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Due to the novelty of the Grey Wolf Optimizer (GWO), there is no study in the literature to design a multi-

objective version of this algorithm. This paper proposes a Multi-Objective Grey Wolf Optimizer (MOGWO)

in order to optimize problems with multiple objectives for the first time. A fixed-sized external archive is

integrated to the GWO for saving and retrieving the Pareto optimal solutions. This archive is then employed

to define the social hierarchy and simulate the hunting behavior of grey wolves in multi-objective search

spaces. The proposed method is tested on 10 multi-objective benchmark problems and compared with two

well-known meta-heuristics: Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

and Multi-Objective Particle Swarm Optimization (MOPSO). The qualitative and quantitative results show

that the proposed algorithm is able to provide very competitive results and outperforms other algorithms.

Note that the source codes of MOGWO are publicly available at http://www.alimirjalili.com/GWO.html.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

There are different challenges in solving real engineering prob-

lems, which needs specific tools to handle them. One of the most

important characteristics of real problems, which make them chal-

lenging, is multi-objectivity. A problem is called multi-objective if

there is more than one objective to be optimized. Needless to say,

a multiple objective optimizer should be employed in order to solve

such problems. There are two approaches for handling multiple ob-

jectives: a priori versus a posteriori (Branke, Kaußler, & Schmeck,

2001; Marler & Arora, 2004).

The former class of optimizers combines the objectives of a

multi-objective problem to a single-objective with a set of weights

(provided by decision makers) that defines the importance of each

objective and employs a single-objective optimizer to solve it. The

unary-objective nature of the combined search spaces allows find-

ing a single solution as the optimum. In contrary, a posterior method

maintain the multi-objective formulation of multi-objective prob-
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ems, allowing to explore the behavior of the problems across a range

f design parameters and operating conditions compared to a priori

pproach (Deb, 2012). In this case, decision makers will eventually

hoose one of the obtained solutions based on their needs. There is

lso another type of handling multiple objectives called progressive

ethod, in which decision makers’ preferences about the objectives

re considered during optimization (Branke & Deb, 2005).

In contrary to single-objective optimization, there is no single

olution when considering multiple objectives as the goal of the

ptimization process. In this case, a set of solutions, which repre-

ents various trade-offs between the objectives, includes optimal so-

utions of a multi-objective problem (Coello, Lamont, & Van Veld-

uisen, 2007). Before 1984, mathematical multi-objective optimiza-

ion techniques were popular among researchers in different fields

f study such as applied mathematics, operation research, and com-

uter science. Since the majority of the conventional approaches (in-

luding deterministic methods) suffered from stagnation in local op-

ima, however, such techniques were not applicable as there are not

owadays.

In 1984, a revolutionary idea was proposed by David Schaf-

er (Coello Coello, 2006). He introduced the concepts of multi-

bjective optimization using stochastic optimization techniques (in-

luding evolutionary and heuristic). Since then, surprisingly, a signif-

cant number of researches have been dedicated for developing and
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valuating multi-objective evolutionary/heuristic algorithms. The ad-

antages of stochastic optimization techniques such as gradient-free

echanism and local optima avoidance made them readily applica-

le to the real problems as well. Nowadays, the application of multi-

bjective optimization techniques can be found in different fields

f studies: mechanical engineering (Kipouros et al., 2008), civil en-

ineering (Luh & Chueh, 2004), chemistry (Gaspar-Cunha & Covas,

004; Rangaiah, 2008), and other fields (Coello & Lamont, 2004).

Early year of multi-objective stochastic optimization saw conver-

ion of different single-objective optimization techniques to multi-

bjective algorithms. Some of the most well-known stochastic opti-

ization techniques proposed so far are as follows:

• Strength–Pareto Evolutionary Algorithm (SPEA) (Zitzler, 1999; Zit-

zler & Thiele, 1999).
• Non-dominated Sorting Genetic Algorithm (Srinivas & Deb, 1994)
• Non-dominated Sorting Genetic Algorithm version 2 (NSGA-II)

(Deb, Pratap, Agarwal, & Meyarivan, 2002)
• Multi-Objective Particle Swarm Optimization (MOPSO) (Coello,

Pulido, & Lechuga, 2004)
• Multi-Objective Evolutionary Algorithm based on Decomposition

(MOEA/D) (Zhang & Li, 2007)
• Pareto Archived Evolution Strategy (PAES) (Knowles & Corne,

2000)
• Pareto–frontier Differential Evolution (PDE) (Abbass, Sarker, &

Newton, 2001).

The literature shows that these algorithms are able to effectively

pproximate the true Pareto optimal solutions of multi-objective

roblems. However, there is a theorem here called No Free Lunch

NFL) (Wolpert & Macready, 1997) that has been logically proved that

here is no optimization technique for solving all optimization prob-

ems. According to this theorem, the superior performance of an op-

imizer on a class of problems cannot guarantee the similar perfor-

ance on another class of problems. This theorem is the foundation

f many works in the literature and allows researchers in this field

o adapt the current techniques for new classes of problems or pro-

ose new optimization algorithms. This is the foundation and mo-

ivation of this work as well, in which we propose a novel multi-

bjective optimization algorithm called Multi-Objective Grey Wolf

ptimizer (MOGWO) based on the recently proposed Grey Wolf Op-

imizer (GWO). The contributions of this research are as follows:

• An archive has been integrated to the GWO algorithm to maintain

non-dominated solutions.
• A grid mechanism has been integrated to GWO in order to im-

prove the non-dominated solutions in the archive.
• A leader selection mechanism has been proposed based on alpha,

beta, and delta wolves to update and replace the solutions in the

archive.
• The multi-objective version of GWO has been proposed utilizing

the above three operators.

The rest of the paper is organized as follows. Section 2 presents

efinitions and preliminaries of optimization in a multi-objective

earch space. Section 3 briefly reviews the concepts of GWO and then

roposes the MOGWO algorithm. The qualitative and qualitative re-

ults as well as relevant discussion are presented in Section 4. Even-

ually, Section 5 concludes the work and outlines some advises for

uture works.

. Literature review

This section provides the concepts of multi-objective optimization

nd current techniques in the field of meta-heuristics.
.1. Multi-objective optimization

As briefly mentioned in the introduction, multi-objective op-

imization refers to the optimisation of a problem with more than

ne objective function. Without loss of generality, it can be formu-

ated as a maximization problem as follows:

aximize : F (�x) = f1(�x), f2(�x), . . . , fo(�x) (2.1)

ub ject to : gi(�x) ≥ 0, i = 1, 2, . . . , m (2.2)

i(�x) = 0, i = 1, 2, . . . , p (2.3)

i ≤ xi ≤ Ui, i = 1, 2, . . . , n (2.4)

here n is the number of variables, o is the number of objective

unctions, m is the number of inequality constraints, p is the num-

er of equality constraints, gi is the ith inequality constraints, hi indi-

ates the ith equality constraints, and [Li,Ui] are the boundaries of ith

ariable.

In single-objective optimization, solutions can be compared easily

ue to the unary objective function. For maximization problems, so-

ution X is better than Y if and only if X > Y. However, the solutions in

multi-objective space cannot be compared by the relational oper-

tors due to multi-criterion comparison metrics. In this case, a solu-

ion is better than (dominates) another solution if and only if it shows

etter or equal objective value on all of the objectives and provides a

etter value in at least one of the objective functions. The concepts of

omparison of two solutions in multi-objective problems were first

roposed by Francis Ysidro (Edgeworth, 1881) and then extended by

ilfredo Pareto (Pareto, 1964). Without loss of generality, the math-

matical definition of Pareto dominance for a maximization problem

s as follows (Coello, 2009):

efinition 1. Pareto Dominance:

Suppose that there are two vectors such as: �x = (x1, x2, . . . , xk)

nd �y = (y1, y2, . . . , yk).

