000 0.0036 1.0000 0.0055 0.0000 1.0000 1.0000 0.0029 1.0000 0.0168 1.0000

F9 0.0000 0.7303 0.3582 0.8795 1.0000 0.6881 0.4248 1.0000 0.8714 0.8665 0.0190 0.3298 0.0222

F10 0.3804 1.0000 0.1045 0.0541 0.8323 0.0686 0.8205 0.0796 1.0000 0.0162 0.0000 0.0079 0.1569

F11 0.0000 0.0051 0.0521 0.0448 0.7679 0.2776 1.0000 1.0000 0.2678 0.0706 0.0074 0.0001 0.4011

F12 0.0000 0.0000 0.0000 0.0000 0.4573 0.4222 1.0000 1.0000 0.0008 0.0015 0.0000 0.0000 0.0000

F13 0.0000 0.0000 0.0000 0.0000 0.6554 0.8209 1.0000 1.0000 0.0187 0.0375 0.0000 0.0000 0.0000

F14 0.3908 0.1924 0.1816 1.0000 0.4201 0.1610 1.0000 0.6977 0.3786 0.1716 0.0000 0.9571 0.0961

F15 0.0230 0.0676 0.3016 1.0000 0.0000 0.0779 1.0000 0.7614 0.2235 0.4252 0.4395 0.9135 0.2926

F16 0.0497 0.4921 0.0427 0.7228 0.0000 0.2422 0.3572 0.7629 0.2652 0.6012 0.5298 1.0000 1.0000

F17 0.0000 0.1105 0.0249 1.0000 0.1093 0.1873 0.8189 0.7754 0.5197 0.4847 0.7093 0.8842 0.7887

F18 0.0129 0.0134 0.1772 0.4289 0.0000 0.0538 1.0000 0.2855 0.1310 0.0429 0.0723 0.2069 0.8018

F19 0.0000 0.2001 0.7727 1.0000 0.0192 0.0312 1.0000 0.2142 0.3192 0.4635 0.8176 0.7924 0.9950

Sum 1.9911 3.5379 3.2346 6.8619 9.9634 5.9972 16.4214 15.5767 7.8004 5.1479 3.6143 5.1403 5.6858

Table 2

p-Values of the Wilcoxon ranksum test over all runs (p > = 0.05 have been underlined).

F SCA PSO GA BA FPA FA GSA

F1 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F2 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F3 0.004329 0.002165 0.002165 0.002165 0.002165 N/A 0.008658

F4 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.002165

F5 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.681818

F6 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A

F7 N/A 0.002165 0.002165 0.002165 0.002165 0.24026 0.002165

F8 0.002165 0.002165 0.002165 N/A 0.002165 0.002165 0.002165

F9 N/A 0.002165 0.002165 0.002165 0.002165 0.484848 0.818182

F10 1.000000 0.002165 0.002165 0.002165 0.002165 N/A 0.093074

F11 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F12 N/A 0.015152 0.002165 0.002165 0.002165 0.064935 0.064935

F13 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.393939

F14 0.064935 0.588745 0.064935 0.041126 0.064935 N/A 0.132035

F15 0.179654 0.064935 N/A 0.002165 0.008658 0.008658 0.002165

F16 0.818182 0.937229 N/A 0.002165 0.002165 0.002165 0.002165

F17 N/A 1.000000 0.015152 0.002165 0.002165 0.002165 0.002165

F18 0.818182 0.393939 N/A 0.002165 0.002165 0.699134 0.025974

F19 N/A 0.064935 0.699134 0.002165 0.041126 0.041126 0.002165
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unctions [63–66]. The mathematical formulation of these test

unctions are available in the appendix. The first family of test

unctions has no local optima and there is only one global optima.

his makes them highly suitable for testing the convergence speed

nd exploitation of algorithms. The second group of test functions,

owever, has multiple local solutions in addition to the global op-

imum. These characteristics are beneficial for testing local optima

voidance and explorative ability of an algorithm. Finally, the com-

osite test functions are the rotated, shifted, biased, and combined

ersion of several unimodal and multi-modal test functions.