Vector x dominates vector y (denote as x �y) iff :

i ∈ {1, 2, . . . , k}, [ f (xi) ≥ f (yi)] ∧ [∃i ∈ 1, 2, . . . , k : f (xi)] (2.5)

The definition of Pareto optimality is as follows (Ngatchou, Zarei,

El-Sharkawi, 2005):

efinition 2. Pareto Optimality:

A solution �x ∈ X is called Pareto-optimal iff:

�y ∈ X | F (�y) � F (�x) (2.6)

A set including all the non-dominated solutions of a problem is

alled Pareto optimal set and it is defined as follows:

efinition 3. Pareto optimal set:

The set all Pareto-optimal solutions is called Pareto set as follows:

s := {x, y ∈ X | ∃F (y) � F (x)} (2.7)

A set containing the corresponding objective values of Pareto opti-

al solutions in Pareto optimal set is called Pareto optimal front. The

efinition of the Pareto optimal front is as follows:

efinition 4. Pareto optimal front: a set containing the value of ob-

ective functions for Pareto solutions set:

f := {F (x)|x ∈ Ps} (2.8)
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2.2. Multi-objective meta-heuristics

The ultimate goal of multi-objective optimization algorithms (a

posteriori methods) is to find very accurate approximation of the true

Pareto optimal solutions with the highest diversity (Zhou et al., 2011).

This allows decision makers to have a diverse range of design op-

tions. In the past, the solution of multi-objective problems would

have been undertaken by a priori aggregation of objectives into a sin-

gle objective. However, this method has two main drawbacks (Das

& Dennis, 1998; Kim & De Weck, 2005; Messac & Mattson, 2002):

An even distribution of the weights does not necessarily guarantee

finding Pareto optimal solutions with an even distribution, and this

method is not able to find the non-convex regions of Pareto optimal

front because the negative weights are not allowed and sum of all the

weights should be constant. In other words, the convex sum of the

objectives is usually used in the conventional aggregation methods.

There are some works in the literature that tried to improve this

method. For example Parsopoulos and Vrahatis used two dynamic

weighted aggregations to change the weights gradually over time

or abruptly (Parsopoulos & Vrahatis, 2002). However, these meth-

ods did not completely solve the main problems of the aggregation

method. In addition, these methods need to be run many times to

approximate the whole Pareto optimal solutions because there is

only one best obtained solution in each iteration. According to Deb

(Deb, 2012), the multi-objective optimization process utilizing meta-

heuristics deals with overcoming many difficulties such as infeasible

areas, local fronts, diversity of solutions, and isolation of optimum.

A priori methods should deal with all these difficulties in each run.

However, maintaining the multi-objective formulation of problems

brings some advantages. First, the information about the search space

is exchanged between the search agents, which results in quick move-

ments towards the true Pareto optimal front.

Second, the multi-objective approaches assist to approximate the

whole true Pareto optimal front in a single run. Finally, maintain-

ing the multi-objective formulation of a problem allows the explo-

ration of the behavior of problems across a range of design parame-

ters and operating conditions. However, the only drawbacks of a priori

method are the need to use more complex meta-heuristics and to ad-

dress conflicting objectives. Approximately the majority of the most

well-known heuristic algorithms have been extended to solve multi-

objective problem. In the following paragraphs the most popular and

recent ones are briefly presented.

The literature shows that the most popular multi-objective meta-

heuristic is Non-dominated Sorting GA (NSGA-II) (Deb et al., 2002),

which is a multi-objective version of the well-regarded GA algorithm

(Goldberg, 1989; Goldberg & Holland, 1988). This algorithm was pro-

posed to alleviate the three problems of the first version (Srinivas

& Deb, 1994). These problems are high computational cost of non-

dominated sorting, lack of considering elitism, and lack of a sharing

parameter (different from niching). In order to alleviate the afore-

mentioned problems, NSGA-II utilizes a fast non-dominated sorting

technique, an elitist-keeping technique, and a new niching operator

which is parameter less.

The NSGA-II algorithm starts with a random population. The in-

dividuals are grouped based on the non-dominated sorting method.

The fitness of each individual is defined based on its non-domination

level. The second population is created by the selection, recombi-

nation, and mutation operators. Both populations create a new big

population. This new population is then sorted again by the non-

dominated sorting approach. The higher the non-domination level,

the higher priority to select as a new individual for the final popula-

tion. The process of selecting the non-dominated individuals should

be repeated until having a population with the same size of the initial

population. Finally, these steps are run until the satisfaction of an end

criterion.
The second most popular multi-objective meta-heuristics is

ulti-Objective Particle Swarm Optimization (MOPSO). The MOPSO

lgorithm was proposed by Coello et al., 2004; Coello Coello and

echuga, 2002. Following the same concepts as PSO, it employs a

umber of particles, which fly around in the search space to find the

est solution. Meanwhile, they all trace the best location (best solu-

ion) in their paths (Shi & Eberhart, 1998). In contrast to PSO, there

s, of course, no single “best” solution to track. In other words, par-

icles must consider their own non-dominated solutions (pbest) as

ell as one of the non-dominated solutions the swarm has obtained

o far (gbest) when updating position. An external archive is used

ommonly for storing and retrieving the Pareto-optimal solutions ob-

ained. In addition, a mutation operation called turbulence is embed-

ed in MOPSO occasionally to increase randomness and promote di-

ersity of trial solutions. A comprehensive survey of the PSO-based

ulti-objective optimizers can be found in Reyes-Sierra and Coello,

006.

The proposed external archive is similar to the adaptive grid in

areto Archived Evolution Strategy (PAES) (Knowles & Corne, 2000)

s it has been designed to save the non-dominated solutions obtained

o far. It has two main components: an archive controller and a grid.

he former component is responsible for deciding if a solution should

e added to the archive or not. If a new solution is dominated by one

f the archive members it should be omitted immediately. If the new

olution is not dominated by the archive members, it should be added

o the archive. If a member of the archive is dominated by a new so-

ution, it has to be replaced by the new solution. Finally, if the archive

s full the adaptive grid mechanism is triggered.

The grid component is responsible for keeping the archive solu-

ions as diverse as possible. In this method the objective space is di-

ided into several regions. If a newly obtained solution lies outside

he grid, all the grid locations should be recalculated to cover it. If a

ew solution lies within the grid, it is directed to the portion of the

rid with the lowest number of particles. The main advantage of this

rid is the low computational cost compared to niching (in worst case

t is the same as niching O(N2) when the grid must be updated in each

teration).

MOPSO has a very fast convergence speed which could make it

rone to premature termination with a false Pareto optimal front

n multi-objective optimization (Nebro, Durillo, & Coello, 2013). The

utation strategy is helpful in this case. It randomly affects not only

he particles in the swarm but also the design variables. The mutation

ate is decreased over the course of iterations.

The MOPSO algorithm starts by randomly placing the particles in

problem space. Over the course of iterations, the velocities of par-

icles are calculated. After defining the velocities, the position of par-

icles can be updated. All the non-dominated solutions are added to

he archive. Finally, the search process is terminated by satisfaction

f a stopping criterion.

Over the past three years, many multi-objective optimization al-

orithms have been proposed: Multi-Objective Cat Swarm Optimiza-

ion (MOCSO) (Pradhan & Panda, 2012), Multi-objective Ant Colony

ptimization (Shi & Kong, 2015), Multi-objective Teaching–Learning-

ased Optimization algorithm (Lin et al., 2015), Multi-objective

rtificial Bee Colony algorithm (Hancer, Xue, Zhang, Karaboga, &

kay, 2015), Multi Objective Differential Evolution (Osorio Velazquez,

oello Coello, & Arias-Montano, 2014), and Multi-objective Gravita-

ional Search Algorithm (MOGSA) (Hemmatian, Fereidoon, & Assareh,

014). These studies show the ability of meta-heuristics in handling

ultiple objectives. Although all the above discussed algorithms are

ble to approximate the true Pareto optimal front of a given problem,

hey are not able to solve all optimization problems according to NFL

heorem. Therefore, it is very likely that a new algorithm solve a prob-

em that cannot be solved by the existing techniques in the literature.

n the following section a novel multi-objective version of GWO is
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roposed as an alternative to the current algorithms in the literature

or solving multi-objective optimization problems.

. Multi-Objective Grey Wolf Optimizer (MOGWO)

The GWO algorithm was proposed by Mirjalili, Mirjalili, and Lewis,

014. The social leadership and hunting technique of grey wolves

ere the main inspiration of this algorithm. In order to mathematical

odel the social hierarchy of wolves when designing GWO, the fittest

olution is considered as the alpha (α) wolf. Consequently, the sec-

nd and third best solutions are named beta (β) and delta (δ) wolves,

espectively. The rest of the candidate solutions are assumed to be

mega (ω) wolves. In the GWO algorithm the hunting (optimization)

s guided by α, β , and δ. The ω wolves follow these three wolves in

he search for the global optimum.

In addition to the social leadership, the following equations were

roposed in order to simulate the encircling behavior of grey wolves

uring hunt (Fig. 3) (Mirjalili et al., 2014):

� =
∣∣∣�C · −→

Xp(t) − �X(t)

∣∣∣ (3.1)

� (t + 1) = −→
Xp(t) − �A · �D (3.2)

here t indicates the current iteration, �A and �C are coefficient vectors,

X p is the position vector of the prey, and �X indicates the position

ector of a grey wolf.

The vectors �A and �C are calculated as follows:

� = 2�a · �r1 − �a (3.3)

� = 2 · −→
r2 (3.4)

here elements of �a linearly decrease from 2 to 0 over the course of

terations and r1, r2 are random vectors in [0,1]. Fig. 1

The GWO algorithm utilizes the simulated social leadership and

ncircling mechanism in order to find the optimal solution for op-

imization problems. This algorithm saves the first three best solu-

ions obtained so far and obliges other search agents (including the

megas) to update their positions with respect to them. The follow-

ng formulas are run constantly for each search agent during opti-

ization in order to simulate the hunting and find promising regions

f the search space:

D α =
∣∣∣�C1 · −→

X α − �X

∣∣∣ (3.5)

D β =
∣∣∣�C2 · −→

X β − �X

∣∣∣ (3.6)

D δ =
∣∣∣−→C 3 · −→

X δ − �X

∣∣∣ (3.7)

X 1 = −→
X α − �A1 ·

(−→
D α

)
(3.8)

X 2 = −→
X β − −→

A 2 ·
(−→

D β

)
(3.9)

X 3 = −→
X δ − −→

A 3 ·
(−→

D δ

)
(3.10)

� (t + 1) =
−→
X 1 + −→

X 2 + −→
X 3

3
(3.11)

The exploration is guaranteed by �A with random values greater

han 1 or less than –1 that obliges the search agent to diverge from

he prey. Another component of GWO that favors exploration is �C. The
� vector generates random values in [0, 2], in which random weights

or prey are provided in order to stochastically emphasize (C>1) or
eemphasize (C<1) the effect of prey in defining the distance in

q. (3.1). This assists GWO to show a more random behavior through-

ut optimization, favoring exploration and local optima avoidance. It

s worth mentioning here that C is not linearly decreased in contrast

o A. The C parameter was deliberately required to provide random

alues at all times in order to emphasize exploration not only during

nitial iterations but also final iterations. This component is very help-

ul in case of local optima stagnation, especially in the final iterations.

The exploitation of the GWO algorithm starts when |A|<1. When

andom values of �A are in [–1,1], the next position of a search agent

an be in any position between its current position and the position

f the prey, which assists the search agents to converge towards an

stimated position of prey provided by alpha, beta, and delta solu-

ions.

The GWO algorithm starts optimization with generating a set of

andom solutions as the first population. During optimization, the

hree best obtained solutions so far are saved and considered as al-

ha, beta, and delta solutions. For every omega wolf (search agents

xcept α, β , and δ), the position updating Formula (3.5) to (3.11) are

riggered. Meanwhile, parameters a and A are linearly decreased over

he course of iteration. Therefore, Search agents tend to diverge from

he prey when |�A|>1 and converge towards the prey when |�A|<1. Fi-

ally, the position and score of the alpha solution is returned as the

est solutions obtained throughout optimization when an end condi-

ion is satisfied.

In order to perform multi-objective optimization by GWO, we in-

egrate two new components. The employed components are very

imilar to those of MOPSO (Coello et al., 2004). The first one is an

rchive, which is responsible for storing non-dominated Pareto opti-

al solutions obtained so far. The second component is a leader se-

ection strategy that assists to choose alpha, beta, and delta solutions

s the leaders of the hunting process from the archive.

The archive is a simple storage unit that can save or retrieve non-

ominated Pareto optimal solutions obtained so far. The key mod-

le of the archive is an archive controller, which controls the archive

hen a solution wants to enter the archive or when the archive is full.

ote that there is a maximum number of members for the archive.

uring the course of iteration, non-dominated solutions obtained so

ar are compared against the archive residents. There would be three

ifferent possible cases as follows:

• The new member is dominated by at least one of the archive res-

idences. In this case the solution should not be allowed to enter

the archive.
• The new solution dominates one or more solutions in the archive.

In this case the dominated solution(s) in the archive should be

omitted and the new solution will be able to enter the archive.
• If neither the new solution nor archive members dominate each

other, the new solution should be added to the archive.
• If the archive is full, the grid mechanism should be first run to

re-arrange the segmentation of the objective space and find the

most crowded segment to omit one of its solutions. Then, the new

solution should be inserted to the least crowded segment in order

to improve the diversity of the final approximated Pareto optimal

front.

The probability of deleting a solution is increased proportional to

he number of solutions in the hypercube (segment). For removing

olutions if the archive was full, the most crowded segments are first

elected, and a solution is omitted from one of them randomly in or-

er to provide a space for the new solution. There is a special case

here a solution is inserted outside the hypercubes. In this case, all

he segments are extended in order to cover the new solutions. So,

he segments of other solutions can be changed as well.

The second component is the leader selection mechanism. In

WO, three of the best solutions obtained so far are used as alpha,

eta, and delta wolves. These leaders guide the other search agents
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Fig. 1. Position updating mechanism of search agents and effects of A on it.
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toward promising regions of the search space with the hope to find

a solution close to the global optimum. In a multi-objective search

space, however, the solutions cannot easily be compared due to the

Pareto optimality concepts as discussed in the preceding subsection.