For solving the aforementioned test functions, a total of 30

earch agents are allowed to determine the global optimum over

00 iterations. The SCA algorithm is compared to Firefly Algorithm

FA) [67], Bat Algorithm (BA) [68], Flower Pollination Algorithm

FPA) [69], Gravitational Search Algorithm (GSA) [54], PSO and GA

or verification of the results. Since the results of a single run

ight be unreliable due to the stochastic nature of meta-heuristics,

ll of the algorithms are run 30 times and statistical results (mean

nd standard deviation) are collected and reported in Table 1. Note

hat the results are normalized in [0, 1] to compare the results of

ll test functions. To decide about the significance of the results,
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for

http://dx.doi.org/10.1016/j.knosys.2015.12.022
non-parametric statistical test called Wilcoxon ranksum test is

onducted as well. The p-values obtained from this statistical test

re reported in Table 2.

The results in Table 1 show that the SCA algorithm outper-

orms others on the majority of the test cases. Firstly, the SCA al-

orithm shows superior results on 3 out of 6 unimodal test func-

ions. The p-values in Table 2 show that this superiority is statis-

ically significant. Due to the characteristics of the unimodal test

unctions, these results strongly show that the SCA algorithm has

high exploitation and convergence. Secondly, Table 1 shows that

he SCA algorithm outperforms all of the algorithms employed on

he majority of the multi-modal test functions (F7, F9, F11, and

12). The p-values in Table 2 also support the better results of

CA statistically. Inspecting the results of this table, the SCA al-

orithm provides p-values greater than 0.05 for the rest of test

unctions, showing that this algorithm is very competitive. These

esults prove that the SCA algorithm benefits from high explo-

ation and local optima avoidance. Finally, the results of the pro-

osed algorithm on the composite test functions in Tables 1 and

demonstrate the merits of SCA in solving problems with chal-

enging search spaces. Due to the normalization of the results, the
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 10. Search history of search agents when solving the test problems.
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overall performance of algorithms can be compared as well. The

last row of Table 1 presents the summation of the average and

standard deviation of algorithms on all test functions. It is evident

that SCA shows the minimum values for both ave and std, proving

that this algorithm reliably outperforms others in total.

Although the above-discussed results prove and verify the high

performance of the SCA algorithm, there are several other exper-

iments that need to be done to confidently confirm the perfor-

mance of this algorithm in solving real problems. In other words,

the behavior of search agents during optimization should be mon-

itored to observe: how they move around the search space, if they

face abrupt changes in the initial stages of optimization to explore

the search space, if they undergo small changes in the final steps

of iteration to exploit the search space, how they converge towards

the promising regions of the search space, how they improve their

initial random solutions, and how they improve their fitness val-

ues over the course of iterations. In order to observe the behaviour

of search agents, the two-dimensional version of the test func-

tions is solved by 4 search agents. Note that the optima of some

of the test functions are shifted to locations other than the origin

to provide more challenging test beds. The search history of the

search agents is illustrated in Fig. 10. This figure shows that the

SCA algorithm searches around the promising regions of the search

space. The distribution of the sampled points around the global op-

tima is substantially high, which shows that the SCA algorithm ex-

ploits the most promising region of the search space in addition

to the exploration. However, it is not clear from this figure if the

search agents first start exploration or exploitation. To observe this,

Fig. 11 is provided in this regard, which illustrates the fluctuations

of the first dimension in the first search agent.

Fig. 11 shows that the search agents face abrupt fluctuations

in the early steps of optimization. However, the sudden changes

are decreased gradually over the course of iterations. This con-

firms that the search agents first explore the search space and

then converge around the best solution obtained in the exploration

phase. There is a question here as how to make sure that all of the
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for

http://dx.doi.org/10.1016/j.knosys.2015.12.022
earch agents are improved during optimization despite the rapid

nd steady changes in Fig. 11. In order to confirm the improvement

f all solutions, the average fitness of all search agents during op-

imization is illustrated in Fig. 12.