The leader selection mechanism is designed to handle this issue. As

mentioned above there is an archive of the best non-dominated so-

lutions obtained so far. The leader selection component chooses the

least crowded segments of the search space and offers one of its non-

dominated solutions as alpha, beta, or delta wolves. The selection is

done by a roulette-wheel method with the following probability for

each hypercube:

Pi = c

Ni

(3.12)

where c is a constant number greater than one and N is the number

of obtained Pareto optimal solutions in the ith segment.

It may be seen in Eq. (3.11) that less crowded hypercubes have

higher probability of suggesting new leaders. The probability of

choosing a hypercube to select leaders from is increased when the

number of obtained solutions is decreased in the hypercube. It should

be noted that there might be some special cases since we have to

choose three leaders. If there are three solutions in the least crowded

segment, three of them are randomly assigned to alpha, beta, and

delta solutions. If there are less than three solutions in the least

crowded hypercube, the second least crowded hypercube is also

found to choose other leaders from. This scenario is the same if the

second least crowded hypercube has one solution, so the delta leader

should be chosen from the third least crowded hypercube. With this

method, we prevent MOGWO from picking similar leaders for alpha,

beta, or delta. Consequently, the search is always toward the unex-

plored/unexposed areas of the search space since the leader selection

mechanism favors the least crowded hypercubes and offers leaders

from different segments if there is not enough number of leaders (less

than 3) in the least crowded segment.

The computational complexity of MOGWO is of O(MN2) where N is

the number of individuals in the population and M is the number of

objectives. The complexity is equal to other well-known algorithms

in this field: NSGA-II (Deb et al., 2002), MOPSO, SPEA2 (Zitzler et al.,

2001), and PAES (Knowles & Corne, 1999). However, the computa-

tional complexity is better than some of the algorithms such as NSGA
Srinivas & Deb, 1994) and SPEA (Zitzler & Thiele, 1998), which are of

(MN3).

After all, the pseudo codes of the MOGWO algorithm are provided

n Fig. 2.

To see how the proposed MOGWO algorithm can be theoretically

ffective in solving multi-objective problems some remarks may be

oted as follows:

• The employed external archive effectively saves the best non-

dominated solutions obtained so far.
• Since MOGWO inherits the encircling mechanism of GWO, there

is a circle-shaped neighborhood around the solutions which can

be extended to higher dimensions as a hyper-sphere (in the pa-

rameter space).
• The random parameters A and C assist candidate solutions to have

hyper-spheres with different random radii.
• Since MOGWO inherits the hunting mechanism of GWO, the

search agents are allowed to locate the probable position of the

prey.
• Exploration and exploitation are guaranteed by the adaptive val-

ues of a and A.
• The adaptive values of parameters a and A allow MOGWO to

smoothly transition between exploration and exploitation. There-

fore, the convergence of the MOGWO algorithm is guaranteed.
• With decreasing A, half of the iterations are devoted to exploration

(|A|≥1) and the other half is dedicated to exploitation (|A|<1).
• The MOGWO has only two key parameters to be adjusted (a and

C).
• The grid mechanism and selection leader component maintain

the diversity of the archive during optimization.
• Employed roulette-wheel in the leader selection component pro-

vides a low probability to choose leaders from most crowded

hypercubes as well. This emphasizes local front avoidance of

MOGWO.
• Non-adaptive random values for C parameter during optimiza-

tion also boost exploration and the local front avoidance of the

MOGWO algorithm simultaneously.

It should be noted here that the convergence of the MOGWO

lgorithm is guaranteed because it utilizes the same mathemati-

al model to search for optimal solutions. It has been proved that
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Initialize the grey wolf population Xi (i = 1, 2, ..., n) 
Initialize a, A, and C
Calculate the objective values for each search agent
Find the non-dominated solutions and initialized the archive with them
Xα=SelectLeader(archive)
Exclude alpha from the archive temporarily to avoid selecting the same leader
Xβ= SelectLeader(archive)
Exclude beta from the archive temporarily to avoid selecting the same leader
Xδ= SelectLeader(archive)
Add back alpha and beta to the archive
t=1;
while (t < Max number of iterations)

for each search agent
Update the position of the current search agent by equations (3.5)-(3.11)

end for
Update a, A, and C
Calculate the objective values of all search agents
Find the non-dominated solutions
Update the archive with respect to the obtained non-dominated solutions
If the archive is full 

Run the grid mechanism to omit one of the current archive members
Add the new solution to the archive

end if
If any of the new added solutions to the archive is located outside the hypercubes

Update the grids to cover the new solution(s)
end if
Xα=SelectLeader(archive)
Exclude alpha from the archive temporarily to avoid selecting the same leader
Xβ= SelectLeader(archive)
Exclude beta from the archive temporarily to avoid selecting the same leader
Xδ= SelectLeader(archive)
Add back alpha and beta to the archive
t=t+1

end while
return archive

Fig. 2. Pseudo code of the MOGWO algorithm.
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WO requires the search agents to change the positions abruptly

n the initial steps of optimization and gradually in the final steps

Mirjalili et al., 2014). According to Van den Bergh and Engelbrecht,

006, this behavior guarantees the convergence of an algorithm in

he search space. The MOGWO algorithm inherits all the character-

stics of GWO, which means that the search agents explore and ex-

loit the search space in a same manner. The main difference is that

OGWO searches around a set of archive members (which might be

ifferent even if the archive does not change), while GWO only saves

nd improves three best solutions.

The difference between the proposed algorithm and one of its

ost recent counterparts, Multi-Objective Cat Swarm Optimization

MOCSO) proposed by Pradhan and Panda, 2012, is that MOCSO em-

loys both non-dominated sorting and archive, whereas MOGWO

nly utilises an external archive to maintain the non-dominated so-

utions.

. Results and discussion

This section outlines experimental setup, presents results, and

rovides discussion.

.1. Experimental setup

The MOGWO algorithm is compared to two well-known algo-

ithms in the literature: MOPSO and MOEA/D. For MOPSO, the fol-

owing initial parameters are chosen:

• φ1 = φ2 = 2.05
• φ = φ1 + φ2

• w = χ = 2

φ−2+
√

φ2−4φ
: inertia weight
• c1 = χ ∗ φ1: personal coefficient
• c2 = χ ∗ φ2: social coefficient
• α = 0.1: grid inflation parameter
• β = 4: leader selection pressure parameter
• nGrid = 10: number of grids per each dimension

For MOEA/D, the following initial parameters are chosen:

• N= 100: Subproblems
• T = 0.1N = 10: number of neighbors
• nr = 0.01N = 1: the maximal copies of a new child in update
• δ = 0.9: the probability of selecting parents from the neighbor-

hood
• CR = F = 0.5: mutation rates
• η = 30: distribution index

Note that for all of the experiments, we have utilized 100 search

gents and a maximum of 3000 iterations. As test beds, we chose 10

tandard multi-objective test problems proposed in CEC 2009 (Zhang

t al., 2008). The benchmark problems are provided in Tables 1 and 2.

hese test problems are considered as the most challenging test prob-

ems in the literature that provide different multi-objective search

paces with different Pareto optimal fronts: convex, non-convex, dis-

ontinuous, and multi-modal.

For the performance metric (Fonseca, Knowles, Thiele, & Zitzler,

005), we have used Inverted Generational Distance (IGD) for mea-

uring convergence. The Spacing (SP) (Carlos A Coello Coello et al.,

004; Schott, 1995) and Maximum Spread (MS) (Zitzler, 1999) are

mployed to quantify and measure the coverage. The mathematical

ormulation of IGD is similar to that of Generational Distance (GD)

Van Veldhuizen & Lamont, 1998). This modified measure was pro-
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Table 1

Bi-objective test problems.