This figure shows that the average fitness of all search agents

end to be decreased over the course of iterations. The interest-

ng pattern that can be observed in this figure is the high fluctu-

tion of the average fitness in the exploration phase (until nearly

he 50th iteration) and low changes in the average fitness in the

xploitation phase (after 50th iteration). Deterioration of the fit-

ess of some of the search agents is unavoidable in the explo-

ation phase where the SCA algorithm should discover the promis-

ng regions of the search space. However, the observed patterns in

ig. 12 show that the fitness of search agents has a descending be-

avior over the course of iterations. This proves that the SCA al-

orithm is able to eventually improve the fitness of initial random

olutions for a given optimization problem.

In the previous paragraphs, it was claimed that the search

gents of the SCA algorithm tend to explore the promising regions

f the search space and exploit the best one eventually. However,

he convergence behavior of the algorithm was not observed and

erified. Although this can be inferred indirectly from the trajec-

ory and average fitness, the convergence curves of SCA are de-

icted in Fig. 13.

This figure illustrates the best solution obtained so far during

ptimization. The descending trend is quite evident in the conver-

ence curves of SCA on all of the test functions investigated. This

trongly evidences the ability of the SCA algorithm in obtaining

better approximation of the global optimum over the course of

terations.

The results and discussions in this section prove that the SCA

lgorithm proposed is able to determine the global optima of the

est functions. Although it can be claimed here that this algo-

ithm would be able to approximate the global optima of real

roblems, there is a main difference between real problems and

enchmark functions. The shape of search space and the location
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 11. Trajectory of the first variable of the first search agent when solving the test problems.

Fig. 12. Average fitness of search agents during optimization.
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Fig. 13. Convergence curve (best solution in each iteration) of the SCA algorithm.

Fig. 14. Different forces that apply to an airplane.
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of the global optimum of the test functions are known, while those

of real problems are mostly unknown. In addition, the real prob-

lems are accompanied by a large number of equality and inequal-

ity constraints. Therefore, there is a need to investigate the perfor-

mance of the SCA algorithm in solving at least one real challenging

constrained problem with unknown global optimum and search

space. This is the motivation of the next section, in which the two-

dimensional cross-section of an aircraft’s wing is optimized by SCA

to confirm its performance in practice.

5. Airfoil design using SCA

The problem investigated in this subsection is airfoil design.

There are two objectives in this problem: lift versus drag. There

two forces are shown in Fig. 14. It may be observed that lift is

when the thrust force is converted to a vertical force, which causes

flying of a plane. However, drag is the opposite force that is ap-

plied to the wing and causes decreasing speed. The lift and drag

are in conflict, meaning that increasing one results in decreasing
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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he other. In a real airplane both of these forces are desirable in

ifferent occasions. When the airplane is taking off, ascending, and

ruising maximum lift and minimum drag is fruitful. When de-

cending, landing, and touching down the drag becomes important

o slow down the speed of the vehicle. In this section the drag is

nly considered, so the main objective is to minimize this force. In

ther words, this section employs the SCA algorithm to define the

est shape for the wing to minimize drag.

To design an aircraft wing, several components should be con-

idered: shape of the cross section of the wing (airfoil), the overall

hape of the wing, flaps, internal frames, and position of engines.

his paper only concentrates on designing a 2D airfoild, which is

he main and essential component in a wing. The shape of a 2D

irfoil is illustrated in Fig. 15.

There are different version of this problem in the literature in

erms of the design parameters. In this work, the B-spline is uti-

ized to define the shape of the airfoil. As shown in Fig. 16, there

re eight controlling parameters of which one of the leading points

s fixed. The rest of controlling parameters, however, are allowed
solving optimization problems, Knowledge-Based Systems (2016),
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Fig. 15. Cross section of a real with a 2D airfoil.