Name Mathematical formulation

UF1 f1 = x1 + 2
|J1 |

∑
j∈J1

[x j − sin(6πx1 + jπ
n

)]2, f2 = 1 − √
x + 2

|J2 |
∑
j∈J2

[x j − sin(6πx1 + jπ
n

)]2

J1 = { j| j is odd and 2 ≤ j ≤ n}, J2 = { j| j is even and 2 ≤ j ≤ n}
UF2 f1 = x1 + 2

|J1 |
∑
j∈J1

yj
2, f2 = 1 − √

x + 2
|J2 |

∑
j∈J2

yj
2

J1 = { j| j is odd and 2 ≤ j ≤ n}, J2 = { j| j is even and 2 ≤ j ≤ n}
yj = { x j − [0.3x2

1 cos(24πx1 + 4 jπ
n

) + 0.6x1] cos(6πx1 + jπ
n

) i f j ∈ J1
x j − [0.3x2

1 cos(24πx1 + 4 jπ
n

) + 0.6x1] sin(6πx1 + jπ
n

) i f j ∈ J2

UF3 f1 = x1 + 2
|J1 | (4

∑
j∈J1

y2
j
− 2

∏
j∈J1

cos(
20y jπ√

j
) + 2) f2 = √

x1 + 2
|J2 | (4

∑
j∈J1

y2
j
− 2

∏
j∈J2

cos(
20y jπ√

j
) + 2)

J1and J2are the same as those of UF1, yj = x j − x
0.5(1.0+ 3( j−2)

n−2 )

1
, j = 2, 3, . . . , n

UF4 f1 = x1 + 2
|J1 |

∑
j∈J1

h(yj ), f2 = 1 − x2 + 2
|J2 |

∑
j∈J2

h(yj )

J1and J2are the same as those of UF1, yj = x j − sin(6πx1 + jπ
n

), j = 2, 3, . . . , n, h(t) = |t|
1+e2|t|

UF5 f1 = x1 + ( 1
2N

+ ε)|sin(2Nπx1)| + 2
|J1 |

∑
j∈J1

h(yi), f1 = 1 − x1 + ( 1
2N

+ ε)|sin(2Nπx1)| + 2
|J2 |

∑
j∈J2

h(yi)

J1amd J2are identical to those of UF1, ε > 0, yj = x j − sin(6πx1 + jπ
n

), j = 2, 3, . . . , n

h(t) = 2t2 − cos(4πt) + 1

UF6 f1 = x1 + max{0, 2( 1
2N

+ ε) sin(2Nπx1)} + 2
|J1 | (4

∑
j∈J1

y2
j
− 2

∏
j∈J1

cos(
20y jπ√

j
) + 1) )

f2 = 1 − x1 + max{0, 2( 1
2N

+ ε) sin(2Nπx1)} 2
|J2 | (4

∑
j∈J2

y2
j
− 2

∏
j∈J2

cos(
20y jπ√

j
) + 1) )

J1amd J2are identical to those of UF1, ε > 0, yj = x j − sin(6πx1 + jπ
n

), j = 2, 3, . . . , n

UF7 f1 = 5
√

x1 + 2
|J1 |

∑
j∈J1

y2
j
, f2 = 1 − 5

√
x1 + 2

|J2 |
∑
j∈J2

y2
j

J1amd J2are identical to those of UF1, ε > 0, yj = x j − sin(6πx1 + jπ
n

), j = 2, 3, . . . , n

Table 2

Tri-objective test problems.

Name Mathematical formulation

UF8 f1 = cos(0.5x1π) cos(0.5x2π) + 2
|J1 |

∑
j∈J1

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

f2 = cos(0.5x1π) sin(0.5x2π) + 2
|J2 |

∑
j∈J2

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

f3 = sin(0.5x1π) + 2
|J3 |

∑
j∈J3

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

J1 = { j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = { j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = { j|3 ≤ j ≤ n, and j is a multiplication of 3},

UF9 f1 = 0.5[max{0, (1 + ε)(1 − 4(2x1 − 1)
2
)} + 2x1]x2 + 2

|J1 |
∑
j∈J1

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

f2 = 0.5[max{0, (1 + ε)(1 − 4(2x1 − 1)
2
)} + 2x1]x2 + 2

|J2 |
∑
j∈J2

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

f3 = 1 − x2 + 2
|J3 |

∑
j∈J3

(x j − 2x2 sin (2πx1 + jπ
n

)
2
)

J1 = { j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = { j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = { j|3 ≤ j ≤ n, and j is a multiplication of 3}, ε = 0.1

UF10 f1 = cos(0.5x1π) cos(0.5x2π) + 2
|J1 |

∑
j∈J1

[4y2
j
− cos(8πyj ) + 1]

f2 = cos(0.5x1π) sin(0.5x2π) + 2
|J2 |

∑
j∈J1

[4y2
j
− cos(8πyj ) + 1]

f3 = sin(0.5x1π) + 2
|J3 |

∑
j∈J1

[4y2
j
− cos(8πyj ) + 1]

J1 = { j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = { j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = { j|3 ≤ j ≤ n, and j is a multiplication of 3},
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posed by Sierra and Coello, 2005 and formulated as follows:

IGD =
√∑n

i=1 d2
i

n
(4.1)

where n is the number of true Pareto optimal solutions and di in-

dicates the Euclidean distance between the ith true Pareto optimal

solution and the closest obtained Pareto optimal solutions in the ref-

erence set. The Euclidean distance between obtained solutions and

reference set is different here. In IGD, the Euclidean distance is cal-

culated for every true solution with respect to its nearest obtained

Pareto optimal solutions in the objective space.

The mathematical formulation of the SP and MS measures are as

follows:

SP =
√

1

n − 1

n∑
i=1

(
d̄ − di

)2
(4.2)
here d̄ is the average of all di, n is the number of Pareto optimal so-

utions obtained, and di = min
j

(| f i
1
(�x) − f

j
1
(�x)| + | f i

2
(�x) − f

j
2
(�x)|) for

ll i ,j=1,2,3,…,n.

S =
√

o∑
i=1

max (d(ai, bi)) (4.3)

here d is a function to calculate the Euclidean distance, ai is the

aximum value in the ith objective, bi is the minimum in the ith ob-

ective, and o is the number of objectives.

In addition to utilizing the above performance metrics, which al-

ow us to quantitatively compare MOGWO with MOPSO and MOEA/D,

e illustrate the best set of Pareto optimal solutions obtained by each

lgorithm on both parameter space and search space. This allows us

o compare the performance of the algorithms qualitatively as well.

ll the algorithms are run 10 times on the test problems and the

tatistics results of these 10 runs are provided in Tables 3–5. Note
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Table 3.

Statistical results for IGD on UF1 to UF10.

UF1 (bi-objective) UF2 (bi-objective) UF3 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.114425 0.137005 0.187135 0.05825 0.060405 0.122343 0.255691 0.313999 0.288648

Median 0.113 0.131745 0.182855 0.057775 0.04835 0.120135 0.25091 0.30802 0.289295

STD. Dev. 0.019538 0.044068 0.05073 0.007392 0.027625 0.0107 0.080702 0.044726 0.015921

Worst 0.15774 0.22786 0.24642 0.07322 0.13051 0.14369 0.36786 0.37773 0.31294

Best 0.08023 0.0899 0.12652 0.0498 0.03699 0.10486 0.1295 0.25648 0.26342

UF4 (bi-objective) UF5 (bi-objective) UF6 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.058669 0.136037 0.068131 0.797072 2.202376 1.291451 0.279375 0.64752 0.688119

Median 0.058685 0.13432 0.06846 0.69942 2.125745 1.33761 0.24435 0.55073 0.698415

STD. Dev. 0.000481 0.007391 0.002143 0.378579 0.553042 0.134897 0.104485 0.266117 0.055326

Worst 0.05936 0.15189 0.07037 1.73857 3.03836 1.46746 0.55036 1.24281 0.74011

Best 0.05797 0.12733 0.06466 0.46795 1.46479 1.12306 0.19338 0.37933 0.55235

UF7 (bi-objective) UF8 (tri-objective) UF9 (tri-objective) UF10 (tri-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOGWO MOPSO MOGWO MOPSO

Average 0.160359 0.353954 0.455242 2.057772 0.536709 0.191747 0.488503 3.594533 1.637196

Median 0.07336 0.387305 0.437665 2.335965 0.5364 0.166025 0.41451 2.82552 1.59163

STD. Dev. 0.139111 0.204421 0.189831 1.145524 0.182571 0.092504 0.144497 3.488293 0.298794

Worst 0.40142 0.61512 0.67701 3.87888 0.79637 0.44794 0.7221 12.95643 2.1622

Best 0.06275 0.05402 0.029 0.46131 0.2453 0.1291 0.33355 1.0431x4 1.22008

Table 4

Statistical results for SP on UF1 to UF10.

UF1 (bi-objective) UF2 (bi-objective) UF3 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.01237 0.00898 0.00384 0.01108 0.00829 0.00876 0.04590 0.00699 0.02680

Median 0.00536 0.00855 0.00382 0.00946 0.00814 0.00859 0.04860 0.00677 0.02505

STD. Dev. 0.01462 0.00247 0.00151 0.00362 0.00168 0.00076 0.01453 0.00170 0.02064

Worst 0.04641 0.01464 0.00665 0.01816 0.01245 0.01042 0.07050 0.01007 0.06256

Best 0.00081 0.00670 0.00213 0.00758 0.00624 0.00797 0.01549 0.00476 0.00078

UF4 (bi-objective) UF5 (bi-objective) UF6 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.00969 0.00666 0.00730 0.15231 0.00479 0.00278 0.01446 0.02084 0.00630

Median 0.00857 0.00662 0.00728 0.08778 0.00487 0.00007 0.01110 0.01235 0.00000

STD. Dev. 0.00390 0.00091 0.00059 0.16247 0.00408 0.00553 0.01246 0.03258 0.01267

Worst 0.01722 0.00809 0.00836 0.51247 0.01206 0.01615 0.04112 0.11140 0.03030

Best 0.00583 0.00546 0.00610 0.00843 0.00006 0.00000 0.00191 0.00215 0.00000

UF7 (bi-objective) UF8 (tri-objective) UF9 (tri-objective) UF10 (tri-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOGWO MOPSO MOGWO MOPSO

Average 0.00824 0.00670 0.00540 0.00687 0.02682 0.01743 0.02343 0.02523 0.01994

Median 0.00548 0.00655 0.00441 0.00470 0.02639 0.01826 0.02349 0.02392 0.02066

STD. Dev. 0.00856 0.00285 0.00301 0.00474 0.00827 0.00633 0.00405 0.01500 0.00348

Worst 0.03106 0.01240 0.01168 0.01879 0.04473 0.02856 0.03087 0.05384 0.02665

Best 0.00031 0.00325 0.00084 0.00365 0.01531 0.00653 0.01716 0.00000 0.01536
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hat we used 300,000 function evaluation for each algorithm and the

umber of parameters for each of the test functions are 30. The qual-

tative results are also provided in Figs. 3–5.

.2. Discussion of the results

Table 3 provides statistical results of the algorithm for IGD. This

able shows that the proposed MOGWO algorithm is able to provide

he best results on all the statistical metrics for UF1. The significance

f the results is also illustrated in Fig. 3. This figure shows that the

oxplot of MOGWO is significantly lower and narrower than those of

OPSO and MOEA/D. IGD is the performance metric that shows the

ccuracy and convergence of an algorithm. So, it can be stated that the

OGWO algorithm is able to provide superior convergence on UF1.

The obtained Pareto optimal solution of each algorithm on UF1

re also depicted in Fig. 4. It may be seen in this figure that the con-

ergence and coverage (see Tables 4 and 5) of MOGWO is better than

thers. Although there are discontinuities on the Pareto optimal front

f MOGWO, the coverage of the whole front is broader than MOPSO
nd MOEA/D on this test function. The obtained Pareto optimal fronts

f MOGWO and MOPSO are slightly similar. However, it seems that

he Pareto optimal solutions of MOGWO are closer to the true Pareto

ptimal front and highly distributed along both objectives.

As per the results of the algorithms on UF2 in Table 3, MOGWO

s able to outperform others in average. However, the best result

s achieved by MOPSO. These results show the performance of the

OGWO algorithm is more stable than MOPSO. Since IGD is a good

etric to benchmark the convergence of an algorithm, these results

ndicate that the MOGWO algorithm has a better convergence on this

enchmark function as well. The significance of the results is illus-

rated in Fig. 3. The boxplot of the MOGWO is narrower than MOPSO

nd MOEA/D, showing stability of MOGWO algorithm in converging

owards the true Pareto optimal front. The worst results belong to

OEA/D dealing with this benchmark problem. The boxplots of Fig. 3

hows that this algorithm provides very poor results.

In order to observe the coverage of the algorithms, the obtained

areto optimal solutions are illustrated in Fig. 4. This figure shows

hat the obtained Pareto optimal front of MOGWO and MOEA/D are
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Table 5

Statistical results for MS on UF1 to UF10.

UF1 (bi-objective) UF2 (bi-objective) UF3 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.92680 0.64538 0.51774 0.90972 0.91205 0.87201 0.94982 0.61030 0.23994

Median 0.93272 0.66322 0.59541 0.91041 0.91636 0.87437 1.00000 0.61612 0.22943

STD. Dev. 0.06884 0.19292 0.16609 0.02867 0.02560 0.00560 0.08777 0.10575 0.12129

Worst 0.81797 0.26592 0.31487 0.84695 0.86654 0.85986 0.76809 0.38172 0.08975

Best 0.99711 0.95226 0.74128 0.94791 0.95301 0.87794 1.00000 0.77145 0.47863

UF4 (bi-objective) UF5 (bi-objective) UF6 (bi-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D MOGWO MOPSO MOEA/D

Average 0.94242 0.81275 0.88320 0.39503 0.27926 0.29215 0.67360 0.27435 0.09677

Median 0.94269 0.81321 0.88131 0.43258 0.28654 0.29165 0.70826 0.22917 0.00005

STD. Dev. 0.00093 0.01367 0.01812 0.17494 0.09575 0.03470 0.12323 0.11285 0.20715

Worst 0.94095 0.79441 0.85324 0.03006 0.15574 0.23834 0.38838 0.15436 0.00000

Best 0.94327 0.83449 0.91394 0.61042 0.43827 0.34380 0.81492 0.52516 0.59484

UF7 (bi-objective) UF8 (tri-objective) UF9 (tri-objective) UF10 (tri-objective)

IGD MOGWO MOPSO MOEA/D MOGWO MOPSO MOGWO MOPSO MOGWO MOPSO

Average 0.80126 0.42928 0.56317 0.44573 0.50810 0.83991 0.19816 0.29721 0.13015

Median 0.96293 0.29520 0.63267 0.44429 0.50601 0.91055 0.16566 0.14238 0.10913

STD. Dev. 0.30865 0.27553 0.24209 0.18574 0.16136 0.19759 0.16351 0.34651 0.06263

Worst 0.02252 0.14458 0.14963 0.18863 0.22723 0.28750 0.06771 0.03194 0.06489

Best 0.98746 0.87714 0.99152 0.86376 0.71476 0.93753 0.64242 0.92828 0.25404
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more distributed than MOEA/D. However, the convergence of the

MOEA/D algorithm on the left side of the true Pareto optimal front is

noticeable. Among the Pareto optimal fronts of MOGWO and MOPSO,

that of MOPSO shows slightly better coverage as per the results of SP

and MS in Tables 4 and 5.