Fig. 16. B-spline for the problem of Airfoil design.

Fig. 17. Convergence curve of the SCA on the airfoil design problem, initial aifoil, and optimized airfoil.
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o move along both directions of x and y axes. Therefore, there is

total of 14 (7 × 2) parameters, which are the x and y positions

f the seven controlling points. The problem of airfoil design is

ormulated for the SCA algorithm as follows:

inimize : F (�x, �y) = Cd(�x, �y)

ub ject to : −1 ≤ �x, �y ≤ 1, satis faction of CO set
(5.1)

here �x = {x1, x2, . . . , x7}, �y = {y1, y2, . . . , y7)}, CO includes many

onstraints such as minimum of thickness, maximum of thickness,

tc.
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for

http://dx.doi.org/10.1016/j.knosys.2015.12.022
A freeware called XFoil is used for calculating drag [75]. It may

e seen in Eq. (5.1) that the problem is subject to several con-

traints. Generally speaking, Computational Fluid Dynamics (CFD)

roblem are highly constrained, which make them very challeng-

ng. For solving such problems, an optimization algorithm should

e equipped with a proper constraint handling method. There are

ifferent approaches in the literature to cope with constraints of

hich penalty functions are the simplest ones. In such methods,

he main objective function is penalized by a penalty function

ith respect to the level of constraints’ violation. Other powerful
solving optimization problems, Knowledge-Based Systems (2016),
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Table A.1

Unimodal benchmark functions.

Function Dim Range Shift position fmin

f1(x) =
n∑

i=1

x2
i

20 [−100,100] [−30, −30,.., −30] 0

f2(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 20 [−10,10] [−3, −3,..., −3] 0

f3(x) =
n∑

i=1

(
i∑

j−1

x j )
2 20 [−100,100] [−30, −30,.., −30] 0

f4(x) = max
i

{|xi|, 1 ≤ i ≤ n} 20 [−100,100] [−30, −30,.., −30] 0

f5(x) =
n−1∑
i=1

[100(xi+1 − x2
i
)

2
20 [−30,30] [−15, −15,.., −15] 0

+(xi − 1)
2
]

f6(x) =
n∑

i=1

([xi + 0.5])2 20 [−100,100] [−750,.., −750] 0

f7(x) =
n∑

i=1

ix4
i

+ random[0, 1) 20 [−1.28,1.28] [−0.25,.., −0.25] 0
constraint handling methods can be found in [70–73]. Interested

readers are referred to the comprehensive literature review by

Coello Coello [74]. In this work the following penalty function is

utilized, which penalizes F proportional to the level of violation:

F (�x, �y) = F (�x, �y) + p

3∑
i=1

Pi (5.2)

where p is a constant and Pi is the violation size on the i-th con-

straint in the CO set in Eq. (5.1).

For solving this problem, 30 search agents is employed and al-

lowed to determine the optimal shape for the airfoil over 1000 it-

erations. The algorithm is run 4 times and the best results are il-

lustrated in Fig. 17.

This figure clearly shows that the SCA algorithm improves the

initial random shape for the airfoil to minimize drag. The improve-

ment is quite significant, in which drag was reduced from 0.009 to

0.0061. These results highly demonstrate that the SCA algorithm is

able to solve real problems with unknown, challenging, and con-

strained search spaces. This is due to several reasons. Firstly, SCA

is a population-based algorithm, so it intrinsically benefits from

high exploration and local optima avoidance. This assists the SCA

algorithm to avoid the large number of local solutions in a real

search space and explore different regions extensively. Secondly,

SCA smoothly transits from exploration to exploitation using the

adaptive mechanism for the range of since and cosine functions.

This causes local optima avoidance at the beginning of optimiza-

tion and quick convergence towards the most promising region of

the search space in the final steps of optimization. Thirdly, SCA

obliges the solutions to update their positions around the best so-

lution obtained so far as the destination point. Therefore, there is

always a tendency towards the best regions of the search spaces

during optimization and chances for improving the solutions are

considerably high. Finally, the SCA algorithm considers optimiza-

tion problems as black boxes, so it is readily incorporable to prob-

lems in different fields subject to the proper formulation of the

problem. In addition, the problem independency allows this algo-

rithm not to need gradient information of the search space and

work with any types of penalty functions for solving constrained

problems.

6. Conclusion

In this paper a novel population-based optimization algorithm

was proposed as an alternative for solving optimization problems

among the current techniques in the literature. In the SCA algo-

rithm proposed, the solutions were required to update their po-

sitions with respect to the best solution obtained so far as the

destination point. The mathematical model of position updating

fluctuated the solutions outwards or towards the destination point

to guarantee exploration and exploitation of the search space, re-

spectively. Several random and adaptive variables also facilitated

divergence and convergence of the search agents in the SCA al-

gorithm. To benchmark the performance of SCA, several exper-

iments were done. Firstly, the a set of well-known test cases

including unimodal, multi-modal, and composite functions were

employed to test exploration, exploitation, local optima avoidance,

and convergence of the proposed algorithm. Secondly, the two-

dimensional versions of some of the test functions were chosen

and re-solved by SCA. Several performance metrics (search history,

trajectory, average fitness of solutions, and best solution during op-

timization) were employed to qualitatively observe and confirm

the performance of SCA. Finally, the shape of a two-dimensional

airfoil (cross-section of an aircraft’s wing) was optimized by SCA as

a real challenging case study to verify and demonstrate the perfor-

mance of this algorithm in solving real problems with constrained

and unknown search spaces.
Please cite this article as: S. Mirjalili, SCA: A Sine Cosine Algorithm for
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The results of unimodal test functions showed that the SCA

lgorithm converged substantially faster than FA, BA, FPA, GSA,

SO and GA. A similar behavior was observed in the multi-modal

est functions, which proved the high exploration and local optima

voidance of the algorithm proposed. As per the results of compos-

te test functions, SCA outperformed other algorithms occasionally,

hich showed that this algorithm was also able to successfully bal-

nce exploration and exploitation to determine the global optima

f challenging test functions. The results of performance metrics

roved that SCA required its search agent to change abruptly in

he initial stage of optimization and gradually in the final steps

f optimization. The results showed that this behavior caused ex-

loration of the search space extensively and exploitation of the

ost promising region. The average fitness of solutions and con-

ergence curves also evidenced and confirmed the improvement

f initial random population and the best solution obtained so-far

y SCA. The results of the first two test phases proved the SCA is

ble to successfully solve test problems, which have known shape

f search space. The results of SCA on the aroifoil design problem

lso showed that this algorithm have the potential to solve chal-

enging real problems as well. The airfoil design problem was a

ighly constrained case study with a completely unknown search

pace. Therefore, the results of real case study highly demonstrated

nd confirmed the merits of SCA in solving real problems.

As per the findings of this paper and referring the NFL theorem,

t can be concluded that the SCA can be a very suitable alternative

ompared the current algorithms in the literature for solving dif-

erent optimization problems. On the other hand, this algorithm

ight not be able to outperform other algorithms on specific set

f problems, but definitely worth testing and applying to problems

n different fields. Therefore, the SCA algorithm is offered to re-

earchers in different fields. The source codes of this algorithm are

ublicly available at http://www.alimirjalili.com/SCA.html.

This paper opens up several research directions for future stud-

es. Firstly, binary and multi-objective version of this algorithm can

e proposed to solve problems with binary and multiple objectives

espectively. Secondly, levy flight, mutation, and other evolution-

ry operators can be integrated to this algorithm for improving

ts performance. Thirdly, the SCA algorithm can be hybridized with

ther algorithms in the field of stochastic optimization to improve

ts performance. Finally, investigation of the application of SCA in

ifferent fields would be a valuable contribution.

ppendix A

See Tables A.1, A.2 and A.3.
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Table A.2

Multimodal benchmark functions.