The statistical results of the algorithm on UF3 for IGD show that

MOGWO has the best convergence average. The superioir results can

be observed on median and best results as well in Fig. 3. However,

the best results for standard deviation and worst belong to MOEA/D.

Fig. 4 shows a different behavior for the algorithms compared to

the previous test problems. This figure proves that the superioirty of

the MOGWO is not significant on UF3. However, the results of the

MOGWO algorithm tend to be better than MOPSO and MOEA/D.

The true Pareto optimal front and best obtained Pareto opti-

mal fronts for UF3 in Fig. 4 show that the Pareto optimal front of

MOGWO is highly better than that of MOPSO and MOEA/D. For one,

the MOGWO’s front is more distributed than others. For another, the

Pareto optimal solutions obtained are very close to the true Pareto

optimal front especially on the right side. Another fact worth notic-

ing here is the poor distribution of MOEA/D’s obtained front, which

shows that this algorithm is not able to show good coverage on UF3

benchmark problem. Despite close coverage of MOPSO (see Tables 3

and 4), the convergence of this algorithm is not as good as that of

MOGWO.

The statistical results of MOGWO, MOPSO, and MOEA/D on

UF4 benchmark problem show that MOGWO is able to outperform

MOPSO and MOEA/D. According to Fig. 3, this superiority is very sig-

nificant since the boxplot of MOGWO is super narrow and located

under the minima of MOPSO and MOEA/D. These results prove that

the proposed algorithm is able to provide remarkable convergence

and coverage ability in solving multi-objective problems. Another fact

worth mentioning here is the poor performance of MOPSO on this al-

gorithm, which is not consistent to the results of the previous test

problems. This might be due to the non-convex shape of the true

Pareto optimal front, which is discussed in the next paragraph.

The shapes of the obtained Pareto optimal fronts of the algo-

rithms provided in Fig. 4 shows that the shape of the true Pareto

optimal front is convex, which is different from the previous test

problems. This difference causes diverse shapes for obtained Pareto

optimal front of each algorithm. The distributions of the obtained

fronts are similar for all the algorithms to some extent, slightly bet-

ter for the MOEA/D algorithm. However, the Pareto optimal solutions
f MOGWO are closer to the true Pareto optimal front compared to

OPSO and MOEA/D. Despite these close results on the best obtained

areto optimal front, quantitative results prove that the stability of re-

ults of the proposed MOGWO algorithm is significantly high on this

enchmark problem.

The fifth test problem has a discontinuous Pareto optimal set and

areto optimal front. The statistical results of the algorithms over

0 independent runs presented in tables show again that MOGWO

rovides the best performance dealing with UF5 test problem. This

roves that this algorithm shows better convergence ability in av-

rage. However, the Pareto optimal solutions obtained in Fig. 4 and

uantitative results in Tables 4 and 5 show poor convergence and cov-

rage for all of algorithms. This might be due to the difficulties of the

earch space of UF5 with a huge number of discontinuous regions

hat prevents algorithms from providing accurate results on this test

roblem. We employed a 30 dimensional version of UF5, which make

t more challenging for the algorithms. Although all algorithms show

ery poor performance, the MOGWO algorithm is significantly better

s the results suggest.

Another test problem with discontinuous search space is UF6. A

imilar behavior to UF5 can be observed in the results. The statis-

ical results for performance metrics show significant superior per-

ormance of MOGWO on UF6. The true Pareto optimal front of UF6

as three discontinuous parts separated from 0 to 0.2 and 0.5 to 0.7

ver the first objective function (f1). None of the algorithms managed

o obtain close Pareto optimal solutions to the true front. However,

he results of MOGWO are better than MOPSO and MOEA/D. As may

e seen in Fig. 5, it seems that MOGWO tend to find the three dis-

onnected regions of the true Pareto optimal front, whereas MOPSO

nd MOEA/D only move towards one part. This proves that the pro-

osed MOGWO algorithm has the potential to provide superior re-

ults on problems with discontinuities in their parameter/objective

pace. The results of Fig. 3 evidence that this superiority can be sig-

ificant as well.

The UF7 test problem has a linear Pareto optimal front that makes

t easier than problems with convex and non-convex shaped true

areto optimal fronts. The statistical results for performance metrics

uggest that the proposed algorithm shows better results. This su-

eriority is not very significant which is due to linear shaped Pareto

ront of this test problem. MOGWO provides better results on aver-

ge, median, standard deviation, and worst of IGD, SP, and MS. The

btained Pareto optimal solutions in Fig. 5 show that the best front
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Fig. 3. Boxplot of the statistical results for IGD on UF1 to UF10.

o

f

a

c

a

t

c

t

o

c

T

h

a

o

i

m

T

v

s

l

c

a

l

s

q

M

f

U

m

p

s

s

t

b

t

o

r

o

d

o

d

|

M

v

h

s

b

t

d

n

o

i

u

f MOEA/D is uniformly distributed along the true Pareto optimal

ront. This is due to the nature of this algorithm, in which objectives

re decomposed by a set of weights so linear Pareto optimal fronts

an be easily constructed. The behavior of MOGWO and MOPSO are

lso almost similar. However, it may be observed in the quantita-

ive results MOGWO is better in terms of improved convergence and

overage.

Problems UF8, UF9, and UF10 are three-objective, which make

hem more challenging than two-objective problems. Since three-

bjective version of MOEA/D has not been developed in Matlab, we

ompare MOGWO with just MOPSO for these benchmark problems.

he results of the first three-objective problem show that MOPSO has

igher IGD, SP, and MS statistical results than MOGWO. These results

re supported by the box plots of the Fig. 3, in which the significance

f the results can be observed.

The Pareto optimal fronts obtained by both algorithms after solv-

ng UF8 are shown in Fig. 5. It may be seen that the Pareto opti-

al solutions of MOPSO are far from the true Pareto optimal front.

he Pareto optimal solutions obtained by MOGWO, however, are con-

erged towards the true Pareto optimal font despite their low diver-

ity. Therefore, the MOGWO algorithm shows high convergence but

ow coverage on UF8 in the best case.

The UF9 test problem has a separated Pareto front, making it more

hallenging. As per the results in the tables and figures, the proposed

lgorithm is again able to provide very promising results on this chal-

enging test function. The statistical results are an evidence of the

table convergence of this algorithm over 10 independent runs. The

uantitative and qualitative results also show that the coverage of

OGWO is very good along the objectives. Fig. 5 shows that MOPSO

ound very poor Pareto optimal solutions for this problem.
Finally, the results of the last problem, UF10 are similar to that of

F8, in which MOPSO provides better statistical results on average,

edian, standard deviation, and worst for IGD. MOGWO, however,

rovides the best coverage among 10 independent runs. It may be ob-

erved that the MOGWO algorithm shows very good coverage when

olving UF10 as per the quantitative and qualitative results.