Function Dim Range Shift position fmin

F8(x) =
n∑

i=1

−xisin(
√|xi|) 20 [−500,500] [−300,.., −300] −418.9829 × 5

F9(x) =
n∑

i=1

[x2
i

− 10cos(2πxi) + 10] 20 [−5.12,5.12] [−2, −2,.., −2] 0

F10(x) = −20exp(−0.2

√
1
n

n∑
i=1

x2
i
) − exp( 1

n

n∑
i=1

cos(2πxi)) + 20 + e 20 [−32,32] 0

F11(x) = 1
4000

n∑
i=1

x2
i

−
n∏

i=1

cos( xi√
i
) + 1 20 [−600,600] [−400,.., −400] 0

F12(x) = π
n
{10sin(πy1) +

n−1∑
i=1

(yi − 1)
2
[1 + 10sin2(πyi+1)] + (yn − 1)

2} +
n∑

i=1

u(xi, 10, 100, 4) 20

yi = 1 + xi+1
4

[−50,50] [−30, −30,.., −30]

u(xi, a, k, m) =

⎧⎨
⎩

k(xi − a)
m

xi > a

0 − a < xi < a

k(−xi − a)
m

xi < −a

20 0

F13(x) = 0.1{sin2(3πx1) +
n∑

i=1

(xi − 1)
2
[1 + sin2(3πxi + 1)] + (xn − 1)

2
[1 + sin2(2πxn)]} +

n∑
i=1

u(xi, 5, 100, 4) [−50,50] [−100,.., −100] 0

Table A.3

Composite benchmark functions.

Function Dim Range fmin

F14 (CF1):

f1, f2, f3, . . . , f10 = Sphere Function

[б1, б2, б3, . . . , б10] = [1, 1, 1, .., 1] 10 [−5,5] 0

[λ1, λ2, λ3 . . . , λ10] = [5/100, 5/100, 5/100, .., 5/100]

F15 (CF2):

f1, f2, f3, . . . , f10 = Griewank′sFunction

[б1, б2, б3, . . . , б10] = [1, 1, 1, .., 1] 10 [−5,5] 0

[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, .., 5/100]

F16 (CF3):

f1, f2, f3, . . . , f10 = Griewank′sFunction

[б1, б2, б3, . . . , б10] = [1, 1, 1, .., 1] 10 [−5,5] 0

[λ1, λ2, λ3, . . . , λ10] = [1, 1, 1, .., 1]

f17 (CF4):

f1, f2 = Ackley′sFunction

f3, f4 = Rastrigin′s Function

f5, f6 = Weierstrass Function 10 [−5,5] 0

f7, f8 = Griewank′s Function

f9, f10 = Sphere Function

[б1, б2, б3, . . . , б10] = [1, 1, 1, .., 1]

[λ1, λ2, λ3, . . . , λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

f18 (CF5):

f1, f2 = Rastrigin′s Function

f3, f4 = Weierstrass Function

f5, f6 = Griewank′s Function 10 [−5,5] 0

f7, f8 = Ackley′sFunction

f9, f10 = Sphere Function

[б1, б2, б3, . . . , б10] = [1, 1, 1, .., 1]

[λ1, λ2, λ3, . . . , λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

f19 (CF6):

f1, f2 = Rastrigin′s Function

f3, f4 = Weierstrass Function

f5, f6 = Griewank′s Function 10 [−5,5] 0

f7, f8 = Ackley′sFunction

f9, f10 = Sphere Function

[б1, б2, б3, . . . , б10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, λ3, . . . , λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5, 0.5 ∗ 5/100,

0.6∗ 5/100, 0.7∗5/32, 0.8∗ 5/32, 0.9∗5/100, 1∗5/100]
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