To have an image of the Pareto optimal sets obtained, the first

hree variables of the true Pareto optimal set and determined sets

y MOGWO are illustrated in Fig. 6. The convergence and coverage of

he MOGWO algorithms can be clearly seen in the Pareto optimal sets

btained in this figure.

The results and discussions evidence that the MOGWO algo-

ithm is able to provide very competitive and promising results

n the multi-objective test functions. The statistical results for IGD

emonstrate the convergence ability of MOGWO. High convergence

f MOGWO is originated from the concepts of attacking prey and up-

ating position of omega wolves with respect to other wolves when

A|<1. When half of the iteration is passed, the search agents of

OGWO tend to exploit promising regions of the search space pro-

ided by alpha, beta, and delta solutions. Another observation was the

igh coverage of the obtained Pareto optimal solutions as per the re-

ults of SP and MS. This is due to the updating mechanism of MOGWO

ased on alpha, beta, and delta solutions, which allows it to consider

hree best solutions obtained so far and oblige omega wolves to up-

ate their positions with respect to them. In addition, we chose a

ew alpha, beta, and delta solutions for updating the position of each

mega wolf, which reemphasize exploration.

It is worth discussing here that the main controlling parameter

n GWO and MOGWO is A. We have utilized the same adaptive val-

es in MOGWO as of the GWO algorithm. However, we have done
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Fig. 4. Obtained Pareto optimal solutions by MOGWO, MOPSO, and MOEA/D for UF1 to UF5.
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Fig. 5. Obtained Pareto optimal solutions by MOGWO, MOPSO, and MOEA/D for UF6 to UF10.
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Fig. 6. True and obtained Pareto optimal sets of MOGWO on UF2, UF3, and UF9.
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some experiments to see how the performance of MOGWO varies

when changing this parameter. As per our observation, search agents

tend to avoid each other and explore the search space proportional to

the absolute value of A. In contrast, MOGWO searches locally and ex-

ploits the search space inversely proportional to A. Of course, a con-

stant value for this parameter prevents the MOGWO from perform-

ing both exploration and exploitation. Therefore, the adaptive value

is the best option unless either exploration or exploitation is ben-

eficial. For instance, an algorithm has to always explore the search

space when solving dynamic problems where the shape of search

space constantly changes. Another important parameter in MOGWO

is C. This parameter stochastically emphasizes (C>1) or deemphasizes

(C<1) the effect of prey in defining the distance. This assists MOGWO

to show a more random behavior throughout optimization, which

causes favoring exploration and local optima avoidance. It is worth

mentioning here that C was not linearly decreased in contrast to A.

The C parameter was deliberately required to provide random values

at all times in order to emphasize exploration not only during initial

iterations but also final iterations. This component is very helpful in

case of local optima stagnation, especially in the final iterations.

The results of MOGWO were mostly better than those of MOPSO

because MOPSO only updates the position of particles with respect to

one non-dominated solution obtained so far. The results prove that

MOGWO was able to outperform MOPSO since it utilizes three non-

dominated solutions found so far. In addition, MOPSO updates gBest

in each iteration, so all the particles are attracted by the same (or a

similar set of) gBest(s) in each iteration (Nebro et al., 2013). The lead-

ers of MOGWO, however, are updated for every position update, as-

sisting search agents to explore the search space more extensively.

The results also proved that MOEA/D algorithm mostly provides

poor performance in terms of not only convergence but also cov-

erage. However, this algorithm showed the best results on the test

function with linear true Pareto optimal front. This is due to the

decomposition-based nature of this algorithm that makes it highly

suitable for the problems with linear fronts. This characteristic of

MOEA/D yet prevents it from providing promising results on prob-

lems with convex and especially non-convex true Pareto optimal

front. Since MOGWO utilizes an archive, this problem cannot be ob-

served for this algorithm as the results evidence.

The high coverage of MOGWO was also verified in the results,

which is due to the selecting leader mechanism of this algorithm.

Although the selection and grid mechanism of MOGWO is similar

to MOPSO, selecting three leaders for each search agent over the

course of integration assists MOGWO to outperform MOPSO. This is

also the reason of significant superior results of MOGWO compared

to MOEA/D.

As summary, the main advantages of the proposed MOGWO

algorithm compared to MOGWO and MOEA/D are high convergence

and coverage. Superior convergence is due to the leader selection

mechanism, in which only three non-dominated solutions always
pdate the position of others. Another advantage is the high cov-

rage of the MOGWO algorithm, which is because of both archive

aintenance mechanism and leader selection procedure. Since the

olutions are always discarded from most populated segments and

eaders are chosen from the least populated segments of the archive,

OGWO improves the diversity and coverage of solutions across

ll objectives. Despite these benefits, MOGWO can only be applied

o problems with 3 and maximum 4 objectives. Similarly to other

areto dominance-based algorithms, MOGWO becomes less effective

roportional to the number of objectives. This is due to the fact

hat in problems with more than 4 objectives, a large number of

olutions are non-dominated, so the archive become full very quickly.

herefore, the MOGWO algorithm is suitable for solving problems

ith less than four objectives. In addition, this algorithm is suitable

nly for problems with continuous variables mainly because the

WO algorithm is for solving such problems.

. Conclusion

This work proposed a novel multi-objective meta-heuristic called

OGWO. In fact, two new components were integrated to the GWO

lgorithm to allow it to perform multi-objective optimization. The

rst component was an archive for storing and retrieving the best

on-dominated obtained solution so far during optimization. The

econd module was a leader selection mechanism that required

OGWO to select alpha, beta, and delta wolves for updating the po-

ition of omega wolves from the archive. The unique feature of the

rchive was the high emphasize on the maintenance of the solutions

nd updating mechanism. The grid mechanism employed improved

he non-dominated solutions in the archive effectively. The leader

election mechanism proposed allowed the MOGWO algorithm to

how superior coverage and convergence simultaneously. Finally, the

ulti-objective version of GWO was proposed utilizing the above op-

rators for the first time in the literature. Although an archive has

een utilized for other algorithms, this work integrated this non-

ominated solution storage to the GWO algorithm for the first time

s one of the most recent algorithms in the literature of global op-

imization. The archive maintenance and leader selections were also

ntegrated to the GWO algorithm for the first time.

The proposed MOGWO algorithm was applied to 10 standard chal-

enging CEC 2009 test problem and compared to MOPSO and MOEA/D

s two well-known algorithms. The results showed that MOGWO was

ble to provide very competitive results. For one, the IGD perfor-

ance metric quantitatively proved that MOGWO has high conver-

ence behavior. For another, the shape of the obtained Pareto op-

imal solutions and coverage metrics revealed the superior cover-

ge of the proposed algorithm qualitatively and quantitatively. Ac-

ording to this comprehensive study, it can be concluded that the

roposed algorithm has significant merits is solving multi-objective

roblems, so we offer it to the researchers from different fields.
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ote that the source codes of MOGWO are publicly available at http:

/www.alimirjalili.com/GWO.html.

For future studies, we are planning to investigate the application

f the proposed algorithm in Computational Fluid Dynamics (CFD)

roblems. In addition, we are going to investigate the effectiveness of

ifferent robust handling methods on MOGWO that allow it to handle

ifferent types of uncertainties, which is an essential in solving real

roblems. Proposing a many-objective version of the MOGWO would

e a valuable contribution as well.
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